Transducer Theory and Streaming Transformations

Emmanuel Filiot

Université Libre de Bruxelles
Finite State Automata

- finite string acceptors over a finite alphabet Σ
- read-only input tape, left-to-right
- finite set of states

Definition (Finite State Automaton)

A finite state automaton (FA) on Σ is a tuple $A = (Q, I, F, \delta)$ where

- Q is the set of states,
- $I \subseteq Q$, reps. $F \subseteq Q$ is the set of initial, resp. final, states,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition relation.

$L(A) = \{ w \in \Sigma^* \mid \text{there exists an accepting run on } w \}$
Finite State Automata – Example

![Finite State Automata Diagram](image)

Finite State Automata

Example:

- States: `q0` and `q1`
- Transitions:
 - `a` from `q0` to `q1`
 - `b` from `q1` to `q0`
 - `a` from `q0` to `q0`
 - `b` from `q1` to `q1`

Language:

- `L(A) = \{ w \in \Sigma^* | w` contains an even number of `a` \}`

Run on `aabaa`:

- Start at `q0`.
- Read `a` to `q0`.
- Read `b` to `q1`.
- Read `a` to `q0`.
- Read `b` to `q1`.
- Read `a` to `q0`.
- Read `a` to `q0`.

Accepting state: `q0`.
Finite State Automata – Example

Run on $aabaa$:
Finite State Automata – Example

Run on \textit{aabaa}:

$L(A) = \{ w \in \Sigma^* \mid w \text{ contains an even number of } a \}$
Properties of FA

Expressiveness

\[\text{FA} = \text{regular languages} = \text{MSO}[+1] = \text{regular expressions} = \ldots \]
Properties of FA

Expressiveness

FA = regular languages = MSO[+1] = regular expressions = ...

Closure Properties

- closed under Boolean operations (union, intersection, complement).
- closed under various extensions:
 - non-determinism (NFA): $\delta \subseteq Q \times \Sigma \times Q$
 - two-way input head (2NFA): $\delta \subseteq Q \times \Sigma \times \{-1, 0, 1\} \times Q$
 - regular look-ahead: $\delta \subseteq Q \times \Sigma \times \text{Reg} \times Q$
 - alternation: $\delta : Q \times \Sigma \to B(Q)$ (Boolean formulas over Q)
Properties of FA

Expressiveness

FA = regular languages = MSO[+1] = regular expressions = ...

Closure Properties

- closed under Boolean operations (union, intersection, complement).
- closed under various extensions:
 - non-determinism (NFA): $\delta \subseteq Q \times \Sigma \times Q$
 - two-way input head (2NFA): $\delta \subseteq Q \times \Sigma \times \{-1, 0, 1\} \times Q$
 - regular look-ahead: $\delta \subseteq Q \times \Sigma \times \text{Reg} \times Q$
 - alternation: $\delta : Q \times \Sigma \rightarrow B(Q)$ (Boolean formulas over Q)

Decision Problems

Membership, emptiness, universality, inclusion, equivalence ... are decidable.
From Languages to Transductions

Let Σ and Δ be two finite alphabets.

Definition

<table>
<thead>
<tr>
<th>Language on Σ</th>
<th>Transduction from Σ to Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>function from Σ^* to ${0, 1}$</td>
<td>relation $R \subseteq \Sigma^* \times \Delta^*$</td>
</tr>
<tr>
<td>defined by automata</td>
<td>defined by transducers</td>
</tr>
<tr>
<td>accept strings</td>
<td>transform strings</td>
</tr>
</tbody>
</table>

transducer = [automaton] + output mechanism.
Finite State Transducers
Finite State Transducers

- read-only left-to-right input head
- write-only left-to-right output head
- finite set of states
Finite State Transducers

- read-only left-to-right input head
- write-only left-to-right output head
- finite set of states

Definition (Finite State Transducers)

A finite state transducer from Σ to Δ is a pair $T = (A, O)$ where

- $A = (Q, I, F, \delta)$ is the underlying automaton
- O is an output morphism from δ to Δ^*.

- If $t = q \xrightarrow{a} q' \in \delta$, then $O(t)$ defines its output.
- $q \xrightarrow{a|w} q'$ denotes a transition whose output is $w \in \Delta^*$.
Finite State Transducers

- read-only left-to-right input head
- write-only left-to-right output head
- finite set of states

Definition (Finite State Transducers)

A **finite state transducer** from Σ to Δ is a pair $T = (A, O)$ where

- $A = (Q, I, F, \delta)$ is the **underlying automaton**
- O is an **output** morphism from δ to Δ^*.

If $t = q \xrightarrow{a} q' \in \delta$, then $O(t)$ defines its **output**.

$q \xrightarrow{a|w} q'$ denotes a transition whose output is $w \in \Delta^*$.

Two classes of transducers:
- **DFT** if A is deterministic
- **NFT** if A is non-deterministic.
Some applications

- language and speech processing (e.g. see work by Mehryar Mohri)
- model-checking infinite state-space systems\(^1\)
- verification of web sanitizers\(^2\)
- string pattern matching

\(^2\) see BEK, developed at Microsoft Research
Finite State Transducers – Example 1

Finite State Transducers (FSTs) are a type of automaton that can output as well as accept inputs. They are used in various applications such as natural language processing, speech recognition, and text-to-speech conversion.

Consider the following FST example:

- **States**: q_0 (initial state), q_1
- **Transitions**:
 - $q_0 \xrightarrow{a} q_0$
 - $q_0 \xrightarrow{b} q_1$
 - $q_1 \xrightarrow{b} q_1$
 - $q_1 \xrightarrow{a} q_0$

Let's run an input of $aabaa$ through this FST:

1. Start at q_0.
2. Read a: $q_0 \rightarrow q_0$.
3. Read a: $q_0 \rightarrow q_0$.
4. Read b: $q_0 \rightarrow q_1$.
5. Read a: $q_1 \rightarrow q_0$.
6. Read a: $q_1 \rightarrow q_0$.
7. Read a: $q_1 \rightarrow q_1$.
8. Read a: $q_1 \rightarrow q_1$.

The output is $aaaab$.

This example demonstrates how an FST can transform input strings into output strings.
Finite State Transducers – Example 1

Run on $aabaa$:

$$T(aabaa) = a.a.\epsilon.a.a = aaaa.$$
Finite State Transducers – Example 1

Finite State Transducers

Example 1

\[\begin{array}{c}
q_0 \quad b | \epsilon \\
\text{start} \quad a | a \\
q_1 \quad b | \epsilon \\
\end{array} \]

Run on \(aaba \):

\(T(aaba) = \text{undefined} \)
Finite State Transducers – Example 1

Run on $aaba$:

$$T(aaba) = \text{undefined}$$
Finite State Transducers – Example 1

Semantics

\[\text{dom}(T) = \{ w \in \Sigma^* \mid \#_a w \text{ is even} \} \]

\[R(T) = \{(w, a\#_a w) \mid w \in \text{dom}(T)\} \]
Finite State Transducers – Example 2

\[
\text{\(\square\) = white space}
\]

\[
\begin{array}{c}
q_0 \\
\text{start}
\end{array} \quad \xrightarrow{a|a} \quad \begin{array}{c}
q_1 \\
\text{\(\square\)|\(\epsilon\)}
\end{array}
\]

Semantics
Replace blocks of consecutive white spaces by a single white space.

\[T(aa) = aa\]
Finite State Transducers – Example 2

\[_ = \text{white space} \]

![Finite State Transducer Diagram]

Semantics

Replace blocks of consecutive white spaces by a single white space.

\[T(_a_a_a_a_a_a) = _a_a_a \]
Finite State Transducers – Example 3

ṣ = white space

[Diagram of a finite state transducer with states q0, q1, and q2, transitions labeled with symbols such as ε and a|a, and transitions between states.]
Finite State Transducers – Example 3

\(= \) white space

Semantics
Replace blocks of consecutive white spaces by a single white space and remove the last white spaces (if any).

\[T(__a_a_a_a_a) = _a_a_a \]
Semantics

Replace blocks of consecutive white spaces by a single white space and remove the last white spaces (if any).

$$T(\quad aa\quad aa\quad) = \quad aa\quad a$$

Non-deterministic but still defines a function: functional NFT
Is non-determinism needed?
Is non-determinism needed?
How to get a deterministic FT?

- extend automata subset construction with outputs
- output the longest common prefix
How to get a deterministic FT?

- extend automata subset construction with outputs
- output the longest common prefix

\[
\begin{array}{c}
q_2 \xrightarrow{\epsilon} q_0 \\
q_0 \xrightarrow{\epsilon} q_1
\end{array}
\]
How to get a deterministic FT?

- extend automata subset construction with outputs
- output the longest common prefix
How to get a deterministic FT?

- extend automata subset construction with outputs
- output the longest common prefix
How to get a deterministic FT?

- extend automata subset construction with outputs
- output the longest common prefix
How to get a deterministic FT?

- extend automata subset construction with outputs
- output the longest common prefix
How to get a deterministic FT?

1. Extend automata subset construction with outputs.
2. Output the longest common prefix.

Diagram:

- State diagram showing transitions and outputs.
- States labeled with outputs: $q_0(a)$, $q_1(\varepsilon)$, $q_2(\varepsilon)$.
How to get a deterministic FT?

- extend automata subset construction with outputs
- output the longest common prefix
Can we always get an equivalent deterministic FT?
Can we always get an equivalent deterministic FT?

- not in general: DFT define functions, NFT define relations
- what about functional NFT?
Can we always get an equivalent deterministic FT?

- not in general: DFT define functions, NFT define relations
- what about functional NFT?

![Diagram of a finite state transducer](image)

Semantics:

\[R(T) : \begin{cases}
 a^n b \rightarrow b^{n+1} \\
 a^n c \rightarrow c^{n+1}
\end{cases} \]

Functional but not determinizable
Subset construction fails ...

Subset construction:

q_0
Subset construction fails ...

Subset construction:
Subset construction fails ...

Subset construction:
Subset construction fails ...

Subset construction:
Subset construction fails ...

Subset construction:
Subset construction fails ...

\[q_0 \xrightarrow{a|\epsilon} q_1(b) \xrightarrow{a|\epsilon} q_1(bb) \xrightarrow{a|\epsilon} q_1(bbb) \xrightarrow{a|\epsilon} \ldots \]

\[q_2(c) \xrightarrow{a|\epsilon} q_2(cc) \xrightarrow{a|\epsilon} q_2(ccc) \]
How to guarantee termination of subset construction?

LAG

\[LAG(u, v) = (u', v') \] such that \(u = \ell u', \ v = \ell v' \) and \(\ell = lcp(u, v) \).

E.g. \(LAG(abbc, abc) = (bc, c) \).
How to guarantee termination of subset construction?

LAG

\[\text{LAG}(u, v) = (u', v') \text{ such that } u = \ell u', \ v = \ell v' \text{ and } \ell = \text{lcp}(u, v). \]

E.g. \(\text{LAG}(abbc, abc) = (bc, c). \)

Lemma (Twinning Property)

Subset construction terminates iff for all such situations

\[u_1|v_1 \quad \rightarrow \quad \eta_0 \quad \rightarrow \quad q \quad \rightarrow \quad q_2 \quad \rightarrow \quad q \]

\[u_2|v_2 \quad \rightarrow \quad q \quad \rightarrow \quad q_2 \quad \rightarrow \quad q \]

\[u_1|w_1 \quad \rightarrow \quad \eta_0 \quad \rightarrow \quad p \quad \rightarrow \quad p_2 \quad \rightarrow \quad p \]

\[u_2|w_2 \quad \rightarrow \quad p \quad \rightarrow \quad p_2 \quad \rightarrow \quad p \]

it is the case that \(\text{LAG}(v_1, w_1) = \text{LAG}(v_1 v_2, w_1 w_2). \)
Theorem (Choffrut 77, Beal Carton Prieur Sakarovitch 03)

Given a functional NFT T, the following are equivalent:

1. it is determinizable
2. the twinning property holds.

Moreover, the twinning property is decidable in PTime.

Proof.

Intuition

- If TP holds, then subset construction terminates and produces an equivalent DFT
- for the converse, uses the fact that TP is machine-independent: for all $T \equiv T'$, $T \models TP$ iff $T' \models TP$.
Determinizability is decidable

Theorem (Choffrut 77, Beal Carton Prieur Sakarovitch 03)

Given a functional NFT T, the following are equivalent:

1. *it is determinizable*
2. *the twinning property holds.*

Moreover, the twinning property is decidable in PTime.

Proof.

Intuition

- If TP holds, then subset construction terminates and produces an equivalent DFT
- for the converse, uses the fact that TP is machine-independent: for all $T \equiv T'$, $T \models TP$ iff $T' \models TP$.

Almost true ...
subsequential transducers are deterministic but can output a string in each accepting states

in the previous theorem: “determinizable” \Leftrightarrow “there exists an equivalent subsequential transducer”

subsequential transducers \equiv DFT if last string symbol is unique
Application: analysis of streaming transformations

Bounded Memory Problem

Hypothesis:
- input string is received as a (very long) stream
- output string is produced as a stream

Input: a transformation defined by some functional NFT

Output: can I realize this transformation with bounded memory?

\[\exists B \in \mathbb{N} \cdot \forall u \in \text{dom}(T) \]

\[T(u) \text{ can be computed with } B\text{-bounded memory?} \]
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

1 0 0 1 1 1 #
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

Working Tape (read/write)
Streaming Model

Deterministic Turing Transducer

Input Tape (read only) 1 0 0 1 1 1 1 #

Working Tape (read/write) 1 1 0 0 1 1 # #
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

Working Tape (read/write)
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

Working Tape (read/write)
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

[Diagram showing a tape with symbols: 1 0 0 1 1 1 #]

Working Tape (read/write)

[Diagram showing a tape with symbols: 1 0 0 0 0 1 # #]

Finite State Transducers

Extensions of NFT

VPTs

Church Problem

Conclusion

22 / 63
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

1 0 0 1 1 1 1 #

Working Tape (read/write)

1 0 0 0 0 1 # #
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

```
1 0 0 1 1 1 #
```

Working Tape (read/write)

```
1 0 0 0 1 1 # #
```
Streaming Model

Deterministic Turing Transducer

- **Input Tape (read only)**:
 - `1 0 0 1 1 1 #`

- **Working Tape (read/write)**:
 - `1 0 0 0 0 1 0 #`
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

1 0 0 1 1 1 #

Working Tape (read/write)

1 0 0 0 0 1 0 #

Output Tape (write only)

0 # # # # # # #
Streaming Model

Deterministic Turing Transducer

Input Tape (read only)

1 0 0 1 1 1 #

Working Tape (read/write)

1 0 0 0 0 1 0 #

Output Tape (write only)

0 1 # # # # #
Streaming Model

Deterministic Turing Transducer

- **Input Tape (read only)**

- **Working Tape (read/write)**

- **Output Tape (write only)**
Streaming Model

Deterministic Turing Transducer

- **Input Tape (read only)**: 1 0 0 1 1 1 #
- **Working Tape (read/write)**: 1 0 0 0 0 1 0 #
- **Output Tape (write only)**: 0 1 1 0 # # #
Streaming Model

Deterministic Turing Transducer

Input Tape (read only):

```
1 0 0 1 1 1 #
```

Working Tape (read/write):

```
1 0 0 0 0 1 0 #
```

Output Tape (write only):

```
0 1 1 0 1 # #
```
Streaming Model

Deterministic Turing Transducer

- **Input Tape**: Read only

- **Working Tape**: Read/write

- **Output Tape**: Write only
Streaming Model

Deterministic Turing Transducer

- **Input Tape** (read only):
 - 1 0 0 1 1 1 #

- **Working Tape** (read/write):
 - 1 0 0 0 0 1 0 #
 - Memory Measured on this tape only!

- **Output Tape** (write only):
 - 0 1 1 0 1 1 #
Bounded Memory Problem – Examples

\[T_1 : \begin{cases}
 a^n b \mapsto b^{n+1} \\
 a^n c \mapsto c^{n+1}
\end{cases} \]

Not bounded memory

\[T_2 : \underbrace{a \ldots a \ldots b \ldots} \mapsto \underbrace{a \ldots a \ldots b} \]

Bounded memory
Bounded Memory Problem – Examples

\[T_1 : \begin{align*}
& a^n b \mapsto b^{n+1} \\
& a^n c \mapsto c^{n+1}
\end{align*} \]

Not bounded memory

\[T_2 : \underline{____a____b____ \mapsto ____a___b} \]

Bounded memory

Theorem

For all functional NFT \(T \), the following are equivalent:

1. \(T \) is bounded memory
2. \(T \) is determinizable
3. \(T \) satisfies the twinning property.

Proof based on the following two observations:

1. any DFT is bounded memory
2. bounded memory Turing Transducer \(\equiv \) DFT
Closure Properties of Finite State Transducers

Domain, co-domain

The domains and co-domains of NFT are regular.

<table>
<thead>
<tr>
<th></th>
<th>T^{-1}</th>
<th>\overline{T}</th>
<th>$T_1 \cup T_2$</th>
<th>$T_1 \cap T_2$</th>
<th>$T_1 \circ T_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFT</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>DFT</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Table: Closure Properties for NFT and DFT.
Closure Properties of Finite State Transducers

Domain, co-domain

The domains and co-domains of NFT are regular.

<table>
<thead>
<tr>
<th></th>
<th>T^{-1}</th>
<th>\overline{T}</th>
<th>$T_1 \cup T_2$</th>
<th>$T_1 \cap T_2$</th>
<th>$T_1 \circ T_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFT</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>DFT</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table: Closure Properties for NFT and DFT.

Non-closure by intersection

1. $R(T_1) = \{(a^m b^n, c^m) | m, n \geq 0\}$
2. $R(T_2) = \{(a^m b^n, c^n) | m, n \geq 0\}$
3. $R(T_1) \cap R(T_2) = \{(a^n b^n, c^n) | n \geq 0\}$
Decision problems

Membership \((u, v) \in R(T)\)?

Emptiness \(R(T) = \emptyset\)?

Type checking \(T(L_{in}) \subseteq L_{out}\)?

Equivalence \(R(T_1) = R(T_2)\)?

Inclusion \(R(T_1) \subseteq R(T_2)\)?

<table>
<thead>
<tr>
<th></th>
<th>emptiness / emptiness</th>
<th>type checking / type checking</th>
<th>equiv / membership (vs NFA)</th>
<th>inclusion / inclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFT</td>
<td>PTIME</td>
<td>PSPACE-c</td>
<td>undec</td>
<td></td>
</tr>
<tr>
<td>DFT</td>
<td>PTIME</td>
<td>PSPACE-c</td>
<td>PTIME</td>
<td></td>
</tr>
</tbody>
</table>

Table: Decision problems for NFT and DFT.

Undecidability of equivalence and inclusion proved in [Griffiths68].
A transduction (transducer) is **functional** if each word has at most 1 image.

Theorem (Gurari and Ibarra 83)

Functionality is decidable in PTIME for NFT.

Theorem

The equivalence and inclusion of **functional** NFT is PSPACE-c.

Proof.

T_1 is included in T_2 if and only if

- $\text{dom}(T_1) \subseteq \text{dom}(T_2)$, and
- $T_1 \cup T_2$ is functional.
A transduction (transducer) is k-valued if each word has at most k images.

Theorem (GI83, Web89, SdS08)

Let $k \in \mathbb{N}$ be fixed.

k-valuedness is decidable in PTime for NFT.

Theorem (IK86, Web88)

The equivalence and inclusion of k-valued NFT are PSpace-c.
Extensions of NFT
Extensions of NFT

Various more expressive extensions have been considered:

1. two-way input tape
2. string variables (Alur Cerny 2010)
3. pushdown stack
Two-way finite state transducers (2NFT)

Input Tape

\[\alpha|\epsilon, +1 \]

\[\alpha|\alpha, -1 \]

\[\epsilon|\epsilon, -1 \]

\[\epsilon|\epsilon \]

Output Tape

head
Two-way finite state transducers (2NFT)

Input Tape

\[\alpha | \epsilon, +1 \quad \alpha | \alpha, -1 \]

Output Tape

Head

\[\Downarrow s \quad t \quad r \quad e \quad s \quad s \quad e \quad d \quad \Uparrow \]

\[\Downarrow | \epsilon, -1 \quad \Downarrow | \epsilon, 1 \quad \Downarrow | \epsilon \]

Head
Two-way finite state transducers (2NFT)

Input Tape

```
|<s|t|r|e|s|s|e|d|>
```

Output Tape

```

```

α|ε, +1

1

→

-|ε, -1

2

→

|ε

3

α|ε, +1

α|α, -1

head

head
Two-way finite state transducers (2NFT)

Input Tape

\[\alpha | \epsilon, +1 \quad \alpha | \alpha, -1 \]

Output Tape

\[\text{head} \]
Two-way finite state transducers (2NFT)

Input Tape

Output Tape

\[\alpha | \epsilon, +1\]

\[\alpha | \alpha, -1\]

\[\alpha | \epsilon, -1\]

\[\alpha | \epsilon\]
Two-way finite state transducers (2NFT)

Input Tape

\[\alpha | \epsilon, +1 \]

\[1 \]

\[-| \epsilon, -1 \]

\[2 \]

\[\alpha | \alpha, -1 \]

\[-| \epsilon, -1 \]

\[3 \]

\[\alpha | \epsilon, +1 \]

\[1 \]

\[-| \epsilon, -1 \]

\[2 \]

\[\alpha | \alpha, -1 \]

\[-| \epsilon, -1 \]

\[3 \]

Output Tape
Two-way finite state transducers (2NFT)

Input Tape

\[\begin{array}{c}
\alpha \mid \epsilon, +1 \\
\downarrow \\
1 \\
\end{array} \quad \begin{array}{c}
\alpha \mid \alpha, -1 \\
\downarrow \\
2 \\
\end{array} \quad \begin{array}{c}
\perp \mid \epsilon \\
\downarrow \\
3 \\
\end{array}\]

Output Tape

\[\begin{array}{c}
\text{head}
\end{array}\]

\[\begin{array}{c}
\perp \\
\downarrow \\
\text{head}
\end{array}\]
Two-way finite state transducers (2NFT)

Input Tape

\[\alpha|\epsilon, +1 \]
\[\alpha|\alpha, -1 \]

Output Tape
Two-way finite state transducers (2NFT)

Input Tape

\[\alpha | \epsilon, +1 \]

\[1 \rightarrow \neg | \epsilon, -1 \]

\[\alpha | \alpha, -1 \]

\[2 \rightarrow \neg | \epsilon, -1 \]

\[\neg | \epsilon, -1 \]

\[3 \]

Output Tape

head

head
Two-way finite state transducers (2NFT)

Input Tape

\[
\begin{array}{cccccccc}
| & s & t & r & e & s & s & e & d & | \\
\end{array}
\]

\[\alpha|\epsilon, +1\]
\[\neg|\epsilon, -1\]

\[\alpha|\alpha, -1\]

Output Tape

\[\text{head}\]

\[\text{head}\]
Two-way finite state transducers (2NFT)

Input Tape

1
\[\alpha | \epsilon, +1 \]
\[\vdash | \epsilon, -1 \]
\[\vdash | \epsilon \]

2
\[\alpha | \alpha, -1 \]

3

Output Tape

\[d \]

head
Two-way finite state transducers (2NFT)

Input Tape

\[
\begin{array}{ccccccccc}
\vdash & s & t & r & e & s & s & e & d & \vdash \\
\end{array}
\]

head

\[
\begin{array}{c}
\alpha | \epsilon, +1 \\
1
\end{array}
\]

\[
\begin{array}{c}
\vdash | \epsilon, -1 \\
2
\end{array}
\]

\[
\begin{array}{c}
\alpha | \alpha, -1 \\
3
\end{array}
\]

Output Tape

\[
\begin{array}{cccccccc}
d & e & \vdash & \vdash & \vdash & \vdash & \vdash & \vdash \\
\end{array}
\]

head
Two-way finite state transducers (2NFT)

Input Tape

\[\alpha|\epsilon, +1 \]
\[\alpha|\alpha, -1 \]
\[-|\epsilon, -1 \]
\[|\epsilon \]

Output Tape

\[d \]
\[e \]
\[s \]

Head
Two-way finite state transducers (2NFT)

Input Tape

\[\alpha | \epsilon, +1 \]
\[α | α, −1 \]

Output Tape

\[d \quad e \quad s \quad s \quad _ \quad _ \quad _ \quad _ \quad _ \]
Two-way finite state transducers (2NFT)

Input Tape

\[\vdash s t r e s s e d \vdash \]

 output

\(\alpha | \epsilon, +1 \) \hspace{2cm} \(\alpha | \alpha, -1 \)

Transition

\[1 \rightarrow 2 \rightarrow 3 \]

Output Tape

\[d e s s e \]

\[\vdash \]

head
Two-way finite state transducers (2NFT)

Input Tape

```
Head

α|ε, +1

1

|→ s t r e s s e d |→
```

```
Head

α|α, −1

2

|→ ε, −1

3
```

Output Tape

```
Head

d e s s e r
```

```
\[\alpha | \epsilon, +1\] \\
\[\alpha | \alpha, -1\] \\
\[| \epsilon, -1\] \\
\[| \epsilon\] 
```
Two-way finite state transducers (2NFT)

Input Tape

\[\begin{array}{c}
\ddownarrow & s & t & r & e & s & s & e & d & \uparrow \\
\alpha | \epsilon, +1 & \alpha | \alpha, -1 \\
\end{array} \]

Output Tape

\[\begin{array}{c}
d & e & s & s & e & r & t \\
\downarrow & \text{head} \\
\end{array} \]
Two-way finite state transducers (2NFT)

Input Tape

\[
\begin{array}{cccccccc}
\text{s} & \text{t} & \text{r} & \text{e} & \text{s} & \text{s} & \text{e} & \text{d} & \text{1} \\
\end{array}
\]

\(\alpha|\epsilon, +1\)

\(\alpha|\alpha, -1\)

\(\text{head}\)

\[\begin{array}{c}
1 \\
\end{array}\]

Output Tape

\[\begin{array}{ccccccccc}
\text{d} & \text{e} & \text{s} & \text{s} & \text{e} & \text{r} & \text{t} & \text{s} & \text{2} \\
\end{array}\]

\(\text{head}\)
Two-way finite state transducers (2NFT)

Input Tape:

\[\alpha | \epsilon, +1 \]

Output Tape:

\[d | e | s | s | e | r | t | s \]
Two-way finite state transducers – Properties

Main Properties of 2NFT

1. still closed under composition (Chytil Jakl 77)
2. equivalence of functional 2NFT is decidable (Culik, Karhumaki, 87)
3. functional 2NFT \equiv 2DFT (Hoogeboom Engelfriet 01, De Souza 13)

Logical Characterization (Hoogeboom Engelfriet 01)

2DFT \equiv MSO transductions

2DFT define regular functions.
MSO Transductions (Courcelle)

- input string seen as the logical structure over \(\{\text{succ}, (\text{lab}_a)_{a \in \Sigma}\} \)
- output predicates defined with MSO formulas interpreted over the input structure
input string seen as the logical structure over \(\{ \text{succ}, (\text{lab}_a)_{a \in \Sigma} \} \)
output predicates defined with MSO formulas interpreted over the input structure
MSO Transductions (Courcelle)

- input string seen as the logical structure over \(\{ \text{succ}, (\text{lab}_a)_{a \in \Sigma} \} \)
- output predicates defined with MSO formulas interpreted over the input structure

\[
\phi_{\text{succ}}(x, y) \equiv \text{succ}(y, x)
\]

\[
\phi_{\text{lab}_a}(x) \equiv \text{lab}_a(x)
\]
input string seen as the logical structure over \(\{ \text{succ}, (\text{lab}_a)_{a \in \Sigma} \} \)

output predicates defined with MSO formulas interpreted over the input structure

\[
\phi_{\text{succ}}(x, y) \equiv \text{succ}(y, x)
\]

\[
\phi_{\text{lab}_a}(x) \equiv \text{lab}_a(x)
\]
MSO Transductions (Courcelle)

- input string seen as the logical structure over \(\{ succ, (lab_a)_{a \in \Sigma} \} \)
- output predicates defined with MSO formulas interpreted over the input structure

\[
\phi_{succ}(x, y) \equiv succ(y, x) \\
\phi_{lab_a}(x) \equiv lab_a(x)
\]
Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by

- appending a string: \(x := x.u \)
- prepending a string: \(x := u.x \)
- concatenating two variables: \(x := yz \)
Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by

- appending a string: \(x := x.u \)
- prepending a string: \(x := u.x \)
- concatenating two variables: \(x := yz \)

\[
\begin{align*}
\alpha | x & := \alpha \cdot x \\
q_0 & \quad x
\end{align*}
\]

\(R(T) = \text{mirror} \)
Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by
- appending a string: \(x := x.u \)
- prepending a string: \(x := u.x \)
- concatenating two variables: \(x := yz \)

\[R(T) = \text{mirror} \]

\[R(T) = a^n\alpha \mapsto \alpha^{n+1} \]
Streaming String Transducers

Theorem (Alur Cerny 2010)

The following models are expressively equivalent:

1. *two-way DFT*
2. *MSO transductions*
3. *deterministic (one-way) streaming string transducers with copyless update*

Moreover, SSTs have good algorithmic properties and have been used to analyse list processing programs (Alur Cerny 2011).
Pushdown Transducers

Definition
A pushdown transducer is a pair (A, O) where A is a pushdown automaton and O is an output morphism.

(Bad) Properties
- closure under composition is lost
- Functionality, determinizability, equivalence and inclusion of functional transducers are lost.
Finite State Transducers – Summary

\[D = "\text{(input) deterministic}" \]
\[f = "\text{functional}" \]

<table>
<thead>
<tr>
<th>DFTs</th>
<th>fNFTs</th>
<th>NFTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DFTs</td>
<td>f2NFTs</td>
<td>2NFTs</td>
</tr>
</tbody>
</table>
Finite State Transducers – Summary

D = "(input) deterministic"

f = "functional"

\[\vdash u \iff \text{mirror}(u) \]

\[\subset \]

\[\subset \]

\[\subset \]

\[\vdash \]

\[\dashv \mapsto \rightarrow \]

\[\equiv \]

\[\equiv \]

\[\equiv \]

\[\equiv \]

\[\vdash \]
Finite State Transducers – Summary

D = “(input) deterministic”
f = “functional”
Finite State Transducers – Summary

\[D = "(input) deterministic" \]
\[f = "functional" \]
Finite State Transducers – Summary

D = "(input) deterministic"

f = "functional"

\[
\begin{align*}
\text{DFTs} & \subset \text{fNFTs} & \subset \text{NFTs} \\
2\text{DFTs} & \equiv & \text{f2NFTs} & \subset & 2\text{NFTs}
\end{align*}
\]

\[
\begin{align*}
\equiv & \text{MSOT [Engelfriet, Hoogeboom (01)]} \\
\equiv & \text{Streaming String Transducers [Alur, Černý, 2010]}
\end{align*}
\]

\[\text{De Souza (13)}\]
Finite State Transducers – Summary

D=“(input) deterministic”
f=“functional”

\[\text{PTIME} \subseteq \text{DFTs} \subseteq \text{fNFTs} \subseteq \text{NFTs}\]

\[\text{2DFTs} \equiv \text{f2NFTs} \subseteq \text{2NFTs}\]

\[\equiv \text{MSOT [Engelfriet, Hoogeboom (01)]}\]

\[\equiv \text{Streaming String Transducers [Alur, Černý, 2010]}\]
Finite State Transducers – Summary

D = "(input) deterministic"
f = "functional"

PTIME

\[\text{DFTs} \subset \text{fNFTs} \subset \text{NFTs} \]

\[\text{2DFTs} \equiv \text{f2NFTs} \subset \text{2NFTs} \]

\[\equiv \text{MSOT [Engelfriet, Hoogeboom (01)]} \]

\[\equiv \text{Streaming String Transducers [Alur, Černý, 2010]} \]

\[\equiv \text{PTIME [Choffrut (77)]} \]

\[\equiv \text{PTIME [Schützenberger (75)]} \]

\[\equiv \text{PTIME [Gurari, Ibarra (83)]} \]

\[\equiv \text{PTIME [Beal, Carton, Prieur, Sakarovitch (03)]} \]

\[\equiv \text{PTIME [De Souza (13)]} \]
Finite State Transducers – Summary

D =”(input) deterministic”

f =”functional”

PTIME

[Choffrut (77)]
[Weber, Klemm (95)]
[Beal, Carton, Prieur, Sakarovitch (03)]

DFTs ⊂ fNFTs ⊂ NFTs

PTIME

[Schützenberger (75)]
[Gurari, Ibarra (83)]
[Beal, Carton, Prieur, Sakarovitch (03)]

? ⊂ ?

2DFTs ≡

[De Souza (13)]

≡ MSOT [Engelfriet, Hoogeboom (01)]
≡ Streaming String Transducers [Alur, Černý, 2010]

f2NFTs ⊂ 2NFTs

decidable

[Culik, Karhumaki (87)]
Finite State Transducers – Summary

D = "(input) deterministic"
f = "functional"
Finite State Transducers – Summary

D = ”(input) deterministic”
f = ”functional”

PTIME
[Choffrut (77)]
[Weber, Klemm (95)]
[Beal, Carton, Prieur, Sakarovitch (03)]

DFTs ⊂ fNFTs

PTIME
[Schützenberger (75)]
[Gurari, Ibarra (83)]
[Beal, Carton, Prieur, Sakarovitch (03)]

2DFTs ⊂ f2NFTs ⊂ 2NFTs

≡
[De Souza (13)]
≡ MSOT [Engelfriet, Hoogeboom (01)]
≡ Streaming String Transducers [Alur, Černý, 2010]

decidable
[Čulik, Karhumaki (87)]

open
A word about infinite strings

- most transducer models can be extended to (right-) infinite strings
- Büchi / Muller accepting conditions
- most of the results seen so far still hold with some complications ...

- determinization of one-way transducers: TP is too strong

- deterministic 2way < functional 2way:

\[T : u \mapsto \begin{cases} a^\omega \text{ if infinite number of 'a'} \\ u \text{ otherwise} \end{cases} \]

- functional 2way \equiv \text{deterministic 2way + } \omega\text{-regular look-ahead}
 \equiv \omega\text{-MSO transductions} \equiv \omega\text{-SST (Alur,Filiot,Trivedi,12)}
Transducers for Nested Words (∼ Trees)
Motivations

Streaming XML Transformations

- XML are words with a nesting structure
- XML documents can be (very) wide but usually not deep
- In a streaming setting, not reasonable to keep the entire document in memory
- Bounded memory streaming transformations?
Motivations

Streaming XML Transformations
- XML are words with a nesting structure
- XML documents can be (very) wide but usually not deep
- In a streaming setting, not reasonable to keep the entire document in memory
- Bounded memory streaming transformations?

Visibly Pushdown Transducers (VPTs)
- Extend Visibly Pushdown Automata (Alur Madhusudan 04)
- Well-suited for streaming nested words transformations
- Bounded memory analysis for VPT transductions.
Structured Alphabet

Definition (Structured Alphabet)

A structured alphabet, Σ, is a set $\Sigma = \Sigma_c \cup \Sigma_i \cup \Sigma_r$, where

- Σ_c are call symbols,
- Σ_i are internal symbols,
- Σ_r, are return symbols.

- a nested word is a word over a structured alphabet

$$c_1 \ c_2 \ a \ r_1$$

- it is well-nested if there is no pending call nor return symbols

$$c_1 \ c_2 \ a \ r_2 \ b \ r_1$$
Nested Words vs Trees

Encoding

Well-nested words \(\equiv\) linearizations of trees

- nested words are well-suited to model tree streams
Visibly Pushdown Automata (VPAs) [Alur, Madhusudan, 04]

VPAs = Pushdown Automata on structured alphabet

\[\Sigma = \Sigma_c \cup \Sigma_r \cup \Sigma_i : \]

- push **one** stack symbol on **call** symbols \(\Sigma_c \)
- pop **one** stack symbol on **return** symbols \(\Sigma_r \)
- don’t touch the stack on **internal** symbols \(\Sigma_i \)
- in this talk, accept on empty stack and final state
Visibly Pushdown Automata (VPAs) [Alur, Madhusudan, 04]

VPAs = Pushdown Automata on \textbf{structured} alphabet \(\Sigma = \Sigma_c \uplus \Sigma_r \uplus \Sigma_i \):

- push \textbf{one} stack symbol on \textbf{call} symbols \(\Sigma_c \)
- pop \textbf{one} stack symbol on \textbf{return} symbols \(\Sigma_r \)
- don’t touch the stack on \textbf{internal} symbols \(\Sigma_i \)
- in this talk, accept on empty stack and final state

\[
L(A) = \{ c^n \ i \ r^n \ a \mid n > 0 \} \cup \{ c^n \ i \ r^n \ b \mid n > 0 \}
\]
Properties of VPA

- NFA $<$ VPA $<$ PA
- close under all Boolean operations
- NFA algorithmic properties are preserved (equivalence, universality, ...)
- applications in
 - computer-aided verification
 - XML processing
- see http://www.cs.uiuc.edu/~madhu/vpa/
Visibly Pushdown Transducers (VPTs)

Definition
Pair \((A, O)\) where \(A : VPA\) and \(O\) is an output morphism.

\[
R(T) = \{(c^n i r^n a, a^{2n}) \mid n > 0\} \cup \{(c^n i r^n b, b^{2n}) \mid n > 0\}
\]
Properties of Visibly Pushdown Transducers

- $\text{NFT} < \text{VPT} < \text{PT}$
- $\text{dVPTs} < \text{(functional) VPT}$
- closed under composition if the output is well-nested
- closed under VPA-lookahead
- functionality is decidable in PTime
- k-valuedness is decidable
- equivalence of functional VPTs is decidable (in PTime of dVPTs)
- decidable typechecking problem (if the output is well-nested)
Properties of Visibly Pushdown Transducers

- NFT $<$ VPT $<$ PT
- dVPTs $<$ (functional) VPT
- closed under composition if the output is well-nested
- closed under VPA-lookahead
- functionality is decidable in PTime
- k-valuedness is decidable
- equivalence of functional VPTs is decidable (in PTime of dVPTs)
- decidable typechecking problem (if the output is well-nested)

Open Problems: equivalence of k-valued VPTs, determinizability

- more details in F. Servais’s Phd thesis
Why is determinizability more difficult?

It is determinizable by:

\[q_0^{\text{initial}} \xrightarrow{c|\epsilon, +\gamma} q_1 \xrightarrow{c|\epsilon, +\gamma} \text{initial} \xrightarrow{c|\epsilon, +\gamma} p_1 \xrightarrow{i|\epsilon} p_2 \]

but lag increase arbitrarily in \((p_1, q_1)\).
Why is determinizability more difficult?

It is determinizable by:

but lag increase arbitrarily in \((p_1, q_1)\).
Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input

Fix a functional (non-deterministic) VPT T.

How much memory is needed to compute $T(u)$ from an input stream u?
Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input

Fix a functional (non-deterministic) VPT T.

How much memory is needed to compute T(u) from an input stream u?

![Diagram showing memory usage and well-nestedness](image)
Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input

Fix a functional (non-deterministic) VPT T.

How much memory is needed to compute $T(u)$ from an input stream u?

A diagram illustrating the concept of memory usage:

- **constant memory**
- **$\text{height}(u)$**
- **dependent in $\text{length}(u)$**

cannot check well-nestedness!

not streamable!

Streamability Problem

Given a VPT T, decide if T defines a transformation that can be evaluated with memory $O(f(\text{height}(u)))$?
Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input

Fix a functional (non-deterministic) VPT T. How much memory is needed to compute $T(u)$ from an input stream u?

Streamability Problem

Given a VPT T, decide if T defines a transformation that can be evaluated with memory $O(f(\text{height}(u)))$?

Decidable in NP for VPTs
Determinizability is too strong

Obs: Deterministic VPTs are always streamable (no output lag)
Determinizability is too strong

Obs: Deterministic VPTs are always streamable (no output lag)

However: determinizable VPTs $<$ streamable VPTs:

$$R(T) : c^n i r^n \alpha \mapsto \alpha^{2^n} \quad n > 0$$

Streamable but not determinizable!
Definition

For all such situations

\[u_1 | v_1 \quad \text{and} \quad u_2 | v_2 \]

\[u_1 | w_1 \quad \text{and} \quad u_2 | w_2 \]

it is the case that \(LAG(v_1, w_1) = LAG(v_1 v_2, w_1 w_2) \).
Twinning Property for VPTs

Definition

For all such situations

$$\begin{align*}
(q_0, \bot) & \quad (q, \sigma) \quad (q, \sigma) \\
\quad u_1 \vert v_1 & \quad u_2 \vert v_2 \\
(q, \sigma) & \quad (p, \sigma') \quad (p, \sigma') \\
\quad u_1 \vert w_1 & \quad u_2 \vert w_2
\end{align*}$$

it is the case that $\text{LAG}(v_1, w_1) = \text{LAG}(v_1v_2, w_1w_2)$.

\[49/63\]
Twinning Property for VPTs

stack height

input word

same lag

U_1 U_2 q,σ p,σ' q,σ'
Twinning Property for VPTs

- Stack height
- Input word
- Lag 1 < Lag 2
Twinning Property for VPTs

\[U_1 \quad q, \sigma \quad p, \sigma' \quad U_2 \quad q, \sigma \quad p, \sigma' \quad U_2 \]

stack height

input word

lag1 < lag2 < lag3
Twinning Property for VPTs
Twinning Property for VPTs

Theorem

Given a functional VPT T, T is streamable iff the twinning property holds.

It can be decided in NPtime.
Theorem

Given a functional VPT T, T is streamable iff the twinning property holds.

It can be decided in NPtime.

- TP is machine-independent: streamable VPTs is class of transductions.
- decidability based on reversal-bounded pushdown counter machines
- same result extend to strongly streamable (memory depends only on current height)
Other tree transducer models

- top-down tree transducers

\[q(f(x_1, \ldots, x_n)) \rightarrow C[q_1(x_{i_1}), \ldots, q_p(x_{i_p})] \]

(see TATA\(^3\) book

- macro tree transducers

```plaintext
fun q(t1 t2 t3 t4 t)=
  if t = a() then
    return F (t1,t2)
  else
    if t=g(u,v) then
      return C(q'(t1,t2,u), q''(t3,t4,v))
```

- see Joost Engelfriet and Sebastian Maneth’s work

\(^3\) *Tree Automata Techniques and Applications*, tata.gforge.inria.fr
Church Problem
Church Problem (aka Church Synthesis Problem)

Definition (Church 57)

- R a relation, or *requirements*, from a domain D to a domain D'
- synthesize a program P such for all $X \in D$, $(X, P(X)) \in R$.
Church Problem (aka Church Synthesis Problem)

Definition (Church 57)

- R a relation, or *requirements*, from a domain D to a domain D'
- synthesize a program P such for all $X \in D$, $(X, P(X)) \in R$.

Reactive System Synthesis

Let Σ_{in} and Σ_{out} be to finite alphabets.

- reactive systems continuously react to stimuli produced by some *uncontrollable* environment
- $D = \Sigma_{in}^\omega$, $D' = \Sigma_{out}^\omega$
- R is a synchronous relation given by a (non-deterministic) symbol-to-symbol Büchi transducer
- P is a Mealy machine (deterministic symbol-to-symbol transducer)
Reactive System Synthesis: Example

- \(\Sigma_{in} = \{ \text{req, nop} \} \)
- \(\Sigma_{out} = \{ \text{grant, nop} \} \).
- Requirement \(R \): if there is a request, it must be eventually granted

![Diagram showing a finite state machine with states q0 and q2, transitions labeled with inputs and actions.]

\(q_0 \) transitions to \(q_2 \) on req, nop, and grant.
\(q_2 \) transitions back to \(q_0 \) on grant.
\(q_0 \) transitions back to itself on nop.
\(q_2 \) transitions to \(q_2 \) on nop.
Reactive System Synthesis: Example

- $\Sigma_{in} = \{\text{req, nop}\}$
- $\Sigma_{out} = \{\text{grant, nop}\}$.
- Requirement R: if there is a request, it must be eventually granted

Possible programs (Mealy machines) that realize R:
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in \(\Sigma_{in} \)
- Player *out* chooses output symbols in \(\Sigma_{out} \)
- they play during an infinite number of rounds.

Player in \((\Sigma_{in})\) :

Player *out* \((\Sigma_{out})\) :
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Def: Player *out* wins if $(i_1, o_2, o_3, ...)$ $\in R$.

Prop: There exists a program that realizes the requirements R iff Player *out* has a winning strategy.
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1

Player *out* (Σ_{out}) : o_1
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

\[
\begin{align*}
\text{Player in} (\Sigma_{in}) & : i_1 \quad i_2 \\
\text{Player out} (\Sigma_{out}) & : o_1
\end{align*}
\]
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player *in* (Σ_{in}) : i_1, i_2

Player *out* (Σ_{out}) : o_1, o_2
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player *in* (Σ_{in}) : i_1 i_2 i_3

Player *out* (Σ_{out}) : o_1 o_2
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player *in* (Σ_{in}) : i_1 i_2 i_3

Player *out* (Σ_{out}) : o_1 o_2 o_3
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

$$\begin{align*}
\text{Player in (} \Sigma_{in} \text{)} & : i_1 \ i_2 \ i_3 \ i_4 \\
\text{Player out (} \Sigma_{out} \text{)} & : o_1 \ o_2 \ o_3
\end{align*}$$
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player *in* (Σ_{in}) : i_1 i_2 i_3 i_4

Player *out* (Σ_{out}) : o_1 o_2 o_3 o_4
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player *in* $(\Sigma_{in}) : i_1 \ i_2 \ i_3 \ i_4 \ i_5$

Player *out* $(\Sigma_{out}) : o_1 \ o_2 \ o_3 \ o_4$
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : $i_1 \quad i_2 \quad i_3 \quad i_4 \quad i_5$

Player out (Σ_{out}) : $o_1 \quad o_2 \quad o_3 \quad o_4 \quad o_5$
Church Game

Definition
- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

\[
\begin{align*}
\text{Player in (} \Sigma_{in} \text{)} : & \quad i_1 \quad i_2 \quad i_3 \quad i_4 \quad i_5 \quad \ldots \\
\text{Player out (} \Sigma_{out} \text{)} : & \quad o_1 \quad o_2 \quad o_3 \quad o_4 \quad o_5 \quad \ldots
\end{align*}
\]
Church Game

Definition

- **turn-based** game between two players
- Player **in** chooses input symbols in Σ_{in}
- Player **out** chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : $i_1 \ i_2 \ i_3 \ i_4 \ i_5 \ \ldots$

Player out (Σ_{out}) : $o_1 \ o_2 \ o_3 \ o_4 \ o_5 \ \ldots$

- **Def:** Player **out** wins if $(i_1i_2i_3\ldots, o_1o_2o_3\ldots) \in R$.
Church Game

Definition

- **turn-based** game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 i_4 i_5 ...

Player out (Σ_{out}) : o_1 o_2 o_3 o_4 o_5 ...

- **Def:** Player *out* wins if $(i_1 i_2 i_3 \ldots, o_1 o_2 o_3 \ldots) \in R$.
- **Prop:** There exists a program that realizes the requirements R iff Player *out* has a winning strategy.
State of the Art

- reactive system synthesis from ω-regular specifications is decidable (Büchi Landweber 69)
- reactive system synthesis from LTL specifications is 2-ExpTime-c (Pnueli Rosner 89)
- several tools for LTL synthesis:
 - Lily (Jobstmann Bloem 06)
 - Acacia (Filiot Jin Raskin 09)
 - Unbeast (Ehlers 10)
- very active community in game theory for synthesis
 - quantitative games
 - multi-player games
 - stochastic games
 - ...
GenBuf spec from IBM

Scalable example

From 1-page long to 4-page long specifications

http://lit2.ulb.ac.be/acaciaplus
How is it related to transducer theory?

- reactive systems are streaming machines
- from a relation R, extract a function f such that:
 1. $\text{dom}(R) \subseteq \text{dom}(f)$
 2. for all $u \in \text{dom}(R)$, $f(u) \in R(u)$.
 3. f is a deterministic symbol-to-symbol transducer
- this problem is known as the uniformization problem in transducer theory
- equivalently, is there a bounded memory (symbol-to-symbol) function f such that $f \subseteq R$ and $\text{dom}(R) \subseteq \text{dom}(f)$?
Conclusion
Contributions

- finite transducers have good closure and algorithmic properties
- nicely extend to visibly pushdown transducers
- streamability problem \equiv synthesis problem
Open Problems and Future Work

Open problems

- equivalence of k-valued VPTs
- determinizability of VPTs
- extension of streaming results to more expressive transducers, e.g. macro tree transducers
- shift from reactive systems to list processing program synthesis
Publications