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Résumé

L’informatique fait actuellement face à un grand défi: trouver de bonnes méthodes

de conception pour les systèmes embarqués. Fondamentalement, un système em-

barqué est un ordinateur interagissant avec un processus physique. On en trouve,

par exemple, dans les systèmes de freinage ou dans les centrales nucléaires. Ils sont

difficiles à concevoir pour plusieurs raisons : tout d’abord, ce sont des systèmes

réactifs, qui interagissent indéfiniment avec leur environnement. Ensuite, ils doivent

satisfaire des contraintes temps-réel qui spécifient non seulement comment ils

doivent répondre, mais aussi quand. Finalement, leur environnement est souvent

profondément continu, présentant des dynamiques complexes. Les modèles formels

de choix pour spécifier de tels systèmes sont les automates temporisés et hybrides

pour lesquels les problèmes de vérification sont bien étudiés.

Dans la première partie de cette thèse, nous étudions une méthode complète de

conception, incluant la vérification et la génération de code, pour les automates

temporisés. Nous devons définir une nouvelle sémantique pour les automates tem-

porisés, appelée la sémantique AASAP, qui préserve les propriétés de décidabilité

pour la vérification et qui, dans le même temps, est implémentable. Notre notion

d’implémentabilité est complètement nouvelle, et se base sur la simulation d’une

sémantique qui est implémentable de manière évidente sur une plate-forme réelle.

Nous avons créé des outils qui permettent l’analyse et la génération de code et en

illustrons l’usage sur une étude de cas à propos du protocole audio Philips, un cas

industriel bien connu.

Dans la seconde partie de cette thèse, nous étudions le problème de la synthèse

de contrôleur pour un environnement spécifié par un automate hybride. Nous don-

nons une nouvelle solution pour des contrôleurs discrets disposant seulement d’une

information imparfaite à propos de l’état du système. En résolvant ce problème,

nous avons défini un algorithme, basé sur la monotonie de l’opérateur calculant les

prédecesseurs contrôlables, qui trouve efficacement un contrôleur. L’utilisation de
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cet algorithme est prometteuse, comme nous le montrons à travers une application

à un problème classique : le test d’universalité pour les automates finis.



Abstract

Computer Science is currently facing a grand challenge : finding good design

practices for embedded systems. Embedded systems are essentially computers in-

teracting with some physical process. You could find one in a braking systems or

in a nuclear power plant for example. They present several design difficulties : first

they are reactive systems, interacting indefinitely with their environment. Second,

they must satisfy real-time constraints specifying when they should respond, and

not only how. Finally, their environment is often deeply continuous, presenting

complex dynamics. The formal models of choice for specifying such systems are

timed and hybrid automata for which model checking is pretty well studied.

In a first part of this thesis, we study a complete design approach, including

verification and code generation, for timed automata. We have to define a new

semantics for timed automata, the AASAP semantics, that preserves the decid-

ability properties for model checking and at the same time is implementable. Our

notion of implementability is completely novel, and relies on the simulation of a

semantics that is obviously implementable on a real platform. We wrote tools for

the analysis and code generation and exemplify them on a case study about the

well-known Philips Audio Control Protocol.

In a second part of this thesis, we study the problem of controller synthesis

for an environment specified as a hybrid automaton. We give a new solution for

discrete controllers having only an imperfect information about the state of the

system. In the process, we defined a new algorithm, based on the monotonicity

of the controllable predecessors operator, for efficiently finding a controller and we

show some promising applications on a classical problem : the universality test for

finite automata.
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Chapter 1

Introduction

1.1 Context

A good computer scientist is a lazy one. That was one of the favorite aphorisms

of my first programming teacher at the university. The idea is that you should try

to let the computer work instead of you as much as possible.

In fact, you could see the whole history of computer sciences through this lens.

First, there were mathematicians who did not want anymore to perform lengthy

(hence error prone) computations by hand and invented machines to do it. Then,

there were computer scientists getting bored of assembly programs that are easy

to understand for the computer, but hard to write for them. They wanted to use a

higher-level language, closer to the human one, and invented compilers and inter-

preters, programs translating those high-level languages to machine language. In

the process, they found that they also could translate the same high-level program

to many different assembly language, thus for many different types of machines,

reducing further their work. A lot of effort has since been put in raising the ab-

straction level of the languages, giving us many “generations” of languages. As

the implementation details are more and more ignored, what the computer scien-

tists write is more a formal specification of what the program should do, than a

program in the original sense. An objective of computer science is then to allow

the programmer to only write what the computer should do rather than how. This

has been achieved to a certain extent in classical programming, through for exam-

ple functional programming, but there are still efficiency problems and in lots of

domains this is still mostly a dream.

In this work, the people who need to simplify their work are the software

designers for embedded systems. Embedded systems are those tiny computers

found in a car braking system, a camera, a fridge, a nuclear power plant, a watch,
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6 1.1. Context

a electrocardiograph, a doll, a plane, and so forth. For various reasons, you do

not want the designers of those systems to mess things up, but they are facing

a lot of difficulties: first, they are dealing with reactive systems, that have a

non stopping interaction with their environment. This is fundamentally different

from the sequential computing tasks of early computer science. Second, their

program should not only output the good answer to the inputs, but also do this

at the right time, not too early, not too late. Your car braking system should

for example slow down the car at most 10 milliseconds after you push the pedal.

Those softwares are working under real-time constraints, and hence are called real-

time (or timed) systems. Third, embedded systems are often controlling deeply

continuous environments. The mix of discrete behavior of the computers and

continuous evolutions of variables, like temperature, give rise to difficult analysis

problems. Finally, from a more down-to-earth point of view, embedded systems

often offer very few debugging mechanisms. A modem, for example, has only a

few leds. In fact, currently, those problems make software, paradoxically, the most

costly and least reliable part of embedded systems. Lots of people consider this

as one of the most difficult problems in computer science nowadays [HS06]. Many

related ways are currently explored to tackle the problem.

Model checkers The model-checking community wants to free our fellow com-

puter scientists from the lengthy correction proofs of their designs: a model checker

is a program verifying properties on formal specification of designs. A toy example

would for example be a program that, given as input a directed graph, could tell

if there is a path from a certain vertex to another. This could be for example very

useful for a network planner. In practice, designers of model checkers try to find a

trade-off between the expressiveness of the formal models and of the queries allowed

(finite graph and reachability queries in our example), and the time and memory

consumption. The main problem is that the model-checker has to examine all pos-

sible states of a model before deciding and that the number of states is often huge

(if not infinite, as it is the case for timed systems): hence this problem is known as

the state explosion problem. [AD94, HNSY92] Furthermore, there are so expressive

models that no computer can answer any interesting question on it : this is the

problem of undecidability. Model Checking, however a still young field, is pretty

well studied and is more and more used in the industry [HJMS03, HLS99, cov06].
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Code generation Once a designer has written a formal design, and maybe

verified it through model checking, he would appreciate to just push a button

to obtain the code of his application. Unfortunately, for real-time systems, the

problem is not fully solved because of the holistic approach needed in this case. You

have to take into account all parameters to find a good solution : hardware real-

time specification, operating system scheduling, and correctness of the outputs.

Some tools do generate code, like Simulink [Tew02], but the emphasis is more on

performance optimization than on correctness, which seems to be putting the cart

before the horse. Happily, lots of people are currently working on the correctness

issues [AIK+03, HKSP03, AFM+02].

Program synthesis An even greater blessing could come down on embedded

systems designers than code generation and model checking: it is program synthe-

sis, also known as controller synthesis. In this approach, you simply specify the

problem to be solved, and you ask a program to generate a strategy to enforce your

objective: for example, keep a tank above a certain temperature and below boiling

point, with measures precise only up to 10 degrees. The controller synthesis prob-

lem is often presented as a game. You simply set up the rules, which represents

the constraints of the environment (the temperature cannot rise instantaneously,

for example) and on the means offered to the controller (imprecise sensors, limited

heating power) and then you search for a strategy for the controller. Compared

to this approach, model-checking is a much easier problem, as it simply consists

in verifying that a strategy is correct, and not generating a winning one.

Contributions In this thesis, we contribute to the three approaches: model

checking, code generation and program synthesis. Our initial goal was to generate

code from the probably most used formalism for real-time: timed automata [AD94].

It was already known that some specifications in those formalisms were simply not

implementable. For example, you can easily specify an automaton making an in-

finite number of moves in a finite amount of time. No hardware could ever ensure

such a behavior. We pinpointed some other implementability problems and slightly

modified the meaning, in other words the semantics, of timed automata. Our new

semantics, called the AASAP1 semantics, has two interesting properties : first, you

1For Almost As Soon As Possible



8 1.2. Thesis Overview

can use model-checking on it and second, we proved, that it is implementable.

More precisely, we proved that the properties you verified on the model can be

preserved by a practical implementation, provided that a simple constraint, linking

speed parameters of the model and of the implementation platform, is satisfied.

To prove the practicability of the approach, we then tackled a big case study.

We verified the AASAP semantics of the Audio Control Protocol, an industrial

example introduced by Vaandrager et al. [BPV94]. We had to cope with efficiency

issues in the verification phase to be able to treat such an example. We also

developed a first tool for generating code from timed automata specifications, and

had to resolve a bunch of methodological questions in the process.

Finally, we looked more closely to program synthesis for environment specified

as timed or hybrid automata. This lead us to a new solution for finding a strategy

to a game with imperfect information. In this kind of games, one of the player has

limited informations on the state of the game: for one state, he may see different

observations and for one observation that he sees, there may be many different

states corresponding. In the process we introduced a powerful improvement to

the computation of strategy for games that allowed performance gain in solving

classical problems like testing the universality of finite automata.

The main concern of all this work is the robustness of the specification or

generated model: the correctness of a controller should not rely on too simplifying

assumptions, like the synchrony hypothesis, that assumes that the computation

times of the implementation can be ignored, or the perfect information hypothesis,

that assumes that a controller can know at any moment the exact state of its

environment. Those hypotheses can serve in a first time as interesting working

assumptions, but should be formally validated.

1.2 Thesis Overview

The following chapters of this thesis are organized as follows:

Chapter 2 Formalisms For Real-Time This chapter presents the formal definitions of

the main formalisms we will use throughout this thesis: untimed and timed

transitions systems that we will use as our main semantics models, and

timed and hybrid automata that will be our main objects of study. We
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recall interesting properties of (un)decidability for those objects: first, the

region construction and the decidability of the reachability question for timed

automata, and second, semi-decision procedures for the analysis of hybrid

automata, since the reachability question is unfortunately undecidable. We

also discuss the use of the synchronized product as a modelling of control.

Chapter 3 AASAP Semantics : Implementable Semantics for Timed Automata We tackle

here the implementability problem for timed automata. We show that it is

really easy to write specifications, using timed automata, that could not be

implemented, no matter how fast and precise the hardware we are provided.

We do not discard the classical semantics for timed automata, as it is a

very useful tool for reasoning but we propose a new semantics, the AASAP

semantics that offers two interesting features. First, we can perform auto-

matic verification of interesting properties and second the semantics has been

conceived to be implementable. For proving formally the implementability,

we give a semantics to timed automata that is as reasonably close to a real

implementation as possible and we show that our AASAP semantics can sim-

ulate it, under easy to check constraints.

Chapter 4 Practical Verification of the AASAP Semantics In Chapter 4, we describe

a tool implementing, with extensive improvements, the verification method

sketched in the previous chapter. The whole process is illustrated through

a case-study of a classical industrial case study: the Philips Audio Control

Protocol.

Chapter 5 Practical Real-Time Code Generation Then we describe the process of

correct-by-construction code generation from a specification given as a timed

automaton. As an example, we implemented a tool generating code for the

Lego Mindstorms platform. We also describe the methodological problems

that had to be solved in the process.

Chapter 6 Games of Imperfect Information We then look more carefully at the gen-

eration of a controller from the specification of an environment under the

constraint that the controller does not have a perfect information about the

state of the environment. The only information available can be imprecise

about the state of the controller. We show how to solve those games for
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finite state problems and generalize it to the generation of discrete controller

(each move is separated by the exact same amount of time) for environments

specified as rectangular hybrid automata.

In the process of solving games of imperfect information, we found an efficient

way of reducing the computing work needed. The improvement over classical

techniques is based on the observation that if a player has a winning strategy

from any state of a given set S, i.e. he controls this set, then he controls

any subset of S. We show how our technique can be fruitfully applied to the

classical problem of deciding the universality of a finite automata.

Chapter 7 Conclusion

1.3 Chronology

The material of chapter 3 has been presented at the Seventh International Work-

shop on Hybrid Systems : Computation and Control (HSCC 2004) [DDR04] and in

a paper published in the journal Formal Aspects of Computing [DDR05a]. Some

additional remarks are inspired by a paper published in the proceeding of the

FORMATS/FTRTFT 04 Conference [DDMR04].

Chapters 4 and 5 presents results partially published at the Formal Methods

2005 conference [DDR05b].

Finally, the bulk of chapter 6 is a paper published at the the Ninth International

Workshop on Hybrid Systems: Computation and Control(HSCC 06)[DDR06b].

Some interesting applications presented in this chapter have been published at the

Conference CAV’06 - Computer-aided Verification, 2006 [DDR06a].



Chapter 2

Formalisms For Real-Time

In this chapter, we introduce the notion of timed and untimed transition systems,

to represent the behavior of real-time systems. Those transition systems will be

used as the basic tool for defining semantics in this thesis, as well for programs

than for more abstract formalisms. It allows us to compare those semantics and

check for example if one is a refinement, in some sense, of another. To formalize

this notion of refinement, we use simulation relations. We then introduce the

formalism of the timed automaton, which will be our main modeling tool, and its

generalization: the hybrid automaton. We remind some useful decidability results

in this framework. We end the chapter by a discussion on the use of synchronized

product as a modeling of control.

2.1 The Basic Semantic Model: Timed Transition sys-

tems

In this thesis, we are interested in continuous real-time systems where the domain

for time will be R≥0, the set {x ∈ R | x ≥ 0} of the nonnegative real numbers. To

define the semantics of such systems, we use the notion of timed transition systems,

which are a very simple model for representing a set of states and transitions.

The transitions of those transition systems are equipped with labels : a label

in R≥0 corresponds to the passing of some time, a label in Σ corresponds to an

instantaneous discrete transition.

Notation We will often need to partition a set into subsets. To express that the

sets S1, S2, . . . , Sn constitute a partition of the set S, we write S = S1]S2]· · ·]Sn.

In other words, S1 ] S2 ] · · · ] Sn stands for the union of the sets S1, . . . , Sn but

11
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also implicitly states that the intersection of any pair of different sets is empty. On

the contrary of classical partitions in mathematics, those partitions do not impose

that a set Si can not be empty. Furthermore, given a set of state S and a set

F ⊆ S, we denote by F the complement of F, that is the set S\F.

Definition 2.1 (TTS- Timed Transition System)

A timed transition system T is a tuple 〈S,E,F,Σ,→〉 where:

• S is a set of states,

• E ⊆ S is the set of possible initial states,

• F ⊆ S is the set of final states (here generally considered as the bad states),

• Σ is a finite set of labels, also called an alphabet, always including the silent

label τ ,

• →⊆ S × (Σ ]R≥0)× S is the transition relation.

We often write s
σ
−→ s′ as a shortcut for (s, σ, s′) ∈→. The non silent labels of

the transition system are used to model the synchronization between several TTSs

(in particular, the labels in R≥0 represents synchronization too: the time elapses

for all TTS simultaneously). The special silent label τ is added to the alphabet

of every TTS to denote transitions that do not allow synchronization with other

TTSs.

We call a transition s
σ
−→ s′:

• discrete if σ belongs to Σ\{τ};

• timed if σ belongs to R≥0;

• silent if the label is τ .

Definition 2.2 (Reachable States of a TTS)

A state s ∈ S of a TTS T = 〈S,E,F,Σ,→〉 is reachable if there exists a finite

sequence s0, s1 . . . sn of states such that s0 ∈ E, sn = s and for any i, 0 ≤ i < n,

there exists σ ∈ Σ ∪ R≥0 such that (si, σ, si+1) ∈→. The set of reachable states of

T is noted Reach(T ).
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We sometimes write s
σ1−→

σ2−→ · · ·
σk−→ s′ as a shortcut for ∃s1, . . . , sk+1 ∈ S such

that s1 = s, sk+1 = s′ and si
σi−→ si+1 for 1 ≤ i ≤ k.

A run of a TTS T = 〈S,E,F,Σ,→〉 over a finite word w = σ1 . . . σn ∈

(Σ ] R≥0)+ is a sequence r = `0`1 . . . `n of states such that (1) `0 ∈ E and

(2) (`i, σi+1, `i+1) ∈→ for all 0 ≤ i < n. The run r is accepting iff `n ∈ F.

The language Lang(T ) accepted by T is the set of words w ∈ Σ∗ such that T has

an accepting run over w1.

In this thesis, the main problem that we will address is the emptiness problem,

assuming that F is the set of bad states.

Definition 2.3 (Emptiness Problem for TTS)

A TTS T = 〈S,E,F,Σ,→〉 is empty if and only if Reach(T ) ∩ F = ∅. The

emptiness problem for a TTS T asks if T is empty.

Another interesting problem is the safety problem:

Definition 2.4 (Safety Problem for TTS)

The safety problem for a TTS T = 〈S,E,F,Σ,→〉 asks if Reach(T ) ⊆ F.

Those two problems are dual for TTS in the following sense:

Lemma 2.1

For any TTS T = 〈S,E,F,Σ,→〉 we have that Reach(T ) ⊆ F iff Reach(T )∩F = ∅.

In chapter 6, we will also need untimed systems:

Definition 2.5 (UTS- Untimed Transition System)

An untimed transition system is a TTS T = 〈S,E,F,Σ,→〉 where @(s, t, s′) : t ∈

R≥0.

If the set of states S is finite, such a transition system is classically called a

(nondeterministic) finite automaton, NFA for short. A deterministic finite au-

tomaton, DFA for short, is an NFA A = 〈S,E,F,Σ,→〉 such that for all states

s ∈ S and all letters σ ∈ Σ, there exists at most one state s′ ∈ S such that s
σ
−→ s′.

1We will only be interested in languages in Chapter 6 , when we talk about universality of

finite automata. This is why the definition of language does not include durations.
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2.2 The Main Proof Tool: Simulation Relations

To check if a transition system is the refinement of another one, we use the notion

of simulation [Mil80].

Definition 2.6 ( Strong simulation relation for TTS)

Given two TTS T = 〈S,E,F,Σ,→〉 and T ′ = 〈S ′,E′,F′,Σ′,→′〉, we say that

T ′ strongly simulates T , noted T � T ′, if Σ = Σ′ and there exists a relation

R ⊆ S×S ′ (called a strong simulation relation or a simulation relation for T � T ′)

such that:

• ∀s ∈ E, ∃s′ ∈ E′ : (s, s′) ∈ R;

• ∀(s, s′) ∈ R : s ∈ F =⇒ s′ ∈ F′

• for all (s1, s
′
1) ∈ R, for all σ ∈ Σ ∪ R≥0, for all s2 such that (s1, σ, s2) ∈→,

there exists s′2 ∈ S
′ such that (s′1, σ, s

′
2) ∈→

′ and (s′1, s
′
2) ∈ R.

Definition 2.7 ( Strong Bisimulation)

Two TTS T = 〈S,E,F,Σ,→〉 and T ′ = 〈S ′,E′,F′,Σ′,→′〉 are strongly bisimilar if

there exists a relation R ⊆ S × S ′ such that R is a simulation relation for T � T ′

and R−1 is a simulation relation for T ′ � T . R is then called a strong bisimulation

relation between T and T ′.

The relation T � T ′ demands that every transition, even silent, of T must

be mimicked by T ′. This is often too strong. This is why one usually introduces

stutter-closed transition relations and weak simulation relations.

Definition 2.8 (Stutter-Closed Transition Relation)

Given the TTS T = 〈S,E,F,Σ,→〉, we define the corresponding stutter-closed

transition relation �⊆ S × (Σ\{τ} ∪R≥0)× S as follows:

• if σ ∈ Σ\{τ} then s
σ
−� s′ iff s

τ
−→ · · ·

τ
−→

σ
−→

τ
−→ · · ·

τ
−→ s′ (there can be an

arbitrary number of τ -labelled transitions before and after σ);

• if t ∈ R≥0 then s
t
−� s′ iff there exists a finite sequence t0, . . . , tk ∈ R≥0 such

that s0
t0−→

τ
−→

t1−→
τ
−→ · · ·

tk−→ s′ and
∑k

i=0 ti = t .
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Definition 2.9 (Weak simulation relation for TTS)

Given two TTS T = 〈S,E,F,Σ,→〉 and T ′ = 〈S ′,E′,F′,Σ′,→′〉 , we say that

T ′ weakly simulates T , noted T �
w
T ′, if Σ = Σ′ and there exists a relation

R ⊆ S×S ′ (called a weak simulation relation or a simulation relation for T �w T
′)

such that:

• ∀s ∈ E, ∃s′ ∈ E′ : (s, s′) ∈ R;

• ∀(s, s′) ∈ R : s ∈ F =⇒ s′ ∈ F′

• for all (s1, s
′
1) ∈ R, for all σ ∈ (Σ\{τ})∪R≥0, for all s2 such that (s1, σ, s2) ∈�,

there exists s′2 ∈ S
′ such that (s′1, σ, s

′
2) ∈�

′ and (s′1, s
′
2) ∈ R.

Definition 2.10 ( Weak Bisimulation)

Two TTS T = 〈S,E,F,Σ,→〉 and T ′ = 〈S ′,E′,F′,Σ,→′〉 are weakly bisimilar if

there exists a relation R ⊆ S×S ′ such that R is a simulation relation for T �
w
T ′

and R−1 is a simulation relation for T ′ �
w
T . R is then called a weak bisimulation

relation.

Definition 2.11 ( Mutual Simulation)

Two TTS T = 〈S,E,F,Σ,→〉 and T ′ = 〈S ′,E′,F′,Σ′,→′〉 are mutually similar if

there exists a relation R ⊆ S × S ′ such that R is a simulation relation for T � T ′

and a relation R′ ⊆ S ′ × S such that R′ is a simulation relation for T ′ � T .

Bisimulation is a stronger notion than mutual simulation. Indeed, bisimilarity

of two TTS implies mutual similarity, but the opposite is not true. We will not

need in this work the notion of weak mutual simulation and we thus do not define

it.

Simulation can be used to define a notion of refinement. We say that the

TTS T1 refines the TTS T2, if T1 �w T2. In the following, we use simulation

relations because they preserve safety properties [AL91], but they also preserve

stronger properties such as the ones expressed in the logics LTL [Pnu77] or ACTL

[CBG88].

Another important notion is hiding. It is used when one TTS T ′ could simulate

another one, T , if it did not insert some of its own labels in the sequences. In

this case, we replace the labels that appear only in T ′ by silent transition and we

prove the existence of a simulation relation between the obtained TTS and T .
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Definition 2.12 (Hiding)

The hiding of a set of label Σ′′ in a TTS T = 〈S,E,F,Σ,→〉, is a new TTS

〈S ′,E′,F′,Σ′,→′〉, denoted T [Σ′′ := τ ] where:

• S ′ = S;

• E′ = E;

• F′ = F;

• Σ′ = Σ\Σ′′;

• →′= {(s, τ, s′) | (s, σ, s′) ∈→ ∧σ ∈ Σ′′} ∪ {(s, σ, s′) | (s, σ, s′) ∈→ ∧σ /∈ Σ′′}

2.3 Timed Automata

A timed automaton can be viewed as a finite automaton equipped with clocks.

Clocks are real-valued variables which value increases with time, with first deriva-

tive equal to one: they count time. Their value can be set to zero while traversing

an edge of the automaton. Edges can also be decorated with constraints, called

guards, like x > 3 for example, which specify the moments when the transition

can be fired and by symbols of an alphabet, which allows discrete synchronizations

with other automata. Finally, each vertex `, usually called a location, of the au-

tomaton is associated with a constraint, called an invariant, which specifies when

the automaton can be in `.

2.3.1 Definitions and Semantics

In this thesis we will denote the truth value of a predicate as follows: > for true,

and ⊥ for false.

Definition 2.13 (Rectangular Predicate)

Let Var be a finite set of real-valued variables, usually called clocks. A valuation

for Var is a function v : Var→ R. We write [Var→ R] for the set of all valuations

for Var. Given a set of variables Var, a valuation v : Var → R and a subset Var′

of Var, v|Var′ denotes the projection of the valuation on Var′, that is a valuation

v′ : Var′ → R such that v(x) = v′(x) for all x ∈ Var′.
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A closed rectangular guard over Var is a finite formula ϕc defined by the fol-

lowing grammar rule:

ϕc ::= ⊥ | > | x ≤ a | x ≥ a | x = a | ϕc ∧ ϕc

where x ∈ Var and a ∈ Q. An open rectangular guard over Var is a finite formula

ϕo defined by the following grammar rule:

ϕo ::= ⊥ | > | x < a | x > a | ϕo ∧ ϕo

where x ∈ Var and a ∈ Q.

We denote by Rectc(Var) (resp. Recto(Var)) the class of closed (resp. open)

rectangular predicates built using variables in Var. A rectangular predicate over

Var is a formula ϕ defined by the grammar rule:

ϕ ::= ϕc | ϕo | ϕc ∧ ϕo

where ϕc ∈ Rectc(Var) and ϕo ∈ Recto(Var). We denote by Rect(Var) the class of

rectangular predicates over Var.

For a rectangular predicate g, we denote by vars(g) the set of variables appear-

ing in g.

Definition 2.14 (|=)

Given a valuation v : Var→ R and a predicate ϕ ∈ Rect(Var), we write v |= ϕ and

say that v satisfies ϕ if and only if (recursively):

• ϕ ≡ >,

• or ϕ ≡ x ./ a for ./∈ {<,≤,=,≥, >} and v(x) ./ a,

• or ϕ ≡ ϕ1 ∧ ϕ2 and v |= ϕ1 and v |= ϕ2.

We denote by [[ϕ]] the set of valuations that satisfy a rectangular predicate ϕ.

Such a set is called a rectangle. We denote by [[ϕ]]x the projection of a rectangle

[[ϕ]] on a variable x.

Let v : Var → R be a valuation and Var′ ⊆ Var, then v[Var′ := 0] denotes the

valuation v′ such that v′(e) = 0 if e ∈ Var′ and v′(e) = v(e) if e 6∈ Var′. In the

sequel, we sometimes write v[x := 0] instead of v[{x} := 0]. Let v : Var → R
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be a valuation, for any t ∈ R≥0, v − t is a valuation such that for any x ∈ Var,

(v − t)(x) = v(x)− t. We define v + t in a similar way. We extend this definition

to valuations v in [Var → R ∪ {⊥}] as follows: (v + t)(x) = v(x) + t, if v(x) ∈ R

and (v + t)(x) = ⊥, if v(x) = ⊥.

In the following, we will sometimes handle a valuation v : Var → R as an

element of Rn where n = #Var. For v ∈ Rn and x ∈ Var , we define v|x as the

value of the component of v corresponding to x.

We are now equipped to define timed automata [AD94] and their classical

semantics.

Definition 2.15 (Timed Automata)

A timed automaton over a set of variables Var is a tuple

〈Loc, Init, Final, Inv, Lab,Edg〉

where:

• Loc is a finite set of locations, denoted by the letter ` with subscripts or

superscripts when needed, representing the discrete states of the automaton.

• Init ⊆ Loc is the set of initial locations. The automaton starts in a location

` of Init with all values of its clocks (variables in Var) equal to zero. 2

• Final ⊆ Loc is the set of final locations, corresponding to the error states of

the automaton.

• Inv : Loc→ Rect(Var) is the invariant condition. The automaton can stay in

location ` as long Inv(`) is satisfied by the current valuation of the variables.

We require that the invariant of each initial location allows that all clocks

are set to zero, to ensure the existence of an initial state.

• Lab is a finite alphabet of labels that are used on transition, mainly to allow

synchronization between many automata.

• Edg ⊆ Loc × Loc × Rect(Var) × Lab × 2Var is a finite set of edges. An edge

(`, `′, g, σ, R) represents a discrete transition from location ` to location `′ with

2More general initial condition are possible but this kind of initialization is immediately

encodable in the two tools we use (Uppaal [LPY97] and HyTech [HHWT95b]).
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guard g, label σ and a subset R ⊆ Var of variables to be reset . The guard g

is a rectangular predicate that must be satisfied by the current valuation for

the transition to be fired.

Definition 2.16 (Semantics of Timed automata)

Let A = 〈Loc, Init, Final, Inv, Lab,Edg〉 be a timed automaton over the set of vari-

ables Var. The semantics of A is the TTS [[A]]= (S,E,F,Σ,→) where:

• S = {(`, v) | ` ∈ Loc ∧ v ∈ [Var→ R] ∧ v |= Inv(`)};

• E = {(`, v) | ` ∈ Init ∧ v ∈ [Var→ R] ∧ v(x) = 0, ∀x ∈ Var};

• F = {(`, v) | ` ∈ Final ∧ v ∈ [Var→ R]};

• Σ = Lab

• the transition relation →⊆ S × (Σ ∪R≥0)× S is defined as follows:

(a) discrete transitions: ((`, v), σ, (`′, v′)) ∈→ iff there exists an edge (`, `′, g, σ, R) ∈

Edg such that v |= g and v′ = v[R := 0];

(b) continuous transitions: ((`, v), t, (`′, v′)) ∈→ iff ` = `′, t ∈ R≥0, ∀x ∈

Var : v′(x) = v(x) + t and ∀t′ ∈ [0, t] : v + t′ |= Inv(`)

2.3.2 Model Checking of Timed Automata

The fundamental theorem about timed automata is the following:

Theorem 2.1

The emptiness problem for timed automata is decidable. In other words, there ex-

ists an algorithm which, given a timed automaton A, can decide if [[A]] is empty [AD94].

The problem is PSpace-Complete.

Theorem 2.1 stems from a reduction of the emptiness problem for timed au-

tomata to the reachability problem on a finite graph. It is based on the so-called

region construction.

For this construction, we first assume that all constants appearing in the au-

tomaton are integers. If this is not the case, it suffices to multiply each constant

with the least common multiple of the denominators to obtain a timed automaton

with the same language, except for scaling. Let bxc denote the integer part of x

(the greatest integer k ≤ x), and 〈x〉 denote its fractional part: x = bxc+ 〈x〉.
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Definition 2.17 (Clock regions)

A clock region is an equivalence class of the relation ∼m defined over the clock

valuations in Var→ R≥0. The variable m is an integer constant. In the following,

m will be the greatest constant appearing in an automaton A. We have v ∼m w iff

all the following conditions hold:

• ∀x ∈ Var : bv(x)c = bw(x)c, or both v(x) and w(x) are strictly greater than

m.

• ∀x, y ∈ Var such that v(x) < m and w(x) < m, we have 〈v(x)〉 ≤ 〈v(y)〉 iff

〈w(x)〉 ≤ 〈w(y)〉.

• ∀x ∈ Var such that v(x) < m, we have 〈v(x)〉 = 0 iff 〈w(x)〉 = 0. �

Figure 2.1 exhibits the set of clock regions for the valuations over two variables

x and y for the relation ∼2. In this figure, a region can be either the inside of a

triangle, the crossing point between two lines, or a segment between two crossings.

We write ]v[ for the clock region containing v. The region ]v[ contains the

valuations that agree with v on the integer part of the variables, which is needed

to know which guard is satisfied, and on the ordering of their fractional part, which

is needed to know which integer part will change first.

There is only a finite number of regions for∼m, that is |Var|!·4|Var| ·Πx∈Var(m+1)

if all the constants in the constraints are integers [AM04]. This value is exponential

in the number of clocks and has to be multiplied by the least common multiple

of all the denominators if the constants are rational, but not all integers. In the

following, m will be the maximal constant in the constraints of the considered

automaton.

Definition 2.18 (Region graph)

Given the TTS [[A]]= 〈S,E,F,Σ,→A〉 of a timed automaton A, we define the cor-

responding region graph G = 〈C,→G〉 of A :

• C = {(`, ]v[) | (`, v) ∈ S} is the set of regions.

• →G⊆ C×C such that ((`, ]v[), (`′, ]v′[)) ∈→G if and only iff (`, v)→A (`′, v′)

and (`, ]v[) 6= (`′, ]v′[).
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Figure 2.1: Clock regions in two dimensions.

C is finite and whenever (`, ]v[)→G (`′, ]v′[), for any s ∈]v[ there exists s′ ∈]v′[

such that (`, s) →A (`′, s′), and for any s′ ∈]v′[ there exists s ∈ [v] such that

(`, s)→A (`′, s′) [AD94]. This property allows to reason on the finite region graph

instead of the infinite TTS and is the base of the decidability result of Theorem 2.1.

Indeed, the reachability problem for finite graphs, asking if there is a path from

one vertex to another, requires linear time in the size of the graph.

A good summary of the classical results on timed automata is [Yov96]. A

survey with more recent results can be found in [AM04].

2.4 Hybrid Automata

Hybrid automata are a natural extension of timed automata, where variables can

have richer continuous behavior (hence they may correspond to something else

than a clock, like a temperature) and updates of the variables are not limited to

reset. They were first introduced in [MMP92].
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The original definition of hybrid automata is very permissive, allowing the use

of any type of differential equation to specify the behavior of continuous variables

and complex update relation for the edges. In consequence, the reachability prob-

lem for such hybrid systems is undecidable. We will restrict ourselves in this thesis

to a subclass having interesting decidability properties : the rectangular automata.

2.4.1 Definitions and Semantics

The main difference between timed automata and rectangular automata is that the

first derivative of a variable is not fixed to 1 anymore, but must satisfy a rectangular

predicate, potentially different in each location. This is what is specified through

the Flow component of the rectangular automata. The other differences with

timed automata are less crucial and could indeed have been introduced in timed

automata while preserving the decidability of the emptiness question: first, initial

and final condition are specified by rectangular predicates. Second, the value of

a variable can be set non deterministically to any value satisfying a rectangular

predicate, instead of only the value 0.

Definition 2.19 (Rectangular Automaton)

A rectangular automaton H over a set of variables Var is a tuple

〈Loc, Init, Final, Inv, Lab,Edg, Flow〉

where:

• Loc = {`1, . . . , `m} is a finite set of locations;

• Init : Loc → Rect(Var) gives the initial condition Init(`) of location `. The

automaton can start in ` with an initial valuation v lying in [[Init(`)]] and we

impose that ∃` ∈ Loc :[[Init(`)]]6= ∅;

• Final : Loc→ Rect(Var) gives the final condition Final(`) of location `;

• Inv : Loc→ Rect(Var) gives the invariant condition Inv(`) of location `. The

automaton can stay in ` as long as the values of its variables lie in [[Inv(`)]];

• Lab is a finite set of labels;
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• Edg ⊆ Loc × Loc × Rect(Var) × Lab × Rect(Var) is a finite set of edges

(`, `′, g, σ, update). An edge (`, `′, g, σ, update) represents a discrete transition

from location ` to location `′ with guard g, label σ and a update update of

variables to be reset . The guard g is a rectangular predicate that must be

satisfied by the current valuation for the transition to be fired. Each variable

x appearing in update is updated nondeterministically to an arbitrary new

value in the interval [[update]]x, while the other variables keep their value.

• Flow : Loc → Rect( ˙Var) governs the evolution of the variables in each loca-

tion. ˙Var is the set of dotted variables ẋ such that x ∈ Var. Those dotted

variables denote the first derivative of the original ones.

Definition 2.20 (Semantics of Rectangular Automata)

The semantics of a rectangular automaton H = 〈Loc, Init, Final, Inv, Lab,Edg, Flow〉

is the TTS [[H ]]= 〈S,E,F,Σ,→〉 where

• S ⊆ Loc × [Var → R] is the state space, the set of pairs (`, v) such that

v |= Inv(`),

• E = {(`, v) ∈ S | v |= Init(`)} is the initial space

• F = {(`, v) ∈ S | v |= Final(`)} is the final space

• Σ = Lab

• and → contains all the tuples ((`, v), σ, (`′, v′)) ∈ S × (Lab ] R≥0) × S such

that

1. for the discrete transitions: σ ∈ Lab and there exists e = (`, `′, g, σ, update) ∈

Edg such that v |= g, v′ |= update and ∀x ∈ Var : x /∈ vars(update) =⇒

v(x) = v′(x)

2. for the continuous transitions: σ ∈ R≥0, ` = `′ and there exists f a

continuously differentiable function f : [0, σ]→[[Inv(`)]] such that for all

x ∈ V ar:

– f(0)|x = v(x);

– f(σ)|x = v′(x)

– for all t ∈ [0, σ]: ḟ(t) ∈[[Flow(`)]].
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2.4.2 Model Checking of Rectangular Automata

The emptiness problem for general hybrid automata is, not surprisingly, undecid-

able. Unfortunately, even for the class of rectangular automata, the emptiness

problem is undecidable.

Theorem 2.2 ([Hen96])

The emptiness problem for rectangular automata is undecidable. In other words,

there does not exist an algorithm which, given any rectangular automaton H, can

decide if [[H ]] is empty.

Proof (Sketch)

The proof works by reduction of the state reachability problem for two-counter ma-

chines [Min67]. A two-counter machine is essentially a finite automaton equipped

with two unbounded counters. It can perform three operations:

• increment a counter;

• decrement a counter;

• test if a counter is equal to zero and branch accordingly to another state;

The state reachability problem for two-counter machines, that asks whether

some state of the automata can be reached with a given value of the counters, is

undecidable.

It is very easy to reduce this problem to the emptiness of a rectangular au-

tomaton since the two counters can be mimicked by two variables for which the

first derivative can be set, for one unit of time, to 1 for incrementing, and to −1

for decrementing. Zero testing is also straightforward to express in the syntax of

rectangular automata.

Although the emptiness problem is undecidable in general for rectangular au-

tomata, there are still interesting questions that can be solved.

• First, there are subclasses of rectangular automata, besides timed automata,

for which the emptiness problem is decidable. For example, the class of

the initialized rectangular automata. In this class, on an edge going from

location ` to `′, variables for which the flow condition change must be updated
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to a value that is independent from the former value. More formally: in an

initialized rectangular automaton H = 〈Loc, Init, Final, Inv, Lab,Edg, Flow〉 on

a set of variables Var, for all y ∈ Var, for all edge e = (`, `′, g, σ, update) ∈ Edg,

[[Flow(`)]]ẏ 6=[[Flow(`′)]]ẏ implies that y ∈ vars(update).

• Second, even if the emptiness of rectangular automata is undecidable in

general, some tools like HyTech [HHWT95b] or PHAVer [Fre05] imple-

ments semi-algorithms that often terminate in practice. These procedures

are based on a symbolic computation of the post operator: given a TTS

T = 〈S,E,F,Σ,→〉, the direct successor operator postT : 2S → 2S is an

operator that, given a set of states, returns the set of direct successors of

those states in T . Formally, for any S ′ ⊆ S, we have that:

postT (S ′) =
{
s ∈ S | ∃s′ ∈ S ′ : (∃σ ∈ Σ : s′

σ
−→ s ∨ ∃t ∈ R≥0 : s′

t
−→ s)

}
.

This operator is computable for any TTS that is the semantics of a rectan-

gular automaton [HPR94]. Furthermore, the set Reach(T ) can be defined as

the least solution of the equation:

X =
(
E ∪ PostT (X)

)
,

where X ranges over sets of states.

As this operator is monotone for the subset order, we know by Tarski’s theo-

rem that this solution can be computed by successive approximations[Tar55].

Unfortunately, since the emptiness problem is undecidable for rectangular au-

tomata, we know that the solution is not necessarily reached within a finite

number of steps and thus that tools are not guaranteed to terminate, even

if they do rather often.

2.5 Synchronized Product as a Modeling of Control

The labels present on the edges of hybrid automata are used to synchronize two

automata. In the resulting synchronized product a transition on a label σ can be

fired only if both automata have edges coming out of their current location, labeled

with σ and with compatible guards and assignments.
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Definition 2.21 (Synchronized Product of Rectangular Automata)

The synchronized product of two rectangular automata

H1 = 〈Loc1, Init1, Final1, Inv1, Lab1,Edg1, Flow1〉

over Var1 and

H2 = 〈Loc2, Init2, Final2, Inv2, Lab2,Edg2, Flow2〉

over Var2 is a third rectangular automaton

H1‖H2 = 〈Loc, Init, Final, Inv, Lab,Edg, Flow〉

over Var1 ∪ Var2 such that:

• Loc = Loc1 × Loc2 ;

• Init(`1, `2) = Init1(`1) ∧ Init2(`2) for each (`1, `2) ∈ Loc;

• Final(`1, `2) = Final1(`1) ∨ Final2(`2) for each (`1, `2) ∈ Loc;

• Inv(`1, `2) = Inv1(`1) ∧ Inv2(`2) for each (`1, `2) ∈ Loc;

• Lab = Lab1 ∪ Lab2;

• Edg is the set of edges ((`1, `2), (`
′
1, `

′
2), g, σ, update) such that

– either σ ∈ (Lab1 ∩ Lab2)\{τ} and

∗ ∃(`1, `
′
1, g1, σ, update1) ∈→1

∗ ∃(`2, `
′
2, g2, σ, update2) ∈→2

∗ g = g1 ∧ g2

∗ update = update1 ∧ update2

– or (σ = τ ∨ σ /∈ Lab2)

∗ (`1, `
′
1, g, σ, update) ∈→1

∗ `2 = `′2;

– or (σ = τ ∨ σ /∈ Lab1)

∗ `1 = `′1
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∗ (`2, `
′
2, g, σ, update) ∈→2

• Flow(`1, `2) = Flow1(`1) ∧ Flow2(`2) for each (`1, `2) ∈ Loc;

Observe that a very similar notion of product can be defined for timed au-

tomata.

Synchronized product is often used to model a notion of control.

Definition 2.22 (Safety Control for Hybrid Automata)

Given two hybrid automata Cont and Env modeling on one hand a controller and

on the other hand an environment, we say that Cont controls Env if [[Cont‖Env]] is

empty, that is, the final (assumed to be bad) states of either the controller or the

environment are not reachable. Usually the set of bad states of the controller is

empty.

From this definition of control emerge some problems, as we will see through

the following example. Figure 2.2 presents an example of hybrid automaton. It

models the evolution of the water level in a leaking tank alimented by a pump.

The automaton, that we will call Env, uses two variables: y is the level, and x is

a timer used for limiting the time spent changing mode. There are two modes:

either the pump is on, and the level is increasing ( ẏ is in the interval [0, 1]), or

the pump is off and the level is decreasing (ẏ is in the interval [−2,−1]). There

are two informations that a controller polls through actuators: either level has

increased to 10 inches (H) or it has decreased to 5 inches (L). The controller must

ensure that the level stays between 1 and 12 inches at every time by switching the

pump on and off. The difficulty is that the switching takes up to 2 units of time.

For this automaton Init(A) := x = 0∧ y = 2 and Init(`) := ⊥ for ` 6= A (the arrow

with no source indicates the initial location).

A controller, called Cont, is presented in Figure 2.3. Its strategy is very simple:

every time the level reaches 10, switch the pump off, and every time it reaches

5, switch the pump back on. Observe that it is a timed automaton, which will

often seem reasonable for a controller as it is implemented in hardware and has

no variable with a complex continuous behavior, only timers. For this automaton

Init(1) := z = 0 and Init(`) := ⊥ for ` 6= A.

The synchronized product of those two automata is presented in Figure 2.4.

One can easily check that if the bad states of Cont are defined to be the states



28 2.5. Synchronized Product as a Modeling of Control

A

y ≤ 10

ẏ ∈ [0, 1]

B

ẏ ∈ [0, 1]

C

x ≤ 2

ẏ ∈ [0, 1]

E

ẏ ∈ [−2,−1]

D

y ≥ 5

ẏ ∈ [−2,−1]

F

x ≤ 2

ẏ ∈ [−2,−1]
x := 0
Start

y = 5
L

x := 0
Stop

y = 10

H

Figure 2.2: Hybrid systems modelling the evolution of the water level in a tank

(ẋ = 1 in all locations)

1
2

z ≤ 0

3
4

z ≤ 0

z := 0
H

Stop

L

z := 0

Start

Figure 2.3: A controller for the tank of Figure 2.2 (ż = 1 in all locations)
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(A, 1)

y ≤ 10

ẏ ∈ [0, 1]

(B, 2)

z ≤ 0

ẏ ∈ [0, 1]

(C, 3)

x ≤ 2

ẏ ∈ [0, 1]

(E, 4)

z ≤ 0

ẏ ∈ [−2,−1]

(D, 3)

y ≥ 5

ẏ ∈ [−2,−1]

(F, 1)

x ≤ 2

ẏ ∈ [−2,−1]
x := 0
Start

y = 5

z := 0

L

x := 0
Stop

y = 10

z := 0

H

Figure 2.4: Synchronized product of automata of Figure 2.2 and Figure 2.3 (ẋ = 1

and ż = 1 in all locations)

where y < 1 or y > 12, we have that Cont controls Env, as explained in the previous

section.

This notion of control is worth some comments:

• It would be meaningful to separate the inputs of one automaton from its

output. For example, for Cont, H is clearly an input and Stop an output.

One could then formalize the fact that a controller must not reach his goal

by blocking the environment. In our example, if we give as controller an

automaton that has all the labels of Env in its label set but offers no edge

at all, it fulfills the definition of control by impeaching Env to ever leave

location A where y is forced by the invariant to stay lower than 10. In this

case the controller would reach his goal by blocking time, which is clearly

not a realistic strategy. To avoid such problems, in the next chapter, we will

force a controller to be input enabled, that is to always offer a transition on

its input labels.

• In the above example, we clearly use invariants to force automata to move.

Notably, in location 2 and 4 of Cont, we have the invariant z ≤ 0 that allows

no time to pass before an answer is given to the H or L events. Invariants

are very often used to this modeling purpose : force progress. One other way

to do this is to give an ASAP semantics to the automata: that is, semantics

in which transitions have to be fired as soon as possible (ASAP). The use
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of invariants is often preferred since it allows more flexibility. Furthermore

controllers taking no time to react to inputs are not realistic, even if this

synchrony hypothesis is often used to simplify the analysis.

• Observe also that no variable is shared between Env and Cont. This of-

ten seems natural in the examples we handle, where the controllers have to

poll the environment to get information about its state. The problem of

modelings where there is communication through shared variables was par-

tially managed in [DW02]. In this work, we proposed a transformation that

moved guards and invariants from an automaton to another, depending on

the membership of the variables. We will not treat this problem further in

this work and assume there is no variable shared by the environment and

the controller.

• In this modeling of a tank, we assume that the tank emits an event exactly

when some level has been reached. One could never assume such a preci-

sion in a real implementation. That is why we will introduce the notion of

imperfect information in Chapter 6;

• One final interesting observation is that the correctness of Cont heavily de-

pends on instantaneity of reaction to inputs. Any delay in its reactions would

lead the environment in a bad state. In fact there is no robust controller for

this environment. It would be interesting to be able to detect such a case.

In the following chapter, we mix different, albeit similar, formalisms for modeling

controllers and environment. To formalize such a mix, we will compose directly

the TTS semantic of the models.

Definition 2.23 (Synchronized Product of TTS)

The synchronized product of two TTS

T1 = 〈S1,E1,F1,Σ1,→1〉

and

T2 = 〈S2,E2,F2,Σ2,→2〉

is a third TTS

T = 〈S,E,F,Σ,→〉

such that:
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• S = S1 × S2;

• E = {(s1, s2) | s1 ∈ E1 ∧ s2 ∈ E2};

• F = {(s1, s3) | s1 ∈ F1 ∨ s2 ∈ F2};

• Σ = Σ1 ∪ Σ2;

• → is such that for any σ ∈ Σ ∪ R≥0, we have that ((s1, s2), σ, (s
′
1, s

′
2)) ∈→

iff one of the following assertions holds:

– σ ∈ (Σ1\Σ2) ∪ {τ} and (s1, σ, s
′
1) ∈→1 and s2 = s′2;

– σ ∈ (Σ2\Σ1) ∪ {τ} and (s2, σ, s
′
2) ∈→2 and s1 = s′1;

– σ ∈
(
(Σ1 ∩ Σ2)\{τ}

)
∪ R≥0 and (s1, σ, s

′
1) ∈→1 and (s2, σ, s

′
2) ∈→2

Definition 2.24 (Safety Control for TTS)

Given two TTS Cont and Env modeling the semantics on one hand of a con-

troller and on the other hand of an environment, we say that Cont controls Env if

Cont‖Env is empty, that is, the final (assumed to be bad) states of either semantics

are not reachable.

Finally, it is interesting to state that the relation of controls remains true if

one replace one of the TTS by another one, that is simulated by the original one.

Lemma 2.2 ([DDR04])

For all TTS T1, T
′

1 , T2, T
′

2 , if T1 �w
T ′

1 , T2 �w
T ′

2 and T ′
1 controls T ′

2 then T1

controls T2.

Proof (Sketch)

Let R1 and R2 be simulation relations for respectively T1 �w
T ′

1 and T2 �w
T ′

2 . It

is easy to show that R12 =
{(

(s1, s2), (s
′
1, s

′
2)

)
| (s1, s

′
1) ∈ R1 and (s2, s

′
2) ∈ R2

}
is

a simulation relation for T1‖T2 � T
′

1‖T
′

2 .

2.6 Conclusion

In this chapter, we have introduced the main formalisms we will use throughout

this thesis: timed transition systems, timed and rectangular automata. They are
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designed to deal with continuous time behavior, where actions can occur at any

instant in time, instead of discrete time behavior, where actions can occur only at

integer point in time. There has been a lot of discussions in the past about the

best way to model time. For example Abadi and Lamport advocate the idea that

time can be modeled as any ordinary program variable in a system [AL94]. On

the contrary, Henzinger underlines that time is fundamentally different from usual

program variables since it is continuous, monotonic and divergent [Hen91]. Let us

just say that this thesis clearly works on the continuous side, since we are looking

for the robustness of our specification : assuming that the timing of a controller

can be so precise that actions only happen at integer points in time does not seem

reasonable if we consider the most general cases.



Chapter 3

AASAP Semantics :

Implementable Semantics for

Timed Automata

3.1 Introduction

As we have explained in the previous chapter, the model-checking problem for

timed automata is well studied. Several tools, like Uppaal [LPY97] or KRONOS

[Yov97], allow the verification of models presented as timed automata. When a

high level description of a controller has been proven correct it would be valuable

to ensure that an implementation of that design can be obtained in a systematic

way in order to ensure the preservation of correctness. This is often called program

refinement: given a high-level description P1 of a program, refine that description

into another description P2 such that the “important” properties of P1 are main-

tained. Usually, P2 is obtained from P1 by reducing nondeterminism. To reason

about the correctness of P2 w.r.t. P1, we will use the notion of simulation [Mil80]

which is powerful enough to ensure the preservation of LTL properties for example.

We met several difficulties, however, to adapt this elegant schema in the context

of timed automata.

First, the notion of time used by hybrid automata is based on a dense set of

values (usually the real numbers). This is unarguably an interesting notion of

time at the modeling level but when implemented, a digital controller manipulates

timers that are digital clocks. Digital clocks have finite granularity and take their

values in a discrete domain. Furthermore, those clocks may also be subject to

drifts and so may not be perfectly accurate. As a consequence, any control strat-

33
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egy that requires clocks with infinite precision can not be implemented. Second,

hybrid automata can be called “instantaneous devices” in that they are able to

instantaneously react to time-outs or incoming events by taking discrete transi-

tions without any delay. Again, while this is a convenient way to see reactivity

and synchronization at the modeling level, any control strategy that relies for its

correctness on that instantaneity cannot be implemented by any physical device,

no matter how fast it is. Those problems are known and have already attracted

some attention from our research community. For example, it is well-known that

timed automata may describe controllers that control their environment by playing

a so called zeno strategy, that is, by taking an infinite number of actions in a finite

amount of time. This is widely considered as unacceptable even by authors making

the synchrony hypothesis [AFP+03]. But even if we prove our controller model

non-zeno, that does not mean that it can be implemented. In fact, in [CHR02],

Cassez, Henzinger and Raskin showed that there are (very simple) timed automata

that enforce faster and faster reactions, say at times 0, 1
2
, 1, 11

4
, 2, 21

8
, 3, 3 1

16
, . . .. So,

timed automata may model control strategies that cannot be implemented because

the control strategy does not maintain a minimal bound between two control ac-

tions. A direct consequence is that we cannot hope to define for the entire class

of timed automata (using the traditional semantics) a notion of refinement such

that if a model of a real-time controller has been proven correct then it can be

systematically implemented in a way that preserves its correctness.

The infinite precision and instantaneity characteristics of the traditional seman-

tics given to timed automata is very closely related to the synchrony hypothesis

that is commonly adopted in the community of synchronous languages [Ber00].

Roughly speaking, the synchrony hypothesis can be stated as follows: “the pro-

gram reacts to inputs of the environment by emitting outputs instantaneously”.

The rationale behind the synchrony hypothesis is that the speed at which a dig-

ital controller reacts is usually so high w.r.t. the speed of the environment that

the reaction time of the controller can be neglected and considered as null. This

hypothesis greatly simplifies the work of the designer of an embedded controller:

he/she does not have to take into account the performances of the platform on

which the system will be implemented. We agree with this view at the modeling

level. But, as any hypothesis, the synchrony hypothesis should be validated, not

only by informal arguments but formally, if we want to transfer correctness prop-
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erties from models to implementations. We show in this chapter how this can be

done formally and elegantly using a semantics called the Almost ASAP semantics

(AASAP-semantics).

The AASAP-semantics is a parametric semantics that leaves the reaction time of

the controller as a parameter. This semantics relaxes the synchrony hypothesis in

that it does not impose the controller to react instantaneously but imposes on the

controller to react within ∆ time units when a synchronization or a control action

has to take place (is urgent). The designer acts as if the synchrony hypothesis

was true, i.e. he/she models the environment and the controller strategy without

referring to the reaction delay. This reaction delay is taken into account during

the verification phase: we compute the largest ∆ (or a ∆ large enough) for which

the controller is still correct w.r.t. to the properties that it has to enforce (to avoid

the environment to enter bad states for example).

We show that the AASAP semantics has several important and interesting

properties. First, the semantics is such that “faster is better”. That is, if the

controller is correct for a reaction delay bounded by ∆ then it is correct for any

smaller ∆′. Second, any controller which is correct for a reaction delay bounded

by ∆ > 0 can be implemented by a program on a hardware provided that the

hardware is fast enough and provides sufficiently fine granular digital clocks. Third,

the semantics can be analyzed using existing tools, like HyTech.

3.2 Definitions

As explained in the example of the previous chapter, it will be meaningful to split

the set of labels of an automaton into input and output, but also internal labels.

This is why we introduce structured set of labels.

Definition 3.1 (Structured set of labels)

We say that a finite set of labels Lab is structured if it is partitioned into three

subsets: Labin the set of input labels, Labout the set of output labels, and Labτ the

set of internal labels. Put differently : Lab = Labin ] Labout ] Labτ .

In the sequel, we use one TTS to model a timed controller and one to model the

environment in which the controller is embedded. We model the communication

between the two TTS using the mechanism of synchronization on common labels.
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This is a blocking communication mechanism. Nevertheless, on one hand we want

to verify that the controller does not control the environment by refusing to syn-

chronize on its output, and on the other hand, we do not want our controller to

issue outputs that can not be accepted by the environment. To avoid such prob-

lems we impose input enabledness of the TTS that we compose, which means that

input labels have the property of being enabled in every state. Input enabledness

is a concept introduced in [LT87]. Formally :

Definition 3.2 (Input Enabled TTS)

A TTS T = 〈S,E,F,Σ,→〉, where Σ = Σin]Σout ]Στ is a structured set of labels,

is input enabled if for all σ ∈ Σin, for all s1 ∈ S there exists s2 ∈ S such that

(s1, σ, s2) ∈→.

Lemma 3.1 (Input Enabledness is Preserved by Simulation)

For all TTS T1 and T2 on the same structured alphabet such that T1 � T2, if T1 is

input enabled, then T2 is input enabled.

We chose this semantics for inputs because it clarifies the presentation, but other

semantics are possible: for instance, in a preliminary version of this work [DDR04],

we imposed receptiveness of controllers. Under this assumption, a controller must

be fast enough to treat each occurrence of an event before the next occurrence

arrives. One could also imagine a semantics where inputs arriving at the wrong

time are simply ignored. Those aspects are orthogonal to the implementability

aspects of the AASAP semantics.

Definition 3.3 (Input Compatible Synchronized Product of TTSs)

The synchronized product of two STTS

T1 = 〈S1,E1,F1,Σ1,→1〉

and

T2 = 〈S2,E2,F2,Σ2,→2〉

is input compatible if Σ1 = Σin
1 ]Στ

1 ]Σout
1 and Σ2 = Σin

2 ]Στ
2 ]Σout

2 are structured

set of labels such that Σin
1 = Σout

2 and Σout
1 = Σin

2 , and if T1 and T2 are input-enabled.

In the following of this chapter, we will always assume that the synchronized

products we build are input compatible.
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1 2

y ≤ 1

3

Bad
A?

x := 0

B!

y ≥ 1

C?

y := 0

x ≥ α

x ≥ α

x ≥ α

Figure 3.1: The environment of the running example.

Running example. As we already pointed out in the introduction and the

example of the previous chapter, the classical semantics given in Definition 2.16 is

problematic for the controller part if our goal is to transfer the properties verified

on the model to an implementation. Below, we illustrate the properties of the

classical semantics that makes it impossible to both implement the controller and

ensure formally that the properties of the model are preserved.

The timed automaton of Figure 3.1 models a simple environment (a plant):

when a request A is received, the response B is emitted when y = 1, and then the

event C is accepted, which resets the clock y. A “!” corresponds to an output

event and a “?” to an input event. Moreover, the event A must occur at least

every 2 time units, and the reaction C should occur before the timeout condition

x ≥ α becomes true. If it is not the case, the environment enters the location Bad,

modeling a fatal error. We want to control the environment for α = 1 and α = 2.

The role of the controller is to produce an event A at least every 2 time units,

to accept the subsequent event B and to output C while respecting the timing

constraint. An example of such a controller is given in Figure 3.2. The designer

has chosen here to output an A every 1 time unit, and to react to the event B

as quickly as possible by emitting a C. Given this controller for the system, we

must verify that it gives orders in such a way that any resulting behavior of the
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1

w ≤ 1

2

3

z ≤ 0

w ≥ 1 A!

w := 0

B?

z := 0
C!

Figure 3.2: The ASAP controller of the running example.

environment avoids to enter the set of bad states (all the states in which the

environment is in control location Bad). Observe that since the semantics of timed

automata is input enabled, we are sure that the controller could not simply control

the environment to avoid Bad by refusing to synchronize with B.

The reader can check that, with the classical semantics of timed automata, the

controller controls the environment such that the location Bad is not reachable

for α = 1 and α = 2. Later, we will see that if α = 1 then the controller

is not implementable. On the other hand, if α = 2 then the controller can be

implemented in such a way that it controls the environment to avoid Bad.

First, note that invariants (grayed constraints in the example of Figure 3.2 are

used to force the controller to take actions. Invariants can be removed if we assume

an ASAP semantics for the controller: any action is taken as soon as possible; this

is also called the maximal progress assumption. So, in the example, the transition

labeled with A! fires exactly when w = 1, and the transition labeled with C! proceeds

exactly when z = 0, i.e. instantaneously. Clearly, no hardware can guarantee that

the transition will always be taken without any delay. Second, synchronizations

between the environment and the controller (e.g. transitions labeled B) cannot

be implemented as instantaneous: some time is needed by the hardware to detect

the incoming event B and for the software that implements the control strategy to
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take this event into account. Third, the use of real-valued clocks is only possible

in the model: implementations use digital clocks with finite granularity. It is

then necessary to show that digital clocks can replace the real-valued clocks while

preserving the verified safety properties.

These three problems illustrate that even if we have formally verified our control

strategy, we cannot conclude that an implementation will preserve any of the

properties that we have proven on the model. This is unfortunate. If we simplify,

there are two options to get out of this situation: (i) we ask the designer to give

up the synchrony hypothesis and ask her/him to model the platform on which the

control strategy will be implemented, as in [IKL+00] and [AT05], or (ii) we let

the designer go on with the synchrony hypothesis at the modeling level but relax

the ASAP semantics during the verification phase in order to formally validate the

synchrony hypothesis.

We think that the second option is much more appealing and we propose in the

next section a framework that makes the second option possible theoretically but

also feasible practically. The framework we propose is centered on a relaxation of

the ASAP semantics that we call the AASAP semantics. The main characteristics

of this semantics are summarized below:

• any transition that can be taken by the controller becomes urgent only after

a small delay ∆ (which may be left as a parameter);

• a distinction is made between the occurrence of an event in the environment

(sending σ), and in the controller (receiving σ̃); however the time difference

between the two events is bounded by ∆;

• guards are enlarged by some small amount depending on ∆.

We will now define formally this semantics and we will show in section 3.3.2

that it is robust in the sense that it defines a tube of strategies (instead of a unique

strategy as in the ASAP semantics) which can be refined in a formal way into

an implementation while preserving the safety properties imposed by this tube of

strategies.

As stated previously, invariants are useful when modeling controllers with the

classical semantics in order to force the controller to take actions but they are

useless with an ASAP semantics. This is also true for the semantics we define
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in this section. So, we restrict our attention to the subclass of timed automata

without invariants and with closed guards. In the rest of the paper, we call the

controller specified by this subclass Elastic1 controllers.

Definition 3.4 (Elastic Controllers)

An Elastic controller A is a tuple 〈Loc, `0,Var, Lab,Edg〉 where:

• Loc is a finite set of locations;

• `0 ∈ Loc is the initial location;

• Var = {x1, . . . , xn} is a finite set of clocks;

• Lab = Labin]Labout]Labτ is a finite structured alphabet of labels, partitioned

into input labels Labin, output labels Labout, and internal labels Labτ ;

• Edg is a set of edges of the form (`, `′, g, σ, R) where `, `′ ∈ Loc are locations,

σ ∈ Lab is a label, g ∈ Rectc(Var) is a guard and R ⊆ Var is a set of clocks

to be reset.

Before defining the AASAP semantics we need some more notations:

Definition 3.5 (True Since)

We define the function “True Since”, noted TS : [Var → R≥0] × Rectc(Var) →

R≥0 ∪ {−∞}, as follows:

TS(v, g) =

{
t if v |= g ∧ v − t |= g ∧ ∀t′ > t : v − t′ 6|= g

−∞ otherwise

This definition is meaningful since g ∈ Rectc(Var) defines a closed set, the first

derivative of clocks is the constant 1 and rectangular predicates define convex sets.

Definition 3.6 (Guard Enlargement)

In the following, we will make the non-restrictive assumption that all rectangular

constraint p are in the form p ≡ a ∼ x ∼ b where ∼ stands for < or ≤, x is a clock

and a, b ∈ Q ] {∞,−∞}. Given ∆1,∆2 ∈ Q, the symbol 〈 standing either for [

1Elastic stands for Event-based LAnguage for Simple TImed Controllers; we also give to

those timed controllers a semantics which is elastic in a sense that will soon be made clear to

the reader.
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or ( and the symbol 〉 standing either for ] or ), we define the notation ∆1
〈p〉∆2

for

the parametric rectangular constraint:

a−∆1 ∼
′
1 x ∼

′
2 b+ ∆2

where ∼′
1 stands either for ≤ if 〈 is [, or for < if 〈 is (, and ∼′

2 is interpreted

symmetrically.

For example, let p ≡ 2 ≤ x ≤ 5, then − 1

3
(p ]∆ ≡ 2 + 1

3
< x ≤ 5 + ∆. The

notation is naturally extended to rectangular predicates, in which we also assume

that there is at most one rectangular constraint per variable x. For a rectangular

constraint p ≡ a ∼ x ∼ b, we define lb(p) to be the value a and rb(p) to be the

value of b (rb and lb stand for right bound and left bound respectively).

Definition 3.7 (Perception of Events)

In the following semantics, we split two different aspects of an event: first there is

the occurrence and then there is the perception, the viewing, by a controller. To

denote this link, for an event α we use the notation α̃ for the perception, and we

keep the label unchanged, α, for the occurrence. For a set of labels Lab, we denote

by L̃ab the same set of labels equipped with .̃

We are now ready to define the AASAP semantics. Intuitions are given right

after the definition.

Definition 3.8 (AASAP semantics)

Given an Elastic controller

A = 〈Loc, `0,Var, Lab,Edg〉

and ∆ ∈ Q≥0, the AASAP semantics of A, noted [[A]]AAsap
∆ is the TTS

T = 〈S,E,F,Σ,→〉

where:

(A1) S is the set of tuples (`, v, I, d) where ` ∈ Loc, v ∈ [Var → R≥0], I ∈ [Σin →

R≥0 ∪ {⊥}] and d ∈ R≥0;

(A2) E = {(`0, v, I, 0)} where v is such that for any x ∈ Var : v(x) = 0, and I is

such that for any σ ∈ Σin, I(σ) = ⊥;
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(A3) F = ∅;

(A4) Σ = Σin ] Σout ] Στ ] R≥0 with Σin = Labin, Σout = Labout, and Στ =

Labτ ∪ L̃abin ∪ {τ};

(A5) The transition relation is defined as follows:

– for the discrete transitions, we distinguish five cases:

(A5.1) let σ ∈ Labout. We have ((`, v, I, d), σ, (`′, v′, I, 0)) ∈→ iff there

exists (`, `′, g, σ, R) ∈ Edg such that v |= ∆[g]∆ and v′ = v[R := 0] ;

(A5.2) let σ ∈ Labin. We have ((`, v, I, d), σ, (`, v, I ′, d)) ∈→ iff

· either I(σ) = ⊥ and I ′ = I[σ := 0];

· or I(σ) 6= ⊥ and I ′ = I.

(A5.3) let σ̃ ∈ L̃abin. We have ((`, v, I, d), σ̃, (`′, v′, I ′, 0)) ∈→ iff there

exists (`, `′, g, σ, R) ∈ Edg, v |= ∆[g]∆, I(σ) 6= ⊥, v′ = v[R := 0]

and I ′ = I[σ := ⊥] ;

(A5.4) let σ ∈ Labτ\({τ} ∪ L̃abin). We have ((`, v, I, d), σ, (`′, v′, I, 0)) ∈→

iff there exists (`, `′, g, σ, R) ∈ Edg, v |= ∆[g]∆, and v′ = v[R := 0] ;

(A5.5) let σ = τ . We have for any (`, v, I, d) ∈ S : ((`, v, I, d), τ, (`, v, I, d))

∈→.

– for the continuous transitions:

(A5.6) for any t ∈ R≥0, we have ((`, v, I, d), t, (`, v+ t, I + t, d+ t)) ∈→ iff

the following two conditions are satisfied:

· for any edge (`, `′, g, σ, R) ∈ Edg with σ ∈ Labout ∪ Labτ , we

have that:

∀t′ : 0 ≤ t′ ≤ t : (d+ t′ ≤ ∆ ∨ TS(v + t′, g) ≤ ∆)

· for any edge (`, `′, g, σ, R) ∈ Edg with σ ∈ Labin, we have that:

∀t′ : 0 ≤ t′ ≤ t : (d+t′ ≤ ∆∨TS(v+t′, g) ≤ ∆∨(I+t′)(σ) ≤ ∆)

Comments on the AASAP semantics. Rule (A1) defines the states that are

tuples of the form 〈`, v, I, d〉. The first two components, location ` and valuation v,

are the same as in the classical semantics; I and d are new. The function I records,

for each input event σ, the time elapsed since its oldest “untreated” occurrence.
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The treatment of an event σ happens when a transition labelled σ̃ is fired. Once

this oldest occurrence is treated, the function returns⊥ for σ until a new occurrence

of σ, forgetting about the σ’s that happened between the oldest occurrence and

the treatment. The time elapsed since the last location change in the controller is

recorded by d. Rule (A2), (A3) and (A4) are straightforward. Rules (A5.1 − 6)

require more explanations. Rule (A5.1) defines when it is allowed for the controller

to emit an output event. The only difference with the classical semantics is that

we enlarge the guard by the parameter ∆. Rules (A5.2) defines how inputs from

the environment are received by the controller. The controller maintains, through

the function I, a list of events that have occurred and are not treated yet. An

input event σ can be received at any time, but only the age of the oldest untreated

σ is stored in the I function. `, v and d are unchanged at that point. Note that

the rule (A5.2) ensures input enabledness of the controller. Rule (A5.3) defines

when inputs are treated by the controller. An input σ is treated when a transition

with an enlarged guard and labelled with σ̃ is fired. Once σ has been treated,

the value of I(σ) goes back to ⊥. Rule (A5.4) is similar to (A5.1). Rule (A5.5)

expresses that the τ event can always be emitted. Rule (A5.6) specifies how much

time can elapse. Intuitively, time can pass as long as no transition starting from

the current location is urgent. A transition labeled with an output or an internal

event is urgent in a location ` when the control has been in ` for more than ∆ time

units (d + t′ > ∆) and the guard of the transition has been true for more than

∆ time units (TS(v + t′, g) > ∆). A transition labeled with an input event σ is

urgent in a location ` when the control has been in ` for more than ∆ time units

(d+ t′ > ∆), the guard of the transition has been true for more that ∆ time units

(TS(v+ t′, g) > ∆) and the last untreated occurrence of σ event has been emitted

by the environment at least ∆ time units ago (I(σ) + t′ > ∆) (we define ⊥ to be

smaller than any rational value). This notion of urgency parameterized by ∆ is

the main difference between the AASAP semantics and the usual ASAP semantics.

Problems formulation We now define three problems that can be formulated

about the AASAP semantics of an Elastic controller.

Definition 3.9 (Parametric safety control problem)

Let Env be a timed automaton and let Cont be an Elastic controller, the para-

metric safety control problem asks
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• [Fixed] whether [[Cont]]AAsap
∆ ‖ [[Env]] is empty for a given fixed value of ∆;

• [Existence] whether there exists ∆ > 0 such that [[Cont]]AAsap
∆ ‖ [[Env]] is

empty;

• [Maximization] to maximize ∆ such that [[Cont]]AAsap
∆ ‖ [[Env]] is empty.

As we will see later, the problem [Fixed] is useful when we know the charac-

teristics of the hardware on which the control will be implemented, the problem

[Existence] is useful to determine if the controller is implementable at all and the

problem [maximization] is useful to determine what is the slowest hardware on

which the controller can be implemented.

3.3 Properties of the AASAP Semantics

3.3.1 Faster is Better

We now state a first property of the AASAP semantics. The following theorem

and corollary state formally the informal statement “faster is better”, that is if an

environment is controllable with an Elastic controller reacting within the bound

∆1 then this environment is controllable by the same controller for any reaction

time ∆2 ≤ ∆1. This is clearly a desirable property.

Theorem 3.1

Let A be an Elastic controller, for any ∆1,∆2 ∈ Q≥0 such that ∆2 ≤ ∆1 we have

that [[A]]AAsap
∆2
�[[A]]AAsap

∆1
.

Proof

It is clear that the identity relation between the set of states of the two STTS

[[A]]AAsap
∆2

and [[A]]AAsap
∆1

is an appropriate simulation relation between them.

Lemma 2.2 and Theorem 3.1 allow us to state the following corollary:

Corollary 3.1

Let E be a timed automaton and A be an Elastic controller. For any ∆1,∆2 ∈

Q≥0, such that ∆1 ≥ ∆2, if [[A]]AAsap
∆1

controls [[E]] then [[A]]AAsap
∆2

controls [[E]].
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3.3.2 Implementability of the AASAP Semantics

In this section, we show that any Elastic controller which controls (with ∆ > 0)

an environment E for a safety property modeled by a set of bad states B can

be implemented provided there exists a hardware sufficiently fast and providing

sufficiently fine granular digital clocks.

To establish this result, we proceed as follows. First, we define what we call the

program semantics of an Elastic controller. The so-called program semantics can

be seen as a formal semantics for the following procedure interpreting Elastic

controllers. This procedure repeatedly executes what we call execution rounds. An

execution round is defined as follows:

• first, the current time is read in the clock register of the CPU and stored in

a variable, say T;

• the list of input events to treat is updated: the input sensors are checked for

new events issued by the environment;

• guards of the edges of the current locations are evaluated with the value

stored in T. If at least one guard evaluates to true then take nondeterminis-

tically one of the enabled transitions;

• the next round is started.

All we require from the hardware is to respect the following two requirements:

(i) the clock register of the CPU is incremented every ∆P time units and (ii) the

time spent in one loop is bounded by a fixed value ∆L. We choose this semantics

for its simplicity and also because it is obviously implementable. There are more

efficient ways to interpret Elastic controllers but as we only want to prove that

the AASAP semantics is implementable in a way or another, this implementation

semantics is good enough. In Chapter 5, we show how to use this semantics in the

context of the Lego MindstormsTM platform.

This semantics is close to the one of PLC-automata introduced by Dierks [Die01].

The main difference is that we explicitly model the granularity of clocks.

We proceed now with the definition of the program semantics. This semantics

manipulates digital clocks, so we need the following definition:
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Definition 3.10 (Clock Rounding)

Let T ∈ R≥0,∆ ∈ Q>0, bT c∆ = b T
∆
c∆ where bxc is the greatest integer k such

that k ≤ x. Symmetrically, dT e∆ = d T
∆
e∆ where dxe is the smallest integer k such

that k ≥ x.

Lemma 3.2 follows directly from the definition above.

Lemma 3.2

For any T ∈ R≥0, any ∆ ∈ Q>0, T −∆ < bT c∆ ≤ T and T ≤ dT e∆ < T + ∆.

We are now ready to define the program semantics. Intuitions are given right after

the definition.

Definition 3.11 (Program Semantics)

Let A be an Elastic controller and ∆L, ∆P ∈ Q>0. Let ∆S = d∆L + ∆P e∆P
.

The (∆L,∆P ) program semantics of A, noted [[A]]Prg
∆L,∆P

is the structured timed

transition system T = 〈S,E,F,Σ,→〉 where:

(P1) S is the set of tuples (`, r, T, I, u, d, f) such that ` ∈ Loc, r is a function from

Var into R≥0, T ∈ R≥0, I is a function from Labin into R≥0 ∪ {⊥}, u ∈ R≥0,

d ∈ R≥0, and f ∈ {>,⊥};

(P2) E = {(`0, r, 0, I, 0, 0,⊥)} where r is such that for any x ∈ Var, r(x) = 0, I is

such that for any σ ∈ Labin, I(σ) = ⊥;

(P3) F = ∅;

(P4) Σ = Σin]Σout]Στ ]R≥0 and Σin = Labin, Σout = Labout, Στ = Labτ ∪ L̃abin∪

{τ};

(P5) the transition relation → is defined as follows:

– for the discrete transitions:

(P5.1) let σ ∈ Labout. ((`, r, T, I, u, d,⊥), σ, (`′, r′, T, I, u, 0,>)) ∈→ iff

there exists (`, `′, g, σ, R) ∈ Edg such that bT c∆P
− r |= ∆S

[g]∆S

and r′ = r[R := bT c∆P
].

(P5.2) let σ ∈ Labin. ((`, r, T, I, u, d, f), σ, (`, r, T, I ′, u, d, f)) ∈→ iff

· either I(σ) = ⊥ and I ′ = I[σ := 0];

· or I(σ) 6= ⊥ and I ′ = I.
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(P5.3) let σ̃ ∈ L̃abin. ((`, r, T, I, u, d,⊥), σ̃, (`′, r′, T, I ′, u, 0,>)) ∈→ iff

there exists (`, `′, g, σ, R) ∈ Edg such that bT c∆P
− r |= ∆S

[g]∆S
,

I(σ) > u, r′ = r[R := bT c∆P
] and I ′ = I[σ := ⊥];

(P5.4) let σ ∈ Labτ . ((`, r, T, I, u, d,⊥), σ, (`′, r′, T, I, u, 0,>)) ∈→ iff there

exists (`, `′, g, σ, R) ∈ Edg such that bT c∆P
− r |= ∆S

[g]∆S
and

r′ = r[R := bT c∆P
].

(P5.5) let σ = τ . ((`, r, T, I, u, d, f), σ, (`, r, T +u, I, 0, d,⊥)) ∈→ iff either

f = > or the two following conditions hold:

· for any σ̃ ∈ L̃abin, for any (`, `′, g, σ, R) ∈ Edg, we have that

either bT c∆P
− r 6|= ∆S

[g]∆S
or I(σ) ≤ u

· for any σ ∈ Labout ∪Labτ , for any (`, `′, g, σ, R) ∈ Edg, we have

that bT c∆P
− r 6|= ∆S

[g]∆S

– for the continuous transitions:

(P5.6) ((`, r, T, I, u, d, f), t, (`, r, T, I+ t, u+ t, d+ t, f)) ∈→ iff u+ t ≤ ∆L.

Comments on the program semantics. Rule (P1) defines the states which

are tuples (`, r, T, I, u, d, f), where ` is the current location, r maps each clock to

the digital time when it has last been reset, T records the (exact) time at which

the last round has started; I, as in the AASAP semantics, records the time elapsed

since the arrival of the last untreated input event, u records the time elapsed since

the last round was started (so that T + u is the exact current time), d records

the time elapsed since the last location change, and f is a flag which is set to

> if a location change has occurred in the current round. Rules (P2) to (P4)

are straightforward. We comment rules (P5.1− 6). First, we make some general

comments on digital clocks and guards of discrete transitions of the controller.

Note that in those rules, we evaluate the guards with the valuation bT c∆P
− r for

the clocks, that is, for variable x, the difference between the digital value of the

variable T at the beginning of the current round and the digital value of x at the

beginning of the round when x was last reset. This value approximates the real

time difference between the exact time at which the guard is evaluated and the

exact time at which the clock x has been reset. Let t be this exact time difference,

then we know that: bT c∆P
−r(x)−∆L−∆P ≤ t ≤ bT c∆P

−r(x)+∆L +∆P . Also

note that the guard g has been enlarged by the value ∆S = d∆L + ∆P e∆P
; this



48 3.3. Properties of the AASAP Semantics

ensures that any event enabled at some point will be enabled sufficiently long so

that the change can be detected by the procedure. The reason of the rounding to

the least superior multiple of ∆P is that ∆S is a constant intended to be written

in real code. Thus it has to be be expressed in the unit of time of the system.

Rule (P5.1) expresses when transitions labeled with output events can be taken.

Note that variables are reset to the digital time of the current round. Rule (P5.2)

records the exact time at which the last untreated occurrence of an input event

from the environment occurred. This rule simply ensures that the function I is

updated when a new event, for which no occurrence is pending, is issued by the

environment. Note that this rule ensures input enabledness. Rule (P5.3) says when

an input of the environment can be treated by the controller: it has to be present

at the beginning of the current round and the enlargement of the guard labelling

the transition has to be true for digital values of the clocks at the beginning of

the round, and no other discrete transition should have been taken in the current

round. Rule (P5.4) is similar to rule (P5.1) but applies to internal events. Rule

(P5.5) expresses that the event τ is issued when the current round is finished and

the system starts a new round. Note that this is only possible if the program

has taken a discrete transition or there were no discrete transition to take. This

ensures that the program always takes discrete transitions when possible. Rule

(P5.6) expresses that the program can always let time elapse unless it violates

the maximal time spent in one round. This obviously ensures that the program

semantics cannot implement zeno strategies

The following simulation theorem expresses formally that if the hardware on

which the program is implemented is fast enough (parameter ∆L) and fine granular

enough (parameter ∆P ) then the program semantics can be simulated by the

AASAP semantics.

Theorem 3.2 (Strong Simulation)

Let A be an Elastic controller: for any rationals ∆,∆L,∆P ∈ Q>0 such that

3∆L + 4∆P < ∆, we have [[A]]Prg
∆L,∆P

�[[A]]AAsap
∆ .

Proof

Let [[A]]Prg
∆L,∆P

= (S1,E1,F1,Σ,→1) and [[A]]AAsap
∆ = (S2,E2,F2,Σ,→2). Consider the

relation R ⊆ S1 × S2 that contains all the pairs:

(s1, s2) = ((`1, r1, T1, I1, u1, d1, f1), (`2, v2, I2, d2))
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such that the following conditions hold:

(R1) `1 = `2;

(R2) for any x ∈ Var, |v2(x)− (T1 − r1(x) + u1)| ≤ ∆L + ∆P

(R3) for any σ ∈ Labin, I1(σ) = I2(σ);

(R4) d1 = d2;

(R5) there exists (`′′2, v
′′
2 , I

′′
2 , d

′′
2) such that: ((`2, v2, I2, d2),∆L−u1, (`

′′
2, v

′′
2 , I

′′
2 , d

′′
2)) ∈→2.

Let us show that R is a strong simulation relation.

1. ∀s ∈ E, ∃s′ ∈ E′ : (s, s′) ∈ R. We have to check the 5 rules of the simulation

relation for the only element present in E, which is paired with the only

element present in E′.

(R1), (R2), (R3) and (R4) are clearly true.

(R5) To establish this property, we first note that d2 = 0 and so d2 +∆L < ∆

which implies ∀t′ ≤ ∆L : d2 + t′ < ∆. Hence the two conditions of rule

(A5.6) are verified.

2. ∀(s, s′) ∈ R : s ∈ F =⇒ s′ ∈ F′. This condition is trivially satisfied as

F = ∅.

3. Let us assume that (s1, s2) = ((`1, r1, T1, I1, u1, d1, f1), (`2, v2, I2, d2)) ∈ R and

that (s1, σ, s
′
1) ∈→1 (with s′1 = (`′1, r

′
1, T

′
1, I

′
1, u

′
1, d

′
1, f

′
1)). We must prove that

for each value of σ, there exists a state s′2 ∈ S2 such that (s2, σ, s
′
2) ∈→2 and

(s′1, s
′
2) ∈ R.

Since (s1, s2) ∈ R we know that:

(H1) s2 = (`1, v2, I1, d1)

(H2) ∀x ∈ Var : T1−r1(x)+u1−∆L−∆P ≤ v2(x) ≤ T1−r1(x)+u1+∆L+∆P

(H3) there exists s′′2 = (`′′2, v
′′
2 , I

′′
2 , d

′′
2) ∈ S2 such that: ((`2, v2, I2, d2),∆L −

u1, (`
′′
2, v

′′
2 , I

′′
2 , d

′′
2)) ∈→2.

The rest of the proof works case by case on the different possible types of σ:
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case (a) let σ ∈ Σin

Since (s1, σ, s
′
1) ∈→1 we know that:

s′1 =

{
(`1, r1, T1, I1[{σ} := 0], u1, d1, f1) if I1(σ) = ⊥

(`1, r1, T1, I1, u1, d1, f1) if I1(σ) 6= ⊥

Let us first prove that ∃s′2 ∈ S2 : (s2, σ, s
′
2) ∈→2. This is immediate

since the AASAP semantics is input enabled. Now that we know s′2
exists we can say that:

s′2 =

{
(`1, v2, I1[{σ} := 0], d1) if I1(σ) = ⊥

(`1, v2, I1, d1) if I1(σ) 6= ⊥

It is now easy to prove that (s′1, s
′
2) ∈ R. Indeed, it is obvious that s′2

fulfills the five conditions of the simulation relation if (s1, s2) ∈ R.

case (b) let σ ∈ Σout

Since (s1, σ, s
′
1) ∈→1 we know that:

(J1)

{
∃(`1, `

′
1, g, σ, R) ∈ Edg : bT1c∆P

− r1 |= ∆S
[g]∆S

s′1 = (`′1, r1[R := bT1c∆P
], T1, I1, u1, 0,>)

Let us first prove that ∃s′2 ∈ S2 : (s2, σ, s
′
2) ∈→2. We use the same edge

as in the implementation semantics (see (J1)). This amounts to prove

that: ∀x ∈ Var : v2(x) |= ∆[g]∆(x). Let ax = lb(g(x)) and bx = rb(g(x)).

We know that ∀x ∈ Var:
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ax −∆S ≤ bT1c∆P
− r1(x) ≤ bx + ∆S

(J1)

=⇒ ax −∆S −∆P ≤ T1 − r1(x) ≤ bx + ∆S + ∆P

(Lemma 3.2)

=⇒ ax − d∆L + ∆P e∆P
−∆P ≤ T1 − r1(x)

≤ bx + d∆L + ∆P e∆P
+ ∆P

(def. of ∆S)

=⇒ ax −∆L − 3∆P ≤ T1 − r1(x) ≤ bx + ∆L + 3∆P

(Lemma 3.2)

=⇒ ax − 2∆L − 4∆P + u1 ≤ T1 − r1(x) + u1 −∆L −∆P∧

T1 − r1(x) + u1 + ∆L + ∆P ≤ bx + 2∆L + 4∆P + u1

=⇒ ax − 2∆L − 4∆P + u1 ≤ v2(x) ≤ bx + 2∆L + 4∆P + u1

(H2)

=⇒ ax − 2∆L − 4∆P ≤ v2(x) ≤ bx + 3∆L + 4∆P

(0 ≤ u1 ≤ ∆L)

=⇒ ax −∆ ≤ v2(x) ≤ bx + ∆

(3∆L + 4∆P < ∆)

=⇒ v2(x) |= ∆[g]∆

Now that it is established that ∃s′2 ∈ S2 : (s′1, σ, s
′
2) ∈→2 we know that

s′2 = (`′1, v2[R := 0], I1, 0).

It remains to prove that (s′1, s
′
2) ∈ R which means we must check the five

rules of the simulation relation. (R1),(R3),(R4) and (R5) are clearly

true.

To prove (R2) we have to prove that:

∀x ∈ Var :

{
T1 − r1[R := bT1c∆P

](x) + u1 −∆L −∆P ≤ v2[R := 0](x)

v2[R := 0](x) ≤ T1 − r1[R := bT1c∆P
](x) + u1 + ∆L + ∆P

This proposition is the same as (H2) for x /∈ R. For x ∈ R, it amounts

to prove:

T1 − bT1c∆P
+ u1 −∆L −∆P ≤ 0 ≤ T1 − bT1c∆P

+ u1 + ∆L + ∆P .
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which is implied by T1 − ∆P − bT1c∆P
≤ 0 ≤ T1 + ∆P − bT1c∆P

since

u1 − ∆L ≤ 0. This is a consequence of Lemma 3.2. This establishes

(R2).

case (c) let σ ∈ Στ = Labτ ∪ L̃abin ∪ {τ}. The proof for the first two sets is

similar to the previous case. Let σ = τ .

Since (s1, τ, s
′
1) ∈→1 we know by (P5.5) that

(K1) s′1 = (`1, r1, T1 + u1, I1, 0, d1,⊥)

(K2) f1 = > or

∗ for any σ̃ such that σ ∈ Labin, for any (`1, `
′, g, σ, R) ∈ Edg, we

have that either bT1c∆P
− r1 6|= ∆S

[g]∆S
or I1(σ) ≤ u1

∗ for any σ ∈ Labout, for any (`1, `
′, g, σ, R) ∈ Edg, we have that

bT1c∆P
− r1 6|= ∆S

[g]∆S

By rule (A5.5) of the AASAP-semantics, we know that there exists s′2 ∈

S2 such that (s2, τ, s
′
2) and

(K3) s′2 = s2 = (`1, v2, I1, d1).

Now we have to prove that (s′1, s
′
2) ∈ R. (R1), (R3) and (R4) are clearly

true. Proving (R2) amounts to prove that

∀x ∈ Var : T1 + u1 − r1(x) + 0−∆L −∆P ≤ v2(x) ≤

T1 + u1 − r1(x) + 0 + ∆L + ∆P

which turns out to be equivalent to (H2).

Let us now prove that there exists s′′2 s.t. ((`1, v2, I1, d1),∆L, s
′′
2) ∈→2.

According to rule (A5.6), it amounts to prove that

(L1) for any edge (`1, `
′, g, σ, R) ∈ Edg with σ ∈ Labout ∪ Labτ , we have

that:

∀t′ : 0 ≤ t′ ≤ ∆L : (d1 + t′ ≤ ∆ ∨ TS(v2 + t′, g) ≤ ∆)

(L2) for any edge (`1, `
′, g, σ, R) ∈ Edg with σ ∈ Labin, we have that:

∀t′ : 0 ≤ t′ ≤ ∆L : (d1+t
′ ≤ ∆∨TS(v2+t

′, g) ≤ ∆∨(I1+t
′)(σ) ≤ ∆)

If f1 = > it implies that the program has made a discrete transition

during the last loop, which means that d1 ≤ ∆L and thus that d1 +∆L ≤

2∆L ≤ ∆ because we know that, by hypothesis, 2∆L < ∆, which makes

(L1) and (L2) true for any t′.
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If f1 6= >, the proof is less trivial. We first make a proof for labels of

(L1).

∀(`1, `
′, g, σ, R) ∈ Edg with σ ∈ Labout we have bT1c∆P

6|= ∆S
[g]∆S

by

(K2). Let ax = lb(g(x)) and bx = rb(g(x)). There are two possible

cases:

(a) ∃x ∈ Var such that

bT1c∆P
− r1(x) < ax −∆S

=⇒ bT1c∆P
− r1(x) < ax − d∆L + ∆P e∆P

(∆S = d∆L + ∆P e∆P
)

=⇒ T1 − r1(x) < ax −∆L

(Lemma 3.2)

=⇒ T1 − r1(x) + u1 + ∆L + ∆P < ax + u1 + ∆P

=⇒ v2(x) < ax + u1 + ∆P

(H2)

=⇒ v2(x) < ax + ∆L + 2∆P

(u1 ≤ ∆L + ∆P )

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ ≤ ax + 2∆L + 2∆P

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2(x) + t′, g(x)) ≤ 2∆L + ∆P

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2(x) + t′, g(x)) ≤ ∆

(2∆L + 2∆P < ∆)

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2 + t′, g) ≤ ∆

(b) ∃x ∈ Var such that

bT1c∆P
− r1(x) > bx + ∆S

=⇒ bT1c∆P
− r1(x) > bx + d∆L + ∆P e∆P

(∆S = d∆L + ∆P e∆P
)

=⇒ T1 − r1(x) > bx + ∆L + ∆P

(Lemma 3.2)

=⇒ T1 − r1(x) + u1 −∆L −∆P > bx + u1

=⇒ v2(x) > bx + u1

(H2)

=⇒ v2(x) > bx

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ > bx
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=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2(x) + t′, g(x)) ≤ ∆

(v2(x) + t′ 6|= g(x))

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2 + t′, g) ≤ ∆

Thus, both cases imply that (L1) is true.

The proof for (L2) is the same if we have, by (K2), bT1c∆P
6|= ∆S

[g]∆S
.

Otherwise, we have I1(σ) < u1 which also proves (L2). Indeed

I1(σ) < u1

=⇒ I1(σ) < ∆L (u1 ≤ ∆L)

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : I1(σ) + t′ < 2∆L

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : I1(σ) + t′ < ∆ (2∆L ≤ ∆)

case (d) let σ ∈ R≥0. For the sake of clarity let us consider that σ = t.

Since (s1, t, s
′
1) ∈→1 we know by (P5.6) that

(M1) s′1 = (`1, r1, T1, I1 + t, u1 + t, d1 + t, f1);

(M2) u1 + t ≤ ∆L.

With those facts, we know that there exists s′2 = (`′2, v
′
2, I

′
2, d

′
2) ∈ S2

such that (s2, t, s
′
2) ∈→2 because (s2,∆L − u1, s

′′
2) ∈→2 by (H3) and

t ≤ ∆L − u1 by (M2).

Now we have (s2, t, s
′
2) ∈→2 and we know that:

(M3) s′2 = (`1, v2 + t, I1 + t, d1 + t)

We can now prove that (s′1, s
′
2) ∈ R. We have to check the five points

of the simulation relation: (R1), (R2), (R3) and (R4) are easy to prove

using hypothesis (H1) to (H3) and (M1) to (M3).

For (R5), since by (H3), there exists s′′2 = (`′′2, v
′′
2 , I

′′
2 , d

′′
2) ∈ S2 such that

((`2, v2, I2, d2),∆L − u1, (`
′′
2, v

′′
2 , I

′′
2 , d

′′
2)) ∈→2, we have ((`1, v2 + t, I1 +

t, d1 + t), (∆L − u1 − t), (`
′′
2, v

′′
2 , I

′′
2 , d

′′
2)) ∈→2.

Theorem 3.3 (Simulability)

For any Elastic controller A, for any ∆ ∈ Q>0, there exists ∆L,∆P ∈ Q>0 such

that [[A]]Prg
∆L,∆P

�[[A]]AAsap
∆ .

Proof

For any ∆ > 0, since parameters ∆L and ∆P are in the rational numbers, they

can always be chosen such that 3∆L + 4∆P < ∆.
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And so, given a sufficiently fast hardware with a sufficiently small granularity

for its clock, we can implement any controller that has been proved correct. This

is expressed by the following corollary:

Corollary 3.2 (Implementability)

Let E be a timed automaton. For any Elastic controller A, for any ∆ ∈ Q>0,

such that [[A]]AAsap
∆ controls [[E]] , there exist ∆L,∆P ∈ Q>0 such that [[A]]Prg

∆L,∆P

controls [[E]].

3.3.3 Implementability with Clock Drifts

In the previous section, we have shown that a control strategy that has been

shown correct for the AASAP semantics can be implemented with a sufficiently

fast hardware equipped with a sufficiently fine granular clock. To keep the proof

and the exposition of the concepts simple, we have assumed that the hardware

clock was delivering exactly spaced ticks. If we want to model the imprecision due

to clock drifts in the hardware, we have to modify our program semantics. This is

done in the Definition 3.12.

There are two modifications in the definition of the program semantics :

1. The main change is in rule (Q5.5) : to model a possible drift of ε every

time unit, we change the way the variable T holding the current time of the

system is updated. T is not incremented by the exact value u since its last

update, but with a value u′ ∈ [(1− ε)u, (1+ ε)u]. This clearly models a drift

bounded by ε every time unit.

2. As a drifting clock is less accurate, we have to enlarge the guards a bit more

than in the previous semantics to ensure that no guard is missed.

Definition 3.12 (Program Semantics with clock drifts)

Let A be an Elastic controller, ∆L, ∆P ∈ Q>0, ε ∈ Q≥0 with ε < 1. Let

M ∈ N be the largest constant a clock is compared with in A and finally, let

∆S = d(1 + ε)(∆L + ∆P ) + εMe∆P
. The (∆L,∆P , ε) program semantics of A,

noted [[A]]Prg
∆L,∆P ,ε is the input enabled structured timed transition system T =

〈S,E,Σ,→〉 where:
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(Q1) S is the set of tuples (`, r, T, I, u, d, f) such that l ∈ Loc, r is a function from

Var into R≥0, T ∈ R≥0, I is a function from Labin into R≥0 ∪ {⊥}, u ∈ R≥0,

d ∈ R≥0, and f ∈ {>,⊥};

(Q2) E = {(`0, r, 0, I, 0, 0,⊥)} where r is such that for any x ∈ Var, r(x) = 0, I is

such that for any σ ∈ Labin, I(σ) = ⊥;

(Q3) F = ∅;

(Q4) Σ = Σin]Σout]Στ ]R≥0 and Σin = Labin, Σout = Labout, Στ = Labτ ∪ L̃abin∪

{τ};

(Q5) the transition relation → is defined as follows:

– for the discrete transitions:

(Q5.1) let σ ∈ Labout. ((`, r, T, I, u, d,⊥), σ, (`′, r′, T, I, u, 0,>)) ∈→ iff

there exists (`, `′, g, σ, R) ∈ Edg such that bT c∆P
− r |= ∆S

[g]∆S

and r′ = r[R := bT c∆P
].

(Q5.2) let σ ∈ Labin. ((`, r, T, I, u, d, f), σ, (`, r, T, I ′, u, d, f)) ∈→ iff

· either I(σ) = ⊥ and I ′ = I[σ := 0];

· or I(σ) 6= ⊥ and I ′ = I.

(Q5.3) let σ̃ ∈ L̃abin. ((`, r, T, I, u, d,⊥), σ̃, (`′, r′, T, I ′, u, 0,>)) ∈→ iff

there exists (`, `′, g, σ, R) ∈ Edg such that bT c∆P
− r |= ∆S

[g]∆S
,

I(σ) > u, r′ = r[R := bT c∆P
] and I ′ = I[σ := ⊥];

(Q5.4) let σ ∈ Labτ . ((`, r, T, I, u, d,⊥), σ, (`′, r′, T, I, u, 0,>)) ∈→ iff there

exists (`, `′, g, σ, R) ∈ Edg such that bT c∆P
− r |= ∆S

[g]∆S
and

r′ = r[R := bT c∆P
].

(Q5.5) let σ = τ . ((`, r, T, I, u, d, f), σ, (`, r, T + u′, I, 0, d,⊥)) ∈→ where

u′ ∈ [(1 − ε)u, (1 + ε)u] iff either f = > or the two following

conditions hold:

· for any σ̃ ∈ L̃abin, for any (`, `′, g, σ, R) ∈ Edg, we have that

either bT c∆P
− r 6|= ∆S

[g]∆S
or I(σ) ≤ u

· for any σ ∈ Labout ∪Labτ , for any (`, `′, g, σ, R) ∈ Edg, we have

that bT c∆P
− r 6|= ∆S

[g]∆S

– for the continuous transitions:
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(Q5.6) ((`, r, T, I, u, d, f), t, (`, r, T, I+ t, u+ t, d+ t, f)) ∈→ iff u+ t ≤ ∆L.

The following simulation theorem expresses formally that if the hardware on

which the program is implemented is fast enough (parameter ∆L), fine granu-

lar enough (parameter ∆P ), and precise enough(parameter ε) then the program

semantics can be simulated by the AASAP semantics.

Theorem 3.4 (Simulation with drifting clocks)

Let A be an Elastic controller. Let M be the largest constant a clock is com-

pared with in A. For any ∆,∆L,∆P ∈ Q>0, ε ∈ Q≥0 with ε < 1 such that
2εM+(3+ε)∆L+(4+2ε)∆P

1−ε
< ∆, we have [[A]]Prg

∆L,∆P ,ε�[[A]]AAsap
∆ . �

Proof

Let [[A]]Prg
∆L,∆P ,ε= (S1,E1,F1,Σ,→1) and [[A]]AAsap

∆ = (S2,E2,F2,Σ,→2). Consider

the relation R ⊆ S1 × S2 that contains the pairs:

(s1, s2) = ((`1, r1, T1, I1, u1, d1, f1), (`2, v2, I2, d2))

such that the following conditions hold:

(R1) `1 = `2;

(R2) for any x ∈ Var, T1−r1(x)−(1+ε)(∆L+∆P )
1+ε

+u1 ≤ v2(x) ≤
T1−r1(x)+(1+ε)(∆L+∆P )

1−ε
+

u1

(R3) for any σ ∈ Labin, I1(σ) = I2(σ);

(R4) d1 = d2;

(R5) there exists (`′′2, v
′′
2 , I

′′
2 , d

′′
2) such that: ((`2, v2, I2, d2),∆L−u1, (`

′′
2, v

′′
2 , I

′′
2 , d

′′
2)) ∈→2.

Let us show that R is a simulation relation.

1. ∀s ∈ E, ∃s′ ∈ E′ : (s, s′) ∈ R. We have to check the 5 rules of the simulation

relation for the only element present in E, which is paired with the only

element present in E′.

(R1), (R2), (R3) and (R4) are clearly true.

(R5) To establish this property, we first note that d2 = 0 and so d2 +∆L < ∆

which implies ∀t′ ≤ ∆L : d2 + t′ < ∆. Hence the two conditions of rule

(A5.6) are verified.
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2. ∀(s, s′) ∈ R : s ∈ F =⇒ s′ ∈ F′. This condition is trivially satisfied as

F = ∅.

3. Let us assume that (s1, s2) = ((`1, r1, T1, I1, u1, d1, f1), (`2, v2, I2, d2)) ∈ R and

that (s1, σ, s
′
1) ∈→1 (with s′1 = (`′1, r

′
1, T

′
1, I

′
1, u

′
1, d

′
1, f

′
1)). We must prove that

for each value of σ, there exists a state s′2 ∈ S2 such that (s2, σ, s
′
2) ∈→2 and

(s′1, s
′
2) ∈ R.

Since (s1, s2) ∈ R we know that:

(H1) s2 = (`1, v2, I1, d1)

(H2) ∀x ∈ Var : T1−r1(x)−(1+ε)(∆L+∆P )
1+ε

+ u1 ≤ v2(x) ≤
T1−r1(x)+(1+ε)(∆L+∆P )

1−ε
+

u1

(H3) there exists s′′2 = (`′′2, v
′′
2 , I

′′
2 , d

′′
2) ∈ S2 such that: ((`2, v2, I2, d2),∆L −

u1, (`
′′
2, v

′′
2 , I

′′
2 , d

′′
2)) ∈→2.

The rest of the proof works case by case on the different possible types of σ:

case (a) let σ ∈ Σin

Since (s1, σ, s
′
1) ∈→1 we know that:

s′1 =

{
(`1, r1, T1, I1[{σ} := 0], u1, d1, f1) if I1(σ) = ⊥

(`1, r1, T1, I1, u1, d1, f1) if I1(σ) 6= ⊥

Let us first prove that ∃s′2 ∈ S2 : (s2, σ, s
′
2) ∈→2. This is immediate

since the AASAP semantics is input enabled. Now that we know s′2
exists we can say that:

s′2 =

{
(`1, v2, I1[{σ} := 0], d1) if I1(σ) = ⊥

(`1, v2, I1, d1) if I1(σ) 6= ⊥

It is now easy to prove that (s′1, s
′
2) ∈ R. Indeed, it is obvious that s′2

fulfills the five conditions of the simulation relation if (s1, s2) ∈ R.

case (b) let σ ∈ Σout

Since (s1, σ, s
′
1) ∈→1 we know that:

(J1)

{
∃(`1, l

′
1, g, σ, R) ∈ Edg : bT1c∆P

− r1 |= ∆S
[g]∆S

s′1 = (`′1, r1[R := bT1c∆P
], T1, I1, u1, 0,>)
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Let us first prove that ∃s′2 ∈ S2 : (s2, σ, s
′
2) ∈→2. We use the same edge

as in the implementation semantics (see (J1)). This amounts to prove

that: ∀x ∈ Var : v2(x) |= ∆[g]∆(x). Let ax = lb(g(x)) and bx = rb(g(x)).

We know that ∀x ∈ Var:

ax −∆S ≤ bT1c∆P
− r1(x) ≤ bx + ∆S

(J1)

=⇒ ax − d(1 + ε)(∆L + ∆P ) + εMe∆P
≤ bT1c∆P

− r1(x)∧

bT1c∆P
− r1(x) ≤ bx + d(1 + ε)(∆L + ∆P ) + εMe∆P

(def. of ∆S)

=⇒ ax − (1 + ε)(∆L + ∆P )− εM −∆P ≤ T1 − r1(x)∧

T1 − r1(x) ≤ bx + (1 + ε)(∆L + ∆P ) + εM + 2∆P

(Lemma 3.2)

=⇒ ax−2(1+ε)(∆L+∆P )−εM−∆P

1+ε
+ u1 ≤

T1−r1(x)−(1+ε)(∆L+∆P )
1+ε

+ u1∧
T1−r1(x)+(1+ε)(∆L+∆P )

1−ε
+ u1 ≤

bx+2(1+ε)(∆L+∆P )+εM+2∆P

1−ε
+ u1

=⇒ ax−2(1+ε)(∆L+∆P )−εM−∆P

1+ε
+ u1 ≤ v2(x)∧

v2(x) ≤
bx+2(1+ε)(∆L+∆P )+εM+2∆P

1−ε
+ u1

(H2)

=⇒ ax−(2+2ε)∆L−(3+2ε)∆P −εM

1+ε
≤ v2(x)∧

v2(x) ≤
bx+(3+ε)∆L+(4+2ε)∆P +εM

1−ε

(0 ≤ u1 ≤ ∆L)

=⇒ ax −
2εM+(2+2ε)∆L+(3+2ε)∆P

1+ε
≤ v2(x)∧

v2(x) ≤ bx + 2εM+(3+ε)∆L+(4+2ε)∆P

1−ε

(M ≥ ax ∧M ≥ bx)

=⇒ ax −∆ ≤ v2(x) ≤ bx + ∆

(2εM+(3+ε)∆L+(4+2ε)∆P

1−ε
< ∆)

=⇒ v2(x) |= ∆[g]∆

Now that it is established that ∃s′2 ∈ S2 : (s′1, σ, s
′
2) ∈→2 we know that:

s′2 = (`′1, v2[R := 0], I1, 0)

It remains to prove that (s′1, s
′
2) ∈ R which means we must check the five

rules of the simulation relation. (R1),(R3),(R4) and (R5) are clearly

true.
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To prove (R2) we have to prove that

∀x ∈ Var :

{
T1−r1[R:=bT1c∆P

](x)−(1+ε)(∆L+∆P )

1+ε
+ u1 ≤ v2[R := 0](x)

v2[R := 0](x) ≤
T1−r1[R:=bT1c∆P

](x)+(1+ε)(∆L+∆P )

1−ε
+ u1

This proposition is the same as (H2) for x /∈ R. For x ∈ R, it amounts

to prove:
T1 − bT1c∆P

− (1 + ε)(∆L + ∆P )

1 + ε
+ u1 ≤ 0

and

0 ≤
T1 − bT1c∆P

+ (1 + ε)(∆L + ∆P )

1− ε
+ u1.

which is implied by T1−∆P −bT1c∆P
≤ 0 ≤ T1 +∆P −bT1c∆P

, which is

a consequence of Lemma 3.2, and u1 −∆L ≤ 0. This establishes (R2).

case (c) let σ ∈ Στ . Στ = Labτ ∪ L̃abin ∪ {τ}. The proof for the first two sets is

similar to the previous case. Let σ = τ .

Since (s1, τ, s
′
1) ∈→1 we know by (Q5.5) that

(K1) s′1 = (`1, r1, T1 + u′1, I1, 0, d1,⊥) where u′1 ∈ [(1− ε)u1, (1 + ε)u1];

(K2) f1 = > or

∗ for any σ̃ such that σ ∈ Labin, for any (`1, `
′, g, σ, R) ∈ Edg, we

have that either bT1c∆P
− r1 6|= ∆S

[g]∆S
or I1(σ) ≤ u1, and

∗ for any σ ∈ Labout, for any (`1, `
′, g, σ, R) ∈ Edg, we have that

bT1c∆P
− r1 6|= ∆S

[g]∆S

By rule (A4.5) of the AASAP-semantics, we know that there exists s′2 ∈

S2 such that (s2, τ, s
′
2) and

(K3) s′2 = s2 = (`1, v2, I1, d1).

Now we have to prove that (s′1, s
′
2) ∈ R. (R1), (R3) and (R4) are clearly

true. Proving (R2) amounts to prove that

∀x ∈ Var :
T1+u′

1−r1(x)−(1+ε)(∆L+∆P )

1+ε
≤ v2(x) ≤

T1+u′

1−r1(x)+(1+ε)(∆L+∆P )

1−ε

which is implied by (H2) and (1− ε)u1 ≤ u′1 ≤ (1 + ε)u1 .

Let us now prove that there exists s′′2 s.t. ((`1, v2, I1, d1),∆L, s
′′
2) ∈→2.

According to rule (A4.6), it amounts to prove that
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(L1) for any edge (`1, `
′, g, σ, R) ∈ Edg with σ ∈ Labout ∪ Labτ , we have

that:

∀t′ : 0 ≤ t′ ≤ ∆L : (d1 + t′ ≤ ∆ ∨ TS(v2 + t′, g) ≤ ∆)

(L2) for any edge (`1, `
′, g, σ, R) ∈ Edg with σ ∈ Labin, we have that:

∀t′ : 0 ≤ t′ ≤ ∆L : (d1+t
′ ≤ ∆∨TS(v2+t

′, g) ≤ ∆∨(I1+t
′)(σ) ≤ ∆)

If f1 = > it implies that the program has made a discrete transition

during the last loop, which means that d1 ≤ ∆L and thus that d1+∆L ≤

2∆L ≤ ∆ because we know that, by hypothesis, ∆ > 2∆L, which makes

(L1) and (L2) true for any t′.

If f1 6= >, the proof is less trivial. We first make a proof for labels of

(L1).

∀(`1, `
′, g, σ, R) ∈ Edg with σ ∈ Labout we have bT1c∆P

6|= ∆S
[g]∆S

by

(K2). Let ax = lb(g(x)) and bx = rb(g(x)). There are two possible

cases:

(a) ∃x ∈ Var such that

bT1c∆P
− r1(x) < ax −∆S

bT1c∆P
− r1(x) < ax − d(1 + ε)(∆L + ∆P ) + εMe∆P

(def. of ∆S)

=⇒ T1 − r1(x)−∆P < ax − (1 + ε)(∆L + ∆P )− εM

(Lemma 3.2)

=⇒ T1−r1(x)+(1+ε)(∆L+∆P )
1−ε

+ u1 <
ax+∆P−εM

1−ε
+ u1

=⇒ v2(x) <
ax+∆P−εM

1−ε
+ u1

(H2)

=⇒ v2(x) <
ax+∆P−εM

1−ε
+ ∆L

(u1 ≤ ∆L)

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ ≤ ax+∆P−εM
1−ε

+ 2∆L

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ ≤ ax + εax+2(1−ε)∆L+∆P−εM

1−ε

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ ≤ ax + 2(1−ε)∆L+∆P

1−ε

(M ≥ ax)

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2(x) + t′, g(x)) ≤ 2(1−ε)∆L+∆P

1−ε

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2(x) + t′, g(x)) ≤ ∆

(2(1−ε)∆L+∆P

1−ε
< ∆)

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2 + t′, g) ≤ ∆
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(b) ∃x ∈ Var such that

bT1c∆P
− r1(x) > bx + ∆S

bT1c∆P
− r1(x) > bx + d(1 + ε)(∆L + ∆P ) + εMe∆P

(def. of ∆S)

=⇒ T1 − r1(x) > bx + (1 + ε)(∆L + ∆P ) + εM

(Lemma 3.2)

=⇒ T1−r1(x)−(1+ε)(∆L+∆P )
1+ε

+ u1 >
bx+εM

1+ε
+ u1

=⇒ v2(x) >
bx+εM

1+ε
+ u1

(H2)

=⇒ v2(x) >
bx+εM

1+ε

(u1 ≥ 0)

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ > bx+εM
1+ε

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ > bx + −εbx+εM
1+ε

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ > bx + −εM+εM
1+ε

(bx ≤M)

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : v2(x) + t′ > bx

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2(x) + t′, g(x)) ≤ ∆

(v2(x) + t′ 6|= g(x))

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2 + t′, g) ≤ ∆

Thus, both cases imply that (L1) is true.

The proof for (L2) is the same if we have, by (K2), bT1c∆P
6|= ∆S

[g]∆S
.

If not, we have I1(σ) < u1 which also proves (L2). Indeed

I1(σ) < u1

=⇒ I1(σ) < ∆L (u1 ≤ ∆L)

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : I1(σ) + t′ < 2∆L

=⇒ ∀t′ : 0 ≤ t′ ≤ ∆L : I1(σ) + t′ < ∆ (2∆L ≤ ∆)

case (d) let σ ∈ R≥0. For the sake of clarity let us consider that σ = t.

Since (s1, t, s
′
1) ∈→1 we know by (Q5.6) that

(M1) s′1 = (`1, r1, T1, I1 + t, u1 + t, d1 + t, f1);

(M2) u1 + t ≤ ∆L.

With those facts, we know that there exists s′2 = (`′2, v
′
2, I

′
2, d

′
2) ∈ S2

such that (s2, t, s
′
2) ∈→2 because (s2,∆L − u1, s

′′
2) ∈→2 by (H3) and

t ≤ ∆L − u1 by (M2).
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Now we have (s2, t, s
′
2) ∈→2 and we know that:

(M3) s′2 = (`1, v2 + t, I1 + t, d1 + t)

We can now prove that (s′1, s
′
2) ∈ R. We have to check the five points

of the simulation relation: (R1), (R2), (R3) and (R4) are easy to prove

using hypothesis (H1) to (H3) and (M1) to (M3).

For (R5), since by (H3), there exists s′′2 = (`′′2, v
′′
2 , I

′′
2 , d

′′
2) ∈ S2 such that

((`2, v2, I2, d2),∆L − u1, (`
′′
2, v

′′
2 , I

′′
2 , d

′′
2)) ∈→2, we have ((`1, v2 + t, I1 +

t, d1 + t), (∆L − u1 − t), (`
′′
2, v

′′
2 , I

′′
2 , d

′′
2)) ∈→2.

One can observe that for ε = 0 we get the same constraint as in Theorem 3.2.

We can now immediately state the following theorem and corollary, which are

the counterparts with clock drifts of Theorem 3.3 and Corollary 3.2 of the previous

section.

Theorem 3.5 (Simulability with clock drifts)

For any Elastic controller A, for any ∆ ∈ Q>0, there exists ∆L,∆P , ε ∈ Q>0

with ε < 1, such that [[A]]Prg
∆L,∆P ,ε�[[A]]AAsap

∆ .

Proof

Let M be the largest constant a clock is compared with in A. For any ∆ > 0,

since parameters ∆L, ∆P and ε are in the non-negative rational numbers, they

can always be chosen such that 2εM+(3+ε)∆L+(4+2ε)∆P

1−ε
< ∆.

And so, given a sufficiently fast hardware with a sufficient precision and a

sufficiently small granularity for its clock, we can implement any controller that

have been proved correct for the AASAP semantics. This is expressed by the

following corollary:

Corollary 3.3 (Implementability with clock drifts)

Let E be a timed automaton and A be an Elastic controller. For any ∆ ∈ Q>0,

such that [[A]]AAsap
∆ controls [[E]], there exist ∆L,∆P , ε ∈ Q>0 with ε < 1, such that

[[A]]Prg
∆L,∆P ,ε controls [[E]].

3.3.4 Verifiability

In this section, we show that the AASAP semantics can be analyzed automatically,

since its reachability problem can be reduced to the reachability problem for timed



64 3.3. Properties of the AASAP Semantics

automata. In this chapter, we remain at a high-level point of view, but in the

next chapter, we will tackle the problem of using real model-checker tools like

Uppaal [PL00] or HyTech [HHWT95a].

The reduction works as follows : for any ∆ ∈ Q≥0, for any Elastic controller

A, the AASAP semantics of A can be encoded using the classical semantics of a

timed automaton A∆ constructed from A and ∆.

Theorem 3.6

For any Elastic controller A, for any ∆ ∈ Q>0, we can construct effectively a

timed automaton A∆ = F(A,∆) such that [[A]]AAsap
∆ is strongly bisimilar to [[A∆]] .

Proof

We give the construction of F(A,∆). Let A be the Elastic automaton

〈Loc1, `
0
1,Var1, Lab1,Edg1〉

and let F(A,∆) be the timed automaton 〈Loc2, Init, Final, Inv2, Lab2,Edg2〉 over the

set of clocks Var2 such that:

• Loc2 = {(`, b) | ` ∈ Loc1 ∧ b ∈ [Σin → {>,⊥}]};

• Init = {(`01, b⊥)} where b⊥ is such that b⊥(σ) = ⊥ for any σ ∈ Labin
2 ;

• Final = ∅

• Var2 = Var1 ] {yσ | σ ∈ Σin} ∪ {d};

• Lab2 = Labin
2 ] Labout

2 ] Labτ
2 and Labin

2 = Labin
1 , Labout

2 = Labout
1 and Labτ

2 =

Labτ
1 ∪ L̃abin

1 ;

• Edg2 is defined as follows.

((`, b), (`′, b′),∆[g]∆, σ, R
′) ∈ Edg2 iff one of the following condition holds:

– σ ∈ Labin
1 and

1. `′ = `

2. b(σ) = ⊥

3. b′ = b[σ := >]

4. g = true
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5. R′ = {yσ}

– σ ∈ Labin
1 and

1. `′ = `

2. b(σ) = >

3. b′ = b

4. g = true

5. R′ = ∅

– σ ∈ Labout
1 and

1. there exists (`, `′, g, σ, R) ∈ Edg1

2. b′ = b

3. R′ = R ∪ {d}

– σ ∈ Labτ
1 and

1. there exists (`, `′, g, σ, R) ∈ Edg1

2. b′ = b

3. R′ = R ∪ {d}

– σ = α̃ ∈ L̃abin
1 and

1. there exists (`, `′, g, α, R) ∈ Edg1

2. b(α) = >

3. b′ = b[α := ⊥]

4. R′ = R ∪ {d}

– σ = τ and

1. `′ = `

2. b′ = b

3. g = true

4. R′ = ∅

• The function Inv2 is defined as follows. Let EV T ((`, b)) = {((`, `′, g, σ, R) ∈

Edg1 | σ ∈ L̃abin
1 ∧ b(σ) = >}. Let ACT ((`, b)) = {(`, `′, g, σ, R) ∈ Edg1 | σ ∈

Labout
1 ∪ Labτ

1}. Then Inv2((`, b)) = ϕ1(`, b) ∧ ϕ2(`, b) where
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ϕ1(`, b) =
∧

(`,`′,g,σ,R)∈EV T ((`,b))

(
d ≤ ∆ ∨ ¬(∆g) ∨ yσ ≤ ∆

)

ϕ2(`, b) =
∧

(`,`′,g,σ,R)∈ACT ((`,b))

(
d ≤ ∆ ∨ ¬(∆g)

)

and ∆g(x) is the expression x ∈ (a+ ∆, b] if g(x) is the expression x ∈ [a, b].

To establish that the construction above is correct, we proceed as follows. We

show that there exists a relation R ⊆ S × S ′ such that

(1) R is a simulation relation for [[A]]AAsap
∆ �[[F(A,∆)]]

(2) R−1 is a simulation relation for [[F(A,∆)]]�[[A]]AAsap
∆

Let [[A]]AAsap
∆ = (S1,E1,F1,Σ1,→1) and [[F(A,∆)]]= (S2,E2,F2,Σ2,→2).

To prove (1) we can use the simulation relation R ⊆ S1 × S2 such that

((`1, v1, I1, d1), ((`2, b2), v2)) ∈ R

iff:

1. `1 = `2

2. for any σ ∈ Labin,

{
b2(σ) = ⊥ iff I1(σ) = ⊥

b2(σ) = > ∧ v2(yσ) = I1(σ) iff I1(σ) 6= ⊥

3. v2|Var1 = v1 ( v|X is the restriction of v to X)

4. v2(d) = d1

Let us prove that R is a simulation relation.

1. We want to prove that ∀s ∈ E1, ∃s
′ ∈ E2 : (s, s′) ∈ R. The only element in

E1 is q1 = (`10, v0, I0, 0) where v0 is such that for any x ∈ Var : v0(x) = 0,

and I0 is such that for any σ ∈ Σin, I0(σ) = ⊥. On the other hand, the only

element of E2 is q2 = ((`10, b⊥), v0) where b⊥(σ) = ⊥ for any σ ∈ Labin
2. It is

easy to check that (q1, q2) ∈ R.

2. As F1 = F2 = ∅, we have trivially that ∀(s, s′) ∈ R : s ∈ F1 =⇒ s′ ∈ F2
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3. Let us assume that (s1, s2) = ((`1, v1, I1, d1), ((`2, b2), v2)) ∈ R and that

(s1, σ, s
′
1) ∈→1 (with s′1 = (`′1, v

′
1, I

′
1, d

′
1)).

For each value of σ, we must establish the existence of a state s′2 ∈ S
2 such

that (s2, σ, s
′
2) ∈→2 and (s′1, s

′
2) ∈ R.

Since (s1, s2) ∈ R we know that:

(H0) s2 = ((`1, b2), v2)

(H1) v2
1|Var1

= v1, v2(d) = d1, and v2(yσ) = I1(σ) iff I1(σ) 6= ⊥.

Let σ ∈ R≥0 (other cases are straightforward and left to the reader).

For the sake of clarity, let us consider that σ = t.

Since (s1, t, s
′
1) ∈→1 we know by (A4.6) that

(H2) for any edge (`1, `
′, g, σ, R) ∈ Edg with σ ∈ Labout

1 ∪ Labτ
1, we have

that:

∀t′ : 0 ≤ t′ ≤ t : (d1 + t′ ≤ ∆ ∨ TS(v1 + t′, g) ≤ ∆)

(H3) for any edge (`1, `
′, g, σ, R) ∈ Edg with σ ∈ Labin

1 , we have that:

∀t′ : 0 ≤ t′ ≤ t : d1 + t′ ≤ ∆∨ TS(v1 + t′, g) ≤ ∆ ∨ (I1 + t′)(σ) ≤ ∆

It is easy to prove by (H1) that:

– d1 + t′ ≤ ∆⇔ v2(d) + t′ ≤ ∆

– (I1 + t′)(σ) ≤ ∆⇔ v2(yσ) + t′ ≤ ∆

– TS(v1 + t′, g) ≤ ∆⇔ v2 + t′ |= ¬(∆g)

The third proposition can be proved as follows (let ax = lb(g(x)) and

bx = rb(g(x))):
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TS(v1 + t′, g) ≤ ∆

⇔ (v1 + t′ |= g) =⇒ ∃x ∈ Var1 : v1(x) + t′ −∆ ≤ ax

⇔ (v1 + t′ |= g) =⇒

(∃x ∈ Var1 : ax ≤ v1(x) + t′ ≤ bx ∧ v1(x) + t′ −∆ ≤ ax)

⇔ (v1 + t′ 6|= g) ∨ (∃x ∈ Var1 : ax ≤ v1(x) + t′ ≤ min(bx, ax + ∆))

⇔ (∃x ∈ Var1 : v1(x) + t′ < ax ∨ v1(x) + t′ > bx)

∨(∃x ∈ Var1 : ax ≤ v1(x) + t′ ≤ min(bx, ax + ∆))

⇔ ∃x ∈ Var1 : v1(x) + t′ ≤ ax + ∆ ∨ v1(x) + t′ > bx

⇔ ∃x ∈ Var1 : v1(x) + t′ /∈ (ax + ∆, bx]

⇔ v1 + t′ 6|= ∆g

⇔ v1 + t′ |= ¬(∆g)

⇔ v2 + t′ |= ¬(∆g)

Consequently, using (H2) and (H3), we have ∀0 ≤ t′ ≤ t : v2 + t′ |=

Inv2(`2). Thus, the state s′2 = ((`2, b2), v
′
2) where v′2 = v2 + t is such that

(s2, t, s
′
2) ∈→2.

The reader can easily check that (s′1, s
′
2) ∈ R.

To prove (2) we can use the simulation relation R′ such that R′(s2, s1) iff

R(s1, s2). The proof is similar since we only used equivalence in our reasonings.

Corollary 3.4

For any Elastic controller A, for any ∆ ∈ Q>0, for any timed automaton E ,

we have that [[A]]AAsap
∆ controls [[E]] iff [[F(A,∆)]] controls [[E]].

Observe that the reduction to timed automata we propose is not very efficient:

indeed, the number of locations of the initial Elastic controller is multiplied by

2|Labin|, that is an value exponential in the number of inputs of the automaton. The

obtained model has thus a description that is exponentially larger than the initial

specification. This is not a problem for the following theoretical discussions, but

in practice it does not allow to handle realistic examples. We tackle this problem

in the next chapter.
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3.4 Discussions

3.4.1 Verification in Practice

In practice, we can use Corollary 3.4 to reduce the controllability problem to a

reachability problem. We first construct F(A,∆) (where we can leave ∆ as a

parameter) and generate a HyTech file with a description of F(A,∆) and E

(which encapsulates the description of the bad states). We then use HyTech

to synthesize the weakest constraint on ∆ that ensures the correctness of the

control strategy for the AASAP semantics. In other words, we ask HyTech for

which parameter value [[F(A,∆)]] ‖ [[E]]) is empty. If HyTech terminates, it

returns a linear constraint ψ(∆) over ∆ which allows to solve the three problems

of Definition 3.9:

• [Fixed] For a given value D ∈ Q≥0 for the parameter ∆, answering the

[Fixed] question amounts to ask if ψ(D) is true.

• [Existence] To solve the [Existence] question, it suffices to ask if there exists

D ∈ Q≥0 such that ψ(D).

• [Maximization ] To solve the [Maximization] question, we ask if

– either there exists Dmax ∈ Q≥0 such that ψ(Dmax) and ∀D > Dmax :

¬ψ(D);

– or there exists Dsup ∈ Q≥0 such that ¬ψ(Dsup) and ∀0 ≤ D < Dsup :

ψ(D).

All those question are expressed as formulas of the additive theory of the reals

and are thus solvable [Wei99] .

In case the HyTech analysis does not terminate, we still have a practical

solution for two of the problems of Definition 3.9 if the environment is specified as

a timed automaton:

• [Fixed] In this case we can obviously respond to the [Fixed] version of the

correctness problem as it amounts to a reachability question on timed au-

tomata [AD94],
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• [Maximization] In this case, we can approximate as close as needed the so-

lution of the [Maximization] question thanks to the “faster is better” property

of the AASAP semantics: by doing a binary search on the value space of the

parameter ∆, using the [Fixed] question, we can approximate the maximal

value of ∆ for which the controller is correct up to any precision.

To answer those two previous questions, we are not restricted to the use of

HyTech or other parametric tools, and we can use for example Uppaal [PL00],

as we will see in the next chapter.

Running example If we apply the construction of Corollary 3.4 to our running

example (Figure 3.2 and Figure 3.1), we can ask HyTech to establish for which

value of ∆, the tube of control strategies defined by the timed automaton obtained

by the construction of Corollary 3.4 is valid.

First, consider the case (α = 1). The condition of correctness is ∆ = 0. We can

interpret this as follows: we have a correct model w.r.t to the classical ASAP seman-

tics (the controller imposes the repetition of events ABC, at integer points in time,

that is the divergent timed word ((ABC)ω, τ) with τ3i = τ3i+1 = τ3i+2 = i+1, i ∈ N).

But if we accept a positive fixed delay (no matter how small it is) between the

event B and the reaction C, we cannot anymore guarantee that the environment

will not eventually reach Bad. The insightful reader has maybe noticed that if

the delay between B and C can vary (and here decrease), then it is possible to

avoid Bad. However, the greatest lower bound of the delays will be zero so that

implementation is not possible. For example, a (non-zeno) controller could issue

orders such that τ = (1, 1, 11
2
)(2, 21

2
, 23

4
)(3, 33

4
, 37

8
)(4, 47

8
, 415

16
) . . . Clearly this time

sequence, however divergent, is not acceptable as the output of an implementable

controller because there is no lower bound on the difference between two consecu-

tive time instants. This shows that some non zeno controllers also require infinitely

fast hardware to be implemented. Hence, it must be admitted that the synchrony

hypothesis is not only a matter of non-zenoness; in this example, the condition

∆ = 0 shows that it is impossible for a finite-speed hardware to implement the

controller.

In the second case (α = 2), the model is correct for any ∆ < 1
3
. If we assume

that the unit of time is the second, Theorem 3.4 then tells us that, to preserve the

desired property with a systematic implementation of the Elastic controller (as
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described in Section 3.3.2), we should have a platform with loop time ∆L clock

granularity ∆P and clock precision ε such that 2εM+(3+ε)∆L+(4+2ε)∆P

1−ε
< 333ms,

where M = 2 is the greatest constant appearing in the controller. For instance,

we can implement the controller on the Lego MindstormsTM platform, since

it allows ∆L to be as low as 6ms, offers a digital clock with ∆P = 1ms and a

drift certainly not greater than 1%. We give more details about this platform and

automatic generations of code for it in Chapter 5.

3.4.2 Relaxing the AASAP Semantics for more Efficiency

The construction of Theorem 4.1 gives a model that can be used in practice to ver-

ify the implementability of a controller (Corollary 3.4). This model is a timed au-

tomaton that contains exactly the same reachability information than the AASAP

semantics. This is why the construction is not as simple as one might expect.

Other constructions can be used (for example if it facilitates the verification), at

the condition that it can simulate the AASAP semantics. Also, if a controller con-

trols an environment E ′, it ensures that it can control any refinement E of E ′.

This results from Lemma 2.2, and Theorem 4.1.

Corollary 3.5

For any Elastic controller A, for any ∆ ∈ Q>0, for any timed automata E ′ and

E such that [[E]]�[[E ′]]; for any timed automaton C such that [[F(A,∆)]]�[[C]], we

have that if [[C]] controls [[E ′]] then [[A]]AAsap
∆ controls [[E]].

In Corollary 3.5, the automaton C is an over-approximation of the AASAP

semantics. For verification concerns, such a promising over-approximation is, given

a timed automaton T , to close and enlarge (left and right) every guard by ∆, this

leads to a timed automaton we call X (T,∆). The model X (F(A,∆),∆) has

interesting properties. We show in [DDMR04] that the problem to decide whether

there exists a rational value ∆ such that it controls X (E,∆) to avoid B is decidable.

3.5 Conclusion and Related Works

In this chapter, we have introduced the notion of Almost ASAP semantics for timed

automata. This semantics is a relaxation of the usual ASAP semantics: the con-

troller does not have to react instantaneously to events and time-outs: it only has
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to do so within a given time bound (that can be leaved as a parameter). We have

shown that this semantics is useful to formally reason about the implementability

of mathematical models for timed controllers: any controller that has been shown

correct for the Almost ASAP semantics can be systematically implemented. The

properties that have been proven on the model are transfered to the implementa-

tion (without making the synchrony hypothesis) provided that the implementation

is executed on a hardware which is sufficiently fast and which uses a sufficiently

fine granular digital clock subject to a sufficiently small drift.

We now compare our work with some recent related works and also point out

several future research directions.

Related works. In [AFM+02, AFP+03], Yi et al. present a tool called Times

that generates executable code (C code for the Lego MindstormsTM platform)

from timed automata models. The code is generated with the synchrony hypoth-

esis. This work does not tackle the problem on which we concentrate in this

chapter. The properties proved on the models are not guaranteed to be preserved

by their code generation. On the other hand, this work also integrates an inter-

esting schedulability analysis. In our work, we have only concentrated on simple

control centered programs. In our approach, tasks that perform expensive com-

puting , should be modeled explicitly (with their worst-case execution time for

example). This is coherent with the approach they propose.

In [KMTY04], Krčál et al. agree that an event must remain observable during

some (usually small but not singular) period. They propose a digitalized semantics

for timed automata in order to model the fact that the environment cannot be

observed continuously, but only at discrete instants. However, they do not make

a formal link with automatic code generation. On the contrary, we propose such

a link, and our semantics is more high-level in that it is continuous-time and thus

closer to the designer’s point of view.

In [AIK+03], Alur et al. introduce a methodology to generate code from hybrid

automata. The class of models they consider is larger than the class we consider

here, i.e. the Elastic controllers. As in the work of Yi et al., they adopt the

synchrony hypothesis. Nevertheless, they plan to explore further this translation

in order to see how to achieve the translation without the synchrony hypothesis.

The work in this thesis should be useful in that context.



Chapter 3. AASAP Semantics : Implementable Semantics for T.A. 73

In [HKSP03], Henzinger et al. introduce a programming model for real-time

embedded controllers called Giotto. Giotto is an embedded software model

that can be used to specify a solution to a given control problem independently of

an execution platform but which is closer to executable code than a mathematical

model. So, Giotto can be seen an intermediary step between mathematical

models like hybrid automata and real execution platform.

In [IKL+00], Larsen et al. show how to model code for real-time controllers

using Uppaal models in order to formally verify the code behavior. Usually, they

encounter the problem that the obtained description is difficult to analyze because

the time unit at the controller level (time slice of the real-time OS for example)

is much smaller than the natural time unit of the environment. This leads to

what they call symbolic state space fragmentation. They proposed in [HL02] a

partial solution to that problem. In our framework, we do not encounter that

problem. In fact, the larger reaction delay computed during the analysis phase

of the AASAP semantics is usually close to the time unit of the environment to

control, and usually much larger than the time unit of the hardware on which the

control program is executed. The program is generated automatically from the

Elastic model and is guaranteed to be correct by construction (no need to verify

it).

In [AT05], Altisen and Tripakis explicitly refer to the material presented in this

Chapter as the motivation of their work. Like us, they want to formally validate

the synchrony hypothesis but they underline that the question of implementability

for timed automata could be handled without introducing new semantics for timed

automata, but by using modelling. In this work, the platform is modelled through

a product of timed automata and the program through an untimed automaton.

In this framework, the author reveal subtle problems about the replacement of

the platform by a faster one (with higher sampling rate) that leads to the non

preservation of properties.

To summarize, we could say that our specification language is maybe not as

rich as the one offered in other research works but that is the price we pay for fully

formal treatment of the synchrony hypothesis. The argument most often used in

other works is that the speed of the controller is of another scale than the speed

of the environment. This may be true in general, but in communication protocols

for example, as in the case study of the next chapters, this is not so true anymore.
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Chapter 4

Practical Verification of the

AASAP Semantics

4.1 Introduction

In the previous chapter we have introduced a new semantics (the AASAP seman-

tics) for a family of timed automata (the Elastic controllers). This semantics

has the advantage of being implementable. More formally, we have proved that if

the AASAP semantics of an Elastic controller satisfies some safety property with

a value of its parameter strictly greater than zero, then there exists an implemen-

tation that satisfies the same safety property. Furthermore, we have proved that

the verification of reachability properties is decidable on the AASAP semantics as

long as the values of the parameters are fixed, which encompasses the speed of the

processor and the granularity and drift of the clocks. This proof of decidability

works by reduction to the reachability problem for timed automata but the trans-

lation is not very useful in practice since we build from an Elastic automaton a

timed automaton that is larger by an exponential factor in the number of inputs.

This problems stems from the memory used to encode if an event has arrived or

not. For every event σ, each location ` of the original automaton is split into two

locations, to differentiate the cases where σ has arrived or not. Consequently, the

resulting automaton has a size multiplied by 2#Labin

.

In this chapter, we describe a tool that allows the verification of the AASAP se-

mantics in practice. We give reductions of the problem to the reachability problem

for timed automata. These new reductions have the advantage of being composi-

tional, and avoiding a blowup in the size of the specification. The state space of

the model stays the same, but verification tools do not necessarily build the whole

75
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state space and instead build, on-the-fly, only the reachable part of it. This gives

us the possibility of verifying more complex models.

To encode the AASAP semantics of a controller into a compositional construc-

tion in HyTech [HHWT95a], we used heavily the mechanism of Asap edges, that

impose that if a transition on a certain label has become possible for a product of

automata, the time cannot elapse until this transition has been fired. This mech-

anism allows to specify urgency in a distributed manner, and was very useful for

our compositional construction.

The translation to HyTech gave us a first experimentation tool and the power

of the HyTech script language allowed us to answer in most cases all kinds of

questions presented in Section 3.4.1 ([Fixed], [Existence] and [Maximization]); but

rapidly, we also met the limits of the verification engine of this tool. We thus tried

to use the tool Uppaal [LPY97], because of its efficiency in the verification of

timed automata, although it does not allow to answer parametric questions or to

use rectangular automata for specifying the environment.

The design of a compositional construction with Uppaal is also more compli-

cated than with HyTech, since Uppaal main synchronization mechanism only

allows two automata to synchronize at once. We had to use repeated synchroniza-

tions to simulate one transition of the compositional construction for HyTech.

Consequently, our translation to Uppaal relies heavily on the use of committed lo-

cations : if some automata of a product are in a committed location, no transition

can take place that does not make one of these automata move. This notion was

introduced in [BGK+02] to allow atomic sequences of transitions, which is exactly

what we are intending to do.

In this chapter we describe the two translations, to the HyTech and Uppaal

modelling languages. First, in Section 4.2, we introduce, in a high-level fashion,

these modelling languages. Second, in Section 4.3, we give the translation to the

HyTech language, for which the proof can be found in [Doy06]. Third, in Section

4.4, we give the translation, built on the previous one, to the Uppaal language

and we prove its correctness. In Section 4.5, we give some practical details about

our tool. Finally, in Section 4.6 we present a verification case study about the

Philips Audio Control Protocol, a well known industrial example.

This chapter is essentially an extended version of [DDR05b].
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4.2 Preliminaries

The syntax and semantics for timed automata introduced in the previous chapters

were used for theoretical work only. Now, we handle fairly complicated syntax and

semantics that are designed to be almost as expressive as both the Uppaal and

HyTech semantics.

The first extension to the timed automata model of the previous sections is the

use of discrete variables, in guards and invariants but also through updates added

on the edges. In the following, we will assume that the discrete variables are all

bounded along time at any moment. Under this assumption, the discrete variables

add no expressive power to timed automata, they are just a useful modelling tool

allowing more succinct specifications. They could be encoded using the discrete

states of timed automata. The use of discrete variable is possible directly in both

HyTech and Uppaal.

The other extensions are directly related to the special features offered in the

tools HyTech and Uppaal. The special features coming from Uppaal
1 are the

following:

• committed locations : if some of the automata in the product are in a commit-

ted location, no transition can be fired that does not make one of those au-

tomata leave its current location (possibly using a self-loop). This notion has

been introduced in order to allow atomic sequences of transitions [BGK+02].

• urgent locations : if some of the automata in the product are in an urgent

location, no timed transition can be made before they are all in a non urgent

location.

• urgent labels: an urgent label allows to flag many locations as urgent at one

time. Indeed, every location source of an edge labelled with an urgent label

becomes an urgent location, even if the guard of the edge is not satisfied. It

is a purely syntactical mechanism not taking into account the valuation of

the variables or the states of the other automata.

• broadcast labels: in Uppaal edges are labeled either as output (denoted by

an exclamation mark ‘!’ in the figures) or as input (denoted by a question

1In version 3.4.11 of Uppaal.
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mark ‘?’ in the figures). An output edge for which the label is broadcast can

be fired as soon as its guard is true. When the transition is fired, all automata

having an input edge with the same label have to make this transition (By

definition, all these input edges have guards equal to >.) In other word, it

is a rendez-vous between a leader an a group of followers. The leader moves

and all followers able to do the same move (possibly none) must do it.

• pairwise edges: For a label that is not broadcasted, one needs two automata

to offer the transition, one with an input edge with this label, and one with an

output edge on this label. It is a synchronous rendez-vous for two automata.

This is the main synchronization mechanism of Uppaal.

The special features coming from HyTech are the following:

• multiway labels : for the product to fire a transition with a multiway label σ,

all automata having σ in their set of labels must participate. In HyTech

this is the only type of label.

• ASAP edges: the ASAP flag can only be used on a transition labeled with no

label or with a multiway label. An Asap transition labeled σ is not urgent

until every automaton having σ in its alphabet is in a location offering edges

labelled by σ.

We are now ready to formally define all these extensions to the model of timed

automata. We begin by handling discrete variables.

Definition 4.1 (Rectangular Predicate with Discrete variables)

Let X be a finite set of real-valued variables,usually called clocks, and D a finite set

of integer-valued variables. A valuation for X ]D is a function v : (X ]D)→ R

such that v(d) ∈ Z, ∀d ∈ D. We write [X ]D → R] for the set of all valuations

for X ]D.

A closed rectangular guard over X ] D is a finite formula ϕc defined by the

following grammar rule:

ϕc ::= ⊥ | > | x ≤ a | x ≥ a | x = a | ϕc ∧ ϕc

where x ∈ X ]D and a ∈ Q. An open rectangular guard over X ]D is a finite

formula

ϕo ::= ⊥ | > | x < a | x > a | ϕo ∧ ϕo
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where x ∈ X ]D and a ∈ Q.

We denote by Rectc(X ]D) (resp Recto(X ]D)) the class of rectangular pred-

icates built using variables in X ] D. A rectangular predicate over X ] D is a

formula ϕ defined by the grammar rule:

ϕ ::= ϕc | ϕo | ϕ ∧ ϕ

where ϕc ∈ Rectc(X ]D) and ϕo ∈ Recto(X ]D). We denote by Rect(X ]D) the

class of rectangular predicates.

Finally, a multi-rectangular predicate over X ] D is a formula ϕ defined by

the grammar rule:

ϕ ::= ϕc | ϕo | ϕ ∧ ϕ | ϕ ∨ ϕ

where ϕc ∈ Rectc(X ] D) and ϕo ∈ Recto(X ] D). We denote by MultRect the

class of multi-rectangular predicates.

The satisfaction relation |= is defined as expected.

In the following, the clocks can only be reset to the value 0 but we allow more

general updates for the discrete variables.

Definition 4.2 (Discrete Update)

A discrete update over D is a finite formula defined by the following grammar:

update ::= d′ = rexpr

where

rexpr ::= c | c× d | rexpr + rexpr

where c ∈ Z and d ∈ D. We will add sets of such formula on the transitions

of timed automata, with the constraint that there is at most one update with left

expression d′ for each d ∈ D. This constraint is called the consistency condition.

The semantics of such a set of updates Update relatively to a valuation v is a

function [[Update]]v: D → Z. The semantics is defined as follows:

[[rexpr]]v=





c if rexpr ≡ c

c× v(d) if rexpr ≡ c× d

[[rexpr1]]v + [[rexpr2]]v if rexpr ≡ rexpr1 + rexpr2

and

[[Update]]v (d) =

{
[[rexpr]]v if ∃ ”d′ = rexpr” ∈ Update

v(d) otherwise



80 4.2. Preliminaries

Let v : (X ]D)→ R be a valuation and Update be a set of discrete updates, then

v[Update] denotes the valuation v′ such that v′(d) =[[Update]]v (d), ∀d ∈ D and

v′(x) = v(x), ∀x ∈ X.

We denote by Disc(D) the class of sets of discrete updates built using variables

in D and respecting the consistency condition.

In the product of automata we will define shortly, we need the possibility to

assign initially non null values to the discrete variables. This is the reason for the

following definition:

Definition 4.3 (Discrete Initialization)

A discrete initialization over D is a finite formula defined by the following gram-

mar:

initialize ::= d′ = c

where c ∈ Z and d ∈ D. The consistency condition is extended naturally to a set

of discrete initializations. We denote by DiscInit(D) the class of sets of discrete

initializations built using variables in D and respecting the consistency condition.

The semantics of Initialize ∈ DiscInit(D) is a function [[Initialize]]: D → Z defined

as follows: [[Initialize]] (d) = c if “d′ = c” belongs to Initialize and 0 otherwise.

We make a(nother) little abuse of notation by extending the following nota-

tions. Let v : (X ]D) → R be a valuation, for any t ∈ R≥0, v + t is a valuation

such that for any x ∈ X, (v+t)(x) = v(x)+t and for any d ∈ D : (v+t)(x) = v(x).

In other words, the values of the discrete variables are not affected by the passage

of time. We define v − t in a similar way.

In the following, for a location ` = (`1, `2, . . . `k) of a synchronized product

〈A1, A2, . . . , Ak,Out,Broad,Urg,Comm,Mult,Asap〉, we define `(Ai) = `i for 1 ≤

i ≤ k.

Syntax We are now ready to define the syntax of our product of automata.

Observe that in this case, because of the special features introduced by both tool,

it is easier to define directly the semantics of a product rather than defining the

composition as a syntactical operation on timed automata.
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Definition 4.4 (Product of Timed automata)

A product of timed automata over a set of clocks X and discrete variables D is a

tuple

〈A1, A2, . . . , Ak,Out,Broad,Urg,Comm,Mult,Asap〉

where

• each Ai is an automaton, i.e. a tuple 〈Loci, Initi, Finali, Invi, Labi,Edgi〉 where

– Loci is a finite set of locations, denoted by the letter `, representing the

discrete states of the automaton. We impose that ∀1 ≤ i < j ≤ k :

Loci ∩ Locj = ∅.

– Initi ∈ Loci×DiscInit(D) specifies a constraint (`, Initializei) on the initial

state of the product. In the initial state (`, v) of the product, the location

of the automaton Ai must be `(Ai), the valuation v must assigns the

value zero to all clocks and a value specified by the set Initializei for

the discrete variables. We require that the set
⋃k

i=1 Initializei satisfies

the consistency condition and that it contains an initialization for every

variable of D.

– Finali ⊆ Loci is the set of final locations, corresponding to the error

states of the automaton.

– Invi : Loci → MultRect(X) is the invariant condition. The automaton

can stay in location `(Ai) as long as Invi(`(Ai)) is satisfied by the current

valuation of the variables.

– Labi is a finite alphabet of labels that are used on edges to allow the

synchronization between automata.

– Edgi ⊆ Loci × Loci × Rect(X ] D) × Labi × 2X × Disc(D) is a set

of edges. An edge (`, `′, g, σ, R, update) represents a discrete transition

from location ` to location `′ with guard g, label σ , a subset R ⊆ X

of the variables to be reset and a set of discrete updates update defining

the values of the discrete variables in the next state. The guard g is a

rectangular predicate that must be satisfied by the current valuation for

the transition to be fired. We impose that for all σ ∈
(
(∪k

i=1Labk)\{τ}
)
,

for any set of edges {e1, e2, . . . , ej} such that each edge belongs to a
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different automaton and is labelled by σ, the union of the update sets of

those edges satisfies the consistency condition, that is, the updates do

not assign two different values to a discrete variable2.

• Out ⊆
⋃k

i=1 Edgi is the set of output edges and we define the set of input

edges In = (
⋃k

i=1 Edgi)\Out to be its complement;

• Broad ⊆
⋃k

i=1 Labi is the set of broadcast labels. We impose3 that each edge

in In with a label in Broad has a guard equal to >;

• Urg ⊆
⋃k

i=1(Loci∪Labi) is the set of urgent locations and labels. We impose,

as Uppaal that ∀1 ≤ i ≤ k · ∀σ ∈ Urg · ∀e = (`, `′, G, σ, R) ∈ Edgi : G = > ;

• Comm ⊆
⋃k

i=1 Loci is the set of committed locations;

• Mult ⊆
⋃k

i=1 Labi is the set of multiway labels. We impose4 that Broad ∩

Mult = ∅.

• Asap ⊆
⋃k

i=1 Edgi is the set of Asap edges.

Observe that this syntax does not cover all possible correct automata for the

Uppaal syntax. For example, in our syntax, it is impossible to have and edge that

belonging to Out and to In. This syntax does not cover all correct automata for the

HyTech syntax neither, since HyTech allows the specification of rectangular

automata. Nevertheless, we think that this syntax covers all interesting (i.e.,

practical) subcases of the HyTech and Uppaal syntaxes for timed automata.

Semantics Before defining the formal semantics for this kind of product, we

need to define some additional notations. We denote by Asapi the set Asap∩Edgi.

We define similarly Broadi, Outi, and Urgi.

We denote the following semantics for a product of automata P by [[P ]]UH

because it is compatible with both Uppaal and HyTech.

2This is a restriction to both HyTech and Uppaal syntaxes.
3This restriction comes directly from the Uppaal tool. Without it, our translation to the

Uppaal language presented in the following could have been a bit simpler.
4For labels in Mult, belonging to Out would not matter in the semantics.
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Definition 4.5 (Semantics for a Product of Timed automata)

Let

P = 〈A1, A2, . . . , Ak,Out,Broad,Urg,Comm,Mult,Asap〉

be a product of timed automata over the set of clocks X and variables D. The

semantics of P is the TTS [[P ]]UH= (S,E,F,Σ,→) where:

• S = {(`, v) | ` ∈ (Loc1×· · ·×Lock)∧v ∈ [X]D → R] : v |=
∧k

i=1 Invi(`(Ai))};

• E = {(`, v) | (`, v) ∈ S ∧ ∀x ∈ X : v(x) = 0 ∧ ∀1 ≤ i ≤ k : Initi =

(`(Ai), Initializei) ∧ ∀d ∈ D : v(d) =[[
⋃k

i=1 Initializei]] (d)}. Because of the

consistency condition this set is thus a singleton;

• F = {(`, v) | (`, v) ∈ S ∧ ∃1 ≤ i ≤ k : `(Ai) ∈ Finali} ;

• Σ =
⋃k

i=1 Labi

• the transition relation → is defined as follows:

(a) For the discrete transitions, ((`, v), σ, (`′, v′)) ∈→ iff

∗ (Pairwise) σ /∈ Broad ∧ σ /∈ Mult and ∃i, j ∈ {1, . . . , k} such that

i 6= j and

· (∃c : `(Ac) ∈ Comm) =⇒ (`(Ai) ∈ Comm ∨ `(Aj) ∈ Comm)

· ∃(`(Ai), `
′(Ai), Gi, σ, Ri, updatei) ∈ Out

· ∃(`(Aj), `
′(Aj), Gj, σ, Rj , updatej) ∈ In

· ∀c s.t. c 6= i and c 6= j : `′(Ac) = `(Ac)

· v |= (Gi ∧Gj) ∧ v
′ := v[Ri ∪Rj := 0][updatei ∪ updatej ]

∗ (Broadcast) σ ∈ Broad and ∃i ∈ {1, . . . , k}, ∃J ⊆ {1, . . . , k}\{i}

and

· (∃c : `(Ac) ∈ Comm) =⇒ (∃j ∈ J ∪ {i} : `(Aj) ∈ Comm)

· ∃(`(Ai), `
′(Ai), Gi, σ, Ri, updatei) ∈ Out

· ∀j ∈ J : ∃(`(Aj), `
′(Aj), Gj, σ, Rj , updatej) ∈ In

· ∀c /∈ J : c 6= i =⇒
(
`(Ac) = `′(Ac)∧∀e = (`(Ac), `

′(Ac), Gc, σ, Rc) :

v 6|= Gc

)
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· v |= (Gi ∧ (
∧

j∈J Gj))and

v′ := v[Ri ∪ (
⋃

j∈J

Rj) := 0][updatei ∪ (
⋃

j∈J

updatej)]

∗ (Multiway) σ ∈ Mult and there exists I, J ⊆ {1, . . . , k} such that

I ] J = {1, . . . , k} and

· (∃c : `(Ac) ∈ Comm) =⇒ ∃i ∈ I : `(Ai) ∈ Comm

· ∀j ∈ J : σ /∈ Labj and `(Aj) = `′(Aj)

· ∀i ∈ I : ∃(`(Ai), `
′(Ai), Gi, σ, Ri, updatei) ∈ Edgi such that v |=

Gi ∧ v
′ = v[

⋃
i∈I Ri := 0][

⋃
i∈I updatei];

∗ (Silent) σ = τ and ∃i ∈ {1, . . . , k} such that

· (∃c : `(Ac) ∈ Comm) =⇒ `(Ai) ∈ Comm

· ∃(`(Ai), `
′(Ai), Gi, τ, Ri, updatei) ∈ Edgi

· ∀c 6= i : `(Ac) = `′(Ac)

· v |= Gi ∧ v
′ := v[Ri := 0][updatei]

(b) For the continuous transitions, ((`, v), t, (`′, v′)) ∈→ iff

∗ ` = `′ and t ∈ R≥0 and v′ = v + t and ∀t′ ∈ [0, t] : v + t′ |=∧
1≤i≤k Inv(`i) and ∀1 ≤ i ≤ k : `(Ai) /∈ Comm ∪ Urg

∗ @σ ∈ Mult · ∃I, J : I ] J = {1, . . . k}

· ∀j ∈ J : σ /∈ Σj

· ∀i ∈ I : ∃(`(Ai), `
′
i, Gi, σ, Ri) ∈ Edgi

· ∃i ∈ I : ∃(`(Ai), `
′
i, Gi, σ, Ri) ∈ Asap

∗ @σ ∈ Urg ∩ Broad · ∃i ∈ {1, . . . , k} · ∃J ⊆ {1, . . . , k}\{i} and

· ∃(`(Ai), `
′(Ai), Gi, σ, Ri) ∈ Out

· ∀j ∈ J : ∃(`(Aj), `
′(Aj), Gj, σ, Rj) ∈ In

∗ @σ ∈ Urg such that σ /∈ Broad ∧ σ /∈ Mult and ∃i, j ∈ {1, . . . , k}

such that i 6= j and

· ∃(`(Ai), `
′(Ai), Gi, σ, Ri) ∈ Out

· ∃(`(Aj), `
′(Aj), Gj, σ, Rj) ∈ In
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Comments on the semantics of the product of automata

• Each rule for a discrete transition begins with the constraint that if some of

the automata in the product are in a committed location, then the discrete

transition must imply a move of those automata.

• The rule for timed transition is split in several parts :

– The first part specifies that during the elapse of time, the invariants

must stay true at every intermediary moment and that a continuous

transition can happen only if no automaton is in a committed or urgent

location.

– The second part specifies that a continuous transition can happen only

if there is no ASAP transition available.

– The third part specifies that a continuous transition can happen only

if no urgent transition on a broadcast label is possible;

– Finally, the fourth part specifies that a continuous transition can happen

only if no urgent transition on a pair of pairwise edge with the same

label is possible;

We introduce this semantics for the product of automata to facilitate a trans-

lation from one formalism to the other in the following. Indeed, the part of the

Uppaal and HyTech language we use for products of timed automata are sub-

sets of the language in definition 4.4.

First, observe that if no discrete variables are used, Broad, Urg, Comm, and

Asap are empty sets, Mult =
⋃k

i=1 Labi and all invariants are in Rect(X) (and

not in MultRect), then this product and its semantics are very similar to the

definition 2.21 of the classical product of timed automata. The main difference is

that the latter was specified for two automata only.

Second, if Urg, Comm and Broad are empty, Mult =
⋃k

i=1 Labi and all invariants

are in Rect(X) (and not in MultRect), we obtain an HyTech product of automata,

that is a product that can be encoded directly in the HyTech language.

And finally, if Mult and Asap are empty and all invariants are in Rect(X) (and

not in MultRect), we have an Uppaal product of automata, that is a product that

can be encoded directly in the Uppaal language.
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Remark The compositional translation that follows generate automata with in-

variants in MultRect, but this is not really a problem since if the invariant of a

location ` is a multi-rectangle, we can roughly split ` in as many location as there

are rectangles and link all those location with dummy edges (no guard, silent label,

no reset, no update). This problem is thoroughly treated in the thesis of Laurent

Doyen [Doy06].

4.3 Compositional Translation to HyTech

We now define the compositional construction that will encode the AASAP seman-

tics of an Elastic controller into a product of automata respecting Definition 4.4.

In this section, we will only consider HyTech automata and we will omit

the discrete updates on the edges, since we are not using them in the translation.

Furthermore we will not consider the problem of naming conflicts throughout this

chapter: each time a new name is created, it is assumed that it is not already the

name of an existing part of the automata (e.g. a clock, a location, ...).

The main idea underlying our compositional construction is to treat the in-

coming events (issued by the environment) independently of the control structure

of the Elastic controller, with a product of automata. This leads to technical

difficulties that we explain and address in this section. Following the rule (A4.6)

of the AASAP semantics (Definition 3.8), defining almost urgency of the AASAP

semantics, there are essentially three reasons for allowing time to pass:

• either the controller has been in its current location for less than ∆ time

units,

• or all last untreated occurrences of an event have been issued by the envi-

ronment less than ∆ time units ago,

• or finally the guards of the outgoing transitions have not been enabled for

more than ∆ time units.

Those conditions will be checked in our compositional construction by respectively

A2, which is a transformation of the Elastic controller A, and two types of

widgets: the event-watchers and the guard-watchers.
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In classical timed automata, not Uppaal or HyTech ones, there is essentially

one way for modeling urgency: invariants on locations. If we have a transition

guarded by a lower bound constraint g, it can be forced as soon as it is enabled

by adding as invariant in its source location the closure of ¬g. E.g. for a guard

x ≥ 3 we can add the invariant x ≤ 3. This way, time is blocked when the guard

is satisfied and the discrete transition is forced. If we enlarge the invariant by ∆

(x ≤ 3 + ∆), we get the almost urgency we need. To formalize this idea, we will

need to introduce some more notations:

Additional notations

• Given an Elastic controller A = 〈Loc, `0,Var, Lab,Edg〉 and a location ` ∈

Loc, let Gact(`) = {g | (`, `′, g, σ, R) ∈ Edg ∧ σ ∈ Labout ∪ Labτ} be the set of

guards labelling output transitions or internal transitions, and for α ∈ Labin,

let Gevt(`, α) = {g | (`, `′, g, α, R) ∈ Edg} be the set of guards labelling input

transitions with event α.

• Then define ϕ̄a(`) =
∧

g∈Gact(`)
¬(−∆(g)0) and ϕ̄e(`, α) =

∧
g∈Gevt(l,α) ¬(−∆(g)0).

For example, let Gact(`) = {2 ≤ x ≤ 5, 0 ≤ y ≤ 1}, then ϕ̄a(l) ≡ (x ≤ 2 + ∆∨ x ≥

5) ∧ (y ≤ ∆ ∨ y ≥ 1).

Those constraints will be used as invariant to match the third part of rule (A5.6)

of the AASAP semantics (see Definition 3.8 for a reminder). The constraint ϕ̄a(`)

will be used as an invariant for location ` in A2 to force an output transition when

it becomes possible. The constraint ϕ̄e(`, α) will be used in the guard-watchers,

to ensure that when a guard has been true for enough time, the corresponding

transition becomes urgent (as long as it is allowed by other parts of rule (A5.6) ).

Those invariants are central to our construction, but if we want a compositional

construction (a product of automata), invariants are too restrictive to express

urgency since urgency also depends on the current state of the other automata

offering enabled synchronizations in the product. Hence, we should not block time

simply when a transition is enabled in one automaton but only when it is enabled

in every automaton of the product. Therefore, some compositional mechanism is

needed to model urgency in a product: we will use the Asap flag in HyTech
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W0

zα ≤ ∆

W1

W2

α

zα := 0

τ

α

α̃ α

Asap

Figure 4.1: Event-Watcher Wα.

automata. Remember that the Asap flag expresses the fact that a transition is

urgent as soon as it is enabled in the whole product.

The formal definition of our construction is given in Definition 4.8. From an

Elastic controller A and a parameter ∆ we construct F(A,∆) as a product

of three types of components: event-watchers, guard-watchers and A2 directly

obtained from A. There is one event-watcher Wσ for each event σ of A and there

is one guard-watcher W `
α for each pair of event α ∈ Σin and location ` ∈ Loc.

F(A,∆) is the product of timed automata

〈A2,W1, . . . ,WiW ,GW1, . . . ,GWiGW
,Broad,Urg,Comm,Mult,Asap〉

where {W1, . . . ,WiW } = {Wσ | σ ∈ Σin} and {GW1, . . . ,GWiGW
} = {GW`

α | α ∈

Σin ∧ ` ∈ Loc}.

Broad, Urg, and Comm are empty sets, Mult contains all labels and Asap will

be defined in the following. Remark that F(A,∆) is an HyTech automaton.

Event-Watcher Associated to an event α ∈ Σin, we define Wα (see Figure 4.1)

that records the event α. It has a clock zα encoding the value of I(α) in the AASAP

semantics: zα records the time elapsed since the last untreated event α was issued

by the environment (when I(α) 6= ⊥, the value of the clock zα is equal to I(α) of

the AASAP semantics).
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Definition 4.6 (Event-Watcher)

Given an Elastic controller A = 〈Loc1, `0, Lab1,Edg1〉, for α ∈ Σin define the

timed automaton Event-Watcher Wα = 〈Loc, {W0},∅, Inv, Lab,Edg〉 where:

• Loc = {W0,W1,W2}

• Inv(W0) = Inv(W2) = > and Inv(W1) = zα ≤ ∆

• Lab = {α, τ, α̃}

• Edg = {e1, e2, e3, e4, e5} where:

– e1 = (W0,W1,>, α, {zα})

– e2 = (W1,W2,>, τ,∅)

– e3 = (W2,W0,>, α̃,∅).

– e4 = (W1,W1,>, α,∅)

– e5 = (W2,W2,>, α,∅)

For this automaton, e3 ∈ Asap and e1, e2, e4, e5 /∈ Asap.

This widget is intended to record the occurrence of the events α (as expressed

by rule (A5.2) in the definition of the AASAP semantics), and then to propose

a synchronization on α̃ with an Asap flag in location W2. Remember that the

notation α̃ corresponds to the detection of event α by the controller. From the

invariant of location W1, this synchronization will not become urgent before ∆

time units.

Guard-Watchers. We introduce Guard-Watchers (see Figure 4.2) to monitor

the truth value of a set of guards. They are associated to an event α ∈ Σin and

a location ` ∈ Loc. When the controller is not in location `, the guard-watchers

W `
α(G) do not influence the execution, being in location U0 and offering a self-loop

synchronization on α̃. When location ` is reached, the synchronization on in`

forces W `
α(G) to enter location U1 and to become active. The watcher gets back

in U0 as soon as ` is exited by out`. Thus, it is active when it is not in U0. Its role

is then to prevent the label α̃ to become urgent whenever there is no transition

labeled with α̃ that has been enabled for more than ∆ units of time. Hence, we

use W `
α(G) with the set of guards G = ϕ̄e(`, α).
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U0

U1 U2

ϕ̄evt(l, α)

U3

u = 0

α̃

in`

out`

τ

τ

α̃

u := 0

out`

Figure 4.2: Guard-Watcher W l
α(ϕ̄evt(`, α))

Definition 4.7 (Guard-Watchers)

Given an Elastic controller A = 〈Loc1, `0,Var1, Lab1,Edg1〉, for an event α ∈ Σin,

a location ` ∈ Loc1 and a set of guards G ⊆ Rectc(Var), define the timed automaton

Guard-Watcher W `
α(G) = 〈Loc, {Uinit},∅, Inv, Lab,Edg,Asap〉 where:

• Loc = {U0, U1, U2, U3};

• Uinit = U1 if ` = `0 and Uinit = U0 otherwise;

• Var = Var1 ] {u};

• Inv(U0) = Inv(U1) := >, Inv(U2) := ϕ̄e(`, α) and Inv(U3) := (u = 0);

• Lab = {α̃, in`, out`, τ};

• Edg = {e1, e2, e3, e4, e5, e6, e7} where

– e1 = {(U0, U1,>, in`,∅),

– e2 = (U1, U0,>, out`,∅),

– e3 = (U2, U1,>, τ,∅),
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– e4 = (U1, U2,>, τ,∅),

– e5 = (U1, U3,>, α̃, {u}),

– e6 = (U3, U0,>, out`,∅),

– e7 = (U0, U0,>, α̃,∅)

For this automaton, no edge is in the set Asap.

When G is clear from the context, we simply write W `
α. The guard-watchers

W `
α(G) are used to monitor the set of guards G and, in combination with the

event-watcher Wα, to make transitions labeled by α̃ urgent whenever their guard

has been satisfied for more than ∆ time units (as expressed by rule (A5.6)). The

guard-watchers W `
α(G) can let time pass in location U2 when the controller is in

location ` and there is no enabled transition labeled α̃. If the controller is not

in location `, the guard-watchers W `
α(G) do not influence the execution, being in

location U0 and offering a synchronization on α̃. Notice that initially, the guard-

watchers W `
α(G) are in location U0 except when ` = `0 is the initial location of A.

Controller transformation

Definition 4.8 (Compositional construction F)

Let A = 〈Loc1, `10,Var1, Lab1,Edg1〉 be an Elastic controller where Lab1 = Labin
1 ]

Labout
1 ] Labτ

1 is a structured alphabet.

The compositional construction F(A,∆), where ∆ ∈ R≥0 is the product

〈A2,Wα, . . . ,GW`
β(Gevt(`, β)), . . . ,Broad,Urg,Comm,Mult,Asap〉

where

• the automata Wα are event-watchers for every α ∈ Labin
1 ,

• the automata GW`
β(Gevt(`, β)) are the guard-watchers for every β ∈ Labin

1 , ` ∈

Loc1,

• A2 is the automata 〈Loc2, {`20},∅, Inv2, Lab2,Edg2〉 where:

– Loc2 = {PreIn`, In`, Out`, P ostOut`,`′ | `, `
′ ∈ Loc1};

– `20 = In`10
;
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– there are no final states;

– Var2 = Var1 ] {d};

– Lab2 = Labout
1 ] Labτ

1 ] L̃abin
1 ] {in`, out`};

– Edg2 contains

∗ the edges (Out`, P ostOut`,`′,∆[g]∆, σ, R∪{d}) such that there exists

(`, `′, g, σ, R) ∈ Edg1 with σ ∈ Labout
1 ∪ Labτ

1

∗ the edges (Out`, P ostOut`,`′,∆[g]∆, α̃, R∪{d}) such that there exists

(`, `′, g, α, R) ∈ Edg1 with α ∈ Labin
1 and

∗ the edges (PostOut`,`′, P reIn`′,∅, out`,∅) for each `, `′ ∈ Loc1,

and the edges (PreIn`, In`,∅, in`,∅) and (In`, Out`,∅, τ,∅) for

each `′ ∈ Loc1.

– The function Inv2 is defined as follows. For each `, `′ ∈ Loc1,

∗ Inv2(In`) := d ≤ ∆

∗ Inv2(Out`) := d ≤ ∆ ∨ ϕ̄a(`) and

∗ Inv2(PreIn`) = Inv2(PostOut`, `′) := (d = 0).

• Broad = ∅;

• Urg = ∅;

• Mult is the union of all labels appearing in the product;

• Asap contains some edges of the event-watchers, as before; no edge of the

modified automaton A2 or of the guard-watchers is in the Asap set.

We illustrate the transformation of the Elastic controller with an example.

The timed automaton A2 corresponding to the Elastic controller A of Figure 4.3

is depicted on Figure 4.4. The automaton A2 has a similar structure to A. It is

used to:

• Guarantee a maximum delay of ∆ when location changes (as modeled by the

variable d in the AASAP semantics, in rule (A5.6) of Definition 3.8 ), before

any action is possible. When A enters in the location `, A2 enters location

In`, where no action is possible. A2 can stay in In` for only ∆ time units

because of the invariant.
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`

`′

`′′

σ!

y ≥ 3

α?

x ≥ 2

Figure 4.3: An Elastic controller A.
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d ≤ ∆

Out`

d ≤ ∆ ∨

y ≤ 3 +∆

d = 0

PostOut`,`′

d = 0

PostOut`,`′′

d = 0

PreIn`′

d = 0

PreIn`′′

In`′

In`′′

τ

σ

y ≥ 3−∆

d := 0
α̃

x ≥ 2−∆

d := 0

Out`

Out`

In`′

In`′′

Figure 4.4: The timed automaton A2 associated to the Elastic controller A of

Figure 4.3.

• Make transitions labeled with actions σ ∈ Labout ∪ Labτ urgent when their

guard has been satisfied for more than ∆ time units, as it is specified in rules

(A5.6) of the AASAP semantics5. This is obtained through invariant of Out`.

• Enlarge the guards of the controller’s transitions (as expressed by rules

(A5.1), (A5.3) and (A5.4)).

The soundness of our compositional construction is established by the following

theorem.

5Notice that the second parts of rule (A5.3) and (A5.4) are encoded by the watchers
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Theorem 4.1

For any Elastic controller A, for any rectangular automaton E modelling an

environment, for any ∆ ∈ Q≥0, [[A]]AAsap
∆ ‖ [[E]] is empty iff [[F(A,∆)]] ‖ [[E]] is

empty.

Proof

The complete proof is given in [Doy06]. It is a classical proof using two simulation

relations as witnesses of the mutual similarity of [[A]]AAsap
∆ and [[F(A,∆)]] where we

hide the in` and out` labels (see Definition 2.12 for hiding).

The translation to the HyTech language has been implemented in a tool

called Elastic, after the name of the language it handles. We give some practical

details about this tool in Section 4.5 but first we describe the second important

task of this tool: create models for Uppaal encapsulating the AASAP semantics

of Elastic controllers.

4.4 The Translation to Uppaal

In this section we explain how we translate a HyTech specification obtained by

the compositional construction of the previous section into an Uppaal specifica-

tion.

For translating a HyTech product of automata to an Uppaal product, we

have one major problem : the possibility in HyTech to make an automaton

synchronize with more than one other automata, while pairwise synchronization

is the basic mechanism of Uppaal. This is further complicated when some of the

involved edges are in Asap. We will thoroughly handle this problem and then briefly

sketch the solutions employed in our tool for other types of synchronizations.

Multiway Labels: Rendez-Vous for Three at Least To handle multiway

labels that are shared by more than two automata, we will define a transforma-

tion that will add to the product, for each such label σ, an automaton, called a

multiwatcher (see Figure 4.5, where one can notice that the word “Comm.” on

the side of a location means that it is commited). This added automaton simply

counts, in a discrete variable counterσ, how many automata are in a location in
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Sources(σ). We shall denote MW(σ, iσ), the multiwatcher for the label σ, shared

by iσ automata of the original product (see Definition 4.11).

Before describing the transformation, we need some additional definitions:

Definition 4.9

Let P = 〈A1, . . . , Ak,Out,Broad,Urg,Comm,Mult,Asap〉 be a product of timed au-

tomata. For this product we define some functions and a set:

• Sources(σ) is the set of locations `, belonging to any of the automata A1 to

Ak, such that there exists an edge that is outgoing from ` and labelled by σ.

We also define Sourcesi(σ) to be Sources(σ) ∩ Loci;

• Label(e) is the label of the edge e;

• Reset(e) is the reset set of the edge e;

• ToTreat is the set of labels σ such that iσ > 2 and σ ∈ Mult.

To allow the counting, we make each automaton of the original product emit a

special label Readyσ before entering a location of Sources(σ), and NotReadyσ after

leaving it by emitting another label than σ. The multiwatcher for σ synchronizes

on the σ, Readyσ and NotReadyσ labels and thus can know how many automata

are in a location in Sources(σ) .

When the multiwatcher MW(σ, iσ) detects that all the automata sharing σ in

their alphabet are in a location in Sources(σ) , it switches to location MW2 from its

initial location MW1. For the product, the transition on σ then becomes possible.

In practice, the original transition on the multiway label σ is realized through an

(almost) atomic sequence of iσ pairwise synchronizations on σ, initiated by the

multiwatcher. The fact that σ appears always on Asap edges of one of the original

automata is reflected through the optional6 urgent status of the location MW2. If

all transitions on σ were urgent in the original product P , it will also be the case

in the transformed product, since when a transition on σ becomes possible, the

corresponding multiwatcher will be in an urgent location MW2.

For one label σ, the partial translation from HyTech to Uppaal of the prod-

uct P is defined below in the function TMσ(P ) that simply adds the multiwatcher

6This explains the square brackets around the word urgent for MW2 in the Figure 4.6
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MW1

[Urgent]

MW2

Comm.
MW3

NotReadyσ?

counter′σ = counterσ − 1

Readyσ?

counterσ < iσ

counter′σ = counterσ + 1

σ!

counterσ < iσ − 1

counter′σ = counterσ + 1

Readyσ?

counterσ = iσ − 1

counter′σ = iσ

NotReadyσ?

counter′σ = iσ − 1

σ!

counter′σ = 1

σ!

counterσ = iσ − 1

counter′σ = 0

Figure 4.5: MW(iσ, σ)

MW(σ, iσ) to the product and applies the function TMσ(A) to each automaton A

of the product.

The transformation for a label σ of an automaton A is defined below in the

function TMσ(A). The output of this function is an automaton A′, where we add

some committed locations and some edges that will ensure the emission of the

events Readyσ and NotReadyσ. We give an example of the repeated use of this

function in Figures 4.7 and 4.8 for the automaton H of Figure 4.6,.

The complete translation to Uppaal then simply applies iteratively the func-

tions TMσ(·) to each multiway label σ of the specification until all synchronizations

are either broadcast or pairwise, which are the types of labels of Uppaal and there

are no more multiway labels, which are the extra type of label of HyTech.
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Figure 4.6: The fragment example of an HyTech automaton H to translate to

Uppaal

Enter`1onα
Comm.

`1

`2

Exit`1usinge2
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`3

γ Readyα!

α?
(e1)

β NotReadyα!

Figure 4.7: Fragment of TMα(H)
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Enter`1onβ
Comm.

`1

Exit`1usinge2
Comm.

Exit`1usinge1

Comm.
`2

`3

γ

Readyα!
Readyβ! α?

β? NotReadyα!

NotReadyβ!

Figure 4.8: Fragment of TMβ

(
TMα(H)

)
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We are now ready to give the formal definitions of the transformation and

to prove it, but first, observe that the translation is not designed to handle any

HyTech specification but only a subclass including the HyTech specification

corresponding to the AASAP semantics of an Elastic automata as detailed in

Section 4.3:

Definition 4.10 (Globally Asap)

A product of of automata P = 〈A1, A2, . . . , Ak,Out,Broad,Urg,Comm,Mult,Asap〉

is globally asap if for every automaton Ai, for every label σ in Labi,

(∃e ∈ Asap ∩ Edgi : Label(e) = σ)

implies

(∀e ∈ Edgi : Label(e) = σ =⇒ e ∈ Asap)

. In other words, a product of automata needs to be globally Asap if for all au-

tomata, the transitions on a label σ are all Asap or no one is.

Furthermore, for every σ ∈ Mult, let us define iσ = #{Σi | 1 ≤ i ≤ k∧σ ∈ Σi}.

If iσ > 2, for every set of edges {e1, e2, . . . , eiσ} such that ∀1 ≤ i ≤ iσ : Label(ei) =

σ and all these edges belong to different automata, we impose that all edges, but

possibly one, have guards equal to >.

The second part of the definition is added because in the following translation,

the firing of a transition labelled by a multiway label σ can be split in an (almost)

atomic sequence of pairwise transitions all labelled by σ, and if guards and reset

are used in at least two consecutive transitions, the arrival state may differ in the

translation from the original product. This condition could be removed if guards

were allowed on edges labelled with broadcast edges but this is not the case in the

language of Uppaal.

Observe that the product F(A,∆) obtained in the previous section is globally

Asap. Indeed, the only edges in Asap are the edges labelled by the viewing of

an event, α̃ for example. For such a label, three types of automata synchronize

: the transformed automaton A2, some guard-watchers and some event-watchers.

Since for any event-watcher, the only edge on the viewing of an event is in Asap

and there is no edge in Asap for the transformed automaton A2 and the guard-

watchers, F(A,∆) satisfies this part of the definition. The second part of the

definition is satisfied too, since only A2 has constraining guards (for any label).
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Definition 4.11 (TUσ)

Let P = 〈A1, . . . , Ak,Out,Broad,Urg,Comm,Mult,Asap〉 be a product of timed au-

tomata over a set of clocks X and a set of discrete variables D. The transformation

TUσ(P ) is a product of timed automata over a set of clocks X and a set of discrete

variables D ∪ {counterσ}. This product is defined as follows :

TUσ(P )

=

〈TMσ(A1), . . . ,TMσ(Ak),MW(σ, iσ),Out′,Broad′,Urg′,Comm′,Mult′,Asap′〉

where

• TMσ(Ai) is Ai if σ /∈ Labi, and is A′
i = 〈Loc′i, Init′i, Final′i, Inv′i, Lab′

i,Edg′
i〉

otherwise where

– Loc′i = Loci ] {Enter`onσ | ` ∈ Sourcesi(σ)} ] {Exit`usinge | Label(e) ∈

Σi\{σ} ∧ ` ∈ Sourcesi(σ)}

– Init′i = Initi

– Final′i = Finali

– Inv′i(`) =

{
Invi(`) iff ` ∈ Loci

> iff ` ∈ (Loc′i\Loci)

– Lab′i = Labi ] {Readyσ,NotReadyσ}

– Edg′
i =





(
Edgi\{e | Label(e) = σ}

)

] {(Enter`onσ, `,>,Readyσ,∅) | ` ∈ Sourcesi(σ)}

] {(`,Exit`usinge,G, β, R) |

∃e = (`, `′, G, β, R) ∈ Edgi ∧ β 6= σ ∧ ` ∈ Sources(σ)

}

] {(Exit`usinge, `′′,>,NotReadyσ,∅) |

∃e = (`, `′, G, β, R) ∈ Edgi ∧ β 6= σ ∧ ` ∈ Sourcesi(σ)

∧
(
(`′′ = `′ ∧ `′ /∈ Sourcesi(σ))

∨(`′′ = Enter`onσ ∧ `′ ∈ Sourcesi(σ))
)

}
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• MW(σ, i) is a timed automaton, called a multiwatcher in the following,

〈LocMW, InitMW, FinalMW, InvMW, LabMW,EdgMW〉

where:

– LocMW = {MW1
σ,MW2

σ,MW3
σ};

– InitMW = (MWj , {counter′σ = l}) where

∗ l = #{i | `i(Ai) ∈ Sources(σ) and `i is the location appearing in

Initi}

∗ MWj is MW2 iff l = iσ and MW1 otherwise.

– FinalMW = ∅;

– InvMW(`) = >, ∀` ∈ LocMW;

– LabMW = {σ,Readyσ,NotReadyσ};

– EdgMW = {e1, e2, e3, e4, e5, e6, e7} where

∗ e1 = (MW1
σ,MW2

σ, counterσ = iσ − 1,Readyσ,∅, {counter′σ = iσ});

∗ e2 = (MW2
σ,MW1

σ,>,NotReadyσ,∅, {counter′σ = iσ − 1});

∗ e3 = (MW1
σ,MW1

σ, counterσ < iσ−1,Readyσ,∅, {counter′σ = counterσ+

1});

∗ e4 = (MW1
σ,MW1

σ,>,NotReadyσ,∅, {counter′σ = counterσ − 1});

∗ e5 = (MW2
σ,MW3

σ,>, σ,∅, {counter′σ = 1});

∗ e6 = (MW3
σ,MW3

σ, counterσ < iσ − 1, σ,∅, {counter′σ = counterσ +

1});

∗ e7 = (MW3
σ,MW1

σ, counterσ = iσ − 1, σ,∅, {counter′σ = 0})

• Out′ = Out′1 ] · · · ] Out′k ]OutMW where

– Out′i = (Outi∪{e ∈ Edg′
i | Label(e) = Readyσ∨Label(e) = NotReadyσ})

for 1 ≤ i ≤ k;

– OutMW = {e5, e6, e7};

• Broad′ = Broad;

• Urg′ =

{
Urg ] {MW2

σ} if ∃e ∈ Asap : Label(e) = σ

Urg if not
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• Comm′ = Comm′
1 ] · · · ] Comm′

k ] CommMW where

– Comm′
i = Commi ∪ {Enter`onσ | ` ∈ Sourcesi(σ)} ∪ {Exit`usinge |

Label(e) 6= σ ∧ ` ∈ Sourcesi(σ)};

– CommMW = {MW3
σ};

• Mult′ = Mult\{σ};

• Asap′ = Asap\{e | Label(e) = σ};

A multiwatcher automaton is illustrated in Figure 4.5.

We now prove that the repeated application (whatever the ordrer) of the func-

tion TU(·) to a globally asap product of automata will give an equivalent product

of automata, in the following sense:

Theorem 4.2

For any globally asap product of automata P with ToTreat = {σ1, . . . , σn}:

[[P ]]UH is empty iff [[TUσn
(. . .TUσ2

(TUσ1
(P )))]]UH is empty.

Proof

The proof we give is based on a simulation relation. We will work in two steps,

first, we will define a transition relation for the transformed product where multiple

occurrences of the treated label σ are agglomerated. Then we will prove that the

transformed product with the agglomerated relation is in bisimulation relation with

the original product. This is a particular case of stuttering bisimulation [BCG88],

that is a simulation relation where a non silent transition of a TTS can be matched

by multiple non silent transitions of the other one.

Notations

• Let P = 〈A1, A2, . . . , Ak,Out,Broad,Urg,Comm,Mult,Asap〉 be the globally

asap product of automata to handle.

• P ′ = TUσn
(. . .TUσ1

(P ))

= 〈A′
1, . . . , A

′
n,MW1

σ, . . . , MWn
σ,Out′,Broad′,Urg′,Comm′,Mult′,Asap′〉 where:

– the different automata A′
i are obtained through the repeated use of the

function TM on Ai: A
′
i = TMσn

(. . .TMσ2
(TMσ1

(Ai)))
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– the different automata MWk
σ are the multiwatchers MW(σk, iσk

)

• [[P ]]UH= (S1,E1,F1,Σ1,→1)

• [[P ′]]UH [{Readyσ1,NotReadyσ1, . . . ,Readyσn,NotReadyσn} := τ ] =

(S2,E2,F2,Σ2,→2)

• D is the set of discrete variables of P and D ∪ {counterσ | σ ∈ ToTreat} is

the set of discrete variables of P ′.

There are three essential remarks to understand the construction:

• In each automaton transformed through possibly multiple application of the

function TM, an edge e = (`, `′, g, σ, R, update) of the original product is

replaced by a chain of edges from ` to `′ that runs through a sequence of

committed locations. The first edge of this chain keeps the label σ, the reset

R and the update update intact. The following edges are all labelled by Readyλ

or NotReadyλ where λ belongs to the alphabet of the original automaton, all

those additional edges having empty resets and updates and guards equal to

>. See Figure 4.8 for an illustration. To be more specific, an edge e =

(`, `′, g, σ, R, update) is replaced by a sequence of edges:

– beginning with the edge (`, `1, g, σ, R, update)

– then followed by a sequence (`i, `i+1,>,NotReadyλ,∅,∅) for 1 ≤ i ≤

j − 1, where λ ∈ ToTreat ∧ ` ∈ Sources(λ)

– and finished by a sequence (`i, `i+1,>,Readyλ,∅,∅) for j ≤ i ≤ l − 1

where λ ∈ ToTreat ∧ `′ ∈ Sources(λ) and `l = `′;

The important constraint about those added edges is that in a sequence of

edges of the transformed automaton, for any label λ you can never cross two

edges labelled subsequently with Readyλ without crossing exactly one λ or

NotReadyλ on the way. This ensures that the added automaton MW(λ, iλ)

can keep track of the number of automata that are in a location source of an

edge labelled by λ.
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• Thanks to this mechanism and the design of the function TU, every time iσ

automata of P are in a location where σ is possible, then in P ′, the automata

MW(σ, iσ) is in its second location (called MW2
σ before). From this location,

MW(σ, iσ) offers two edges:

1. one edge labelled by σ, a label that demands pairwise synchronization

and that the current multiwatcher is alone to have in its output set.

Said differently, only the multiwatcher can initiate a transition on σ by

emitting a first time the label and going to the location MW3
σ. It will then

be followed by iσ − 1 other pairwise transition on σ, one per automaton

synchronizing on σ. The atomicity of this sequence of transition is

obtained through the fact that the location MW3
σ of the multiwatcher is

committed, allowing no automaton that is not in a committed location

to move. In fact, the sequence of σ is not necessarily atomic, since it

can be interleaved with silent τ transition, due to the synchronizations

on all the Ready and NotReady labels, but this is not a problem for the

simulation of P since the sequence of σ can not be interleaved by other

labels of the original product P .

2. one edge labelled by the label NotReadyσ that leads back to the location

MW1
σ while decreasing the value of counterσ. This is used when, finally,

a label of the original product that is different from σ has been fired.

• The ASAP status7 of σ is taken into account by making location MW2
σ urgent

or not. So, if every time P was ready to fire a σ, time was not allowed to

pass anymore, this remains the case in P ′.

Given the TTS [[P ′]]UH, we define the agglomerated transition relation  ⊆

S2 × (Σ2 ∪ R≥0)× S2 as follows: s σ s′ iff





s
σ
−→2 s

′ and σ 6∈ ToTreat

s ⇒σ
2⇒

σ
2 · · · ⇒

σ
2︸ ︷︷ ︸

iσ repeatitions of σ

s′ and σ ∈ ToTreat

where ⇒2 is the stutter-closure of the relation →2.

7That is, if every edge of P labelled by σ is in ASAP or none is.



104 4.4. The Translation to Uppaal

The transition relation  is meaningful since we can ensure through the con-

struction that one transition of the initial product P is transformed into one step

of  . Furthermore, thanks to the previous remarks, we can limit our interest to

the states where, for every automaton Ai of P , the location in P ′ is a location

appearing in the original product P .

Let us thus define S ′
2 as the set {(`, v) ∈ S2 | `(Ai) ∈ Loci, ∀1 ≤ i ≤ k}.

We now prove that

(S1,E1,F1,Σ1,→1)

�

(S ′
2,E2,F2,Σ2, )

and

(S ′
2,E2,F2,Σ2, )

�

(S1,E1,F1,Σ1,→1)

The main element of the proof is the bisimulation relation we use.

The bisimulation relation R ∈ S1 × S ′
2 is the set of pairs ((`1, v1), (`2, v2))

such that:

1. ∀x ∈ X ]D : v1(x) = v2(x) and ∀σ ∈ ToTreat : v2(counterσ) = #{Ai | 1 ≤

i ≤ k ∧ `1(Ai) ∈ Sources(σ)}

2. `1(Ai) = `2(Ai), ∀1 ≤ i ≤ k and `2(MW(σ, iσ)) = MW2
σ if v2(counterσ) = iσ

and MW1
σ otherwise.

Proof of (S1,E1,F1,Σ1,→1) � (S ′
2,E2,F2,Σ2, ) We have to prove that all the

points of definition 2.9 holds:

1. ∀s1 ∈ E1, ∃s2 ∈ E2 : (s1, s2) ∈ R. This is obvious from the definition.
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2. ∀(s1, s2) ∈ R : s1 ∈ F1 =⇒ s2 ∈ F2. This is obviously true since F1 = F2;

3. for all (s1, s
′
1) ∈ R, for all λ ∈ (Σ\{τ})∪R≥0, for all s2 such that (s1, λ, s2) ∈→1,

there exists s′2 ∈ S
′
2 such that (s′1, λ, s

′
2) ∈→2 and (s′1, s

′
2) ∈ R

(a) λ ∈ R>0. First observe that for a timed transition, if we denote s1 =

(`1, v1) and s′1 = (`1, v1 +λ) we have s2 = (`2, v2) where `2(Ai) = `1(Ai)

for 1 ≤ i ≤ k and, for every σ ∈ ToTreat, `2(MW(σ, iσ)) is MW2
σ if all

automata knowing σ offer σ in their current location or MW1
σ if it is

not the case. We now have to prove that ((`2, v2), λ, (`2, v2 + λ)) ∈ .

Let us examine the reason why this transition may not belong to  .

First, the invariant could forbid the transition. This is not possible,

since all invariants are the same for locations common to A1 to Ak and

A′
1 to A′

k and all locations of all multiwatchers have > as invariant.

Second, `2 could be a committed or urgent location. This is not possible,

since for locations `(A1) to `(Ak) the committed and urgent status have

been preserved and for a watcher MW(σ, iσ), the current location can

be MW2
σ and urgent only if `1 offers an Asap transition, which would

in both cases mean that no timed transition is possible from s1, which

contradicts the fact that s1
λ
−→ s′1.

(b) λ ∈ Σ2. There are two possible cases: either λ ∈ ToTreat or λ /∈

ToTreat. An important remark is that in both cases, the value of the

counters counterσ (for σ ∈ ToTreat) will really hold the right value after

all committed locations have been leaved, that is the number of automata

being in a location offering σ. This is obtained by the transformation

that forces every automaton to emit an event Readyσ before entering

a location offering a transition on Σ and an event NotReadyσ after it.

What is left to show is that the transitions are still possible after the

transformation. This comes easily in both cases:

i. λ ∈ ToTreat. In this case, the transition is obviously possible be-

cause MW(λ, iλ) is in MW2
λ where a transition labelled by λ is pos-

sible, the valuations are the same in both products P and P ′ for

the variables that are not of the kind counterσ, the guard of the first

edge of the sequence has been kept and the other edges are subsumed

by the transition relation  .
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ii. λ /∈ ToTreat. In this case there is no difficulty either, since the

transition is kept as such, except for potential stops in committed

location for emitting events of the kind NotReadyσ or Readyσ.

Proof of (S ′
2,E2,F2,Σ2, ) � (S1,E1,F1,Σ1,→1) This part of the proof is based

on thee same arguments (mainly the preservation of the invariants and the urgent

and committed status for the locations) and is left to the reader.

There remain two cases to manage to completely transform an HyTech au-

tomaton into an Uppaal automaton:

Rendez-Vous for Two For a label σ ∈ Mult that is shared by exactly two

automata A and B in a globally asap product of automata, the transformation is

straightforward:

• remove σ from Mult;

• put all edges of A labelled by σ in Out;

• put all edges of B labelled by σ in In;

• if there exist an edge e ∈ Asap such that its label is σ put σ in Urg;

There is no need to add any automaton to the product in this case. To convince

oneself of the correctness of this transformation, remember that in a globally asap

product, if one edge labelled by σ is in Asap, then all edges labelled by σ are in

Asap. Furthermore, in the result of the transformation, as in the original product,

one of the automaton can only fire a σ if the other do the same at the same instant.

Multiway Alone For a label σ ∈ Mult that is appearing only in the alphabet

of one automaton, there is an easy solution: put the label in the Broad set (since,

if it stays pairwise, it would need other automata to synchronize in Uppaal), and

possibly in Urg, if all the corresponding edges are in Asap.
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4.5 Tool Suite

We implemented a tool, called Elastic after the name of the language it handles,

for generating either HyTech or Uppaal specifications for the AASAP semantics

of an Elastic controller. The specification language for an Elastic controller is

an extension of the HyTech syntax for the specification of the automata. The

script language of our tool is also inspired by HyTech but is strongly reduced8.

As an example of the input files for our tool, Figure 4.9 presents the specifica-

tion of the running example of the previous chapter.

Comments on the specification syntax In the specification syntax for Elas-

tic, there are two types of automata, Elastic controllers and rectangular au-

tomata for the environment. The definitions are respectively introduced either by

the keywords elastic automaton or automaton.

The syntax for the environment automata is exactly the same as HyTech.

We even used a part of the syntactical analyzer of HyTech as a starting point

for our tool9. We thus refer the reader to the user guide of HyTech for this

part [HHWT95a].

The syntax of Elastic automaton is derived from the syntax of HyTech

rectangular automata. Instead of the declaration of synchronization labels with

the keyword synclabs, we allow the distinction between events, orders and internal

labels through the use of the keywords: eventlabs, orderlabs and internlabs.

Furthermore, we use the keywords put and get to differentiate edges labelled,

respectively, by an event or by an input. This distinction in the syntax of the

transition is not strictly necessary, since the type of each label is specified at the

top of the specification, but it does make the specification more readable.

Internal labels can be useful for allowing an observer to synchronize on some

internal action. At specification time, there is one type of label that is not available

for synchronization: the “viewing” input, denoted by a tilde in the previous chapter

(like α̃). It may come in handy to have an observer synchronizing on those symbols.

This is why we introduce the directive view that allows to fix in advance the name

used in practice for the viewing of an event, for example:

8Observe that, in fact, the script language for HyTech is Turing powerful.
9Which, by the way, made us program in C.
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define(alpha, 2) -- or 1

var

w, x, y : clock;

-*----------------------Controller----------------------------------*-

elastic automaton controller

eventlabs : B;

internlabs : ;

orderlabs : A, C;

initially c1 & w=0;

loc c1 :

when w>=1 put A do {w’ = 0} goto c2;

loc c2 :

when get B & True goto c3;

loc c3 :

when True put C goto c1;

end

-*----------------------Environment---------------------------------*-

automaton environment

synclabs: A, B, C;

initially e1 & x=0 & y=0;

loc e1: while True wait {}

when True sync A do {x’ = 0} goto e2;

when x>=alpha goto Bad;

when True sync C goto Bad; -- for input enabledness

loc e2: while y<=1 wait {}

when y>=1 sync B goto e3;

when x>=alpha goto Bad;

when True sync A goto Bad; -- for input enabledness

when True sync C goto Bad; -- for input enabledness

loc e3: while True wait {}

when True sync C do{y’=0} goto e1;

when x>=alpha goto Bad;

when True sync A goto Bad; -- for input enabledness

loc Bad: while True wait{}

end

init := param[controller]=1/5 ;

bad := loc[environment] = Bad ;

Figure 4.9: Concrete Elastic specification of the running example of Chapter 3.
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view[up]=getup;

With this mechanism, one can add an observer synchronizing on getup, as in the

case study of the next section.

Two methodological remarks about observers automata need to be made at

this point: for the correctness of the whole methodology, they are not allowed to

constrain in any way the value of the variables of the environment or controller

and they should be input-enabled, so as to allow any transition of the observed

automata.

To summarize, the main differences with the HyTech syntax are the fol-

lowing: there is no invariants in Elastic automata, since they are assumed to

move AASAP and the labels of an Elastic controller are divided between inputs,

outputs and internals.

The script language is basic. Each controller has a parameter bounding its

speed, which can be fixed using special directives:

init := param[sender]= 0 & param[receiver]=0;

The bad states are specified using the keyword bad and the same language that

HyTech uses to specify regions, for example:

bad := loc[checkOutput] = cerror ;

The use of the tool is really simple; there are three possible options:

1. -H for generating a HyTech specification (this is the default.)

2. -U for generating an Uppaal specification (if not specified, values of the

parameters are set to 0.)

3. -C for generating C code for BrickOs [Nie00]. We will give more details

about this code generation in the next chapter.

The workflow of the tool is schematized in Figure 4.10. The arrow from the

parameter(s) value to the box standing for elastic -H is dashed to mean that

those values are optional, since HyTech allows to ask parametric questions where

we do not need a value for the parameters. This has been explained in Section 3.4.1.
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Hytech Spec. of the Environment Elastic Spec. of The Controller(s) Parameter(s) Value Code Annotations for the Controller(s)

Elastic −CElastic −H Elastic −U

Hytech Spec. of the Environment

Uppaal Model of the AASAP Sem + Env

UppAal

Safety Result

Hytech Model of the AASAP Sem + Env

HyTech

(Parametric) Safety Result

C Code

Preservation Of Property 

Figure 4.10: Elastic workflow.
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Figure 4.11: Manchester encoding of 110100

The syntax for the code annotations and the process of code generation will be

covered in the next chapter.

The source code of the tool is currently (October 2006) available, with a set of

examples, at the address:

http://www.ulb.ac.be/di/ssd/madewulf/aasap/

We used this tool on the case study of the next section.

4.6 Case Study: the “Philips Audio Control Protocol”

Introduction Bosscher et al study in [BPV94] “a simple protocol for the physical

layer of an interface bus that connects the devices of a stereo equipment”. This

protocol was proposed by Philips engineers. The protocol is based on Manchester

encoding to transmit binary sequences on a wire between a single sender and a

single receiver. It uses time slots of fixed length.

Manchester encoding uses evenly spaced time slots. To transmit a 1, the sender

must let the signal go from low voltage to high in the middle of a slot and from

high to low for a 0. To repeat a bit, the sender is thus forced between two slots to

turn the signal off for a 1 or on for a 0. The receiver is not able to detect precisely

time instants when the signal goes down and then only relies on the UP signals to

decode the messages. This implies that a message has to begin by a 1 and that

messages ending in 10 or in 1 are not distinguishable without adding information

bits. Rather than adding bits, the protocol restricts messages to be either odd

in length or to end in 00. The Manchester encoding of the sequence 110100 is

illustrated in Figure 4.11. The unit of time of the protocol Q is defined to be a

quarter of a time slot needed to send a bit.

The difficulties to implement the protocol are the following:
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• although the receiver knows the length of a time slot, it does not know when

it begins;

• a receiver does not know the length of the bit string it is receiving;

• only UP signals can be reliably detected by our sensors;

• the sender and the receiver have digital clocks that have a finite granularity,

so there will be some imprecision in both sending and receiving times;

• in most operating systems sensors are polled periodically. As a consequence,

the time instant at which a bit is perceived can be substantially later than

the time instant it has been sent.

The first three difficulties should be solved by the logic of the protocol. The

last two difficulties are much lower level, and we would like to forget them when

designing a high level version of the protocol. This is exactly what the AASAP

semantics allows us to do.

Next, we present the idealized version of the protocol and how we modeled it

with two Elastic controllers: one for the sender and one for the receiver. Here,

the environment is an observer that compares the sequence of bits sent by the

sender with the sequence of bits decoded by the receiver. The observer reaches

the location error whenever the two sequences do not match.

Afterwards, we explain how we can use the AASAP semantics during the ver-

ification process and verify the robustness of the protocol. The robustness will

allows us to generate code that is correct by construction, as we will explain in the

next chapter.

Elastic models. Our modelling of the protocol can be found in Figure 4.12 for

the sender and in Figure 4.13 for the receiver (the complete Elastic specifica-

tion for this case study is given in Appendix A. There is an additional observer

automaton playing the role of the environment on Figure 4.14, that allows us to

verify the correct transmission of the bits (this observer was proposed by Ho and

Wong-Toi in [HWT95]). The unit of time of the model, noted U , is a quarter of the

time slot. This unit is not written in the constraints, to alleviate the presentation.

Observe that our modelling uses finite range discrete variables, which were not

included in the syntax of Elastic controllers in the previous chapter. This is
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Idle OneSent

ZeroSent

WaitOne

WaitZero

x := 0

p′ = 0

leng′ = 0

x := 0, p′ = 0

doublezero′ = 0

c′ = 1, leng′ = 1

UP!

x ≥ 12

DOWN!

i = 1 ∧ x = 2

x := 0

UP!

x = 2

x := 0, p′ =¬p

c′ = 2c + 1, leng++

i = 0 ∧ x = 2 UP!

x := 0

DOWN!

x = 2

x := 0, p′ =¬p

c′ = 2c, leng++

doublezero′ = 1

DOWN!

i = 0 ∧ x = 4

x := 0, p′ =¬p

c′ = 2c, leng++

UP!
i = 1 ∧ x = 4

x := 0, p′ =¬p

c′ = 2c + 1

leng++

doublezero′ = 0

p = 1

x := 0, p′ = 0

p = 1 ∨ doublezero = 1

x := 0, p′ = 0

doublezero′ = 0

Figure 4.12: The Sender automaton.
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Idle last is 1

last is 0

y := 0

m′ = 0

r′ = 0

y := 0

m′ = 1, r′ = 1

UP?

UP?

3 ≤ y ≤ 5

y := 0

m′ =¬m, r′ = 1

UP?

7 ≤ y

y := 0

m′ =¬m

r′ = 2

UP?

5 ≤ y ≤ 7

y := 0

m′ =¬m

r′ = 0

9 ≤ y ∧m = 1

y := 0

FINALZERO

9 ≤ y ∧m = 0

y := 0

m′ =¬m, r′ = 0

UP?

3 ≤ y ≤ 5

y := 0

m′ =¬m

r′ = 0

UP?

5 ≤ y ≤ 7

y := 0

r′ = 2
FINALZERO

7 ≤ y

y := 0

r′ = 0

Figure 4.13: The Receiver automaton.
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check

z ≤ 0

treating error

rcvOk =





(r = 0 ∧ leng = 1 ∧ c = 0)

∨ (r = 0 ∧ leng = 2 ∧ c ≤ 1)

∨ (r = 0 ∧ leng = 3 ∧ c ≤ 3)

∨ (r = 1 ∧ leng = 1 ∧ c = 1)

∨ (r = 1 ∧ leng = 2 ∧ c > 1)

∨ (r = 1 ∧ leng = 3 ∧ c > 3)

∨ (r = 2 ∧ leng = 2 ∧ c = 1)

∨ (r = 2 ∧ leng = 3 ∧ c = 2)

∨ (r = 2 ∧ leng = 3 ∧ c = 3)

updates =





z :== 0

leng′ = leng − (1 + (r div 2))

erase leftmost bit of c

FINALZERO

z :== 0

ŨP

z := 0

rcvOk

updates

¬ rcvOk

Figure 4.14: The Observer automaton.
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not a problem since all those discrete variables are bounded and thus could be

encoded in locations. For the sake of clarity, we did not do this. Furthermore,

as we have just explained, the tools that we are using allow the use of such finite

range discrete variables.

One can easily check that the sender automaton can send any sequence con-

forming to the protocol restrictions. Arrival in location OneSent (ZeroSent)

means the signal for a 1 (a 0) has just been sent. The clock x is used for the tim-

ing of the sequence. The discrete variable i is non-deterministically set to 1 or 0

each time a bit is sent (not shown on the figures). Its value determines which shall

be the next bit. The discrete variables p and doublezero encode respectively if the

current sequence is odd in length and if it ends with 00. Finally, the discrete vari-

ables c and leng are used to encode the bits that have been sent but not decoded

by the receiver yet. c simply encodes in an integer the binary word composed by

the last such bits and leng is the number of those bits. The decrementing of c and

leng is done by the observer automaton every time it succeeds in matching a sent

bit with a received bit.

The receiver automaton decodes its incoming UP signals by rounding its local

time, when it received the signal, to the nearest possible time it expects a signal.

This is what makes the protocol robust. If no signal is received in due time,

the sequence is interpreted as being complete. The discrete variable m is used

to encode the parity of the received sequence. It allows the receiver to know if

it has to complete a sequence with an additional 0 to conform to the protocol

restrictions. The discrete variable r encodes the one or two bits that were last

received. This variable is checked by the observer automaton against c and leng

of the sender to verify if the sent bits are the same as the received ones. The label

FINALZERO does not correspond to an event. It is an internal action done when

the receiver understands it must add a 0 to the sequence to end it. The observer

automaton then synchronizes on this label to know a new bit has been decoded.

As said before, the receiver does not synchronize on DOWN signals.

This modelling uses finite range discrete variables. This is not a problem since

all those discrete variables are bounded and thus could be encoded in locations.

For the sake of clarity, we did not do this.
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Parametric verification Using the transformation of section 4.3 we generate

for the sender and the receiver the HyTech specification of their AASAP se-

mantics following Definition 4.8. Those two semantics are noted [[Sender]]AAsap
∆1

and

[[Receiver]]AAsap
∆2

.

We can first check that if the protocol is executed in an idealized setting, that is

for ∆1 = 0 and ∆2 = 0, it is correct. This is formalized by the following question:

Reach([[Sender]]AAsap
0 ‖ [[Receiver]]AAsap

0 ‖ [[Observer]]) ∩ Bad =? ∅, where Bad are the

states in which the observer is in location error. With HyTech (or Uppaal),

we can easily show that this test is passed successfully by our modelling of the

protocol. If this verification had failed then we should have concluded that the

protocol was flawed in its logic.

To continue the study of the protocol and determine if it can be implemented,

we should check its robustness. In our context, we must determine what are

the maximum values of ∆1 and ∆2 which ensure that the system [[Sender]]AAsap
∆1

‖

[[Receiver]]AAsap
∆2

‖ [[Observer]] ∩Bad = ∅. Those maximal value will be expressed

in the unit of time U of the system that we have not fixed so far. Remember U

is a quarter of a time slot. By tuning this value, we can then maximize the

throughput of the protocol. We should then look for the smallest implementable

U on our implementation platform. For BrickOs, the value ∆LU (length of the

loop in the execution procedure) and ∆PU (precision of the clocks) can be set to

as low as 6 ms and 1 ms, see next chapter. To guarantee a correct implementation

of Sender (and Receiver), we need to have ∆ > 3∆L + 4∆P , and so ∆U > 22ms.

So, we know that ∆1U and ∆2U should be strictly below 22 ms. If ∆1 ≤ ∆2,

the infimum for U is 22 ms
∆1

otherwise it is 22 ms
∆2

. Now if we increase the value of one

of the parameters ∆i, the correct value for the other decreases. This is because

increasing the parameter value for the AASAP semantics of a controller strictly

increases its looseness, forcing the other to be more precise as compensation, which

corresponds to a smaller value for its parameter.

Using this fact, we can conclude that the best U for the system will be obtained

when ∆1 and ∆2 are equal.

Guiding HyTech with this information, by a parametric search, we found

that, for ensuring the correctness, the parameters must be strictly less than 1
4
U .

This search is not guaranteed to terminate in the general case (remember HyTech

uses a semi-algorithm) but it ended here. If it did not, we could have approximated
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Tool Constraint Result Time

HyTech

∆1 + ∆2 < 1/2 Safe 55s

∆1 = ∆2 = 1/5 Safe 50s

∆1 = ∆2 = 1/4 Unsafe 90s

Uppaal
∆1 = ∆2 = 1/5 Safe < 1s

∆1 = ∆2 = 1/4 Unsafe < 1s

Figure 4.15: Execution times for the different models.

this value as close as needed by a bisection search. In fact, we proved that a

sufficient condition to avoid the error state is that ∆1 +∆2 <
1
2
. Our initial guess

has been shown correct using HyTech by imposing the constraint and checking

that the error state is not reachable and then by imposing the negation of the

constraint and checking that any possible choice left is bad. Execution times of

different analysis are given in Figure 4.15. All experiments were conducted on a Bi

processor Linux station (two 3.06Ghz Intel Xeons with 4GB of RAM). Note that to

make HyTech terminate, we needed to give some initial constraints. Execution

times with Uppaal are very encouraging: the solved problems are simpler as the

models are not parametric but this problems are those to be solved in practice as

a precise parametric analysis is nice in theory but not required in practice (if the

target platform is fixed).

4.7 Conclusion and Related Works

In this chapter, we have shown how we are able to verify the AASAP semantics for

case studies that are more than toy examples, using HyTech and Uppaal.

To illustrate the efficiency of our model-checking approach, we tackled the well-

studied Philips Audio Protocol. It is interesting to trace the history of this case

study. It was first introduced in [BPV94] by Bosscher, Polak, and Vaandrager.

The emphasis was on the use of hybrid automata for specification and proof.

Their modelling is a bit different from ours, since they explicitly represent drift

of the clocks to account for all implementation problems. Under the assumption

that this is sufficient to represent all delays in the implementation, they prove the
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correctness of the protocol.

The next step was conducted by Ho and Wong-Toi [HHWT95a] who automated

the proof using HyTech. One important aspect of their work is that they used

their tool to find the maximum drift allowed on the clocks while still preserving

the correctness of the protocol. Thanks to the use of an automated tool they were

able to experiment more easily with the protocol and to find an improvement,

giving more tolerance to clock drifts.

Then, in [BGK+02], Pettersson and Larsen proved an extended version of the

protocol, with multiple senders and collision avoidance. The emphasis of this paper

is on performances improvement for Uppaal through the introduction of commit-

ted locations that allowed to verify more efficiently broadcast communications.

We used heavily this idea in this chapter.

The current chapter can be seen as a step forward in the analysis of the protocol,

since we were able to perform the verification for implementations with clock

drifts, but also, without the synchrony hypothesis. In such a case, where the

time scale of the protocol can be very close to the time scale of the platform, it

seems important to validate formally this hypothesis. We have also applied our

tool to the extended protocol with collision detection, presented by Pettersson

and Larsen, and obtained positive verification results, but in this case we are

reaching the limits of the verification tool: HyTech is not even able to build the

synchronized product of the automata and Uppaal seems to be limited by the

memory use, even if we obtained a positive result for the verification when the value

of the speed parameters is set to zero. We believe that the state space becomes

huge because of the interleaved behavior of the two senders. This could maybe be

fixed by using tools using partial order reductions (see [LNZ05] for example).

In the next chapter, we will progress further on this case study in showing how

we generated a code that is correct by construction for the Elastic specification

of the protocol.
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Chapter 5

Practical Real-Time Code

Generation

5.1 Introduction

In the previous chapters, we have handled the two most studied aspects of a

model-based approach : the specification language (and its semantics) and the

verification using model checking. We have put the emphasis on the necessity for

the specification to be implementable, i.e. that we can write an implementation

that preserves verified properties of the model, as long as we have a sufficiently

fast hardware at our disposal.

In this chapter, we handle the practical code generation for real-time con-

trollers specified as Elastic controllers. We will ask the designer to provide the

code fragments that implement the detection of events, and the commands of our

controller. From those annotations to the formal model, we will generate correct-

by-construction code, under the assumption that the annotations were correct and

that the speed of the implementation platform is sufficient. To put our approach

in concrete form, we need a platform on which we can perform some case stud-

ies. We choose the Lego Mindstorms, running the open source operating system

BrickOs [Nie00].

There is an important line of work in code generation from formal models (e.g.

finite automata) when there are no real-time constraints. Compiler construction

tools like lex and yacc could for example be considered as such efforts. For

some well known (more or less) formal languages, existing industrial tools (like

Rational Rose for UML) perform code generation, but the correctness is in gen-

eral not guaranteed an still depends on clever manipulations by the designers.

121
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For reactive systems, there exists synchronous languages (like Esterel [BC84],

Lustre [CPHP87], and Statecharts [Har87]) that offer rigorous approaches.

For formal models with real-time constraints, in industrial tools, the correctness

of the generated implementation, if any, often relies on hand waving arguments.

For example, in Simulink [Tew02], correctness issues are not satisfactorily han-

dled, more work being put in performance optimization problems. For example, a

problem that is not handled there is the scheduling for the generated code, while

this is critical for the correctness of the real-time implementation.

This is one methodological problem, but there are many others:

Modelling Language First, as we have seen in the previous chapter, the choice

of a good modelling language is not obvious. We need an expressive language

which still allows computer aided-verification. For this very reason, hybrid and

timed automata are the most frequently used formalisms. In this chapter, we

proceed with our Elastic language, which are essentially timed automata without

invariants.

Nondeterminism As we have seen before, nondeterminism in timed behavior

is a prerequisite for a controller to be implementable, if we do not work under the

synchrony hypothesis. We thus have to find a way for our programs to “implement”

this nondeterminism.

Furthermore, nondeterminism is often used in practice because the specification

models all behaviors of the system, not a particular one. For example, in the

audio control protocol of the previous chapter, nondeterminism is used to allow

the controller to emit any binary message. Obviously, an implementation for which

we do not control which message is sent is of no use. In practice, our tool will

handle the nondeterminism necessary for implementation in the timed behavior,

but it is up to the designer to resolve the nondeterminism in the discrete behavior.

He will have to be careful not to prevent the progress of the controller. One of the

original behaviors at least must remain possible at each moment.

Real Time Guarantees from Hardware and Software The platform we

use should offer some ways to guarantee real-time properties. The correctness of

our programs depends not only on a functional semantics of the implementation



Chapter 5. Practical Real-Time Code Generation 123

language, as for most discrete programs, but also on the real-time features of the

program and thus from the hardware and software that support it. The mode of

handling inputs can for example be of great importance: either through polling or

interrupts. The worst-case execution times (WCET) of each part of the code has to

be computed. This can be really difficult if the structure of the code is complicated

through the use of recursion, nested loops, function calls, concurrency and so forth.

This is a whole field of research by itself (see [FHL+01] for an example).

Input Handling One problem we will also have to solve is maybe more depen-

dent on our Elastic language: the treatment of inputs. In the AASAP semantics,

the communication of a controller with the environment is abstracted through the

use of input events. In practice, we will seldom have environments feeding the

controller with binary information, like buttons pushed, for example. Often, the

controller will poll the environment through sensors of temperature, light, speed,

and so forth. An event in this case will generally be that a value has exceeded

a certain threshold. We must be sure that such an event is not missed because

of a polling mechanism. One can imagine a temperature sensor behaving like a

medical thermometer that keeps showing the highest reached temperature until it

is reset. This kind of sensor can not really miss a threshold but more common

sensors proceed by polling the value and could easily miss a threshold by polling

the value only before and after the threshold is exceeded, see Figure 5.1 for an

illustration.

To ensure that the abstraction we made by using discrete events is correct, we

thus have to make some assumptions on the mechanism that generates them and

prove by some external argument that our reasoning is correct.

Handling Various Platforms For the methodology to be useful, we should

be able to generate code for various platforms. As a first example, we generated

code for the BrickOs platform, but other works have been conducted about code

generation from Elastic controllers to other platforms, like RTAI, a real-time

operating systems for personal computers [Maq06]. The main ideas explained in

this chapter apply for other platform.
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temperature Polling Interval

time

threshold

viewed eventmissed event

Figure 5.1: Events based on threshold can be missed when using polling.

Structure of the Chapter The rest of this chapter is structured as follows:

first, in Section 5.2, we introduce a slightly extended syntax for our Elastic con-

trollers, allowing the use of discrete variables. Second, in Section 5.3, we give the

needed specification of our implementation platform. Then, Section 5.4 explains

how one can annotate the controllers with fragments of code that mainly specify a

matching between events and the hardware. We then proceed in Section 5.5 with

the explanation of the mechanisms we use in the BrickOs operating system for

our implementation scheme. We are then ready to describe, in Section 5.6, our

implementation scheme and argue about its correctness, before we illustrate the

use of our tool on our main case study, the Philips Audio Control Protocol in Sec-

tion 5.7. We close the chapter, in Section 5.8, by some remarks on the generated

code for the protocol and a brief review of the literature.

5.2 Elastic Controllers with Discrete Variables

In this part of the thesis, as in the case study of the previous chapter, our Elastic

controllers are extended to manipulate finite range discrete variables.

We do not give their abstract syntax1 and semantics as they are really straight-

1For the interested reader, we gave examples of the concrete syntax in Figure 4.9 and in
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forward extensions of respectively the Elastic syntax (Definition 3.4) and the

AASAP (Definition 3.8) and program semantics (Definition 3.11) using the defi-

nitions of rectangular guards with discrete variables (Definition 4.1) and discrete

updates (Definition 4.2).

Let us just say that the set of edges of an Elastic controller with discrete

variables is defined as follows: Edg is a set of edges of the form (`, `′, g, σ, R,Update)

where `, `′ ∈ Loc are locations, σ ∈ Lab is a label, g ∈ Rectc(Var) is a guard,

R ⊆ Var is a set of clocks to be reset and Update ∈ Disc(D).

Furthermore, let us remind the reader that we assume that every discrete vari-

able takes its values in a finite range and could thus be encoded through a de-

multiplication of the locations of the controller. These variables add no expressive

power to our controllers. They are just a very convenient syntactic addition to the

Elastic syntax, that allows a more natural representation of timed controllers.

5.3 The Hardware

The Lego Mindstorms were originally designed as toys for learning robotics and

programming. The main part of the system, called the RCX (Robotics Com-

mand System), is shaped like a big Lego brick, approximatively 10cm long (see

Figure 5.2), and is a perfect example of an embedded system. It has a 16 MHz

microprocessor with 32K external RAM, and three input gates for connecting sen-

sors (touch, light, etc.), and three output gates designed for connecting motors.

Finally an IR port allows to communicate with a computer or other RCX bricks.

Programs have to be downloaded to the RCX from an office computer. RCX is

somewhat tedious to program since there are very few debugging facilities : you

can only use a very small screen (5 characters) or the data sent to a computer

to get information on the program executing. Nevertheless, it is possible to in-

stall an operating system and to choose a programming language : the classical

configurations2 are C/C++ under BrickOs and Java under lejOS.

Because of all those features and low cost, Lego Mindstorms have been broadly

used in research and teaching [AFP+03, IKL+00, Pro98].

Appendix A.
2In the following, we choose to use BrickOs because lejOS imposes the use of a virtual

machine that was too demanding in terms of resources for our implementations.
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Figure 5.2: Two Lego Mindstorms Bricks connected by a wire

5.4 Annotation of an Elastic Specification

During the implementation process of an Elastic controller, the designer will

have to provide the code for handling inputs and outputs, and to restrict the

nondeterminism.

This code is organized in a set of annotations given as an appendix to the

Elastic model (which concrete syntax has been sketched in Section 4.5). The

original Elastic model is thus not modified.

We give now informally the syntax and the intended use of each annotation,

and illustrate each annotation syntax through an example:

1. Global Declarations: the code written here includes the declaration of

additional variables, functions needed in other annotations, and so forth...

This annotation is parameterized by the name of the controller, since there

can be many controller specifications in one Elastic file.

Example:

DECLARATIONS sender :
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%{

int message []={1,1,0,1,0,0};

int j;

%}

2. Controller Initialization: This is where the designer can initialize the vari-

ables he needs or allocate resources. This annotation is also parameterized

by the name of the controller.

Example:

INIT sender :

%{

j=0;

%}

3. Input Handling:

In this annotation, the designer has to provide a boolean function that is true

when the corresponding event has arrived. This is the most tricky part of the

annotations for the designer, as he must ensure that each event is detected

once and only once. The following example illustrates this problem:

DETECT button :

%{

bool button_pressed()

{

if (buttonPressedBefore)

{

if (! TOUCH1)

buttonPressedBefore=false;

return false;

}

else

{

if (TOUCH1)
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{

buttonPressedBefore=true;

return true;

}

else

return false;

}

%}

In this code, the designer wants to detect if a button is newly pressed and can

only check, through the PUSH1 macro of BrickOs, if a button is currently

pressed. Thus the program must have memorized the state of the button the

last time it checked it. This is done through the use of the boolean variable

buttonPressedBefore. It is now easy to see if the event “the button has

just been pressed” has happened : it is the case if the button was not pressed

before and is pressed now. Using this memory ensures that an event is not

detected many times, but to ensure that an event is indeed detected once, we

must know the frequency of the calls to the function button_pressed() and

the minimal length of a pression on the button. The designer must check

those informations by himself.

4. Input Actions: In this annotation, the designer puts the code that is exe-

cuted every time an edge (`, `′, g, σ, R,Update) is fired, where σ is the label

of the annotation and is an input label. The code for input actions will be

executed after the clocks in R have been reset and updates Update have been

executed.

Example:

GET UP

%{

i=message[j++]

%}

5. Output Actions: This annotation is very similar to input action, except

that it applies to output actions. Observe that we could not have chosen a
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common keyword for inputs and outputs, as used in the Elastic language,

since we need to differentiate the cases where the label is the input of one

controller or the output of another one. The code for output actions is

executed after the possible resets of the clocks and updates to the discrete

variables of the controller.

Example:

PUT MOTORON

%{

motor_b_dir (FWD);

motor_b_speed (MAX_SPEED);

%}

6. Restriction of Nondeterminism through Guards: Code added here

must return a boolean value. This function will be added to the code eval-

uated when the guard of the transition is fired. This allows the reduction

of nondeterminism. In this code, the user is allowed to read the discrete

variables of the Elastic model, knowing that they are implemented using

integer variables.

Example:

RESTRICT loc1 TO loc2

%{

bool iIsEven()

{

return (i%2==0);

}

%}

There is really a danger that the code added here modifies completely the

timed behavior of the implementation. For example, a restriction could

completely forbid an action a that was always chosen in some location ` , and

this way force another action b that never happened in the AASAP semantics

of the controller because a was always chosen first. This is why we said
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in the introduction that the reductions of nondeterminism provided by the

user should always keep one of the possible behaviors at any moment. More

formally, for any reachable state in the AASAP semantics of the controller,

if there are many edges enabled, the reductions to nondeterminism must

keep at least one of those edges enabled. We will give an example of such

reductions in our case study about the Philips Audio Control Protocol.

7. Discrete Variable Hiding: This annotation is in some sense an optimiza-

tion : it allows to specify which variables should not appear in the implemen-

tation. This is typically useful for variables used in the Elastic specification

only for the communication with observers. It is not necessary that the tool

provides the code for those variables in the practical implementation. For

example, in the Audio Control Protocol, the receiver stores the two last bits

received in a variable C, so that the observer can check that those two bits

are the same than what was sent. It is not useful to keep this variable in the

implementation.

Example:

HIDE : C, LENG;

Care must be taken not to hide variables that are meaningful to the imple-

mentation.

8. Time Scale: One final piece of information needed is the unit of time of

the specification. This is provided through the directive unit. The value

provided is assumed to be a multiple of the millisecond. Thanks to this

information, we will be able to scale the constants of the Elastic model

for the BrickOs platform. In our framework, where only one type of hard-

ware is handled, this is a sufficient information; but for a PC for example,

a lot more parameters have to be provided, e.g. granularity of the clock

(see [Maq06]).

Example:

unit : 100;
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Observe that there is no cleanup code in the annotations. This seems natural

since the whole purpose of Elastic controllers is to model reactive systems that

interact infinitely often with an environment.

One other type of annotation that we could have added is some code for specific

edges. We did not do that because we try to keep a clear separation of concerns

between implementation and verification and this would have forced us to add an

identifier to each edge, which is not useful at the level of the Elastic language.

5.5 Implementation Platform: BrickOs

BrickOs [Nie00] is an open source operating system for the Lego Mindstorms,

available at http://brickos.sourceforge.net (in October 2006). It can be up-

loaded on the brick, along with user programs, through the infrared port. The

programming environment, including the uploader, a cross-compiler3 and a com-

munication daemon runs on either Linux or Windows.

BrickOs allows the use of multiple threads and respects the posix standard for

semaphores. A semaphore is an integer variable for which there is a special “test

and set” atomic operation and a queue of waiting threads. It can be used to manage

the concurrent access to a resource. The terminology we use about semaphore

says that a semaphore is posted when it is incremenented and consumed when it

is successfully reset. For our implementations we added one operation that allows

test and set of two semaphores atomically4 and that is depending on a rectangular

predicate on the variables of the program. This allows us to test for an edge for

which, at the same time, the source location and the input are available and the

guard is true.

BrickOs allows preemptive multitasking with a prioritized round-robin schedul-

ing policy, i.e., each thread has its own priority and amongst threads of the same

priority the CPU is allocated for the same amount of time, called a timeslice, to

each one in turn, cyclically. A thread can yield the cpu back to the scheduler at

any time, using a dedicated function.

BrickOs has only one interrupt and it is triggered by the timer every ms (this

value can be customized). The handling of input and sharing of the processing

3 The compiler is on a personal computer but creates binaries for the Mindstorms
4The atomicity is obtained by making the code execute while interruptions are disabled.
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Figure 5.3: Possible states for a thread in BrickOs (TS stands for timeslice)

power are based on those interrupts. At every interrupt, BrickOs polls the

memory zones corresponding to the inputs and possibly updates the zone that

corresponds to outputs (e.g. setting the speed of the motors). Finally, BrickOs

checks if the time that has been allocated to the current process is still smaller

than the maximum timeslice and calls the scheduler if this is not the case. One can

customize the value of the timeslice between 6 and 255 ms, 20 being the default

value.

A thread can be in five states for the scheduler:

• running : the thread is running;

• sleeping : the thread is idle but ready to run;

• waiting : the thread is idle because it is waiting for something to happen:

in our case either a timeout, the posting of a semaphore or a new value for

some input.

• dead : the thread has finished its work and its memory stack has been deal-

located;

• zombie: the thread has finished its work but its memory stack is still allo-

cated;

We have illustrated in Figure 5.3, for the first three possibilities, the transitions

from one state to the other. We are not much interested in the last two possibilities
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since, in the programs we will generate, each thread will stay alive forever.

Every time a thread finishes its work or begins to wait, the scheduler is called.

Observe that this means that calls to the scheduler can be very frequent, if the

execution time of each thread before a wait is short.

A thread is put to sleep every time it has consumed a whole timeslice and

another thread of superior or equal priority is ready to run.

During the execution of the scheduler, interruptions are disabled. This is the

mechanism used for ensuring non concurrent accesses to a semaphore : only the

scheduler accesses those special variable and, while it is executing, nothing can in-

terfere. This is why we will move much of the critical actions of our implementation

to the scheduler.

5.6 Implementation Scheme and Correctness

5.6.1 Architecture of the Generated Code

Several implementation schemes are possible for Elastic controllers, as long as

they mimic the program semantics. Remember that the program semantics can

be seen as a formal semantics for the following procedure, interpreting Elastic

controllers, that repeatedly executes what we call execution rounds. An execution

round is defined as follows:

• first, the current time is read from the clock register of the CPU and stored

in a variable, say T;

• the list of input events to be treated is updated: the input sensors are checked

for new events issued by the environment;

• guards of the edges of the current location are evaluated, using the value

stored in T. If at least one guard evaluates to true then take nondeterminis-

tically one of the enabled transitions;

• the next round is started.

We will mimic this functioning by using the mechanisms offered by BrickOs.

Semaphores will be used as binary variables for two kinds of objects, location of

the automaton and incoming events:
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• A location semaphore is posted when the control of the automaton is in

the corresponding location. We need to be sure that two transitions cannot

be fired concurrently and we obtain this behavior by making the current

location a resource impossible to share concurrently.

• An event semaphore is posted by special environment threads, when the

corresponding event has occurred. Those threads are essentially infinite loops

running the code for the detection of events provided by the designer. In

this case, we use semaphores as we want to avoid problems with concurrent

reads and writes.

Handling Clocks, Discrete Variables and Guards: Clocks and guards

are dealt with very similarly, as in the implementation semantics for Elastic

automata (Definition 3.11). The value of every clock is based on the unique system

clock. With each clock c is associated a variable xc that can store values of the

system timer. The operation corresponding to a reset of the clock x in the practical

implementation is to assign to the variable xc the value of the system clock, that

we denoted by T ime, at the beginning of the last execution round. Then, when

in a guard of the controller, we test if c < k, for k ∈ N, the corresponding

operation in practice is T ime− xc < k. We furthermore enlarge the guards as in

the implementation semantics, using parameters ∆L and ∆p for which we will give

values a little later.

The discrete variables appearing in the models are straightforwardly imple-

mented using integer variables.

Useful BrickOs Primitives: In the following, besides basic control structures

and the function accessing to the inputs and outputs, that are provided by the

users, we will only use very few primitives of the operating system. We present

them here in an abstract fashion:

• wait event(f) is a function used by a thread to signal that it is waiting

for some event specified by the function f. After the call, the status of the

thread is made waiting and the scheduler gets back the cpu. The event that

the thread is waiting for is specified by the boolean function f which must

return true when the event has happened. f is called a wakeup function.
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Those wakeup functions are executed atomically by the scheduler and should

thus have a very short WCET. When they return true, the scheduler gives

back the cpu to the waiting thread.

• wait event(`, g, restrict, σ) is a modified version of the wait event(f) func-

tion we explained before. The difference is that this function makes the

current thread waiting for the availability of the semaphore associated to

location ` , the availability of the semaphore associated to event σ and the

satisfaction of the rectangular guard g and of the boolean function restrict,

which use we will explain later. The semaphore for the event can be omitted

if necessary, and we write wait event(`, g, restrict) in this case. The func-

tion has also the side effect of storing the value of the system clock used to

evaluate the guards in a global variable T .

• clearTimers(R) is a function that performs the resetting of the clocks in

the set R. The value given to all the clocks in R is the value hold by the

global variable T (that is the value of the system time at the beginning of

an execution round);

• execute(σ) is a function that simply executes the code associated to the la-

bel σ (through the get and put directives) in the annotations to the Elastic

model ;

• sem post(s) is a function which increments the value of the semaphore s.

• do update(Update) is a function that performs the discrete updates speci-

fied by the updates in Update ∈ Disc(D).

Threads Structure The controller will be built from many threads: one thread

per different input label and one thread per edge of the automaton.

Each input label will have a separate thread (called an input thread in the

following) in charge of its management. Every time it is launched, it will consume

its event if it has arrived, and put the corresponding semaphore. Each input edge

follows the pattern of Algorithm 1. It is an infinite loop, setting the semaphore σ

every time the thread gets the cpu from the scheduler because the boolean function
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Algorithm 1: Code for the input thread of σ

begin

while > do1

wait event(event has arrived(σ));2

sem post(σ);3

end

event has arrived(σ) is true. This is the function provided in the annotations,

precisely in the annotation beginning with DETECT σ.

For each edge of the automaton, we define a thread (called an edge thread) fol-

lowing the pattern of Algorithm 3 if it is labelled by an input label, or Algorithm 2

if it is labelled by an output label.

For an output edge (`, `′, σ, g, R), the thread is woken up whenever the semaphore

for ` is available and a modification of the guard g is true. This modification is

obtained through first the removal (using function hide) of any discrete variable

that has been hidden in the annotation, modulo the enlargement of the rectangular

predicate on clocks, as in the implementation semantics.

Once awake, the semaphore for ` having been consumed, the thread resets the

variables associated to the clocks of R, performs the discrete updates (modified

accordingly to the hide directive) and executes the code that was associated to

the label σ in the annotation (through the put σ annotation).

Finally, the thread sets the semaphore associated to location `′ and gives the

cpu back to the scheduler by a call to wait event(`,∆S
[hide(g)]∆S

, restrict).

For an input edge (`, `′, σ, g, R,Update), the thread is very similar, except that

it awaits for one additional semaphore : the one that signals that the event σ has

arrived. Observe that the guards are enlarged, as in the implementation semantics,

by the value ∆S = d∆L + ∆P e∆P
.

The edge threads have all the same priority which is inferior to the priority used

for all input threads. The scheduler thread structure thus looks like Figure 5.4.

Each time the scheduler is called, it first checks the waiting condition of each input

thread and executes them if one input has arrived. It is important here that events

cannot repeat so closely in time that we never reach the priority level of the edge

threads (it would be a kind of thrashing).
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Algorithm 2: Code for the edge (`, `′, σ, g, R,Update) (for σ ∈ Labout)

begin

while > do1

wait event(`,∆S
[hide(g)]∆S

, restrict);2

clearTimers(R);3

execute(σ);4

do update(hide(Update));5

sem post(`′);6

end

Algorithm 3: Code for the edge (`, `′, σ, g, R,Update) (for σ ∈ Labin)

begin

while > do1

wait event(`,∆S
[hide(g)]∆S

, restrict, σ);2

clearTimers(R);3

do update(hide(Update));4

execute(σ);5

sem post(`′);6

end
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P1

P2

Input Thread 1 Input Thread 2 Input Thread n

Edge Thread 1 Edge Thread 2 Edge Thread n

Figure 5.4: Thread structure of our implementations of Elastic controllers

After all possible inputs have been handled, one edge thread at most is run

before the inputs are checked again. Why one at most ? Because when it ends,

the scheduler restarts its run through the threads structure by the highest priority

levels, thus checking for new inputs. This is the way we match the program

semantics, since this mechanism ensures that all inputs are checked between the

traversal of two consecutive edges. To be totally sure that this is exactly what

happens, we will have to make some assumptions on the WCET of one loop of the

input and edge threads. We will elaborate more about this in the next section.

In this scheme, the execution round of the implementation semantics is in fact

mainly executed by the scheduler: it performs all the checks for the arrival of events

and satisfaction of guards. The only code that is not executed by the scheduler is

the code of the edge threads.

5.6.2 Correctness of the Generated Code

We want to argue the correctness of our generated code under the assumption

that the AASAP semantics of the controller given in the specification has been

proven correct for some safety property and for some strictly positive value for

∆, the parameter of the AASAP semantics. The correctness of the code is due

to the direct matching with the implementation semantics, for which we have

proven that it is simulated by the AASAP semantics of the Elastic controller at

hand. Nevertheless, to ensure that our implementation indeed corresponds to the

implementation semantics we need to know a number of additional informations,
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namely the WCETs of every part of the code:

• the WCET of each edge thread, and for that we will need :

1. the WCET of the operations wait event(), sem post(), clearTimers()

and do update()

2. the WCET of each annotation of the code;

• the WCET of the scheduler before giving the cpu to a thread;

• the WCET of each input thread;

As stated before, the computation of worst-case execution time is a field by

itself and we will not fully tackle this problem here. We will assume that the time

required by the scheduler for checking all input threads and edge threads waiting

conditions is less than 1 ms, thus meaning that all guards are checked for the

same value of the system clock (assuming its granularity has been set to 1ms),

which fits well with the program semantics. Since the guards are enlarged by ∆S

and since the value used to evaluate the guards is stored in a global variable T

when a guard is true, and since this value is the one used to possibly reset clocks,

our implementation scheme complies with the implementation semantics for the

management of the clocks.

We furthermore assume that the time additionally needed by the edge thread

(the one possibly scheduled) never outreaches the timeslice (that we set to be 6

ms), and thus that the thread is never preempted but instead always gives the hand

back to the scheduler by itself. This seems reasonable, as we assume to be in a

framework of simple timed controllers, where no time consuming computation has

to be performed: 6 ms of time for a processor (the Hitachi H8/300L), running at

16MHz with at most 14 cycles per instruction ([Hit]), means the possible execution

of at least 6857 cpu instructions.

This means in the methodology that for the BrickOs platform the values of

the parameters ∆L is set to 6ms and the value of ∆P is set to 1ms.

We have the sufficient condition that ∆ > 3∆L + 4∆P for the implementation

to be correct (see Theorem 3.2 for a reminder.) This condition was known from

the previous chapters, but there are other conditions for the implementation to be

correct :
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• the insurance that no event is missed, that is that the input-checking func-

tions never miss any event;

• the insurance that the restrictions to nondeterminism have kept the controller

reactive, that is the controller has kept in any situation at least one of the

many behaviors that were allowed initially;

• the insurance that all added code is free of run-time errors and terminating

(this can be included in the WCET request);

We will now illustrate the checking of those conditions on our case study, the

Philips Audio Control Protocol.

5.7 Case Study: the Audio Control Protocol

As a case study, we have implemented the Audio Control Protocol presented in

the previous chapter (Section 4.6). We connected two Lego Mindstorms Bricks,

one being the sender and the other the receiver. To connect the two Bricks, we

use a wire plugged to an output gate of the sender and to an input gate of the

receiver (see Figure 5.2). We then annotated the Elastic model explained in the

previous chapter. This model and its annotation with BrickOs code is given in

Appendix B.

In practice, on one hand, our implementation of the sender sends again and

again the same message that is given in an array of integer:

int message[]= {1,0,1,1,0,0,1,1,1,1,0,1,0,0};

On the other hand, the receiver checks the message he receives against the awaited

message and simply puts “OK” on the lcd screen of the brick if there is a perfect

match.

We now describe the annotations and explain how they satisfy the constraints

listed in the previous section, so that we can be confident that the code generated

by the Elastic tool is correct by construction.

Handling inputs and outputs: First, to put some voltage on a wire, that is

to create an UP event, we simply use the function provided by BrickOs to turn

a motor on:
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put up :

%{

motor_b_dir (brake);

motor_b_speed (MAX_SPEED);

%}

For a DOWN event, we simply use the code for turning a motor off:

put down :

%{

motor_b_dir (brake);

motor_b_speed (MIN_SPEED);

%}

In the Audio Control Protocol, there is only one input : the UP event. To detect

this input, we provide the boolean function isUp of Figure 5.5. The presence of

an electric current on the wire is tested as if it was a button pushed, using the

TOUCH1 macro (provided in BrickOs). The principle is very simple: if there is

a current, and there was not before, then there has been an UP event. We use

the lastWasUp boolean variable to store the previous state of the current on the

wire. Since this function is checked every 6 ms at least, the controller cannot miss

an UP event since the length of the emission on the wire is always strictly greater

than 88ms, which is the lower bound on the unit of time of the protocol as we will

explain very soon.

The handling of the UP events by the receiver is then specified through the

following annotation:

get up :

%{

switch(r)

{

case 0:

break;

case 1:

{

received[i]=1;
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detect up :

%{

bool getup()

{

if (lastWasUp)

{

if (TOUCH_1)

return false;

else

{

lastWasUp=false;

return false;

}

}

else

{

if (TOUCH_1)

{

lastWasUp=true;

return true;

}

else

{

return false;

}

}

}

%}

Figure 5.5: Detection Function for the UP event

i++;

break;

}
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case 2:

{

received[i]=1;

received[i+1]=0;

i=i+2;

break;

}

}

%}

This fragment of code uses the r variable, which encodes, in the Elastic model,

the value of the last bits decoded every time an UP has been seen (see Section 4.6

for a reminder).

Handling Nondeterminism: The Elastic model of the sender in the Audio

Control Protocol uses nondeterminism to allow the sender to send any binary

message. This was done by setting nondeterministically the variable i to 1 or 0 in

an annex automaton, and testing this variable to decide the next bit to send (see

Figure 4.12 in the previous chapter).

In practice, we want our implementation to send one precise message. This

has been resolved very simply by eliminating the test on the i variable from the

sender automaton using the hide directive and by replacing, using the restrict

directive, each test on i by a call to a function testing the next bit.

For example, the test i = 1 on the edge from OneSent to WaitOne is replaced

by a call to the function oneNext():

restrict OneSent to WaitOne

%{

bool oneNext()

{

return (j<M_SIZE && message[j++]==1);

}

%}

In the code of this function, j is the number of bits that have been sent in the

current message, M_SIZE is the length of the message and message is the array
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holding the sequence of bits to send.

A function zeroNext() is defined similarly for edges where the test i = 0

appears.

One can easily check that the restrictions we made to the nondeterminism will

not allow more behaviors of the implementation than what was allowed in the

Elastic model.

Correctness of the Code To argue the correctness of the code generated, we

have to address five points:

1. the WCETs of the different parts of the code

2. the detection of events;

3. the reductions to nondeterminism;

4. the correctness of the added code;

5. the satisfaction of the constraints between ∆ , ∆P and ∆L for the Elastic

controller at hand;

For the WCETs, the code provided in the annotations seems sufficiently short

to satisfy the assumption that all WCETs are very low and that the firing of an

edge will never demand more than 6857 assembly instructions.

We have already explained how we address the detection of inputs and the

reduction of nondeterminism correctly. For the correctness of the added code,

only a careful reading of the annotations , that are given in Appendix ??, will

convince the reader. Note that the work is not very heavy, since the length of

the annotations is only about 150 lines of code. It is interesting to compare this

number with the number of lines of code for the generated code : about 400 lines

of code for the sender and 650 for the receiver, which is pretty close to the lengths

of a first implementation we made “by hand”.

Finally, we must check the satisfaction of the constraint ∆ > 3∆L + 4∆P . As

for our implementation platform ∆L = 6ms and ∆P = 1ms, this imposes that

∆ > 22ms. On the other hand, remember that for the correctness of the AASAP

semantics of the protocol, we must have ∆ < U
4

where U is the unit of time of the
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protocol. We thus have a lower bound on U of 88ms for us to be able to guarantee

the correctness of the implementation.

Thus, provided the unit of time of the protocol is not too low, the code gener-

ated by the Elastic tool for the Audio Control Protocol is correct by construction

and can safely be executed on a pair of Lego Mindstorms
TM Bricks as an al-

ternative communication means with real-time guarantees. For that, it suffices to

give the highest level of priority to the protocol to ensure its real-time behavior.

This should not spoil the behavior of other applications running on the Brick as

the resources needed by the protocol are very low.

Now, let us look at the performance of the protocol in our implementation,

even if, in real-time, the main concern is generally not speed, but the respect of

the timing constraints. The throughput obtained, when the length of the sequence

goes to infinity, is around 2.84 bits per seconds (because of the constraint that

a quarter of a time slots require at least 88ms). This may look quite low and

we could think that a far better throughput could be obtained by a hand-made

implementation. But this is not the case. Indeed, we can show, using the results of

Ho and Wong-Toi [HWT95], and by taking into account only the imprecision due

to reading on digital clocks every time slice, that the throughput of the protocol

on Lego MindstormsTM is bounded from above by around 4.16 bits per seconds.

So, the price in term of performance loss to obtain automatically generated and

correct code is not too high in our opinion. Let us also note that we were only able

to find error by testing when the throughput was set around 7 bits per seconds.

That shows the limit of testing, at least when done in a naive way: our simple

testing program was not able to provoke the worst-case scenarios analysed through

model checking.

5.8 Conclusion

Let us close this chapter by a summary of some interesting works about code gen-

eration for real-time specifications in the literature. The main difference between

those works and ours is that they use the synchrony hypothesis:

• Alur et al have considered the problem of generating code from models of

hybrid systems specified in the language Charon [AIK+03]. The differences
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with our work are the following: first, they allow communication between

environment and controllers using shared continuous variables, where we

have opted for an abstraction of those mechanisms using discrete events.

Second, the correctness of their work relies on the synchrony hypothesis.

They consider for example that the computation of a control law takes no

time. Finally the emphasis is also put in this work on the reusability and

the hierarchical structure of the specifications.

• In this chapter, we use systematically the same fixed priority scheduling al-

gorithm, but other options have been the subject of recent research works.

Notably, in [AC05], Alur et al have studied platform independent code gen-

eration, where a “dispatch sequence” of the different tasks is established

depending on the interdependances between tasks. This dispatch sequence

can then be tested for schedulability on different platforms. This idea could

be adapted to the implementation of Elastic controllers.

• The Times tool [AFM+02] offers the generation of code from models spec-

ified as timed automata [AFP+02] but the emphasis of this work is more

on a generalization of classical scheduling techniques. The scheduling pol-

icy and the pattern of arrivals of the tasks are specified through the use of

timed automata. The launch of a task can be associated with some edges of

the automaton, which allows much more complex patterns than the classi-

cal periodic patterns. The authors proved the decidability of the resulting

scheduling problem [FPY02] and provide an implementation based on the

Uppaal verification engine. This work uses the synchrony hypothesis im-

plicitly, but could still model switching times between tasks through the

timed automata modelling the scheduling policy.



Chapter 6

Games of Imperfect

Information

6.1 Introduction

Consider that we have a hybrid system modelling a plant: the controller state

moves discretely between control modes, and in each control mode, the plant

state evolves continuously according to physical laws. The distinction between

continuous evolutions of the variable and discrete switches of the controller state

(which is given by the location, or control mode, of the hybrid automaton) permits

a natural formulation of the safety control problem: given an unsafe set U of plant

states, is there a strategy to switch the controller state in real time so that the plant

can be prevented from entering U? In other words, the hybrid automaton specifies

a set of possible control modes, together with the plant behavior resulting from

each mode, and the control problem asks for deriving a switching strategy between

control modes that keeps the plant out of trouble.

In the literature, there are algorithms or semi-algorithms (termination is not

always guaranteed) to derive such switching strategy. Those semi-algorithms usu-

ally comes in the form of symbolic fixed point computations that manipulate sets

of states using a well-suited monotonic function like the controllable predecessor

operator [AHK02, MPS95]. Those algorithms make a strong hypothesis: they

consider that the controller that executes the switching strategy has a perfect in-

formation about the state of the controlled system. Unfortunately, this is usually

an unreasonable hypothesis. Indeed, when the switching strategy has to be imple-

mented by a real hardware, the controller typically acquires information about the

147
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state of the system by reading values on sensors. Those sensors have a finite preci-

sion, and so the information about the state in which the system lies is imperfect.

Let us illustrate this. Consider a controller that monitors the temperature of a

tank, and has to maintain the temperature between given bounds by switching on

and off a gas burner. The temperature of the tank is the state of the continuous

system to control. Assume that the temperature is sensed through a thermometer

that returns an integer number and ensures a deviation bounded by one degree

Celsius. So, when the sensor returns the temperature c, the controller only knows

that the temperature lies in the interval (c − 1, c + 1) degrees. We say that the

sensor reading is an observation of the system. This observation gives an imperfect

information about the state of the system.

Now, if we fix a set of possible observations of the system to control, the control

problem that we want to solve is the safety control problem with imperfect infor-

mation: “given an unsafe set U of plant states and a set of observations, is there

an observation based strategy to switch the controller state in real time so that

the plant can be prevented from entering U?”. While it is well-known (see [Rei84])

that games of perfect information can be won using memoryless strategies, this is

not the case for games of imperfect information. In his work, Reif studies games

of incomplete information, which are a subclass of games of imperfect information

where the set of observations is a partition of the state space. Notice that this is

not the case of our tank example since when the temperature of the water is d, the

thermometer, that returns only integer values, may return either dde or bdc. To

win such games, memory is sometimes necessary: the controller has to remember

(part of) the history of observations that it has made so far. In the finite state case,

games of incomplete information can be solved algorithmically. Reif proposes an

algorithm that first transforms the game of incomplete information into an equiv-

alent game of perfect information using a kind of determinization procedure. The

latter game is equivalent to the former in the sense that if there exist a winning

strategy for one of the game, there exists a winning strategy for the other.

In this chapter, we propose an alternative method to solve both the already

cited safety games, but also reachability games of imperfect (and incomplete)

information. Our method comes in the form of a fixed point (semi-)algorithm

that iterates a monotone operator on the lattice of antichains of sets of states. Our

method benefits from the monotonicity of the controllable predecessors operator to
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use this lattice instead of the classical lattice built from sets of subsets of the state

space, ordered by subset inclusion. Thus the greatest fixed point of this operator

contains exactly the information needed to determine the states from which an

observation based control strategy exists and to synthesize such a strategy.

This technique allows a great efficiency in finding strategies, and we proved it

experimentally by using the technique for the test of universality of finite automata.

Indeed, we reduce the universality problem to a two-player reachability game of

incomplete information. We implemented this solution using NuSMV [CCGR99]

and the CUDD library [Som98]. To compare the performance of the antichain

algorithm to the performance of various implementations of determinization based

algorithms, we used a large set of examples generated in the probabilistic frame-

work by Tabakov and Vardi [TV05]. This framework was proposed with the ex-

press purpose of comparing the performances of algorithms on finite automata.

In their experiments, the authors conclude that explicit determinization as im-

plemented in [Mø04] outperforms the algorithm of Brzozowski [BL80] as well as

newer implementations, which use symbolic methods for the determinization. Our

experimental results show that our implementation of the antichain algorithm is

considerably faster, on the entire parameter space of the probabilistic framework,

than the most efficient implementation of the standard algorithm. In particular,

on the most difficult instances of the probabilistic framework, the antichain algo-

rithm outperforms [Mø04] by two orders of magnitude. For this comparison, we

are limited to automata with approximately 175 states, which is the limit that the

classical approach, using a subset construction, can handle on the most expensive

instances of the probabilistic framework. On these difficult instances, the an-

tichain approach scales much better: we are able to successfully check universality

for automata with several thousands of states in less than 10 seconds.

Furthermore, we prove that our algorithm has an optimal complexity for finite

state games and we identify a class of infinite state games for which the greatest

fixed point of the operator is computable. Using this class of games and results

from [HK99], we show that the discrete-time control problem with imperfect in-

formation is decidable for the class of rectangular automata. Strategies that win

those games are robust in a sense, as they can be implemented using hardware

that senses its environment with finite precision.

Our fixed point method has two main advantages over the algorithmic method
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proposed by Reif. First, our method is a little more general than Reif’s one, since

we are able to handle games of imperfect information, which are more general than

games of incomplete information. Second, our method is always more efficient: we

even show that there are families of games on which the Reif’s algorithm needs

exponential time when our algorithm only needs polynomial time. Finally, thanks

to its fixed point form, our method is easily applicable to interesting classes of

systems like rectangular automata.

This chapter is structured as follows. In Section 6.2, we recall the definition of

the lattice of antichains. In Section 6.3 , we show how to use this lattice to solve

games of imperfect information. In Section 6.4, we give a fixed point algorithm

that is EXPTIME for finite state games, we compare it with the technique of Reif

and we show its efficiency in practice, by handling the universality test for finite

automata. Finally, in Section 6.5, we identify a class of infinite state games for

which we can still use our fixed point algorithm and use this result to solve games

of imperfect information for rectangular automata.

6.2 The Lattice of Antichains of Sets of States

First we recall the notion of antichain. An antichain on a partially ordered set

〈X,≤〉 is a set X ′ ⊆ X such that for any x1, x2 ∈ X
′ we have that x1 ≤ x2 implies

x1 = x2, that is X ′ is a set of incomparable elements of X. We define similarly a

chain to be a set of comparable elements of X.

Let q, q′ ∈ 22S

and define q v q′ if and only if ∀s ∈ q : ∃s′ ∈ q′ : s ⊆ s′. This

relation is a preorder but is not antisymmetric. Since we need a partial order, we

consider a set L ⊆ 22S

for which v is antisymmetric on L. The set L is a set of

antichains on 〈2S,⊆〉.

We say that a set s ⊆ S is dominated in q ∈ 22S

if and only if ∃s′ ∈ q : s ⊂ s′.

The set of elements of 2S that are dominated by elements of q is denoted Dom(q).

The reduced form of q is dqe = q\Dom(q) and dually the expanded form of q

is eqd= q ∪ Dom(q). The set dqe is an antichain of 〈2S,⊆〉. The relation v has

the useful following properties:

Lemma 6.1

Let q, q′ ∈ 22S

. If q ⊆ q′ then q v q′.
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Lemma 6.2

∀q, q′ ∈ 22S

, ∀q1, q2 ∈
{
q, dqe, eqd

}
, ∀q′1, q

′
2 ∈

{
q′, dq′e, eq′d

}
: q1 v q′1 is equivalent

to q2 v q′2.

We can now define formally L as the set {dqe | q ∈ 22S

}. From now on, we will

consider only the relation vL defined as v ∩(L× L). We will thus allow ourself a

little abuse of notation by omitting the L in vL.

Lemma 6.3

〈L,v〉 is a partially ordered set.

Proof

Clearly v is reflexive and transitive. We show that v is anti-symmetric on L,

that is ∀q, q′ ∈ L : q v q′ ∧ q′ v q ⇒ q = q′. Hence, we must show that q ⊆ q′

and q′ ⊆ q. Let s ∈ q. Since q v q′, there exists s′ ∈ q′ : s ⊆ s′. And since q′ v q,

there exists s′′ ∈ q : s′ ⊆ s′′. Thus s ⊆ s′ ⊆ s′′. Since s, s′′ ∈ q and q ∈ L, this

implies that s = s′′ and therefore s = s′ and s ∈ q′. Hence, q ⊆ q′. By symmetry

we have that q′ ⊆ q, hence q = q′.

Lemma 6.4

For q, q′ ∈ L, the greatest lower bound of q and q′ is

q
l

q′ = d{s ∩ s′ | s ∈ q ∧ s′ ∈ q′}e

and the least upper bound of q and q′ is

q
⊔

q′ = dq
⋃

q′e

.

Proof

On one hand, first, we show that q
d
q′ is a lower bound of q and q′. Let r ∈ q

d
q′.

Then r = s ∩ s′ for some s ∈ q and s′ ∈ q′. Hence, r ⊆ s and r ⊆ s′ and

so q
d
q′ v q and q

d
q′ v q′. Second, we show that for any q′′ such that q′′ v q

and q′′ v q′, we have q′′ v q
d
q′. Let s′′ ∈ q′′. Then there exists s ∈ q and s′ ∈ q′

such that s′′ ⊆ s and s′′ ⊆ s′, and thus s′′ ⊆ s ∩ s′ which is dominated in q
d
q′.

On the other hand, first, it is obvious that q
⊔
q′ is an upper bound of q and

q′ for v, since ∀r ∈ q : ∃r′′ ∈ q
⊔
q′ : r ⊆ r′′ and ∀r′ ∈ q′ : ∃r′′ ∈ q

⊔
q′ : r′ ⊆ r′′

. Second, we show that ∀q, q′, q′′ : (q v q′′ ∧ q′ v q′′) =⇒ ((q
⊔
q′) v q′′). Let

rr ∈ q
⊔
q′. It implies that rr ∈ q

⋃
q′ and since ∀r ∈ q : ∃r′′ ∈ q′′ : r ⊆ r′′ ∧ ∀r′ ∈

q′ : ∃r′′ ∈ q′′ : r′ ⊆ r′′, we have that ∃r′′ ∈ q′′ : rr ⊆ r′′, which implies the result.
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{{1, 2, 3}}

{{1, 2}, {1, 3}} {{1, 2}, {2, 3}} {{1, 3}, {2, 3}}

{{1, 2}, {3}} {{1}, {2, 3}}{{1, 3}, {2}}

{{1}, {2}, {3}} {{1, 2}} {{1, 3}} {{2, 3}}

{{1}, {2}} {{1}, {3}} {{2}, {3}}

{{1}} {{2}} {{3}}

{∅}

∅

Figure 6.1: The lattice of antichains for S = {1, 2, 3}. An arrow from A to B

implies that A v B. (We omitted arrows obtained by transitivity).

For Q ⊆ L, we have
d
Q = d{

⋂
q∈Q sq | sq ∈ q}e and

⊔
Q = d

⋃
q∈Q qe. The

least element of L is⊥ =
d
L = ∅ and the greatest element of L is> =

⊔
L = {S}.

Lemma 6.5

〈L,v,
⊔
,
d
,⊥ ,>〉 is a complete lattice.

This lattice is the lattice of antichains of sets of states. As an example, the

reader can find the lattice of antichains for the set S = {1, 2, 3} in Figure 6.1.
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6.3 Games of Imperfect Information

6.3.1 Definitions

Notations Given a sequence a = a0a1 . . . of size larger than k (and possibly

infinite), we denote by ak = a0, . . . , ak the sequence of the first k + 1 elements of

a. a−1 is the empty sequence, also denoted by a dot ”·”.

Definition 6.1 (Two-player games)

A two-player game is a UTS 〈S,E,F,Σ,→〉 where S is a (non-empty) set of states,

E ⊆ S is the set of initial states, F ⊆ S is the set of final states, Σ is a finite

alphabet of actions, and→⊆ S×Σ×S is a transition relation. We require, without

loss of generality, that the transition relation is total, that is ∀x ∈ S ·∀σ ∈ Σ ·∃x′ ∈

S : x
σ
−→ x′

The game is turn-based and played by a controller against an environment.

At every turn, the controller chooses one label and the environment resolves the

nondeterminism. The goal of the controller can be of two types:

• ( safety game) avoid the set of states F;

• ( reachability game) reach the set of states F;

We request that ∀x ∈ F, the set {x′ ∈ S | ∃σ ∈ Σ : (x, σ, x′) ∈→} is included

in F. We will explain later why this constraint is not too restrictive.

For s ⊆ S, let postσ(s) = {x′ ∈ S | ∃x ∈ s : (x, σ, x′) ∈→} be the set of

successor states of s by the action σ, let preσ(s) = {x ∈ S | ∃x′ ∈ s : (x, σ, x′) ∈→}

be the set of predecessor states of s by the action σ and let cpreσ(s) = {x ∈ S |

∀x′ ∈ S : (x, σ, x′) ∈→ implies x′ ∈ s} be the set of controllable predecessors of s

by the action σ. A play of a game G is an infinite sequence of state x0x1 . . . , such

that x0 ∈ E and ∀i ≥ 0 · ∃σ : (xi, σ, xi+1) ∈→.

The controller has an imperfect view of the game state space in that his choices

are based on imprecise observations of the states.

Definition 6.2 (Observation set)

An observation set Obs of the state space S is a set of subsets (called observations)

of S (Obs ⊆ 2S) satisfying the constraint that
⋃

obs∈Obs obs = S, that is, each

element of S is included in at least one observation.
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An observation obs is compatible with a state x if x ∈ obs. When the controller

observes the current state x of the game, he receives one observation compatible

with x. The observation is non-deterministically chosen by the environment.

Definition 6.3 (Games of Imperfect, Incomplete, or Perfect information)

A two-player game 〈S,E,F,Σ,→〉 equipped with an observation set Obs of its state

space defines a game of imperfect information 〈S,E,F,Σ,→,Obs〉. The size of the

game is the sum of the sizes of the transition relation → and the set Obs.

Let G = 〈S,E,F,Σ,→,Obs〉 be a game of imperfect information. We say that

G is a game of incomplete information if for any obs1, obs2 ∈ Obs, if obs1 6= obs2

then obs1 ∩ obs2 = ∅, that is the observations are disjoint, thus partitioning the

state space.

We say that G is a game of perfect information if Obs = {{x} | x ∈ S}.

The drawback of games of incomplete information is that they are not suited

for a robust modelling of sensors. Indeed, real sensors are imprecise and may

return different observations for a given state.

Example Figure 6.2 presents a game of imperfect observation with state space S =

{1, 2, 3,Bad}, set of initial states E = {2, 3} and actions Σ = {a, b}. The observa-

tion set is Obs = {obs1, obs2} with obs1 = {1, 2,Bad} and obs2 = {1, 3,Bad}. An

edge from x to x′ labelled by a | b stands for two arrows with same source and

destination, one labelled with a, the other one with b. The states belonging to E

are pointed out using arrows with no source state

Definition 6.4 (Observation Based Strategy, Outcome, Reachλ)

An observation based strategy for a game G = 〈S,E,F,Σ,→,Obs〉 of imper-

fect information is a function λ : Obs+ → Σ. The outcome of λ on G is

the set Outcomeλ(G) of (finite or infinite) plays x = x0x1 . . . such that there

exists a sequence of observations obs = obs0obs1 . . . such that for all 0 ≤ i,

xi ∈ obsi ∧ xi

λ(obsi)
−−−−→ xi+1. The set of reachable states of G through the strat-

egy λ is defined as follows:

Reachλ(G) = {xi | ∃x0x1 . . . xi ∈ Outcomeλ(G)}.
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1

2

3

Bad

b

c

a

a | c

b | c

b a | b

a | b | c

obs1

obs2

Figure 6.2: A two-player game G1 with observation set {obs1, obs2}.

Definition 6.5 (Safe and Reaching Strategy)

We say that an observation based strategy λ for a game G = 〈S,E,F,Σ,→,Obs〉

of imperfect information is safe if for every play x0x1 . . . xi ∈ Outcomeλ(G), we

have xi /∈ F, or in other words if Reachλ(G) ⊆ F.

We say that an observation based strategy λ for a game G = 〈S,E,F,Σ,→,Obs〉

of imperfect information is reaching if there exists i ≥ 0 such that for every play

x0x1 . . . xi ∈ Outcomeλ(G), xi ∈ F.

Intuitively, a strategy is safe if it can ensure that the set F is never reached

by the game and a strategy is reaching if there exist a number i for which the

strategy can ensure that the set F is reached after exactly i moves of the controller,

whatever the environment does. This request on the existence of i may seem

restrictive, as classical reaching strategies are defined as follows: an observation

based strategy λ for a game G = 〈S,E,F,Σ,→,Obs〉 of imperfect information is

classically reaching if for every play x0x1 · · · ∈ Outcomeλ(G), there exists i ≥ 0

such that xi ∈ F. In this classical definition, the constraint that ∀x ∈ F, the set
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{x′ ∈ S | ∃σ ∈ Σ : (x, σ, x′) ∈→} is included in F has not to be satisfied by G. It is

easy to see that the question of the existence of a classically reaching strategy for

this game G = 〈S,E,F,Σ,→,Obs〉 can be reduced to the existence of a reaching

strategy for the game G′ = 〈S,E,F,Σ,→′,Obs〉, where →′ is defined as follows:

(x, σ, x′) ∈→′ iff either x = x′ ∈ F or x /∈ F ∧ (x, σ, x′) ∈→. In fact, the strategies

we look after in both cases are the same. This explains why it is reasonable to

ask at the same time that for the game we handle, the final set F can not be

escaped once entered and that a reaching strategy ensures that the set of final

states is reached after the exact same number of move, whatever the sequence

of observations: finding a reaching strategy in this framework allows to find a

classical reaching strategy in the classical framework. We chose our definitions

because they simplify the proofs for the reachability games and do not influence

the problem of finding safe strategies.

Definition 6.6 (History, Knowledge)

Let us an history of length k ∈ N be a couple (obs, σ) ∈ Obsk × Σk such that

∃x ∈ Sk : x0 ∈ E and for all 0 ≤ i ≤ k we have xi ∈ obsi and for all 0 ≤ i < k

we have xi
σi−→ xi+1. Let us call knowledge after an history (obs, σ) the function

K : ∪0≤k(Obsk × Σk)→ 2S defined inductively as follows.

{
K(·, ·) = E

K(obsk, σk) = postσk
(K(obsk−1, σk−1) ∩ obsk) for k ≥ 0

Thus, the knowledge after an history (obsk, σk) is the set of states the controller

can be sure the game is in after this history.

We define similarly Kλ : (∪0≤kObsk)→ 2S, the knowledge for a strategy λ after

a sequence of observation obs:

{
Kλ(·) = E

Kλ(obsk) = postλ(obsk)(Kλ(obsk−1) ∩ obsk) for k ≥ 0

Observe that:

• a strategy is safe iff ∀obs ∈ Obs+ : Kλ(obs) ⊆ F ;

• a strategy is reaching iff ∃i ∈ N · ∀obsi ∈ Obs+ : Kλ(obsi) ⊆ F .
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Example For the game of Figure 6.2, the knowledge after the history (obs1obs2, ab)

is defined recursively as follows:




K(·, ·) = E = {2, 3}

K(obs1, a) = {1}

K(obs1obs2, ab) = {2, 3}

Thus, the set {2, 3} is the set of states the controller can be sure the game is in

after the history made of the two sequences obs1obs2, and ab. We will define a

strategy for this game in Section 6.4.2.

The imperfect (resp. incomplete, perfect) information safety problem is defined

as follows for a class C of games of imperfect (resp. incomplete, perfect) informa-

tion: given a game G ∈ C, determine whether there exists a safe observation based

strategy for G.

The imperfect (resp. incomplete, perfect) information reachability problem is

defined as follows for a class C of games of imperfect (resp. incomplete, perfect)

information: given a game G ∈ C, determine whether there exists a reaching

observation based strategy for G.

6.3.2 Controllable Predecessors on the Lattice of Antichains

We show how the lattice of antichains that we have introduced in Section 6.2 can be

used to solve games of imperfect information by iterating a predecessor operator.

Definition 6.7 (Controllable predecessors)

For q ∈ L, define the set of controllable predecessors of q as follows:

CPre(q) = d{s ⊆ S | ∀obs ∈ Obs · ∃σ ∈ Σ · ∃s′ ∈ q : Postσ(s ∩ obs) ⊆ s′}e

Let us consider an antichain q = {s′0, s
′
1, . . . }. A set s belongs to CPre(q) iff

1. For all observations1 of a state in s, there exists a move σ such that the

next state reached by the game (after the environment has resolved non-

determinism2) is surely in a set of q, and

1The quantification over obs is universal since for observations that are incompatible with the

current state, the condition holds trivially since Postσ(∅) = ∅ ⊆ s′.
2This resolution of nondeterminism is represented by the use of Post: we consider the set of

all possible successors.
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1

5

7

8

2

3

4

6

A

B
Obs1

Obs2

a

b

b

b

b

a

b

Figure 6.3: {{1, 4}, {2}} = CPre(A,B)
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2. s is maximal.

Before proving the usefulness of this operator, we try to give the reader some

intuition through a small example pictured in Figure 6.3. In this example, there

are 8 states numbered from 1 to 8 and three observations : Obs1 = {1, 2}, Obs2 =

{2, 3, 4} and Obs3 = {5, 6, 7, 8} (this last observation is not pictured for the sake

of readability of the figure). We want to compute the controllable predecessors of

the antichain {A,B} where A = {6, 7} and B = {8}. Observe that on the figure,

the transition relation is not total, for the sake of readability. This could be simply

solved by adding edges leading to a bad state for each unforeseen label.

Let us now look state by state which one is controllable:

• State 1 is controllable since playing an a in this state leads surely in state 6

which belongs to the controllable set A;

• State 2 is controllable too since playing a b in this state leads to 8, which

belongs to the controllable set B;

• State 3 is not controllable since when the controller plays the only possible

move, a b, he does not know for sure if the following state is in A or B.

• State 4 is controllable, since it offers two different moves, which both lead

to controllable sets. In this case, the fact that these two sets are different is

not a problem, since the controller can choose, through the choice of a label,

in which set the game will go.

• States 5 to 8 are not in CPre(A,B) since they simply have no successors

either in A or B.

Now, let us look for sets of states that are not singleton, and that are also

controllable. There is in fact only one such set: {1, 4}. It is controllable since

for all observations, there exists a move and a controllable set such that if the

controller plays the move, the next state is in the controllable set. In fact, for the

set {1, 4}, the observations allow to tell if the current state is either 1 or 4 and as

we have seen before, there is a winning move from any of those two states.

It is also interesting to check why no other set is controllable. First, observe

that no controllable set can contain 3, since there is no winning move from it.
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Second, observe that no controllable set can hold both 1 and 2, since for those

two states, we may have the same observation Obs1 and there does not exist a

common winning move. Finally, observe that no controllable set can hold both 2

and 4 neither, since they belong both to a common observation Obs2 and there

does not exist a common controllable set that would contain all their successors

for a given move.

Finally, we can say that sets {1}, {2}, {4} and {1, 4} are controllable but since

we keep an antichain only, we will only keep the sets {1, 4} and {2} as element of

CPre(A).

We now state one crucial property that will be needed to ensure that a fixed

point of this CPre operator is computable.

Lemma 6.6

The operator CPre : L→ L is monotone for the partial ordering v.

Proof

Let q, q′ ∈ L with q v q′, it suffices to prove that CPre(q) ⊆eCPre(q′)d , from

Lemma 6.1 and Lemma 6.2.

By definition of CPre we know that for s ∈ CPre(q), for all obs ∈ Obs there

exists σ ∈ Σ such that there exists s′ ∈ q such that Postσ(s∩obs) ⊆ s′. Since q v q′,

we know that for all s′ ∈ q, there exists s′′ ∈ q′ such that s′ ⊆ s′′. Therefore, we

have that for any obs ∈ Obs, there exists σ ∈ Σ such that there exists s′′ ∈ q′ such

that Postσ(s ∩ obs) ⊆ s′′. And so we have s ∈eCPre(q′)d .

Remark The controllable predecessor operator is also monotone w.r.t. the set

of observations in the following sense: given a two-player game G, let CPre1 (resp.

CPre2) be the operator defined on the set of observations Obs1 (resp. Obs2). If

Obs2 v Obs1, then for any q ∈ L we have CPre1(q) v CPre2(q). That corresponds

to the informal statement that it is easier to control a system with more precise

observations.

In the following two sections, we will show how the CPre operator can be used to

solve either safety or reachability games by computing two different, albeit similar,

fixed points. Observe that on the contrary of games of perfect information, finding

a solution to the reachability question for a game of imperfect information gives no

information about the safety question defined using the same set of state, standing

as the goal states in the first case and the bad states in the second case.
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6.3.3 Solving Safety Games on the Lattice of Antichains

Theorem 6.1

[Safety condition] Let G = 〈S,E,F,Σ,→,Obs〉 be a game of imperfect information.

There exists a safe observation based strategy on G if and only if

{E} v
⊔
{q | q = CPre(q)

l
{F}}. (6.1)

Before proving this theorem, we give some intuition. We denote by Safe the

set
⊔
{q | q = CPre(q)

d
{F}} which is the greatest fixed point of CPre(·)

d
{F}

(observe that this operator is monotone for v, since CPre(·) is monotone and forall

q, q′ ∈ 2S we have that q v q′ =⇒ ∀q′′ ∈ 2S : q
d
q′′ v q′

d
q′′). Condition (6.1)

states that the initial set is included in a set of Safe. Since Safe is a fixed point of the

controllable predecessor operator, we know that in each set s of Safe, whatever the

observation obs, we have a controllable action that can be played by the controller

in every state x ∈ s ∩ obs such that the state y reached after the move of the

environment lies in one of the sets s′ of Safe. Since for any s ∈ Safe, we have that

s ∩ F = ∅, those controllable actions define possible safe strategies.

Following this, there exists a winning strategy if Condition (6.1) holds. The

other direction of the theorem is a direct consequence of Tarski’s Theorem.

Proof

First, we give an effective construction of a winning strategy for G, in the form of

a finite automaton. From the greatest fixed point Safe of CPre, we define the finite

automaton A = 〈SA,EA,FA,ΣA,→A〉 where

• SA = Safe,

• EA = {s0} where s0 is picked in the set {s ∈ Safe | E ⊆ s}. The initial set is

made of one of the sets including the initial set E of the game G. We know

by 6.1 that at least one such set s exists, so there is always an initial state

for the finite automaton.

• FA = ∅.

• ΣA : Obs × Σ. Each transition will be labeled by an observation and a label

of the game G.
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• →A is defined as follows : for every pair (s, obs) ∈ Safe×Obs we pick a label

σ ∈ Σ such that ∃s′ ∈ Safe : postσ(s ∩ obs) ⊆ s′ and we fix that s
(obs,σ)
−−−−→A s

′.

Since Safe is a fixed point of CPre(·) u {F}, we know that such a label σ

and such a set s′ always exist. Notice that we obtain a deterministic finite

automaton.

In this automaton, states are labeled with a set of states of the game and tran-

sitions are labeled with one observation and one action. Intuitively, each set s of

Safe is a known maximal controllable set and the transitions going out of s indicate

which action to choose for each observation to ensure that the next state is also

controllable.

Let K̂ : Obs+ → Safe be the function that gives the set s ∈ Safe reached by

the automaton A after a sequence of observation obs. The function K̂ is defined

recursively as follows:

• K̂(·) = s0

• K̂(obs · obs) ∈ Safe is such that ∃σ ∈ Σ : K̂(obs)
(obs,σ)
−−−−→A K̂(obs · obs). By

definition of →A there exist one and only one such σ.

The strategy defined by A is then also defined recursively:

• λ(obs) = σ such that s0
(obs,σ)
−−−−→A K̂(obs)

• λ(obs · obs) = σ such that K̂(obs)
(obs,σ)
−−−−→A K̂(obs · obs)

Now we proceed with the proof of the theorem.

1. Let us assume that equation (6.1) holds. We show that the strategy λ defined

by A is such that for all x = x0x1x2 · · · ∈ Outcomeλ(G), we have ∀0 ≤

i : xi /∈ F. To belong to Outcomeλ(G), x = x0x1 . . . is such that there

exists a sequence of observations obs = obs0obs1 . . . such that for all 0 ≤ i,

xi ∈ obsi ∧ xi

λ(obsi)
−−−−→ xi+1

Now we prove that ∀0 ≤ i : xi ∈ K̂(obsi−1) which shows that λ is safe since

the function K̂ outputs elements of Safe, which are sets where no final state

is present (by the definition of Safe).

We show this by induction on index i.
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• The base case consists in proving that x0 ∈ K̂(·). This is the case since

as x is a play, x0 ∈ E while K̂(·) = s0 and s0 is as set chosen so that

E ⊆ s0.

• The inductive case consists in proving that xi+1 ∈ K̂(obsi) while know-

ing (by induction) that xi ∈ K̂(obsi−1). We know that λ(obsi−1 ·obsi) =

σ such that K̂(obsi−1)
(obsi,σ)
−−−−→A K̂(obsi). From state xi−1, with observa-

tion obsi the strategy thus proposes the action σ. As K̂(obsi−1) is an ele-

ment of Safe, we know, by definition of CPre and A that postσ(K̂(obsi−1)∩

obsi) ⊆ K̂(obsi), which implies that xi is an element of K̂(obsi)

2. Let us assume that λ is an observation based strategy that is winning on G.

We must show that (6.1) holds. Let Wλ = {Kλ(obs) | obs ∈ Obs+}.

Obviously {E} v Wλ since Kλ(·) = E for all λ. We now prove that

Wλ v Safe. This will imply, since v is a partial order that {E} v
⊔
{q |

q = CPre(q)
d
{F}} = Safe. This is exactly equation (6.1) that we wanted to

prove.

So, we prove that Wλ v Safe. We just need to prove that Wλ v CPre(Wλ)
d
{F}

since Safe could be equivalently redefined as
⊔
{q | q v CPre(q)

d
{F}}.

Thanks to Lemma 6.1, it suffices to show that Wλ ⊆eCPre(Wλ)
d
{F}}d .

Let s ∈ Wλ. We know that ∃obs ∈ Obs+ : s = Kλ(obs). Now, we know that

∀obs ∈ Obs : Kλ(obs · obs) ∈ Wλ, that is, postλ(obs·obs)(Kλ(obs) ∩ obs) ∈ Wλ

and thus ∀obs · ∃σ ∈ Σ · ∃s′ ∈ Wλ : postσ(s) ⊆ s′ where σ = λ(obs · obs) and

s′ = Kλ(obs · obs) (as s = Kλ(obs)).

So, we have s ∈ CPre(Wλ). Now, as λ is a winning strategy Kλ(obs) ⊆ F,

for all obs ∈ Obs+, which means that ∀s ∈ Wλ : s ⊆ F. This means that, by

definition of
d

, s ∈eCPre(Wλ)
d
{F}d

6.3.4 Solving Reachability Games on the Lattice of Antichains

Theorem 6.2

[Reachability condition] Let G = 〈S,E,F,Σ,→,Obs〉 be a game of imperfect in-

formation. There exists a reaching observation based strategy on G if and only if

{E} v
l
{q | q = CPre(q)

⊔
{F}}. (6.2)
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Proof

Let us call Reaching the set
d
{q | q = CPre(q)

⊔
{F}}, which is the least fixed point

of the operator CPre(q)
⊔
{F}(observe that this operator is monotone for v, since

CPre(·) is monotone and forall q, q′ ∈ 2S we have that q v q′ =⇒ ∀q′′ ∈ 2S :

q
⊔
q′′ v q′

⊔
q′′).

1. We first prove that the existence of a reaching strategy λ implies that {E} v

Reaching.

We first define recursively a family of sets qi ⊆ 2S ×Obsi (for i ∈ N):

• q0 = {(E, ·)};

• qi =
{(

postλ(obsi−1·obsi)
(s∩obsi), obsi

)
| obsi ∈ Obs∧ (s, obsi−1) ∈ qi−1

}
;

Furthermore, let us define qS
i = {s ⊆ S | ∃obs ∈ Obs+ : (s, obs) ∈ qi}.

Since λ is a reaching strategy we know that there exists a k such that qS
k v

{F}. Let us prove by induction that qS
k−j v Reaching for all 0 ≤ j ≤ k ,

which will give us that {E} v Reaching.

(a) The base case is j = 0. In this case, we have that qS
k−j v {F}, which

implies that qS
k−j v Reaching.

(b) For the inductive case, we assume that qS
k−j v Reaching and we prove

that qS
k−(j+1) v Reaching. This comes easily as

qS
k−(j+1) v CPre(qk−j)

(By def. of CPre and qS
i )

=⇒ qS
k−(j+1) v CPre(Reaching)

(By induction hypothesis and monotony of CPre)

=⇒ qS
k−(j+1) v CPre(Reaching)

⊔
{F}

=⇒ qS
k−(j+1) v Reaching

(As Reaching is a fixed point)

2. Second, we prove that {E} v Reaching implies the existence of a reaching

strategy λ.

We define a family of antichains pi:
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• p0 = {F};

• pi = CPre(pi−1)
⊔
{F}.

By Tarski’s fixed point theorem, we know that Reaching = pn for some n ∈ N.

We now define a strategy λ as follows: fix λ(obsi) to be σ such that ∃s ∈ pn−i

such that postσ(Kλ(obsi−1) ∩ obsi) ⊆ s. If we assume that {Kλ(obsi−1)} v

pn−i, this definition is meaningful, since we know that there always exist such

a σ by definition of CPre and by the totality of the transition relation.

Proving that ∀obsi−1 such that i > 0,{Kλ(obsi−1)} v pn−i is easy to do by

induction on i:

• For i = 0, we must prove that {Kλ(·)} v pn, which is true since Kλ(·) =

E and {E} v Reaching = pn;

• Assuming {Kλ(obsi−1} v pn−i, the fact that {Kλ(obsi} v pn−(i+1) comes

directly from the definition of λ(obsi).

The strategy is reaching since Kλ(obsn−1) ⊆ F for all obsn−1 ∈ Obs+, since

{Kλ(obsn−1)} v p0 = {F} for all obsn−1 ∈ Obs+

6.4 Games with Finite State Space

In this section we show that computing a fixed point of CPre(·) for finite state

games can be done in EXPTIME. We also compare our algorithm based on the

lattice of antichains with the classical technique of [Rei84].

6.4.1 Fixed Point Algorithm

To compute the greatest fixed point of CPre(·)
d
{F}, we iteratively repeat Al-

gorithm 4, starting from the antichain {S} and to compute the least fixed point

of CPre(·)
⊔
{F}, we iteratively repeat Algorithm 4, starting from the antichain

∅. Algorithm 4 constructs systematically all subsets of S and checks at line (9)

whether they belong to CPre(q). This is done by treating all subsets of size i

before the subsets of size i − 1, so we avoid to treat the subsets of the already

included subsets and the result is in reduced form. Therefore, Algorithm 4 uses
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Algorithm 4: Algorithm for CPre.

Data : A game of imperfect information G = 〈S,E,F,Σ,→,Obs〉 and a set

q ∈ L.

Result: The set Z = CPre(q).

begin

Z ← ∅ ;1

Level← {
⋃

σ∈Σ preσ(
⋃

s∈q s)} ;2

while Level 6= ∅ do3

Current← Level ;4

Level← ∅ ;5

while Current 6= ∅ do6

Pick s ∈ Current ;7

Current← Current\{s} ;8

if for all obs ∈ Obs we have :9

for some σ ∈ Σ, there exists s′ ∈ q such that postσ(s ∩ obs) ⊆ s′

then

Z ← Z ∪ {s} ;10

else

Level← Level ∪ {s′ | s′ ∈ Children(s) ∧ ∀s′′ ∈ Z ∪ Current : s′ 6⊆11

s′′} ;

return Z;12

end
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the following operator Children(s) = {s\{x} | x ∈ s} which returns the subsets of

s of cardinality |s| − 1.

Lemma 6.7

Algorithm 4 computes CPre in EXPTIME in the size of the game.

Proof

• Correctness We show that s ∈ CPre(q) iff s ∈ Z. First, let us define Init

as
⋃

σ∈Σ preσ(
⋃

s∈q s), that is the set of predecessors of the states appearing

in q. Obviously, any set belonging to CPre(q) must be included in Init, since

to be included in the controllable predecessors of a set s′, a set s must first be

included in the predecessors of s′. Now, the proof is based on an invariant.

The (i)th time the algorithm reaches line (3) the following assertion is true:

{
Z = {s | |s| > m− i+ 1 ∧ s ∈ CPre(q)}

Level = {s | |s| = m− i+ 1 ∧ {s} 6v Z ∧ s ⊆ Init}

where m ≤ n is the size of Init. Observe that by definition Z is an antichain.

We prove that this invariant holds by induction for every i.

– If i = 1, the invariant is true as Level = {Init} and Z = ∅. The latter

is correct, since no set of size greater than the size of Init can be an

element of CPre(q);

– Suppose the invariant is true for i. Let us prove that then, it is still

true for i+ 1. For every s picked at line (7), there are two possibilities:

∗ s ∈ CPre(q). In this case, s satisfies the test of line (9) and is

added to Z, which is good, since by induction hypothesis, {s} 6v Z,

and thus Z remains an antichain. s is thus maximal regarding Z

and no greater set can be added later since only sets of the same or

smaller size could still be added.

∗ s /∈ CPre(q). In this case, s does not satisfy the test of line (9) and

its children are added to the next level to be treated, as long as they

are not dominated by Z (in which case they do not need to be tested

for belonging to CPre(q)), or by elements of Current (in which case,

they will be added later if no element of Current belongs to CPre(q).
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We end the proof by stating that for the first i such that Level = ∅, the

invariant implies that Z = CPre(q).

• Complexity For each s, the body of the inner loop is executed in time

O(|Obs|.|Σ|.|q|.|S2|), which is essentially the complexity of the test of line (4)

(O(|S2|) is a superior bound for the computation of Postσ(·)). The loop is

executed at most 2n times since all the subsets of S picked at line (7) are

different. The complexity is thus O(2n.|Obs|.|Σ|.|q|.|S2|)

So we have an algorithm to compute CPre in exponential time. We now prove

a lemma that will allow us to state that we will not have to iterate the Algo-

rithm 4 more than an exponential number of times (in the size of the game) before

obtaining a fixed point.

Lemma 6.8

An ascending (or descending) chain in 〈L,v,
⊔
,
d
,⊥ ,>〉 has at most 2n + 1

elements, where n = |S|.

Proof

For any finite set P , let  L(P ) be the complete lattice 〈2P ,⊆,
⋃
,
⋂
,∅ , {P}〉. An

ascending chain in  L(P ) has at most |P | + 1 elements. Notice that q v q′ if

and only if eqd⊆ eq′d (Lemma 6.2). For Y ⊆ L, define eY d= { eqd | q ∈ Y }.

If Y ⊆ L is an ascending chain in the lattice 〈L,v,
⊔
,
d
,∅ , {S}〉, then eY d is an

ascending chain in 〈 eLd ,v,
⊔
,
d
,∅ , 2S〉 and is also an ascending chain in  L(2S).

Observe that if q 6= q′ then eqd 6= eqd ′. Therefore |Y | ≤ | eY d | ≤ 2n + 1 since an

ascending chain in  L(2S) has at most 2n + 1 elements.

Theorem 6.3

The imperfect information safety and reachability problems are EXPTIME-complete

for finite games.

Proof

We first prove the upper bound. From Lemma 6.8 and since CPre is monotone, we

reach the greatest fixed points Safe or Reaching after at most O(2n) iterations of

CPre. From Lemma 6.7 computing CPre can be done in EXPTIME. The conclusion

follows. For the lower bound, we solve a more general problem than Reif [Rei84]

which gives us the EXPTIME-hardness.
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6.4.2 Example of Safety Game

Consider again the two-player game G1 on Figure 6.2 with state space S =

{1, 2, 3,Bad}, set of initial states E = {2, 3} and actions Σ = {a, b}. The ob-

servation set is Obs = {obs1, obs2} with obs1 = {1, 2,Bad} and obs2 = {1, 3,Bad}.

For the controller, the goal is to avoid the final states F = {Bad} in which

there is no controllable action. So the controller must play a b in state 1, an a in

state 2, and a c in state 3. However the controller cannot distinguish 1 from 2, or

1 from 3 using only the current observation. Thus, to discriminate those states,

the controller has to rely on its memory of the past observations.

We show below the iterations of the fixed point algorithm and the construction

of the strategy. The fixed point computation starts from > = {S}.

S1 = CPre({S})
d
{F} = {{1, 2, 3}}

S2 = CPre(S1)
d
{F} = {{1}, {2, 3}}

S3 = CPre(S3)
d
{F} = S2

Since S3 = S2, we have Safe = S3 = {{1}, {2, 3}}. The existence of a winning

strategy is established by condition (6.1) of Theorem 6.1 since the set E = {2, 3}

is dominated in Safe.

{1}{2, 3}

(obs1, a)

(obs2, c)

(obs1, b)

(obs2, b)

Figure 6.4: An automaton giving a winning strategy for the two-player game G1

of Figure 6.2

From the fixed point, using the construction given in the proof of Theorem 6.1,

we construct the automaton of Figure 6.4 which encodes a winning strategy. In-

deed, when the game starts the control is either in state 2 (if the given observation



170 6.4. Games with Finite State Space

is obs1) or in state 3 (if the given observation is obs2). In the first case, the con-

troller plays a and in the second case, it plays c. Then the game lies in state 1.

According to the strategy automaton, the controller plays a b whatever the obser-

vation to get back to the initial situation. From there, the controller can clearly

iterate this strategy, avoiding state Bad forever.

6.4.3 Comparison with the Classical Technique of Reif

In [Rei84], John H. Reif gives an algorithm to transform a game of incomplete

information G into a game G′ of perfect information on the histories of G. This

construction is such that there exists a reaching or safe strategy for G iff there

exists a reaching or safe strategy for G′.

The idea of the construction can be expressed as follows :

given a game of incomplete information G = 〈S,E,F,Σ,→1,Obs〉 define a

perfect information game G′ = 〈S ′,E′,F′,Σ,→2,Obs〉 as follows:

• S ′ is the set of knowledges K(obsk, σk) such that (obsk, σk) is an history of

G.

• E′ is the set E.

• F′ =

{
{s ∈ S ′ | s ∩ F 6= ∅} if the original game is a safety game

{s ∈ S ′ | s ⊆ F} if the original game is a reachability game

• →2 is defined as follows: K(obsk, σk)
σk+1

−−−→2 K(obsk+1, σk+1), ∀obsk+1 ∈ Obs.

• Obs = {{x} | x ∈ S ′} as G′ is a game of perfect information

Solving the resulting games (reachability and safety) of perfect information G′

requires linear time in the size of S ′ but there exist games of incomplete information

G requiring the construction of a game of perfect information of size exponentially

larger than the size of G.

As our algorithm does not require this determinization and is goal oriented, it

is easy to find infinite families of games where our method is exponentially faster

than Reif’s algorithm. This is formalized in the next theorem.
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Theorem 6.4

There exist infinitely many finite state games of incomplete information for which

the algorithm of [Rei84] requires an exponential time where our algorithm needs

only polynomial time.

Proof

The infinite family of games of Figure 6.5 are such games. For any of those games,

Σ = {a, b}, there is only one possible observation obs1 on every state and F = {k}.

For this family of games, the technique of [Rei84] constructs a game of perfect

information G′ with O(2k) states.

Let us denote Si the set of sets of the form {1, s1, . . . , sj} such that ∀m :

sm ∈ {2, . . . , i}. We can easily show by induction on i ≤ k that, for each set s

of Si, there exists an history (obsi−1, σi−1) such that K(obsi−1, σi−1) = s. This

is obviously the case for i < 2. Now, the induction step : given a set s ∈ Si

we want to construct an history (obsi−1, σi−1) such that K(obsi−1, σi−1) = s. Let

s = {1, s1, s2, . . . , sj}. We know by induction hypothesis that we can construct an

history s′ = (obsi−2, σi−2) such that K(obsi−2, σi−2) = {1} ∪ {s1 − 1, . . . , sj − 1}

since this last set clearly belongs to Si−1. Now we can construct (obsi−1, σi−1) as

follows : it is (obsi−1, σi−2.a) if 2 ∈ s or (obsi−1, σi−2.b) if 2 /∈ s.

On the other hand, if this game is considered as a safety game, the execution

time of our algorithm is polynomial in k for this family of examples since it stops

after k iterations of the CPre operator, which is computed in O(k2) (which is a

maximal bound on the computation of either preσ or postσ). Indeed, during the

computation of the fixed point, the (i)th antichain computed will be of the form

{{1, 2, . . . , k − i}}, which is exactly the set to which Level is initialized in Algo-

rithm 4. Computation of CPre in this case requires only the time for checking that

the initial guess is the good result.

6.4.4 An Application: Universality of Finite Automata

In this section, we show how to decide if a nondeterministic finite automaton is

universal by solving a game of imperfect information.

Game interpretation of universality Consider the following game played by

a protagonist and an antagonist. The protagonist wants to establish that a given
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1

a

2 3 k

a

b

a
a a

b b

obs1

Figure 6.5: Family of games (k ∈ N, F = {k}) requiring exponential time

for [Rei84] but polynomial time with our algorithm.

NFA A does not accept the language Σ∗. The protagonist has to provide a finite

word w such that, no matter which run of A over w the antagonist chooses, the

run does not end in an accepting state. This game is a one-shot game. However,

to obtain a fixed point solution to the universality problem, we can consider a

multi-round game interpretation of this problem: in each round of the game, the

protagonist provides a single letter σ, and the antagonist decides how to update

the state of A on input σ according to the nondeterministic transition relation. To

be equivalent to the one-shot game, the protagonist must not be able to observe

the state of the automaton, which is chosen by the antagonist. So, we have to con-

sider the game G = 〈S,E,F,Σ,→,Obs〉 where the protagonist cannot distinguish

between states of the automaton, that is Obs = {S}. This is a blind game, a special

case of game of imperfect information. Thus we can solve the universality prob-

lem by looking for the existence of reaching strategies for G. Algorithm 5 checks

universality of a finite automaton using the CPreA operator, which simplifies CPre

by taking into account that Obs = {S}:

Definition 6.8 (Controllable Predecessors for Universality of FA)

CPreA(q) = d{s ⊆ S | ∃σ ∈ Σ · ∃s′ ∈ q : postσ(s) ⊆ s′}e

The problem of universality of finite automaton is known to be PSpace-complete,

so we have a lower bound for the complexity of this fixed point algorithm. For-
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Algorithm 5: Antichain algorithm for testing universality of finite au-

tomata.
Data : a nondeterministic finite automaton A = 〈S,E,F,Σ,→〉.

begin

Start← {E};1

G← {F};2

Frontier ← G;3

while (Frontier 6= ∅) ∧ (Start 6v Frontier) do4

Frontier← {s ∈ CPreA(Frontier) | {s} 6v G};5

G← G t Frontier ;6

return (Start 6v Frontier);7

end

tunately, Algorithm 5 performs well in lots of cases : to compare the perfor-

mance of our antichain algorithm to the performance of various implementations

of subset-construction based algorithms, we used a large set of examples gener-

ated in the probabilistic framework by Tabakov and Vardi [TV05]. This frame-

work was proposed with the explicit purpose of comparing the performances of

algorithms on finite automata. In their experiments, the authors conclude that

explicit determinization, as implemented in [Mø04], outperforms the algorithm of

Brzozowski [BL80], as well as newer implementations, which use symbolic methods

for the subset construction. Our experimental results show that our implemen-

tation of the antichain algorithm is considerably faster, on the whole parameter

space of the probabilistic framework, than the most efficient implementation of

the standard algorithm. We now explain the details of our implementation and of

the random model and we give the experimental results.

Two symbolic implementations of antichains We implemented our new

algorithm for testing universality on top of NuSMV [CCGR99] and the BDD

library CUDD [Som98]. We considered two encodings of NFAs in NuSMV, and

correspondingly, two encodings of antichains of state sets using BDDs.
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Fully symbolic encoding In the first encoding, we associate a boolean variable

with each state of an NFA. A valuation of the variables corresponds to a state set,

and a BDD represents a set of state sets. Two valuations v1 and v2 for a set X

of variables are incomparable iff there exist x, y ∈ X such that v1(x) > v2(x) and

v1(y) < v2(y). If the BDD contains only valuations that are incomparable, then it

represents an antichain of state sets. We call this encoding fully symbolic.

Semi-symbolic encoding In the second encoding, we associate an integer with

each state of the automaton. Then a single integer counter is used to encode the

current state. A BDD represents a set of integer values and so a set of states. An

antichain of state sets is represented by a set3 of BDDs that are incomparable for

valuation inclusion. We call this encoding semi-symbolic.

Algorithm For both encodings, we use the Algorithm 5 to check universality.

To avoid computing CPreA twice for the same set, the algorithm computes itera-

tively CPreA only on the frontier sets, which are the sets that were added to the

approximation G of the least fixed point F in the previous iteration. When the

automaton is not universal, then F is not fully computed, because we stop the

computation as soon as one of the sets in G contains all the initial states.

The randomized model To evaluate the antichain algorithm and compare with

the subset algorithm, we use a random model to generate NFAs. This model

was recently proposed by Tabakov and Vardi to compare the efficiency of some

algorithms for automata [TV05]. In the model, the input alphabet is fixed to Σ =

{0, 1}, and for each letter σ ∈ Σ, a number kσ of different state pairs (s, s′) ∈ S×S

are chosen uniformly at random before the corresponding transitions (s, σ, s′) are

added to the automaton. The ratio rσ = kσ

|S|
is called the transition density for σ.

This ratio represents the average out degree of each state for σ. In all experiments,

we choose r0 = r1, and denote the transition density by r. The model contains a

second parameter: the density f of accepting states. There is only one initial state,

and the number m of accepting states is linear in the total number of states, as

determined by f = m
|S|

. The accepting states themselves are chosen uniformly at

3In practice implemented by a simply linked list.
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Figure 6.6: Probability of universal automata (|S| = 30).

random. Observe that, since the transition relation is not always total, automata

with f = 1 are not necessarily universal4.

Tabakov and Vardi have studied the space of parameter values for this model

and argue that “interesting” automata are generated by the model when the two

parameters r and f vary. They have run large tests to evaluate the probability

for an automaton to be universal as a function of the parameters. We repro-

duced those experiments for a greater space of parameter values and obtained a

similar distribution (Figure 6.6). To generate each sample point, we checked the

universality of 200 random automata with 30 states.

Performance comparison We compare the performance of our antichain al-

gorithm with the tool dk.brics.automaton developed by Møller [Mø04], which

implements the forward subset algorithm and stops determinization whenever a re-

jecting state is encountered. According to the experiments of Tabakov and Vardi,

this tool, which uses explicit state representation, is the most efficient one for

checking universality [TV05]. For the comparison, we use the semi-symbolic en-

4In practice, to match the previous assumption that the transition relation is total,the tran-

sition relation can be easily made total by adding one bad states and creating transitions to this

state for each unforeseen label.
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Figure 6.7: Median execution time for the subset algorithm (|S| = 175).
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Figure 6.8: Average execution time for the subset algorithm (|S| = 175).
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Figure 6.9: Average execution time for the semi-symbolic antichain algorithm

(|S| = 175).

coding of antichains, which turns out to be much more efficient than the fully

symbolic encoding. The comparison is carried out on the whole parameter space

of the randomized model. All experiments are conducted on a biprocessor Linux

station (two 3.06Ghz Intel Xeons with 4GB of RAM). We only measure the exe-

cution times for the universality test in both approaches, not the time for parsing

the input files and constructing the initial data structures.

In Figures 6.7, 6.8, and 6.9, we present the execution times for checking univer-

sality by the explicit subset algorithm and the semi-symbolic antichain algorithm.

To generate each sample point, we check the universality of 100 random automata

with |S| = 175 (this is roughly the largest size that the subset algorithm is able to

handle on the entire parameter space with the available memory). In Figure 6.7,

we present the median execution times for testing universality by the subset ap-

proach as a function of r (transition density) and f (density of accepting states).

The figure shows that the universality test is most difficult when r = 2 and f = 1.

For the same instances, the median execution time of our algorithm is always less

than the time unit of the system clock (1ms), and has thus not been depicted.

In Figure 6.8 and Figure 6.9, we present the average execution times for testing



178 6.4. Games with Finite State Space

(time explicit)/(time antichains)

D
ensity

of
F
inal States

(f)

Transition Density (r)

200
160
120
80
40
0

0.8

0.6

0.4

0.2
43.532.521.510.50

200
160
120
80
40
0

Figure 6.10: Average execution time ratio (|S| = 175).

universality by the subset approach and the semi-symbolic antichain approach,

respectively. Both figures exhibit similar peaks, showing that the difficult instances

are roughly the same for both approaches. However, the antichain algorithm is

much faster. For the most difficult parameter values (r = 2 and f = 1), the

antichain algorithm is 165 times faster than the subset algorithm. Intuitively, these

instances are difficult for both algorithms for the following two reasons. First, the

probability to be universal for these parameter values is around 50 percent, and we

believe that most of these instances are neither trivially universal nor trivially non

universal. Second, when an automaton is universal, the subset method has to build

the entire deterministic automaton, and the antichain method has to complete the

computation of the least fixed point.

In Figure 6.10 we present the ratio of the average time for the subset approach

and the average time for the antichain approach as a function of the densities. The

comparison for r ≤ 1.4 and f ≤ 0.2 is not very significant, because the execution

times are very close to the precision of the system clock (1ms). For the rest of

the parameter space, the antichain algorithm performs always better (up to 200

times better). Finally, in Figure 6.11, we show that the semi-symbolic antichain

approach scales well when the size of the automaton increases, in contrast to the
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Figure 6.11: Average execution times for the subset and semi-symbolic antichain

algorithms in hard cases (transition density 2; accepting-states density 1).

subset approach. For the experiments we generated randomly 100 automata per

sample point for automaton sizes under 200 states, and 30 automata per sample

point for sizes over 200 states. The densities are again r = 2 and f = 1, to

capture hard cases. The antichain algorithm is able to handle random automata

with 4000 states in average time 12s. The average size of the final antichain (for

universal automata) is 217 state sets for automata with 4000 states. We did not

pursue experiments with larger automata, because we would have had to modify

the automaton generator, as it is not designed for such large automaton sizes. The

subset algorithm quickly exceeds the memory limit when the number of states gets

close to 200, so the curve is quite short in the left corner of Figure 6.11.

As mentioned above, the semi-symbolic antichain encoding gives far better

performances on the random model than the fully symbolic encoding, as shown

in Table 6.1 for the difficult instances (r = 2 and f = 1). It also turns out that

the fully symbolic encoding does not scale well when the size of the automaton

increases. Each sample point is computed on a set of 50 random automata with

less than 100 states. For 175 states, the size of the automata sample is 100, and for

more states, the sample size is 30. The number of boolean variables of the BDDs
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Table 6.1: Average execution times (ms) for checking universality with r = 2 and

f = 1.

number of states 20 40 60 80 100 175 1000 2000 3000 4000

subset algorithm 23 50 141 309 583 2257

fully symb. antich. 3 14 70 175 421 6400

semi-symb. antich. 1 2 2 3 5 14 400 1741 5341 13160

that encode antichains seems to be the reason for the difference in performances:

the number of boolean variables grows linearly with the number of states in the

fully symbolic encoding, but logarithmically in the semi-symbolic encoding.

6.5 Games with Infinite State Space

In this section, we tackle game of imperfect informations with an infinite state

space. We identified a class of infinite state games for which we can use our lattice

approach. We define this class in the section 6.5.1 and show in section 6.5.2 that

discrete games on rectangular automata fall into it. By discrete games, we mean

that the duration of any continuous transition is exactly 1. In this type of games,

the action of the controller always take place at evenly spaced time instants.

6.5.1 Games with Finite R-stable Quotient

Here we drop the assumption that S is finite in the games 〈S,E,F,Σ,→,Obs〉

and we consider the case where there exists a finite quotient of S over which the

game is stable, that is, the important sets of the game can be defined in terms

of the quotient. We obtain a general decidability result for games of imperfect

information with finite stable quotients.

Definition 6.9 (R-definable,R-stable)

Let R = {r1, r2, . . . , rl} be a finite partition of S. A set s ⊆ S is R-definable

if s =
⋃

r∈Z r for some Z ⊆ R. An antichain q ∈ L is R-definable if for every s ∈ q,

s is R-definable.
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A game of imperfect information 〈S,E,F,Σ,→,Obs〉 is R-stable if for ev-

ery σ ∈ Σ the following conditions hold:

(i) for every r ∈ R, postσ(r) is R-definable;

(ii) every obs ∈ Obs is R-definable;

(iii) E and F are R-definable;

(iv) for all r, r′ ∈ R, for all σ ∈ Σ:

∃x ∈ r : postσ({x}) ∩ r′ 6= ∅

=⇒

∀x ∈ r : postσ({x}) ∩ r′ 6= ∅

The next lemma states properties of R-stable games of imperfect information.

They are useful for the proof of the next theorem.

Lemma 6.9

Let G = 〈S,E,F,Σ,→,Obs〉 be a R-stable game of imperfect information. Let s, s′, s′′ ⊆

S and r ∈ R such that

(i) s′ and s′′ are R-definable

(ii) s ∩ r 6= ∅

(iii) ∃σ ∈ Σ : postσ(s ∩ s′) ⊆ s′′

then postσ((s ∪ r) ∩ s′) ⊆ s′′.

Proof

We prove the theorem ad absurdum. In order to find a contradiction with the

hypothesis we assume that

postσ((s ∪ r) ∩ s′) 6⊆ s′′.



182 6.5. Games with Infinite State Space

Then :

=⇒ ∃x ∈ r : x /∈ s ∧ postσ({x} ∩ s′) 6⊆ s′′

(by (iii))

=⇒ ∃x ∈ r · ∃r′ ∈ R : r′ 6⊆ s′′ ∧ postσ({x} ∩ s
′) ∩ r′ 6= ∅

(since s′′ is R-definable)

=⇒ ∃x ∈ r · ∃r′ ∈ R : r′ 6⊆ s′′ ∧ x ∈ s′ ∧ postσ({x}) ∩ r′ 6= ∅

=⇒ ∃r′ ∈ R : r′ 6⊆ s′′ ∧ (∃x ∈ r : x ∈ s′ ∧ postσ({x}) ∩ r′ 6= ∅)

=⇒ ∃r′ ∈ R : r′ 6⊆ s′′ ∧ (∀x ∈ r : x ∈ s′ ∧ postσ({x}) ∩ r′ 6= ∅)

(by point (iv) of the definition or a R-stable game)

=⇒ ∃r′ ∈ R : r′ 6⊆ s′′ ∧ (∃x′ ∈ (r ∩ s) : x′ ∈ s′ ∧ postσ({x′}) ∩ r′ 6= ∅)

(by (ii))

=⇒ ∃r′ ∈ R : r′ 6⊆ s′′ ∧ (∃x′ ∈ (r ∩ s) : postσ({x′} ∩ s′) ∩ r′ 6= ∅)

=⇒ ∃x′ ∈ (r ∩ s) · ∃r′ ∈ R : r′ 6⊆ s′′ ∧ postσ({x′} ∩ s′) ∩ r′ 6= ∅)

=⇒ ∃x′ ∈ s : postσ({x′} ∩ s′) 6⊆ s′′

=⇒ postσ(s ∩ s′) 6⊆ s′′

which clearly contradicts the hypothesis (iii).

Theorem 6.5

Let G = 〈S,E,F,Σ,→,Obs〉 be a R-stable game of imperfect information. For any

R-definable antichain q ∈ L, the antichain CPre(q) is also R-definable.

Proof

We show that for any R-definable antichain q ∈ L, the antichain CPre(q) is also

R-definable. Let s ∈ CPre(q). For any r ∈ R such that s ∩ r 6= ∅, we have by

Lemma 6.9 that s ∪ r ∈ CPre(q). Since s ⊆ s ∪ r and CPre(q) is an antichain, we

must have s = s ∪ r. This shows that s is R-definable.

Corollary 6.1

Let G = 〈S,E,F,Σ,→,Obs〉 be a R-stable game of imperfect information. The

greatest fixed point of CPre(·)
d
{F}, and the least fixed point of CPre(·)

⊔
{F} are

R-definable antichains and are computable.
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Proof

Since F is R-definable, F is also R-definable. Furthermore, the number of R-

definable antichains is finite, and so, using Tarski’s theorem, we can compute

those two fixed points of CPre in a finite number of iterations.

6.5.2 An application: Discrete Control with Imperfect Information

of Rectangular Automata

We use the notion of infinite games with finite stable quotient to show that the

discrete reachability and safety problems for games of imperfect information defined

by rectangular automata are decidable. This result extends the results in [HK99].

In this section we define a discrete time game semantics for rectangular au-

tomata (see Definition 2.19 for a reminder of the definition of rectangular au-

tomata). We then recall a result of [HK99] that establishes the existence of a

finite bisimulation quotient for this game semantics. In this section, we assume

that the constants appearing in the rectangular constraint of the rectangular au-

tomata are all integers. This does not restrict the generality of the results, since

such an automaton can be obtained from a rectangular automaton with rational

constants through scaling (as explained in Section 2.3.2).

Definition 6.10 (Discrete time game semantics of rectangular automata)

The game semantics of a rectangular automaton

H = 〈Loc, Init, Final, Inv, Lab,Edg, Flow, Jump〉

over a set of variables X is the game [[H ]]= 〈S,E,F,Σ,→〉 where

• S = Loc×Rn is the state space (with n = |X|)

• E = {(`, v) ∈ S | v ∈ [[Init(`)]]} is the initial space

• F = {(`, v) ∈ S | v ∈ [[Final(`)]]} is the final space

• Σ = Lab

• and → contains all the tuples ((`, v), σ, (`′, v′′)) such that there exists

– v′ ∈ Rn,
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– e = (`, σ, `′) ∈ Edg

– f a continuously differentiable function f : [0, 1]→[[Inv(`′)]]

such that

– (v, v′) ∈ [[Jump(e)]]

– f(0) = v′, f(1) = v′′

– and for all t ∈ [0, 1]: ḟ(t) ∈ [[Flow(`′)]].

Games constructed from rectangular automata are played as follows. The game

is started in a location ` with a valuation v for the continuous variables such that

v ∈[[Init(`)]]. At each round, the controller decides to take one of the enabled edges

(we assume, without loss of generality, that there always is such an edge) and one

unit of time elapses. The environment resolves the nondeterminism in choosing

both the next location and values of the continuous variables in the range specified

by the flow predicates. A new round is started from there. As for the games that

we have considered previously, the goal of the controller can be either to avoid

to get to some bad states represented by the set F or to ensure that this set F,

considered then as a goal, is reached.

To prove that we can use our antichain algorithm for such games we need a

finite quotient of the state space of the game. We found such a quotient in a paper

by Henzinger and Kopke [HK99] and we recall its definition here.

First we need to introduce the notion of nondecreasing and bounded variables.

Definition 6.11 (Nondecreasing and bounded variables)

Let H be a rectangular automaton, and let i ∈ {1, . . . , n}. The variable xi of

H is nondecreasing if, for every control mode ` ∈ Loc, the invariant interval

[[Inv(`)]]i and the flow interval [[Flow(`)]]i are subsets of the nonnegative reals. The

variable xi is bounded if, for every control mode ` ∈ Loc, the invariant interval

[[Inv(`)]]i is a bounded set. The automaton H has nondecreasing (resp. bounded;

nondecreasing or bounded) variables if all variables of H are nondecreasing (resp.

bounded; either nondecreasing or bounded).

A rectangular automaton is m-bounded if all its rectangular constraints are m-

bounded. In the sequel, all the rectangular automata that we consider are assumed

to have only nondecreasing or bounded variables.
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We then consider the following equivalence relation between states of rectan-

gular automata.

Definition 6.12

Given the game semantics

[[H ]]= 〈S,E,F,Σ,→〉

of a m-bounded rectangular automaton H over a set of variable X, define the

equivalence relation ≈m on S by (`, v)≈m(`′, v′) iff ` = `′ and for all x ∈ X

• either bv|xc = bv′|xc and dv|xe = dv′|xe

• or both v|x and v′|x are strictly greater than m.

Let us call R≈m
the set of equivalence classes of ≈m on S. Observe that a set of

state {(`, v) | ∃g ∈ Rect(X) : v ∈[[g]]} is R≈m
-definable.

The following result, from [HK99], is the key of our decidability result for

discrete games of imperfect information for rectangular automata.

Lemma 6.10 ([HK99])

Let H be a m-bounded rectangular automaton over a set of variables X. The

equivalence relation ≈m is the largest bisimulation of the game semantics [[H ]].

If the number of location of H is k, the number of equivalence classes of ≈m is

k · (4m+ 3)|X|.

6.5.3 Rectangular Automata with Imperfect Information

We are now ready to extend the results of [HK99] to the case of imperfect infor-

mation.

Given H = 〈Loc, Init, Final, Lab,Edg, Flow, Jump〉, a m-bounded rectangular au-

tomaton, we say that the observation set Obs is m-bounded if each obs ∈ Obs, is

definable as a finite union of sets of the form {(l, v) | v ∈ g} where g is am-bounded

rectangle.

Theorem 6.6

For any m-bounded rectangular automaton H with game semantics

[[H ]]= 〈S,E,F,Σ,→〉
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, for any m-bounded observation set Obs, the game of imperfect information

〈S,E,F,Σ,→,Obs〉

is R≈m
-stable.

Proof

Let reg(x) be the equivalence class of x ∈ S. We have to check whether [[H ]] meets

the four requirements of definition 6.9:

(i) We will prove that ∀σ ∈ Σ, ∀r ∈ R≈m
: postσ(r) is R≈m

-definable. Since r

is an equivalence class of ≈m, it is also a rectangle. Thanks to [HK99], we

know that the successor of a rectangle through → is a rectangle too and that

every rectangle is an union of equivalence classes of R≈m
.

(ii) every obs ∈ Obs is R≈m
-definable.

(iii) E and F are R≈m
-definable.

(iv) We have to prove that for all r, r′ ∈ R≈m
, for all σ ∈ Σ:

∃x ∈ r : postσ({x}) ∩ r′ 6= ∅

=⇒

∀x ∈ r : postσ({x}) ∩ r′ 6= ∅

This is immediate from the fact that R≈m
is a quotient of S for the bisimu-

lation ≈m and from the definition of a bisimulation.

As corollary of Corollary 6.1 and Theorem 6.6, we have that:

Corollary 6.2

Solving safety and reachability games of imperfect information defined by m bounded

rectangular automata and m-bounded observation sets is decidable (in 2EXPTIME).

The second exponential arises from the number of equivalence classes for ≈m

(see Lemma 6.10). So far, we do not have a hardness result but we conjecture that

the problem is 2EXPTIME-complete. Now, let us illustrate the discrete control

problem for games of imperfect information defined by rectangular automata on

an example.
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Start

ẋ = 0

x = 100

Slow

ẋ ∈ [−10,−9]

Fast

ẋ ∈ [−30,−25]

Stop

ẋ = 0

a

x ≤ 70

a

a

x ≤ 70

b

x ≥ 60

ε

ε

x ≥ 60

ε

Figure 6.12: A game of imperfect information on a discrete rectangular automaton.
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6.5.4 Example of Discrete Safety Game for Rectangular Automata

We have implemented our fixed point algorithm using HyTech and its script

language [HHWT95a]. We illustrate the use of the algorithm on a simple example.

Figure 6.12 shows a rectangular automaton with four locations and one continuous

variable x. Remember that we required that the transition relation of our systems

be total. In this example, we only pictured the edges allowing a good move. Any

move that should use an edge not pictured would lead to a bad state. This is a

safety game : we want to avoid the bad states. The goal is in practice to reach the

location Stop, where we have a very simple safe strategy : emit events ε forever.

In this example, the game models a cooling system that controls the temper-

ature x. When requested to start, by σ = a, the system begins to cool down.

There are two modes of cooling, either fast or slow, among which the environment

chooses. The controller can only observe the system through two observations: H

with H = {(`, x) | x ≥ 80} and L with L = {(`, x) | x ≤ 85}. Thus, only the

continuous variable x can be observed imperfectly, not the modes. Depending on

the mode however, the timing and action to stop the system are different. In both

modes, the controller has to issue an action when the temperature is below 70. In

the slow mode, it is an a; in the fast mode, it is a b. The difficulty is that the rule

of the game imposes to emit a letter at each unit of time and that, when x < 60,

it is not possible anymore to wait by emitting ε events. The controller has thus to

emit an a or a b before x < 60 and after x ≤ 70, while relying only on observations

stating if x ≤ 85 or x ≥ 80.

Figure 6.13 illustrates the two possible behaviors of the system, either if the

mode is fast or slow.

The controller must use its memory of the past observations to make the correct

action in time. If the first two observations are “H,H”, then the controller knows

that the mode is Slow and that it should emit an a after 4 units of time. If the

first two observations are “H, L”, then the controller knows that the mode is Fast

and that it should emit a b after 2 units of time.

We were able to compute the greatest fixed point for this game using HyTech

and to extract a deterministic strategy that is pictured in Figure 6.14. The corre-

spondance between state numbers in the figure and elements of the fixed point is

the following:
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90

80

70

60

50

40

Fast

1 2 3 4

100

Slow

H

L

Temperature

Time (s)

Figure 6.13: Illustration of the game of Figure 6.12.

0 1

2

3

4

(H, a)

(H, ε)

(L, ε)

(H, ε)

(L, ε)
5

6
(L, b)

(L, ε)

(L, a)

(L, ε)

Figure 6.14: A winning strategy for the game of Figure 6.12.
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• State 0 ≡ (Start, x = 100)

• State 1 ≡ (Slow, 90 ≤ x ≤ 91), (Fast, 70 ≤ x ≤ 75)

• State 2 ≡ (Slow, 80 ≤ x ≤ 82)

• State 3 ≡ (Fast, 40 ≤ x ≤ 50)

• State 4 ≡ (Slow, 70 ≤ x ≤ 73)

• State 5 ≡ (Slow, 60 ≤ x ≤ 74)

• State 6 ≡ (Stop, true)

As before, the strategy associates an action to each observation in a given set

of the fixed point. The strategy ’branches’ after state 1 and then keeps in memory

the number of observations to play a or b in the good timing.

6.6 Conclusion and Future Works

As future works, we would like to apply our antichain approach to continuous

control for timed or rectangular games. The first problem we encounter is the

problem of defining such games. It is not clear what game semantics we could

choose: for example, it could be a semantics in which the controller chooses at

the same time a discrete action and the time to wait after this action, like in

[ABD+00]. We must be careful since the game semantics we choose must make

sense for real problems and at the same time still offer interesting decidability

properties. To illustrate the difficulty, observe that a rather natural definition

of timed games leads to the undecidability of finding a reaching strategy: if we

consider the semantics of a timed automaton [[A]]= 〈S,E,F,Σ]R≥0,→〉 as a two-

player game and equip it with the set of observations {S}, we obtain a blind game

for which finding a reaching strategy for the controller amounts to decide if there

exists a word not accepted by the automaton. Unfortunately, this universality

problem for timed automata is known to be undecidable (see [AM04]).

In the future, we would also like to use the technique for the automatic gen-

eration of implementable strategies where implementability is defined in a similar

way to what we have done in the previous chapters.
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The use of antichains in the computation of a fixed point for a controllable pre-

decessor operator is of interest by itself, as we have shown through the application

to the universality test for finite automata. The idea has already been explored

further in [CDHR06] for omega-regular games and there is also a hope that the

use of antichains could greatly improve the efficiency of the universality test for

Büchi automata.
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Chapter 7

Conclusions

7.1 Summary

The central topic of this thesis is the design of robust embedded controllers under

real time constraints. By robust, we mean that the correctness of the controllers

should not depend on too simplifying assumptions like the synchrony hypothesis,

that assume that all computations are instantaneous, or the perfect information

hypothesis, that assumes that a controller can know exactly the value of some

variables of its environment, unless they are formally validated.

In a first part of this thesis we described a complete design approach, using

the formalism of timed and rectangular automata, for the design of embedded

controllers. We first underlined the fundamental flaws of those formalisms as a

specification for programs: instantaneity of synchronization, possible instantane-

ity of reaction that can lead to zeno behaviors, i.e. blocking of time, and infinite

precision of the clocks. Since those formalisms are nevertheless very intuitive to

use for designers, and sustained by numerous tools, we did not discard their use.

We proposed instead a methodology which uses the classical semantics verification

as an useful first step in the design, but also allows the formal validation of the

synchrony hypothesis during a second step. This formal validation is obtained

through the definition of a new semantics for controllers specified as timed au-

tomata: the AASAP semantics. AASAP is an acronym standing for Almost As

Soon As Possible, which describes well the behavior we are expecting from our

controllers: they should react in a reasonable delay to events, even if we cannot

expect them to react instantaneously. This delay is formalized through the use of

a parameter that models the speed of the controller. The two great advantages of

the AASAP semantics are that it is on the one side verifiable, i.e. we can check

reachability properties on it, and on the other side implementable, i.e. if the speed

193
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of the controller is not required to be infinite to ensure correctness we prove that

it is possible to provide a practical implementation. We developed prototype tools

for the verification of the AASAP semantics and for correct-by-construction code

generation from timed automata to a toy real-time platform. This forced us to

tackle the methodological problems linked to code generation in practice.

The verification tool uses a compositional construction that profits from the

on-the-fly construction of products of automata by a tool like Uppaal.

In a second part of this thesis, we tackled the problem of controller synthesis

for systems relying on imperfect information about their environment. The basic

example of imperfect information is the temperature sensor: no such sensor is able

to give the exact temperature of an environment at any moment, one measurement

can match different states and one state can result in different measurements. The

controller synthesis problem is often presented as a type of game, where we are

looking for a strategy that will ensure that one of the player wins no matter how

the other player behaves. We thoroughly treated the problem of finding strategies

for games of imperfect information, using a fixed point computation on the lattice

of antichains. The use of this lattice makes us benefit from the monotonicity of

the controllable predecessor operators. We proved the decidability of the problem

of finding a strategy in finite games and in an interesting class of infinite state

games, both for safety games, where we want to keep the environment safe from

some bad sates, and for reachability games, where we want the environment to

reach some good states at some point in the future. These results allowed us to

prove that the problem of discrete control of rectangular automata is decidable.

It also happens that the use of the lattice of antichains is very useful for other

problems that can be presented as games. We reported in this thesis interesting

experimental results for testing the universality of finite automata.

7.2 Personal Contributions

Since all this work has been made in collaboration with Laurent Doyen, who was

writing his thesis parallelly, I feel the need to properly delimitate what is my work,

what is collaboration, and what is Laurent’s work.

• In Chapter 3 the definition of the AASAP semantics and the implementation
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semantics are collaborative work, and are presented in both our theses, but

the main proofs (of simulation) are my work.

• Chapter 4 is essentially my personal work. I defined both transformations

to HyTech and Uppaal and studied the Philips Audio Control Protocol.

The one thing I did not do is the proof of simulation for the HyTech

transformation. In consequence, this proof is not to be found in this thesis

but in [Doy06].

• Chapter 5 is my work only, although the implementation scheme was de-

signed by Laurent Doyen and me for his DEA’s thesis [Doy03].

• Chapter 6, although it appears only in my thesis and not in Laurent’s one,

is essentially collaborative work, although everything has been rewritten for

more readability, and all the implementations about universality of finite

automata are my work.
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Appendix A

Elastic Specification of the

Philips Audio Control Protocol

-- The Elastic specification of the whole system for the audio control protocol of FM05

-- Hytech parametric analysis only terminates with stronger constraints than delta1 + delta2 <1/2 *-

var

x,y,z : clock;

i, c,leng, m,p,r,doublezero, endM

: discrete;

automaton random

synclabs : ;

initially ran & i=0 ;

loc ran : while True wait{}

when True do {i’=1} goto ran;

when True do {i’=0} goto ran;

end

elastic automaton sender

eventlabs : messReady;

internlabs: ;

orderlabs : up, down, messSent;

initially waitMessage & x=0 & p=0 & i=0 & leng=0 & c=0 & doublezero=0 & endM=1;

loc waitMessage :

when get messReady & True goto idle;

loc messFinished :

when True put messSent goto waitMessage;

loc idle :

when x>=12 put up do{x’=0,p’=1, c’=1, leng’=1} goto oneSent;
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loc oneSent :

when x>=2 & x<=2 & i=1 put down do{x’=0} goto waitingOne ;

when x>=4 & x<= 4 & i=0 put down

do{ x’=0, p’=1-p, leng’=leng+1,c’=2 c,i’>=0,i’<=1,doublezero’=0} goto zeroSent;

when x>=2 & x<=2 & p=1 & endM=1 put down do{x’=0,p’=0} goto messFinished;

loc waitingOne :

when x>=2 & x<=2 put up do{x’=0, p’=1-p, leng’=leng+1, c’=2 c +1,i’>=0,i’<=1} goto oneSent;

loc zeroSent :

when x>=2 & x<=2 & i=0 put up do {x’=0} goto waitingZero;

when x>=4 & x <= 4 & i=1 put up

do{ x’=0, p’=1-p, leng’=leng+1, c’=2 c + 1,i’>=0,i’<=1} goto oneSent;

when x>=2 & x<=2 & p=1 & endM=1 do{x’=0,p’=0} goto messFinished;

when x>=2 & x<=2 & doublezero=1 & endM=1 do{x’=0, p’=0} goto messFinished;

loc waitingZero :

when x>=2 & x<=2 put down

do{x’=0, p’=1-p, leng’=leng+1,c’=2 c,i’>=0,i’<=1,doublezero’=1} goto zeroSent;

end

elastic automaton receiver

eventlabs : up;

internlabs : finalZero;

orderlabs : messReceived;

initially idle2 & y=0 & m=0 & r=0 ;

loc idle2:

when get up & True do {y’=0,m’=1,r’=1} goto last_is_1;

loc message :

when True put messReceived goto idle2;

loc last_is_1 :

when get up & 3<=y & y<=5 do {y’=0,m’=1-m,r’=1} goto last_is_1;

when get up & 5<=y & y<=7 do {y’=0,m’=1-m,r’=0} goto last_is_0;

when get up & 7<=y do {y’=0,r’=2} goto last_is_1;

when y>=9 & m=1 put messReceived do {y’=0} goto idle2;

when y>=9 & m=0 put finalZero do{y’=0,r’=0,m’=1-m} goto message;

loc last_is_0 :

when get up & 3<=y & y<=5 do {y’=0, m’=1-m, r’=0} goto last_is_0;

when get up & 5<=y do {y’=0, r’=2} goto last_is_1;

when y>=7 put finalZero do {y’=0, r’=0} goto message;

end

automaton checkOutput

synclabs : getup , finalZero;

initially check & z=0 & leng=0 & c=0 & doublezero=0 ;
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loc check : while True wait{}

when True sync getup do {z’=0} goto treating;

when True sync finalZero do {z’=0} goto treating;

when leng>3 goto cerror;

when leng<0 goto cerror;

loc treating : while z<=0 wait{}

when r=0 & leng=1 & c=1 do{z’=0} goto cerror;

when r=0 & leng=1 & c=0 do{leng’=leng-1,z’=0} goto check;

when r=0 & leng=2 & c>1 do{z’=0} goto cerror;

when r=0 & leng=2 & c<=1 do{leng’=leng-1,z’=0} goto check;

when r=0 & leng=3 & c>3 do{z’=0} goto cerror;

when r=0 & leng=3 & c<=3 do{leng’=leng-1,z’=0} goto check;

when r=1 & leng=1 & c=0 do{z’=0} goto cerror;

when r=1 & leng=1 & c=1 do{leng’=leng-1,c’=c-1,z’=0} goto check;

when r=1 & leng=2 & c<=1 do{z’=0} goto cerror;

when r=1 & leng=2 & c>1 do{leng’=leng-1,c’=c-2,z’=0} goto check;

when r=1 & leng=3 & c<=3 do{z’=0} goto cerror;

when r=1 & leng=3 & c>3 do{leng’=leng-1,c’=c-4,z’=0} goto check;

when r=2 & leng=1 do{z’=0} goto cerror;

when r=2 & leng=2 & c=1 do{leng’=0, c’=0,z’=0} goto check;

when r=2 & leng=2 & c=0 do{z’=0} goto cerror;

when r=2 & leng=2 & c>2 do{z’=0} goto cerror;

when r=2 & leng=3 & c=3 do {leng’=1, c’=1,z’=0} goto check;

when r=2 & leng=3 & c=2 do {leng’=1,c’=0,z’=0} goto check;

when r=2 & leng=3 & c>3 do{z’=0} goto cerror;

when r=2 & leng=3 & c<2 do{z’=0} goto cerror;

loc cerror : while True wait{}

end

init := param[sender]= 0 & param[receiver]=0;

bad := loc[checkOutput] = cerror ;

view[up]=getup;
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Appendix B

Elastic Code Annotations to

the Specification of the Audio

Control Protocol

platform : brickos ;

unit : 89;

hide : i, c, leng, doublezero, p;

-------------- SENDER ---------------

declarations sender :

%{

#include <dbutton.h>

#define M_SIZE 14

int message[]= {1,0,1,1,0,0,1,1,1,1,0,1,0,0};

int j=0;

bool zeroNext()

{

return (j<M_SIZE && message[j++]==0);

}

bool oneNext()

{

return (j<M_SIZE && message[j++]==1);

}

bool finished()

{

return (j>=M_SIZE);

}

%}

init sender :

%{

endM=0;

cputs("HI");
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%}

put up :

%{

motor_b_dir (brake);

motor_b_speed (MAX_SPEED);

%}

put down :

%{

motor_b_dir (brake);

motor_b_speed (MIN_SPEED);

%}

restrict oneSent to waitingOne

%{

oneNext

%}

restrict oneSent to zeroSent

%{

zeroNext

%}

restrict zeroSent to waitingZero

%{

zeroNext

%}

restrict zeroSent to oneSent

%{

oneNext

%}

restrict all to idle

%{

finished

%}

-------------- RECEIVER -------------

declarations receiver :

%{

#define M_SIZE 14

int toReceive[M_SIZE] = {1,0,1,1,0,0,1,1,1,1,0,1,0,0};

int received[M_SIZE];

int i=0;

int lastWasUp=0;

bool

checkMsg (int received[], int toReceive[], int t)
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{

int i;

for (i = 0; i < M_SIZE && received[i] == toReceive[i]; i++)

;

if (i != M_SIZE)

{

cputs ("KO");

}

else

{

cputs ("OK");

}

return true;

}

wakeup_t getup(wakeup_t data)

{

if (lastWasUp)

{

if (TOUCH_1)

return false;

else

{

lastWasUp=false;

return false;

}

}

else

{

if (TOUCH_1)

{

lastWasUp=true;

return true;

}

else

{

return false;

}

}

}

%}

init receiver :

%{

ds_passive (&SENSOR_1);

cputs("Rec");

%}

detect up :

%{
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getup

%}

get up :

%{

if (i<M_SIZE)

{

switch(r)

{

case 0:

break;

case 1:

{

received[i]=1;

i++;

break;

}

case 2:

{

received[i]=1;

received[i+1]=0;

i=i+2;

break;

}

default :

cputs ("Prob");

}

}

%}

restrict all to idle

%{

checkMsg (received, toReceive, M_SIZE);

%}
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