First-Order Transformations of Finite Words

Emmanuel Filiot
Krishna Shankara Narayanan
A. Trivedi

ULB-FNRS
IIT Bombay
IIT Bombay

Highlights of Logic, Games and Automata, 2014
Overview

- Σ: finite alphabet

Theorem (Engelfriet, Hoogeboom, 01)

A function $f: \Sigma^* \rightarrow \Sigma^*$ is (Courcelle) MSO-definable iff it is definable by a deterministic two-way transducer.

Theorem (Alur, Cerny, 10)

A function $f: \Sigma^* \rightarrow \Sigma^*$ is (Courcelle) MSO-definable iff it is definable by a streaming string transducer (SST).

Theorem (Main result of this talk)

A function $f: \Sigma^* \rightarrow \Sigma^*$ is (Courcelle) FO-definable iff it is definable by an aperiodic streaming string transducer.

(Filiot, S.N. Krishna, Trivedi) FO Transformations
Overview

* ∈ finite alphabet

Theorem (Engelfriet, Hoogeboom, 01)

A function $f : \Sigma^* \rightarrow \Sigma^*$ is (Courcelle) **MSO-definable** iff it is definable by a **deterministic two-way transducer**.

Theorem (Alur, Cerny, 10)

A function $f : \Sigma^* \rightarrow \Sigma^*$ is (Courcelle) **MSO-definable** iff it is definable by a **streaming string transducer (SST)**.
Overview

- Σ: finite alphabet

<table>
<thead>
<tr>
<th>Theorem (Engelfriet, Hoogeboom, 01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A function $f : \Sigma^* \rightarrow \Sigma^*$ is (Courcelle) MSO-definable iff it is definable by a deterministic two-way transducer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Alur, Cerny, 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A function $f : \Sigma^* \rightarrow \Sigma^*$ is (Courcelle) MSO-definable iff it is definable by a streaming string transducer (SST).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Main result of this talk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A function $f : \Sigma^* \rightarrow \Sigma^*$ is (Courcelle) FO-definable iff it is definable by an aperiodic streaming string transducer.</td>
</tr>
</tbody>
</table>

(Filiot, S.N. Krishna, Trivedi) FO Transformations
Examples of Transformations

- f_{del}: delete all ‘a’ positions
 \[
 abbabaa \mapsto bbb
 \]

- f_{rev}: reverse the input word
 \[
 stressed \mapsto desserts
 \]

- f_{halve}: maps all inputs a^n to $a^{\lfloor \frac{n}{2} \rfloor}$.
 \[
 a^5 \mapsto a^2
 \]

- f_{copy}: copy the input word twice
 \[
 ab# \mapsto ab#ab#
 \]
(Courcelle) MSO Transformations

- words as a structures over \(\{ \text{succ}, (\text{lab}_a)_{a \in \Sigma} \} \)
- output predicates defined by MSO formulas interpreted over the input structure
(Courcelle) MSO Transformations

- words as a structures over \(\{ \text{succ}, (\text{lab}_a)_{a \in \Sigma} \} \)
- output predicates defined by MSO formulas interpreted over the input structure
(Courcelle) MSO Transformations

- words as a structures over $\{\text{succ}, (\text{lab}_a)_{a \in \Sigma}\}$
- output predicates defined by MSO formulas interpreted over the input structure

$\phi_{\text{succ}}(x, y) \equiv \text{succ}(y, x)$
$\phi_{\text{lab}_a}(x) \equiv \text{lab}_a(x)$
(Courcelle) MSO Transformations

- words as a structures over $\{\text{succ}, (\text{lab}_a)_{a \in \Sigma}\}$
- output predicates defined by MSO formulas interpreted over the input structure

$$\phi_{\text{succ}}(x, y) \equiv \text{succ}(y, x)$$
$$\phi_{\text{lab}_a}(x) \equiv \text{lab}_a(x)$$
(Courcelle) MSO Transformations

- words as a structures over \(\{ succ, (lab_a)_{a \in \Sigma} \} \)
- output predicates defined by MSO formulas interpreted over the input structure

\[
\phi_{succ}(x, y) \equiv succ(y, x) \\
\phi_{lab_a}(x) \equiv lab_a(x)
\]
(Courcelle) MSO Transformations

- words as structures over \(\{succ, (lab_a)_{a \in \Sigma}\} \)
- output predicates defined by MSO formulas interpreted over the input structure

\[
\phi_{succ}(x, y) \equiv succ(y, x) \\
\phi_{lab_a}(x) \equiv lab_a(x)
\]

- more generally, input structure can be copied a fixed number of times \((w \mapsto ww) \)
- **FO-transformations**: MSO replaced by FO over \(\{\leq, (lab_a)_{a \in \Sigma}\} \).
Streaming String Transducers (SST)

- one-way, deterministic model
- extend finite automata with a finite set of word variables $X, Y \ldots$
 - appending a word u: $X := Xu$
 - prepending a word: $X := uX$
 - concatenating two variables: $X := YZ$

Theorem (Alur, Cerny, 10)

A function $f: \Sigma^* \rightarrow \Sigma^*$ is MSO-definable iff it is definable by an SST with copyless variable update.

Question: What restriction to put on SST to capture FO?

(Filiot, S.N. Krishna, Trivedi)
Streaming String Transducers (SST)

- one-way, deterministic model
- extend finite automata with a finite set of word variables $X, Y \ldots$
 - appending a word u: $X := Xu$
 - prepending a word: $X := uX$
 - concatenating two variables: $X := YZ$

\[
\sigma | X := \sigma . X
\]

reverse :

\[
\begin{array}{c}
\sigma \in \Sigma
\end{array}
\]
Streaming String Transducers (SST)

- one-way, deterministic model
- extend finite automata with a finite set of word variables $X, Y \ldots$
 - appending a word u: $X := Xu$
 - prepending a word: $X := uX$
 - concatenating two variables: $X := YZ$

$$\sigma | X := \sigma \cdot X$$

reverse:

Theorem (Alur, Cerny, 10)

A function $f : \Sigma^* \rightarrow \Sigma^*$ is MSO-definable iff it is definable by an SST with copyless variable update.
Streaming String Transducers (SST)

- one-way, deterministic model
- extend finite automata with a finite set of word variables $X, Y \ldots$
 - appending a word u: $X := Xu$
 - prepending a word: $X := uX$
 - concatenating two variables: $X := YZ$

\[
\sigma | X := \sigma . X
\]

reverse : $X \quad \sigma \in \Sigma$

Theorem (Alur, Cerny, 10)

A function $f : \Sigma^* \rightarrow \Sigma^*$ is MSO-definable iff it is definable by an SST with copyless variable update.

Question: What restriction to put on SST to capture FO?
Aperiodic Finite Automata

Among several characterizations of FO languages\(^1\), we use the following:

Theorem

A language \(L \subseteq \Sigma^* \) is FO-definable iff it is definable by an aperiodic finite automaton (AFA).

\(^1\) *First-order definable languages*, V. Diekert and P. Gastin. 2007.
Aperiodic Finite Automata

Among several characterizations of FO languages\(^1\), we use the following:

Theorem

A language \(L \subseteq \Sigma^* \) is FO-definable iff it is definable by an aperiodic finite automaton (AFA).

- AFA = finite automaton with aperiodic transition monoid \(T(A) \)
- \(T(A) = \{ M_w \mid w \in \Sigma^* \} \)
- for any two states \(p, q \), \(M_w[p][q] = 1 \) iff \(p \rightsquigarrow^w q \).
- \(T_A \) is aperiodic if \(\exists m \geq 0 \), for all \(M \in T_A \), \(M^m = M^{m+1} \)

Examples:

\[\begin{array}{c}
\text{not aperiodic} \\
\begin{array}{c}
\text{not aperiodic} \\
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{aperiodic} \\
\begin{array}{c}
\text{aperiodic} \\
\end{array}
\end{array} \]

\(^1\)First-order definable languages, V. Diekert and P. Gastin. 2007.
Towards a restriction: $f_{\text{halve}} : a^n \mapsto a^{\lfloor \frac{n}{2} \rfloor}$ again

- not FO-definable
- definable by:

\[T_1 : \]

\[a \mid X := aX \]
\[a \mid X := X \]

(Filiot, S.N. Krishna, Trivedi) FO Transformations
Towards a restriction: $f_{halve} : a^n \mapsto a^{\lfloor \frac{n}{2} \rfloor}$ again

- not FO-definable
- definable by:

\begin{align*}
T_1 : & \quad a \mid X := aX \\
& \quad a \mid X := X
\end{align*}

- aperiodicity of the underlying input automaton is not sufficient:

\begin{align*}
T_0 : & \quad a \mid X := aY \\
& \quad Y := X
\end{align*}
Variable flow

\[T_0 : \text{ } a \rightarrow X \rightarrow Y \rightarrow X \rightarrow Y \rightarrow a \mid X := aY \]

Y := X

Dependency graph

input: \(a \quad a \quad a \quad a \quad a \quad a \)

\(X \rightarrow X \rightarrow X \rightarrow X \rightarrow X \rightarrow X \rightarrow X \)

\(Y \rightarrow Y \rightarrow Y \rightarrow Y \rightarrow Y \rightarrow Y \rightarrow Y \)
Variable flow

\[T_0 : \quad \rightarrow a \quad X := aY \]
\[Y := X \]

\[\Rightarrow \text{impose aperiodicity of the variable flow!} \]
SST Transition Monoid

- set of Boolean matrices M_w indexed by pairs (q, X)
- coefficients in $\mathbb{N} \cup \{\bot\}$
- $M_w[p, X][q, Y] = \bot$ if there no run from p to q on w
- $M_w[p, X][q, Y] = n \in \mathbb{N}$ if
 - there is a run r from p to q on w
 - on this run, X “flows” n times to Y
SST Transition Monoid

- set of Boolean matrices \(M_w \) indexed by pairs \((q, X)\)
- coefficients in \(\mathbb{N} \cup \{\perp\} \)
- \(M_w[p, X][q, Y] = \perp \) if there no run from \(p \) to \(q \) on \(w \)
- \(M_w[p, X][q, Y] = n \in \mathbb{N} \) if
 - there is a run \(r \) from \(p \) to \(q \) on \(w \)
 - on this run, \(X \) “flows” \(n \) times to \(Y \)

Example:

\[
\begin{align*}
X &:= aXb \\
Y &:= bY
\end{align*}
\]

Then \(M_{aa}[q_0, Y][q_2, X] = 2. \)
Results and Perspectives

Theorem

- A function $f : \Sigma^* \rightarrow \Sigma^*$ is MSO-definable iff it is definable by a SST with finite transition monoid.
- A function $f : \Sigma^* \rightarrow \Sigma^*$ is FO-definable iff it is definable by a SST with finite and aperiodic transition monoid.
Results and Perspectives

Theorem

- A function $f: \Sigma^* \rightarrow \Sigma^*$ is MSO-definable iff it is definable by a SST with finite transition monoid.
- A function $f: \Sigma^* \rightarrow \Sigma^*$ is FO-definable iff it is definable by a SST with finite and aperiodic transition monoid.

Open question

Give an effective, machine-independent, characterisation of FOT.

Related to M. Bojanczyk’s work on a weaker semantics (with origin).