Centre Fédeéré en Vérification

Technical Report number 2007.87

Timed Control with Observation Based and
tuttering Invariant Strategies

Franck Cassez, Alexandre David, Kim Larsen, Didier Lime, Jean-Francois Raskin

£5 Np
0

This work was partially supported by a FRFC grant: 2.4530.02

%,

JES UNip,

e
% ke
EELE

http://www.ulb.ac.be/di/ssd/cfv

Timed Control with Observation Based and
Stuttering Invariant Strategies

Franck Cassez!'*:**, Alexandre David?, Kim G. Larsen?, Didier Lime''*,
Jean-Francois Raskin®* * *

1 TRCCyN, CNRS, Nantes, France
{franck.cassez,didier.lime}@irccyn.ec-nantes.fr

2 CISS, CS, Aalborg University, Denmark
{adavid,kgl}@cs.aau.dk

3 Computer Science Department, Université Libre de Bruxelles (U.L.B.), Belgium
jraskinQulb.ac.be

Abstract. In this paper we consider the problem of controller synthesis
for timed games under imperfect information. Novel to our approach is
the requirements to strategies: they should be based on a finite collec-
tion of observations and must be stuttering invariant in the sense that
repeated identical observations will not change the strategy. We provide a
constructive transformation to equivalent finite games with perfect infor-
mation, giving decidability as well as allowing for an efficient on-the-fly
forward algorithm. We report on application of an initial experimental
implementation.

1 Introduction

Timed automata introduced by Alur and Dill [2] is by now a well-established for-
malism for representing the behaviour of real-time systems. Since their definition
several contributions have been made towards the theoretical and algorithmic
characterization of this formalism. In particular, industrial mature tools sup-
porting model-checking for timed automata now exist [7, 6].

More recently the problem of controller synthesis for timed automata based
models have been considered: i.e. given a timed game automaton modelling the
possible moves of an environment as well as the possible moves of a control
program, the problem consists in synthesizing a strategy for the control program
in order that a given control objective is met no matter how the environment
behaves [15].

* Work supported by the French National Research Agency ANR-06-SETI-DOTS.
** Author supported by the Fonds National de la Recherche Scientifique, Belgium.
*** Author supported by the Belgian FNRS grant 2.4530.02 of the FRFC project “Centre
Fédéré en Vérification” and by the project “MoVES”, an Interuniversity Attraction
Poles Programme of the Belgian Federal Government.

Controller synthesis and time-optimal controller synthesis for timed games
was shown decidable in [4] and [3]. First steps towards efficient synthesis algo-
rithms were taken in [1, 16]. In [9] a truly on-the-fly algorithm based on a mixture
of forward search and backwards propagation was proposed and later used as
the basis for an efficient implemention in the tool UPPAAL TIGA [5].

In all of the papers cited above it has been assumed that the controller has
perfect information about the plant: at any time, the controller knows precisely
in what state the environment is. In general however — e.g. due to limited
sensors — a controller will only have imperfect (or partial) information about
the state of the environment. In the discrete case it is well known how to handle
partial observability, however for the timed case it has been shown in [8] that the
controller synthesis problem under partial observability is in general undecidable.
Fixing the resources of the controller (i.e. a maximum number of clocks and
maximum allowed constants in guards) regains decidability [8], a result which
also follows from the quotient and model construction results of [12, 13].

In this paper we also deal with the problem of controller synthesis for timed
games under imperfect information following the approach of [10,17]. That is,
the imperfect information is given in terms of (a finite number of possible) ob-
servations to be made on the system configurations, providing the sole basis for
the strategy of the controller. However, in contrast to [10,17], which is essen-
tially turn-based in the untimed setting, we will here consider a more general
framework, where in each step the controller and environment are competing. In
particular, the strategy of the controller is supposed to be stuttering invariant,
i.e. the strategy will not be affected by a sequence of environment or time steps
unless changes in the observations occur.

On Sensor Sensed Paint Piston End
r > 8 >0 x> 8 xr > 8 ©>8
z:=0 x:=0 z:=0

z <10 z<0 z < 10 z < 10 z < 10
kick?
Off

Fig. 1. Timed Game with Imperfect Information.

To illustrate the concepts of imperfect information and stuttering invariance
consider the timed game automaton in Figure 1 modelling a production system
for painting a box moving on a conveyor belt. The various locations indicate
the position of the box in the system: in Sensor a sensor is assumed to reveal
the presence of the box, in Sensed the box is moving along the belt towards the
painting area, in Paint the actual painting of the box takes place, in Piston the
box may be kick?’ed off the belt leading to Off; if the box is not kicked off it
ends in End. All phases are assumed to last between 8 and 10 seconds, except
for the phase Sensor, which is instantaneous. The uncontrollability of this timing
uncertainty is indicated by the dashed transitions between phases. The controller
should now issue a single kick?’command at the appropriate moment in order

to guarantee that the box will — regardless of the above timing uncertainy —
be kicked off the belt. However the controller has imperfect information of the
position of the box in the system. In particular, the controller cannot directly
observe whether the box is in the Sensed, Paint or in the Piston phase nor can
the value of the clock = be observed. Still equipping the controller with its own
clock y which it may reset and test (against a finite number of predicates)
it might be possible to synthesize a control strategy despite having only partial
information: in fact it may be deduced that the box will definitely be in the
Piston area within 20-24 seconds after being sensed. In contrast, an increased
timing uncertainty where a phase may last between 6 and 10 seconds will make
a single-kick? strategy impossible.

The main contributions of this paper are: (i) we show how a variant of the
subset construction of [10,17] allows us to transform a timed game H with
imperfect information into an equivalent game G(H) of perfect information;
(i4) we show that G(H) can be effectively and symbolically computed and this
implies that the control problem under imperfect information is decidable; this
allows us to apply the efficient on-the-fly forward algorithm from [9] and (iii) we
report on application of an initial experimental implementation of this algorithm
and a number of heuristics for minimizing the explored state-space as well as
the size of the finally synthesized strategy.

The detailed proofs can be found in the extended version available from the
authors web pages.

2 Timed Games and Observation Based Strategies

In this section, we define the timed game structures, the notion of strategies
that we are interested in, and useful vocabulary for the rest of the paper. We
denote R>q the set of non-negative reals and Rsg = R>q \ {0} and A the set
of mappings from B to A.

Timed game structures (TGS) will be defined using a timed automaton like
notation. The semantics of the notation will be defined by a two-player labeled
timed transition system (2-LTTS), and the games will be played on this 2-LTTS.

Definition 1 (2-LTSS). A 2-player labeled timed transition system (2-LTTS)
is a tuple (S, sg, X1, Yo, —) where S is a (infinite) set of states, sq is the initial
state, X1 and Xy are the two disjoint alphabets of actions for Player 1 and
Player 2 respectively, and —C S x X7 U X5 UR<g X S is the transition relation.

Given a state s € S, we define enable(s) as the set of o € X U X5 UR< such
that there exists s’ and (s,0,s") €—.

Let X be a finite set of real-valued variables called clocks. Let M be a natural
number. We note C(X, M) the set of constraints ¢ generated by the grammar:
pu=ax~k|x—y~k|¢ANpwhere k € ZN[0,M], z,y € X and ~€
{<,<,=,>,>}. B(X, M) is the subset of C(X, M) generated by the following
grammar: ¢ == T | k1 <z < ky | ¢ A p where k, k1, ke € Z N[0, M], k1 < ko,
xz € X, and T is the boolean constant true. In the sequel, we will restrict our

attention to bounded timed automata where clock values are all bounded by a
natural number M this does not reduce the expressive power of timed automata.
Given a natural number M, an M-valuation of the variables in X is a mapping
X — R N[0, M]. We also use the notation [X — [0, M]] for valuations and O
for the valuation that assigns 0 to each clock. For Y C X, we denote by v[Y] the
valuation assigning 0 (resp. v(z)) for any z € Y (resp. v € X \Y). Let t € R,
v be an M-valuation for the set of clocks X, if for all z € X, v(z) +t < M
then v 4 ¢ is the M-valuation defined by (v +t)(z) = v(z) + ¢ for all z € X. For
g € C(X,M) and v € (R N[0, M])X, we write v |= g if v satisfies g and [g]
denotes the set of valuations {v € (R>o N[0, M])X | v |= g}. An M-zone 7 is a
subset of (R>o N[0, M])X s.t. Z = [g] for some g € C(X, M).

Definition 2 (Timed Game Structure). Let M be a natural number, an M -
timed game structure (M-TGS) is a tuple H = (L,t, X, 6, X1, Yo, inv, P) where:

— L is a finite set of locations,

— 1 € L is the initial location,

— X is a finite set of real-valued clocks,

— X1, Y5 are two disjoint alphabets of actions, Xy is the set of actions of
Player 1 and X5 the set of actions of Player 2,

— § C(LxB(X,M)x X1 x2%X x LYU(LxC(X, M) x Xy x 2% x L) is partitioned
into transitions' of Player 1 and transitions of Player 2.

—inv: L — B(X, M) associates to each location its invariant.

— P is a finite set of pairs (K,p) where K C L and ¢ € B(X, M), called
observable predicates.

In the definition above, each observable predicate (K, ¢) € P is a predicate
over the state space of the TGS, i.e. the set L x [X — [0, M]]. For [€ L and v
an M-valuation of the clocks in X, we write (I,v) | (K,) iff | € K and v = ¢.
Two pairs (I1,v1), (I2, v2) that satisfy the same observable predicates from P have
the same observation (they can not be distinguished by our controllers). So, an
observation is a function o : P — {0,1}, or equivalently, a class of equivalent
states w.r.t P. We note O the set of functions [P — {0, 1}], it is called the set of
observations of the system. With each TGS H with set of observable predicates
P, we associate the function v that maps observations to classes of equivalent
states, i.e. v : O — 2LXIX=0MI " anq it is defined as follows:

v(0) = ¢ (L) | A () = (K, 9) A A (L, v) = (K, ¢)

(K,p) | o(K,p)=1 (K,¢) | o(K,p)=0

Note that the set of observations O defines a partition of the state space of the
M-TGS, ie. J,cpv(0) = L x [X — [0, M]], and for all 01,05 € O, if 01 # 02,
then v(01) Ny(02) = 0. Given (I,v) we write y~1(I,v) for the observation o of

! Note that we impose that guards of Player 1’s transitions are left closed. This ensures
that, when a guard becomes true for an action owned by Player 1, there is always a
first instant where it becomes true.

state (I,v), i.e. v~ 1(l,v) is the function 0 : P — {0,1} s.t. Vp € P,o(p) =1 <
(l;v) = o

We associate with any M-TGS H a semantics in the form of a (infinite state)
2-LTTS. The state space of the 2-LTTS will be composed of elements of the form
(I,v) where [is a location of the TGS and v is a valuation of the clocks. In order
to avoid deadlocks in the 2-LTTS, we require that our TGS are deadlock-free?,
that is, for every state (I,v) such that v |= inv(l), there exists o € X5 UR<g,
such that either there is a transition (l,g,0,Y,l') € § such that v E ¢ and
v[Y] Einv(l’), or for all #/, 0 <t < o, v+t =inv(l).

Definition 3 (Semantics of a TGS). The semantics of an M-TGS H =
(L1, X,0,%1, Xs,inv,P) is a 2-LTTS Sy = (S, so, X1, Yo, —) where:

- S={(,v)|leLAveRsN[0,M)X Av=inv(l)};
— so = (,0);
— the transition relation is composed of
(1) discrete transitions. For all (I1,v1),(l2,v2) € S, for all 0 € X1 U Xy,
((I1,v1), 0, (la,v2)) €— iff there exists a transition ({,g,a,Y,{’) € 6 such
that £ =11, £ =13, v1 = g, and va = v1[Y];
(#9) time transitions. For all (I1,v1),(l2,v2) € S, for all t € Rsg, there is a
transition ((l11,v1),t, (l2,v2)) €— iff I = la, voa = v1 + ¢, and for all t’,
0<t <t, (l;,vy +t) €S and v (ly,v1 +t') =~ (1, v1).

Remark 1. This semantics has the following important property: changes of ob-
servations can occur only during a discrete transition, or at the last point of
a time delay. This is consistent with our definition of observations using con-
straints in B(X, M): the form of the constraints implies that either for all ¢ > 0,

(l,v) 5 (l,v+t), and y~1(l,v +t) = v~1(l,v), or there is a first instant ¢y > 0
st (Iv) 2 (I,v +to) and v~ (I, v + to) # v (I,v), and for all 0 < ¢/ < fo,
’771(172) + tl) = 771(150)'

The 2-LTTS of a TGS has no deadlock because a TGS is deadlock-free. This
also implies that any state of the 2-LTTS is the source of an infinite path. As a
TGS is bounded, these infinite paths contain infinitely many discrete steps and
in the sequel we will consider only these type of infinite paths.

Playing with Observation Based Stuttering Invariant Strategies. In the
remainder of this section, we will define the rules of the timed games that we
want to consider. We start by an informal presentation and then turn to the
formalization.

Player 1 and Player 2 play on the underlying 2-LTTS of a TGS as follows.
Player 1 has to play according to observation based stuttering invariant strategies
(OBSI strategies for short). Initially and whenever the current observation of the
system state changes, Player 1 either proposes an action o7 € Y1, or the special

2 And more precisely, either time can elapse or Player 2 can do a discrete action from
any state: thus Player 1 cannot block the game by refusing to take its actions.

action delay. When Player 1 proposes o1, this intuitively means that he wants to
play the action o; whenever this action is enabled in the system. When Player 1
proposes delay, this means that he does not want to play discrete actions until
the next change of observation, he is simply waiting for the next observation.
Thus, in the two cases, Player 1 sticks to his choice until the observation of the
system changes: in this sense he is playing with an observation based stuttering
invariant strategy. Once Player 1 has committed to a choice, Player 2 decides of
the evolution of the system until the next observation but respects the following
rules:

1. if the choice of Player 1 is a discrete action o7 € X then Player 2 can choose
to play, as long as the observation does not change, either (i) a discrete
actions in Xy U {01} or (ii) let time elapse as long as o7 is not enabled. This
entails that o; is urgent,

2. if the choice of Player 1 is the special action delay then Player 2 can choose
to play, as long as the observation does not change, any of its discrete actions
in X5 or let time pass,

3. the turn is back to Player 1 as soon as the next observation is reached.

Plays. In the following, we define plays of a game where choices of Player 1
are explicitly mentioned. A play in H is an infinite sequence of transitions in
Su, p = (ly,v0)coo0(l1,v1)c101 - - - (In, Vn)Cn0On - - -, such that for all i > 0,
(li7vi> Z5 (li+17vi+1) and

— either o; € {¢;} U X, or

— 0, € R and V0 < t < 0y, ¢; & enable(l;, v; + t) (time elapses only when the
choice of Player 1 is not enabled).?

— if 0; and 0;41 are in RE; then v (I, v;) # v 1 (lig1, vig1)-

We write Play((l,v), H) for the set of plays in H that start at state (I,v). We
write Play(H) for the initial plays that start at the initial state of H, that is the
set Play((¢,0), H).

Prefixes, Strategies, and Outcomes. A prefiz of H is a prefix of a play in
H that ends in a state of H. We note Pref((l,v), H) for the set of prefixes of
plays in H that starts in ([,v), i.e. plays in Play((l,v), H). We note Pref(H),
for prefixes of initial plays in H, i.e. prefixes of plays in Play(H). Let p =
(lo,v0)c000 - -+ (I, Vn)Cnop - - be a play or a prefix of a play, p’(n) denotes
the prefix up to (I,,,v,). In the sequel, we measure the length of a prefiz by
counting the number of states that appear in the prefix. For example, p (n)
has a length equal to n + 1. A strategy for Player 1 in H is a function \7 :
Pref(H) — Xy U {delay}. The outcome of a strategy A\ in H is the set of plays
o = (lg,v0)cooo(l1,v1)c101 « .. (In, Vp)enom . . . such that Iy = ¢, vg = 0 and for
all i >0, ¢; = M (p(i)). We note Outcome’™ (A1) this set of plays.

3 Remember that delay is never enabled and if Player 1 wants to let time elapse he
plays delay.

Consistent Plays, Choice Points and OBSI Strategies in H. We are
interested in strategies for Player 1 where the choice of action can only change if
the observation of the state of the system changes. Such a strategy is called an ob-
servation based stuttering invariant strategy as presented before. When Player 1
plays such a strategy, the resulting plays have the property of being consistent.
This notion is defined as follows. A play p = (lg,v0)co00 - - (In, Vn)CnOp - - - is
consistent iff for all i > 0: v (lir1,vi01) = v (4, v;) = ¢iv1 = ¢;. We note
Play®(H) the set of consistent plays of H, and Pref®’(H) the set of prefixes of
consistent plays of H. Let p = (lp,v0)coo0 - (ln—1,Vn—1)¢n—10n_1(ln,vn) €
Pref*’(H). p" is a choice point if either n = 0, or n > 0 and v~ 1(l,,_1,v, 1) #
v~ Y(l, v,). Note that we have that ChoicePoint(H) C Pref*’(H) C Pref(H) and
Play®’(H) C Play(H).

Let p = (I, v0)co0q - -+ (In, U)cnopn - -+ be a consistent play in H. Let [=
{m|p"(m) € ChoicePoint(H)}. The stuttering free observation Obs(p™) of pH
is the sequence in (0.X7)% defined by:

— if I = {ng,n1,--- ,nx} is finite,

ObS(pH) = 7_1(lno) vno)cno T ﬂ/_1(lm€ ’ vnk)cnk (A/_l(lnk ’ ,Unk)cnk)w

— if I = {ng,n1,--- ,ng,-- -} is infinite,

ObS(pH) = ’Yil(lnoavno)cno7il<ln1) ’Un1>Cn1 T Vil(lnmvnk)cnk T

We call it “stuttering free” as, for all i € I, v (ly;,vn,) # 7 (lnyyys Uniys)
except when I is finite, but in this case, only the last observation is repeated
infinitely. Let pf € ChoicePoint(H), let I = {ng,ny,---,nx} be the set of indices
n; such that pf(n;) € ChoicePoint(H). The (finite) observation of p, noted
Obs*(pH), is Vil(lnovvno)cno o 'Wil(lnk7Unk>cnk771(lnk7vnk)cnk' We say that
a strategy A is an observation based stuttering invariant (OBSI) strategy if
the following property holds: for all p, plf € Pref®(H), let n; be the maximal
value such that p!’(n;) € ChoicePoint(H), let na be the maximal value such that
pi(ng) € ChoicePoint(H), if Obs*(pi(ny)) = Obs*(pk (ns)) then M (pl) =
M (psh).

Winning Conditions and Winning Strategies. Let p € Play(H) s.t.
Obs(p™) = 0pcpoicy - - - 0ncy - - .. The projection Obs(pT) | O over O of Obs(p™)
is the sequence 0go1...0y,.... A winning condition WV is a stuttering closed*
subset of O“. A strategy A for Player 1 is winning in H for W, if and only if,
Vp € Outcome™ (A7) - Obs(p) | O € W.

To conclude this section, we define the control problem OBSI-CP we are
interested in: let H be a TGS with observations O, W be a stuttering closed
subset of 0%,

is there an OBSI winning strategy in H for W?¢ (OBSI-CP)

4 A language is stutter closed, if for any word w in the language, the word w’ obtained
from w by either adding a stuttering step (repeating a letter), or erasing a stuttering
step, is also in the language.

In case there is such a strategy, we would like to synthesize one. The problem of
constructing a winning strategy is called the synthesis problem.

3 Subset Construction for Timed Games

In this section, we show how to transform a timed game of imperfect informa-
tion into an equivalent game of perfect information. Let H = (L, ¢, X, §, Xy, 2o,
inv, P) be an M-TGS and let Sy = (S, sg, X1, X2, —) be its semantics. In this
section we assume delay € Xy but H has no transition labeled delay.

Useful functions. Let o € X1. We define the relation Z=,0ps by: (1,7) Znobs
(I',v") if there is a prefix p = (fo, vo)cooo(l1,v1)c101 - -+ (I, Vi)Ckok (L1, Vit1)
in Pref((I,v), H) with (fo,v0) = (I,v), (lgy1,vk41) = (',0"), V0 < i< k,¢; = o,
7Yl) = v~ (b, vo), and Y (Lry1, ver1) # v (Lo, vo)- Notice that because
of the definition of time transitions in Definition 3, if 0; € Ryg and 0 < i < k
then v~ 1(l;,v;) = v 1(lix1,vip1) and if 0; € Reg and i@ = k, v 1({;,v;) =
v i, vi+t) for all 0 < t < oy, v (Ui vi) # v (i, vi +t) and (b1, vi01) =
(Li,v; + 0;) (i.e. o; is the first instant at which the observation changes). By the
constraints imposed by B(X, M) this first instant always exists. We define the
function Next, (I, v) by:

Next, (1,v) = {(I',v') | (1, v) “novs (I';0")} (1)

This function computes the first next states after (I, v) which have an observation
different from v ~1(/,v) when Player 1 continuously plays o. Next is extended to
sets of states as usual.

We also define the function Sink, (-) : L x R, — L x R, for o € Xy: (I',v') €
Sinky (1, v) iff there is an (infinite) play® p = ({o,v0)cooo(f1,v1)c101 -« - (L, Vi)
ok (Ugs1, Vpr1) - -+ in Sy such that: (€o,v9) = (L,v), (Cgs1,ver1) = (1, 0),
V0 <i,c; =0, and VO < i,y 1 (l;,v;) = v 1 (lg, v0).

Non-Deterministic Game (of Perfect Information). The games of per-
fect information that we consider here are (untimed) non-deterministic games,
and they are defined as follows: in each state s Player 1 chooses an action o and
Player 2 chooses the next state among the o-successors of s.

Definition 4 (Non-Deterministic Game). We define a non-deterministic
game (NDG) to be a tuple G = (S, u, X1, A, O, I') where:

— 8§ =5yUS; is a set of states;

— w € Sy is the initial state of the game;

— X is a finite alphabet modeling choices for Player 1;
— A C Sy x X1 xS is the transition relation;

® With an infinite number of discrete transitions because of the boundedness assump-
tion. If needed we can add the requirement that this path is non-zeno if we want to
rule out zeno-runs.

— O is a finite set of observations;
-I:0 — 25 \ @ maps an observation to the set of states it represents, we
assume I' partitions S (I'"1(s) =0 <= s € I'(0)).

Definition 5 (Plays in NDG). A play in G from so is either an infinite
sequence SqagS1a1 - ..Splp ... such that for all i > 0, s; € Sp, a; € X,
and (8,0, 8p+1) € A or a finite sequence soagsiay ... sy such that all i, 0 <
i <mn, s € So, (8i,ai,8i41) € A, and s, € S1. We note Play(sg, G) the
set of plays starting in sy in G and let Play(G) = Play(u, G). The observa-
tion of an infinite play p© = s0a0s1a1---Snay .. is defined by Obs(p%) =
I~Y(so)aol " (s1)ay ... 7Y (sp)an - ... If p¥ = 800510157 1n 1 - - - SpGnSnt1
is finite then Obs(p®) = I'"(sg)aol " (s1)ay ... I (sn)an (I (spa1)an).

A prefiz in G is a finite sequence spagsias - - - S, ending in s, € Sy, such that
for all i, 0 < i < n, (8;,0a;,8i+1) € A. We let Pref(G) be the set of prefixes of
G. The observation of a prefix is Obs(p”) = ' 1(sg)ag" *(s1)a1 ... anl *(sy).
For any p € Play(G), p®(n) = soag --- s, is the prefix up to state s, and we
let |p“| = n to be the length of p©.

Remark 2. Sy is the set of states where Player 1 has to make a choice of action.
In Si-states, Player 1 does not have any choice. A prefix ends in an Sp-state.
Finite sequences ending in S;-states are not prefixes but finite plays.

Strategies and Winning Conditions for NDG. A strategy in G is a func-
tion® A : Pref(G) — Xy. The outcome, Outcome®(A¥), of a strategy A is the
set of (finite or infinite) plays p& = spag - - - Span -+ s.t. so = p, Vi > 0,a; =
A4 (p%(i)). Let p“ be a play of G. We let Obs(p®) | O be the projection of
Obs(p%) on O. A winning condition W for G is a subset of O%“. A strategy A
is winning for W in G iff Vp€ € Outcome® (X)), Obs(p®) € W.

Remark 3. Strategies in NDG are based on the history of the game since the
beginning: in this sense, this is a perfect information game.

Knowledge Based Subset Construction.

Definition 6. Given a game H = (L,1,X, 8, X1, Xa,inv,O,7), we construct a
NDG G(H) = (S, u, X1, A,0,T') as follows:

let V = {W € 205F20\ § [y~ (1,0) = v~ (I',0') for all (I,v), (I',v)) € W},
S =V x{0,1}, and we note Sy the set V x {0} and Sy the set V x {1},
M= ({(La 0)}7 0)’
— AC Sx Xy xS is the smallest relation that satisfies: ((V1,1),0,(Va,j)) € A
if
e i = 0. A consequence is that if i = 1 (a state in Sy) there are no outgoing
transitions.

5 Notice that S;-states have no outgoing transitions and we do not need to define a
strategy for these states.

e j =0 and Vo = Next,(Vi)No for some o € O such that Next,(Vi)No # 0,
or
e j =1 if Sinky(s) # 0 for some s € Vi and Vo = Ugcy, Sink,(s),
—I't:8 — 0, and I"Y((W,i)) = v 1(v) for v € W. Note that this is
well-defined as W is a set of states of H that all share the same observation.

Notice that the game G(H) is non-deterministic as there may be many tran-
sitions labeled by ¢ and leaving a state s to many different states with different
observations. G(H) is total for Sy states: ¥(V,0) € Sp, Vo € X1, o € Enabled(V),
because either there is an infinite path from some s € V with the same obser-
vation or there is an infinite path with a new observation (remember that time
can elapse or Player 2 can do a discrete action from any state in H). Although
non-deterministic G(H) enjoys a weaker notion of determinism formalized by
the following proposition:

Proposition 1. Let (V,i) be a state of G(H), 0 € Xy and o € O. There is at
most one (V' j) with V' C ~v(o0) s.t. (V,i),0,(V',j)) € A.

Note also that if ((V,0),0,(V’,0)) € A then I'"1((V,0)) # I'"1((V’,0)). We can
relate the consistent plays in H and plays in G. For that, we define the function
Abs : Play®°(H) — Play(G) as follows.

Definition 7 (Abs for Plays of H). Let p" = (Io,v0)coo0(l1,v1) ... (I, Vm)
CmOm -.. be in Play®(H). Let I = {j € N|p"(j) € ChoicePoint(H)}. Then
Abs(p™) is defined by:

— if I is a finite set, let I = {jo,j1, - ,jn}- Define Abs(p!) = spagsias - .. sy
GnSn+1 by induction as follows:
1. so = ({(lo,v0)},0), ap = cj, (and jo =0),
2. and for all i, 0 < i < mn, if s;_1 = (V,0) then let V' = Next,, ,(V)N
Y (w;,), si = (V',0) and a; = cj,.
3. As p™ has a finite number of choice points, it must be the case that
Vk > o v ks vk) = v (1, v,) ; moreover, because p' is consistent,
Vk > jn,cr = ¢, If sp = (V,0) we let V' = Uyey Sinke, (v). V' must
be non empty and we define s, = (V',1).
—if I is an infinite set, let I = {jo,71, -+ ,7n, - }. We define Abs(p) =
50A0S81a1 - - - SppSpt1 - -+ by induction as follows:
1. 5o = ({(lo,v0)},0), ag = ¢j, (and jo =0),
2. and for all i > 1, if s;_1 = (V,0) then let V' = Next,, (V) N~y (v;,).
s; = (V',0) and a; = ¢j,.

Definition 8 (Abs for consistent prefixes). Let p™! = (lp,v0) ... (In_1,Vn_1)
Cn—10n—1(ln,vy) € Pref(H) and, I = {jo,j1, - ,Jm} be the set of choice
points of p*. Then Abs(p™) = sgag - - . Sm—1am—15m with:
— S0 = ({(ZO,UO)},O),
— and for all i, 0 < i < m, if ;-1 = (V;_1,0) then s; = (V;,0) where V; =
Nextai_l(V,-,l) N O;,
- Y0<i<m, a; =cj,.

10

It can be checked that Abs(p’) is well-defined for consistent plays as well for
prefixes. The following theorem states the correctness of our construction:

Theorem 1. Let @ be a stuttering closed subset of O“. Player 1 has a winning
strategy in G(H) for @ iff Player 1 has an observation based stuttering invariant
winning strategy in H for @.

4 Symbolic Algorithms

In this section, we show that the game G(H) is a finite game and design an
efficient symbolic algorithm for reachability and safety objectives.

Given a set of states S represented as a finite union of zones, and an action ¢ €
X1 we can compute the sets | J g Next.(s) and J,g Sinkc(s) as finite unions of
zones. Since the clocks are bounded in our M-TGS, only a finite number of zones
are computed during the computation of those operators. As a consequence, the
game G(H) is finite.

To implement efficiently the computations, we use Difference Bound Matri-
ces (DBMs), which allow efficient realisation of most set operations (inclusion,
interesection, future, reset...) [11, 14].

Since G(H) is finite, we can apply standard control algorithms to compute the
set of winning states. In particular, for reachability or safety objectives, we can
use the efficient on-the-fly forward algorithm of [9] that has been implemented
in UPPAAL-TIGA [5].

The algorithm for finite games given in [9] can easily be tailored to solve
NDGs of type G = (8,59, X1,4,0,I') with reachability objective Goal s.t.
Goal € O. Then, to obtain an algorithm for games of imperfect information,
we replace the transition relation of G(H) in this algorithm with the definition
(see Definition 6) of the transition relation of G(H) using the Next and Sink
operators. This way we obtain the algorithm OTFPOR. for TGS which is given
Figure 2.

An important feature added to the algorithm is the propagation of losing
state-sets, that is state-sets for which the reachability objective can be directly
concluded not to be achievable. For reachability games, a state-set W may de-
clared to be losing provided it is not among the Goal sets and is a deadlock.
Safety games are dual to reachability games in the sense that if the algorithm
concludes that the initial state is not losing it is possible to extract a strategy
to avoid losing states.

5 Example and Experiments

In this section we report on an application of a prototype implementation of the
OTFPOR algorithm. Similar to the Box Painting Production System (BPPS)
from the Introduction, we want to control a system consisting of a moving belt
and an ejection piston at the end of the belt. However, a complicating feature
compared with BPPS is that the system can receive both light and heavy boxes.

11

Initialization:
Passed «— {{so}};
Waiting — {({so},, W')|a € Z1, 0 € O, W' = Nexta({so}) No AW’ #£ 0};
Win[{so}] < ({so} C v(Goal) 7 1:0);
Losing[{so}] < ({so} Z v(Goal) A (Waiting = 0 vV Va € 31,Sinka(s0) # @) ? 1:0);
Depend[{so}] < 0;

Main:
while ((Waiting # 0) A Win[{so}] # 1 A Losing|[{so}] # 1)) do
e = W,a, W) «— pop(Waiting);
if s’ € Passed then
Passed — Passed U {W'};
Depend[W'] — {(W, o, W)},
Win[W'] « (W' C ~(Goal) 7 1:0);
Losing|W'] «— (W' € v(Goal) A Sinka(W') £ 0 7 1:0);
if (Losing[W'] # 1) then (* if losing it is a deadlock state *)
NewTrans — {(W',a, W) |a€ X, 0€ O, W =Nexta (W)No AW’ # 0};
if NewTrans =0 A Win[W'] = 0 then Losing[W'] « 1;
if (Win[W']V Losing[W']) then Waiting «— Waiting U {e};
Waiting < Waiting U NewTrans;
else (* reevaluate *)
Win® « VceEnabled(W) /\Wi)Wu Win[W"] ;
if Win* then
Waiting «— Waiting U Depend[W|; Win[W] «— 1;
Losing™ «— A .cenaiea(w) V iy <5 e Losing[W"] ;
if Losing™ then
Waiting «— Waiting U Depend[W]; Losing[W] « 1;
if (Win[W'] = 0A Losing[W'] = 0) then Depend|W’] «+ Depend|[W'] U {e};
endif
endwhile

Fig. 2. OTFPOR: On-The-Fly Algorithm for Partially Observable Reachability

When receiving a light box, its speed is high and the box takes between 4 to
6 seconds to reach the zone where it can be Eject?’ed with a piston. When
receiving a heavy box, the speed of the belt is slower and the box takes between
9 and 11 seconds to reach the zone where it can be Eject?’ed by the piston. The
controller should command the piston so that the order to Eject? a box is given
only when the box is in the right region. The system is modeled by the timed
game automaton of Figure 3. The initial location of the automaton is lg. The
system receives boxes when it is in location [y, if it receives a heavy box then it
branches to Iy, if it receives a light box then it branches to l4. The only event
that is shared with the controller is the Eject? event. This event should be issued
when the control of the automaton is in I3 or lg (which has the effect of ejecting
the box at the end of the belt), in all other locations, if this event is received
then the control of the automaton evolves to location I7 (the bad location that

12

z <0 xz <10
x>9
zi=0 15 la I3 z > 11
H E E
lo E 7 B
L E E
xz:=0 z>6
l l l
4 5 2> 4 6
z<0 <5 Eject?

Fig. 3. Timed Game for Sorting Bricks. Edges to I with action Eject? are omitted.

we want to avoid); those transitions are not depicted in the figure. The control
objective is to avoid entering location [5.

To control the system, the controller can use a clock y that it can reset
at any moment. The controller can also issue the order Eject! or propose to
play delay, which allows for the time to elapse. The controller has an imperfect
information about the state of the system and the value of the clock y. The
controller gets information throughout the following observations: E: the control
of the automaton is in location ly, 2, I3, l5, or lg; H: the control of the automaton
is in location [1; L: the control of the automaton is in location l4; B: the control of
the automaton is in location I7; 0 < y < M: the value of clock y is in the interval
[0, M|, M being a parameter. The observations E, H, L, and B are mutually
exclusive and cover all the states of the automaton but they can be combined
with the observation 0 < y < M on the clock but also with its complement
y > M. So formally, the set of observations that the controller can receive at any
time is O = {(E,0 < y < M), (E.y > M), (H,0 < y < M), (H,y > M), (L,0 <
y< M), (Lyy > M),(B,0 <y < M),(B,y > M)}. The set of actions that the
controller can choose from is X, = {Reset,, Eject!, delay}.

We modelled this example in our prototype and checked for controllability
of the safety property ALCJ-B. Controllability as well as the synthesized strategy
heavily depend on the choice of the parameter M, i.e. the granularity at which
the clock y may be set and tested. Table 1 gives the experimental results for
M € {1,0.5,0.25,0.2}7. It turns out that the system is not controllabe for M = 1:
a granularity of 1 is simply too coarse to determine (up to that granularity)
with certainty when, say, a light box will be in lg and should be Eject?’ed. The
differences between the guards and invariants in 5, [and [7 are simply too small.
As can be seen from Table 1 the finer granularities yield controllability.

We report on the number of explored state-sets (state-set) and the number of
state-sets that are part of the strategy (strat). To get an impression of the com-
plexity of the problem of controller synthesis under partial observability we note
that the the model in Figure 3 has 115 reachable symbolic states when viewed

7 Fractional values of M are dealt with by multiplying all constants in the timed game
automaton with ﬁ

13

notfi otfi
state-set| strat |+post|+filter||state-set| strat |+post|+filter
[0,0.2] || 110953 |36169| 1244 | 70 52615 (16372 841 | 176
[0,0.25[| 72829 |23750| 1014 | 60 35050 [11016| 697 | 146
[0,0.5] 20527 | 6706 | 561 41 10586 | 3460 | 407 88
[0,1] 2284 - - - 1651 - - -

Table 1. Number of state-sets and size of strategy obtained for different heuristics for
observations 0 < y < M of the clock y with M € {1,0.5,0.25,0.2}. The case M =1 is
not controllable.

as a regular timed automaton. Table 1 reports on experiments exploiting an
additional inclusion checking option in various ways: (notfi) without on-the-fly
inclusion checking, and (otfi) with on-the-fly inclusion checking. In addition, we
apply the post-processing step of inclusion checking (+post) on the strategy and
a filtering of the strategy (+filter) on top to output only the reachable state-sets
under the identified strategy. The results show that on-the-fly inclusion checking
gives a substantial reduction in the number of explored state-sets — and is hence
substantially faster. Both (notfi) and (otfi) shows that post processing and fil-
tering reduces the size of the control strategy with a factor of approximately 100.
It can also be seen that the size of the final strategy grows when granularity is
refined; this is to be expected as the strategies synthesized can be seen to involve
counting modulo the given granularity. More suprising is the observation that
the final strategies in (notfi +post +filter) are uniformly smaller than the final
strategies in (otfi): not performing on-the-fly inclusion checking explores more
state-sets, thus having the potential for a better reduction overall.

6 Conclusions and Future Works

During the last five years a number of very promissing algorithmic techniques
has been introduced for controller synthesis in general and controller synthesis
for timed systems in particular. The contribution of this paper to the decid-
ability and algorithmic support for timed controller synthesis under imperfect
information is an important new step within this line of research. Future re-
search includes more experimental investigation as well as search for additional
techniques for minimizing the size of the produced strategies (e.g. using mini-
mization wrt. (bi)simulation or alternating simulation). For safety objectives, we
need methods to insure that the synthesized strategies do not obtain their ob-
jective simply by introducing zeno behaviour. Finally, a rewrite of the prototype
as extension of UPPAAL-TIGA is planned.

References

1. K. Altisen and S. Tripakis. Tools for controller synthesis of timed systems. In
Proc. 2nd Work. on Real-Time Tools (RT-TOOLS’02), 2002. Proc. published as

14

10.

11.

12.

13.

14.

15.

16.

17.

Technical Report 2002-025, Uppsala University, Sweden.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

E. Asarin and O. Maler. As Soon as Possible: Time Optimal Control for Timed Au-
tomata. In Proc. 2nd Work. Hybrid Systems: Computation & Control (HSCC’99),
volume 1569 of LNCS, pages 19-30. Springer, 1999.

E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller Synthesis for Timed
Automata. In Proc. IFAC Symp. on System Structure & Control, pages 469-474.
Elsevier Science, 1998.

G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime. Uppaal-
tiga: Time for playing games! In Proc. of 19th Int. Conf. on Computer Aided
Verification (CAV’07), volume 4590 of Lecture Notes in Computer Science, pages
121-125, Berlin, Germany, 2007. Springer.

G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In M. Bernardo
and F. Corradini, editors, SE'M, volume 3185 of Lecture Notes in Computer Science,
pages 200 236. Springer, 2004.

G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Pettersson, W. Yi, and
M. Hendriks. Uppaal 4.0. In QEST, pages 125-126. IEEE Computer Society, 2006.
P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In W. A. Hunt, Jr and F. Somenzi, editors, Proc. of the 15th Int.
Conf. on Computer Aided Verification (CAV’03), volume 2725 of Lecture Notes in
Computer Science, pages 180-192, Boulder, Colorado, USA, July 2003. Springer.
F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime. Efficient on-the-fly algo-
rithms for the analysis of timed games. In M. Abadi and L. de Alfaro, editors, Proc.
of the 16th Int. Conf. on Concurrency Theory (CONCUR’05), vol. 3653 of Lecture
Notes in Computer Science, pp 66—80, San Francisco, CA, USA, 2005. Springer.
K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-
regular games with imperfect information’ . In Z. Esik, editor, CSL, volume 4207
of Lecture Notes in Computer Science, pages 287-302. Springer, 2006.

D. Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems.
In Workshop on Automatic Verification Methods for Finite-State Systems, volume
407, pages 197-212, 1989.

F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-checking
of real-time systems. In S. Budkowski, A. R. Cavalli, and E. Najm, editors, Proc.
of IFIP TC6 WG6.1 Joint Int. Conf. FORTE’XI and PSTV’XVIII, volume 135
of IFIP Conf. Proc., pages 439-456, Paris, France, Nov. 1998. Kluwer Academic
Publishers.

F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic - and
back. In Proc. 20" Symp. on Mathematical Foundations of Computer Science
(MFCS’95), volume 969 of LNCS, pages 529-539. Springer, 1995.

K. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In
Fundamentals of Computation Theory, pages 62—88, 1995.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In Proc. 12" Symp. on Theoretical Aspects of Computer Science
(STACS’95), volume 900, pages 229-242. Springer, 1995.

S. Tripakis and K. Altisen. On-the-Fly Controller Synthesis for Discrete and Timed
Systems. In Proc. of World Congress on Formal Methods (FM’99), volume 1708
of LNCS, pages 233-252. Springer, 1999.

M. D. Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of
imperfect information. In J. P. Hespanha and A. Tiwari, editors, HSCC, volume
3927 of Lecture Notes in Computer Science, pages 153 168. Springer, 2006.

15

