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Introduction

Problem Given microarray datasets,

is it possible to infer a graphical rep-

resentation of the underlying data gen-

erating process? State-of-the-art causal

inference methods are non-adaptable to

situations where hundreds and possibly

thousands of variables are involved as in

microarray datasets. Starting with the

correct adjacency network as a basis, we

will present a method which is capable

to orient the edges when dealing with

a high-variable, low-sample setup exhib-

ited by microarray data.

Preliminaries
If three nodes X, Y and Z are linked as X → Z ← Y , it is known as

v-structure, and the node Z is then called a collider.

State-of-the-art algorithms use conditional independence tests to deduce the

orientation of the arcs [2]. In these algorithms, X 6⊥⊥ Y |Z implies either

that Z is a collider or that there is a larger conditioning set which renders

the variables independent.

Definition 1Given three random variables X, Y and Z, the interac-

tion interaction between these variables is defined as

C(X, Y, Z) = I(X, Y )− I(X, Y |Z).

Once it is known that X − Z − Y , then a negative interaction information

implies that Z is a collider.
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C(X,Y,Z) < 0

X not independent of Y given Z

In more complicated cases, the interaction information provides additional

information. If the mutual information is larger than zero, our method may

still be able to infer colliders.
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W VU Here the independence tests (conditioning on one variable) will

result in W 6⊥⊥ Z|X , W 6⊥⊥ Z|Y and X 6⊥⊥ Y |Z. Thus, there

is a contradiction in which node should be a collider. The in-

teraction information however gives a degree of dependence and

hence is able to infer the collider.

Method
Given a dataset, our causal inference method advances in three steps. (In

the experimental section, we will focus on Step 3.)

1. Inference of the undirected network using a method able to cope with the

usually high number of variables (e.g. ARACNE, CLR or MRNET).

2.Estimate the interaction information for all possible v-structures.

3.Use the interaction information criterium to orient the v-

structures.
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Hyper-parameters Possible parameters which influence the perfor-

mance of the orientation phase.

1. θ is threshold below which triplets will not be oriented.

2. Sort order: with which triplet should the orienting start.

3.Estimator of interaction information (we use the Schürmann-Grassberger

estimator applied to the discretized data).

Order of orientation The interaction information can be estimated for

every (unshielded) triplet of variables in the adjacency network. In the ex-

perimental section, we will show that the performance depends largely on

the order of orientation. Three different methods will be tested here to show

the impact of the ordering.

1.Random selection of triplets (RAND).

2.Orient in decreasing order of (neg.) interaction information values (MAX).

3.Orient in decreasing order of average (neg.) interaction information (AVG).

Assumptions In order to infer the causal relationships as described, the

following assumptions ensure that dependencies/independencies can be used

to deduce the causal influences between the variables: (a) causal sufficiency,

(b) causal Markov and (c) faithfulness assumptions [1, 3].

Experimental setup

Data We use microarray synthetic data from different sources: (a) Syn-

tren data generator, (b) GeneNetWeaver (GNW) data generator (DREAM

challenge) and (c) the LUCAP dataset stemming from the NIPS 2008 chal-

lenge.

Dataset # variables # samples # samples/run origin

LUCAP 144 2000 200 causal Bayesian network

Syntren 300 800 100 EColi

GNW 3000 3000 300 Yeast

For each of the ten runs, a subset of samples was drawn at random from the

full dataset. Different values for the parameter θ were tested.

Results
As a performance measure the F0.5-score is used

Fβ =
(1 + β2) · precision · recall

β2 · precision + recall
.

Note Fβ ∈ [0, 1], where 1 is obtained for the correct network.

In the table, the maximum F0.5-score (averaged over ten runs) is displayed,

the threshold was chosen to be in the interval [−0.1, 0.1].

Dataset/Method RAND MAX AVG

LUCAP 0.5255 0.5701 0.6082

Syntren 0.4081 0.5595 0.6864

GeneNetWeaver 0.0767 0.3048 0.4774

Boxplots for the three datasets: LUCAP, Syntren, GeneNetWeaver.

Each graph contains the boxplots for the random, maximum and

average selection.
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•Taking a node’s contect is important when orienting the arcs (AVG method

works the best on all datasets).

•The performance depends on the chosen threshold.

•The higher the number of variables, the higher the impact of the ordering.
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