
Systematic Implementation of
Real-Time Models

M. De Wulf, L. Doyen,J.-F. Raskin

Université Libre de Bruxelles
Centre Fédéré en Vérification

Model-based Development for
Controllers

• Make a model of the environment

Environment

• Make clear the control objective:

Bad

• Make a model of your control strategy:

ControllerMod

• Verify :

Does Environment || ControllerMod avoid Bad?

• Good, but after ?

Text

Goal

• Transfer of verified properties from models to code.

• Type of models we consider:

– Controllers specified as timed automata

The Big picture
 Timed Controller

Verification model

Code

Desired Properties

OK ?

Automatic Generation

Verification

Property Preservation

Outline of the talk

• Problems to implement T.A.

• AASAP semantics

• Verification in practice

• Case Study

• Code Generation

• Conclusion

Problem

• Timed automata are (in general) not implementable

(in a formal sense)...

Why ?

– Zenoness : 1/2, 3/4, 7/8, ...

– No minimal bound between two transitions :
1/2,1,1+3/4,2,2+7/8,3,...

– And more ...

10

1 2 3 40

More...

• One can specify instantaneous responses but not
implement them.

Not implementable

More...

• Instantaneous synchronisations between environment
and controller are not implementable.

Environment

Not implementable
Controller

More...

• Models use continuous clocks and implementations use
digital clocks with finite precision

Not implementable

V.S

Problems : Summary

• My controller stragegy may be correct because

– ... it is zeno...

– ... it acts faster and faster?

– ... it reacts instanteously to events, timeouts,...?
(synchrony hypothesis)

– ... it uses infinitely precise clocks?

Text

t

Outline of the talk

• Problems to implement T.A.

• AASAP semantics

• Verification in practice

• Case Study

• Code Generation

• Conclusion

A possible solution...

• Give an alternative semantics to timed automata :

Almost ASAP semantics.

Semantics parameterized by ∆ in Q+

– enabled transitions of the controller become
urgent only after ∆ time units;

– events from the environment are received by the
controller within ∆ time units;

– truth values of guards are enlarged by f(∆)

Intuition...

•One can specify instantaneous responses but not
implement them.

Not implementable Solution : allow some delay

Intuition...

Instantaneous synchronizations between environment and
controller are not implementable.

Environment

Not implementable
Solution :
Uncouple event from
perception by the controller

Intuition...

Models use continuous clocks and implementations use
digital clocks with finite precision

Not implementable Solution :
Slightly relax the constraints

V.S

Intuition

• AASAP semantics defines a “tube” of strategies instead

of a unique strategy in the ASAP semantics.

• This tube can be refined into an implementation while

preserving safety properties verified on the AASAP

semantics

ASAP semantics

Implementation

AASAP semantics

f(Δ)

Outline of the talk

• Problems to implement T.A.

• AASAP semantics

• Verification in practice

• Case Study

• Code Generation

• Conclusion

Verification

• The question that we ask when we make verification

is no more:

 Does Environment || ControllerMod avoid Bad ?

• But:

 For which values of ∆

 does Environment || ControllerMod(∆) avoid Bad ?

Verification in practice ?

• The AASAP semantics can be coded into a parametric

timed automata with only one clock compared to the

parameter ∆ in Q+ ...

• ... But the initial coding we proposed in [DDR04]

multiplied the number of locations by 2|input labels| !

• So, how to allow verification of large examples ?

Compositional Construction

• A model-checker like Uppaal constructs state space on

the fly

• So, compositional construction : parallel composition

of small automatas (called widgets) to encode AASAP

semantics

• Number of locations polynomial in the size of the

original model

Non-Compositional Compositional

Outline

• Problems to implement T.A.

• AASAP semantics

• Verification in practice

• Case Study

• Code Generation

• Conclusion

A case study
The Philips Audio Control Protocol

extTextTxt

10011100

Sender Receiver

Observer

Timed
Manchester
encoding

Properties /requirements
 for the protocol

•the receiver knows the length of a time slot but ignores

when it begins;

•the receiver ignores length of the current bit string;

•only UP signals can be perceived reliably;

•S/R uses (unsync.) digital clocks : there will be

imprecision in sending and perceived receiving times;

•Sensors are polled every time slice : discrepancy

between occurence of UP events and detection.

... 3 first items should be dealt with by the logic of the

protocol, 2 last items are related to robustness of the

protocol : the AASAP-semantics deals with it.

Application of the methodology

• Model (idealized) sender and receiver using the

synchrony hypothesis

• Check for robustness :

for which ∆ :

does Sender(∆) || Receiver(∆) || Observer avoid Bad ?

• Generate correct code for RCX

Outline of the talk

• Problems to implement T.A.

• AASAP semantics

• Verification in practice

• Case Study

• Code Generation

• Conclusion

Code Generation

• We simply annotate the transitions of the model with

simple C code instructions

– For example :
-in the model of the sender, the next bit to be sent
is choosen non-deterministically :
r=S[i]; i++;
-in the model of the receiver, on a transition
decoding a one :
i++; R[i]=0;

Outline

• Problems to implement T.A.

• AASAP semantics

• Verification in practice

• Case Study

• Code Generation

• Conclusion

Conclusion

• Almost ASAP semantics :

– is implementable!

– is verifiable, even for non-trivial case studies!

– guarantees correct code and not only correct
idealized model !

– is tool-supported !

Further Informations

• [DDR04] M. De Wulf, L. Doyen, J.-F. Raskin. Almost ASAP
Semantics: From Timed Model to Timed Implementation.
LNCS 2993, HSCC 2004.

• Journal Version to appear in Formal Aspects of Computing
• http://www.ulb.ac.be/di/ssd/madewulf/aasap/

Thank You

Proof of “implementability” ?
[DDR04]

• We define an “implementation semantics” based on:

• The timed behaviour of this scheme is determined by

two values :

– Time length of a loop : ΔL

– Time between two clock ticks : ΔP

• We prove that this semantics is simulated (in the

formal sense) by the AASAP-semantics if 3 DL + 4 DP < D

Read System Clock
Read sensor values
Check all transitions and fire one if possible

ASAP

ASAP

ASAP

Only urgent if the 3 automata are
in a location with an ASAP transition

a

a

a

To specify urgency compositionally : use of
the ASAP flag on transitions

Compositional Construction

Widget 1 : Event-Watcher

•Record event a;
•Wait at most D unit of time …
•… before making the viewing of a urgent.

Widget 2 : Guard-Watcher

• Makes enabled transition in location l urgent D units of

time after they became enabled.

If a transition is enabled when x> 3
It becomes urgent when x> 3 + D

