
Apprentissage d'une Tâche de Contrôle pour un Robot Mobile en LEGO Mindstorms

Mémoire présenté par Benjamin Haibe-Kains

Directeur de mémoire: M. Gianluca Bontempi

Plan

- Introduction
- Contributions
- Plateforme Robotique
- Tâche de Contrôle
- Expériences
- Conclusion
- Travaux Futurs

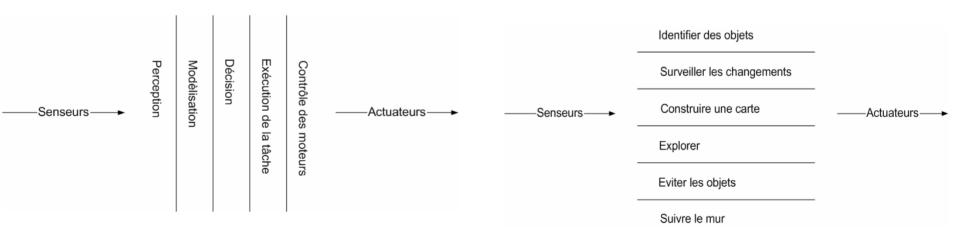
Plan

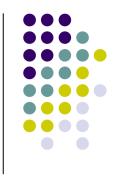
Introduction

- o Contributions
- > Plateforme Robotique
- o Tâche de Contrôle
- > Expériences
- o Conclusion
- o Trayaux Fuiurs

Introduction

Robotique


- Usage intensif de robots spécialisés et non autonomes
- Problème de la robotique autonome:
 - Environnement réel
 - Effets des actions incertains
 - Gestion complexe des informations sensorielles
- Premier pas vers l'autonomie: apprendre la relation sensori-motrice
- Utilisation de méthodes d'apprentissage


Introduction

Robotique (2)

- Architecture de contrôle:
 - Approche classique

 Approche basée sur le comportement (behaviorbased - R. Brooks)

Introduction

Mémoire

- Choix et développement d'une plateforme robotique
- Construction d'un robot mobile
- Réalisation d'une tâche grâce à plusieurs politiques de contrôle à des fins de comparaisons théorique et empirique
- Utilisation d'une méthode d'apprentissage
- Apprentissage adaptatif

Plan

- o Introduction
- Contributions
- > Plateforme Robotique
- o Tâche de Contrôle
- > Expériences
- o Conclusion
- o Traivalux Futurs

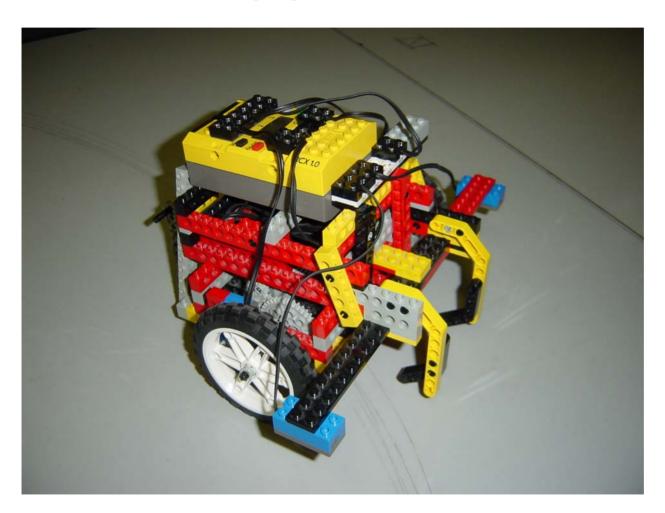
Contributions

- Construction d'un robot mobile en LEGO Mindstorms
- Développement d'outils permettant son utilisation:
 - Communication
 - Gestion du matériel
- Mise en œuvre de plusieurs politiques de contrôle
- Comparaison sur base d'expériences en environnement réel

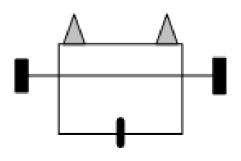
Plan

- o Introduction
- o Contributions

Plateforme Robotique

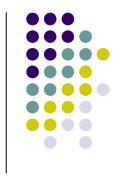

- o Tâche de Contrôle
- > Expériences
- o Conclusion
- o Trayaux Fuiurs

Matériel



- Choix des LEGO Mindstorms
- Construction d'un robot mobile autonome:
 - Cinématique: système par poussée différentielle
 - Périphériques du microcontrôleur du robot (RCX):
 - Moteurs (LEGO)
 - Senseurs de rotation (LEGO)
 - Senseurs de luminosité (LEGO)
 - Multiplexeur actif (Mindsensors)

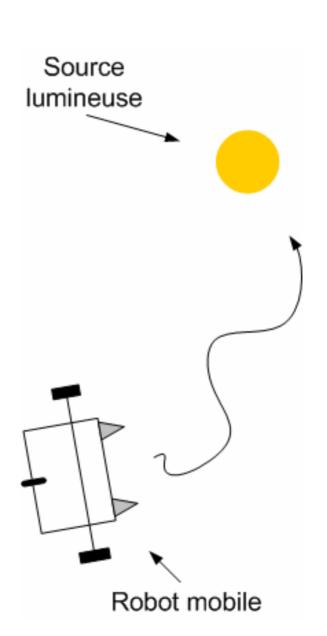
Matériel (2)



Matériel (3)

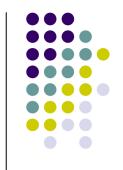
- Analyse des senseurs de luminosité:
 - Prix acceptable
 - Disponibilité
 - Information lumineuse pauvre:
 - Détection luminosité/obscurité à 1 m de la source lumineuse
 - Fort bruité comme senseur de distance
 - Variance élevée des mesures
 - Extraction de l'information difficile
- Mouvements imprécis

Logiciel

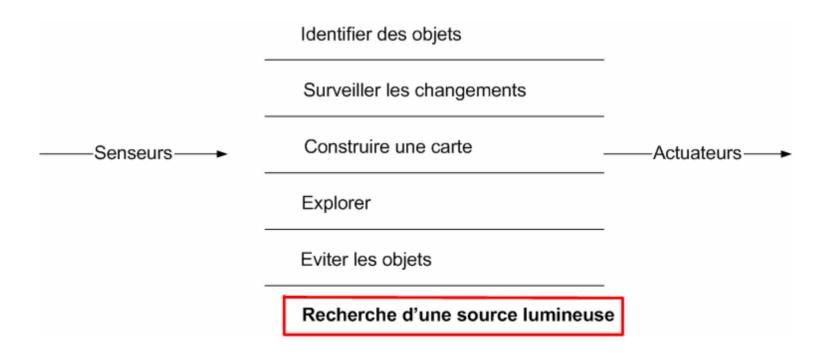

- BrickOS: système d'exploitation et programmes en C
- Protocole de communication
 - Gestion de plusieurs tours d'émission/réception infra-rouges pour une communication fiable
 - Gestion de plusieurs RCX
 - RCX exécute des ordres simples
 - Plateforme informatique contrôle le RCX

Plan

- > Introduction
- o Contributions
- > Plateforme Robotique
- Tâche de Contrôle
- > Expériences
- o Conclusion
- o Travaux Futurs

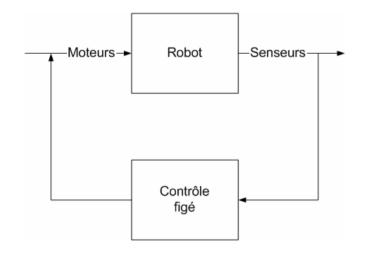

Description

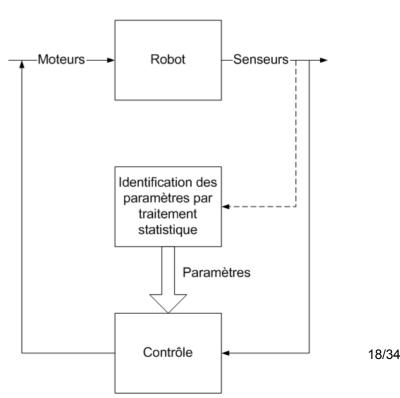
- Recherche d'une source lumineuse
- Difficultés:
 - Mesures de luminosité bruitées
 - Déplacement imprécis



Description (2)

 S'inscrit comme un comportement possible de l'approche behavior-based


Politiques de Contrôle

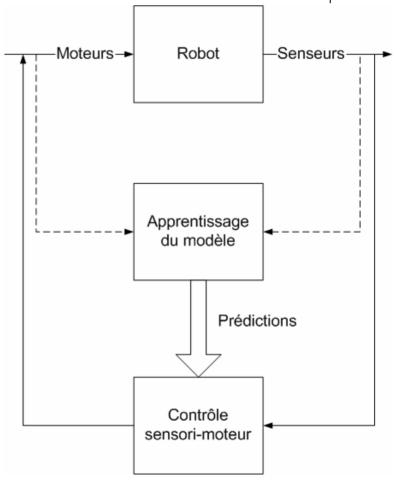



- A des fins de comparaisons théoriques et empiriques:
 - Politique de contrôle figée (PF)
 - Politique de contrôle basée sur l'analyse des données sensorielles (PAS)
 - Politique de contrôle basée sur l'apprentissage de la relation sensori-motrice (PAR)

PF et PAS

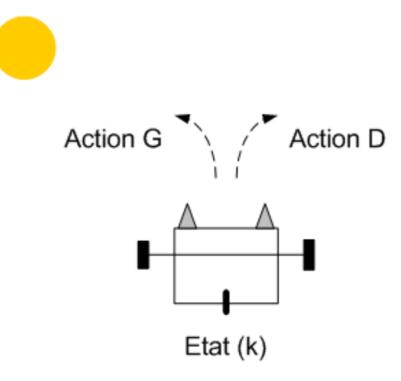
- Politiques de contrôle basée sur les connaissances du concepteur
- PF: contrôle figé
 PAS: contrôle paramétrique

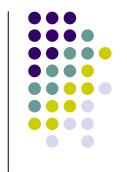


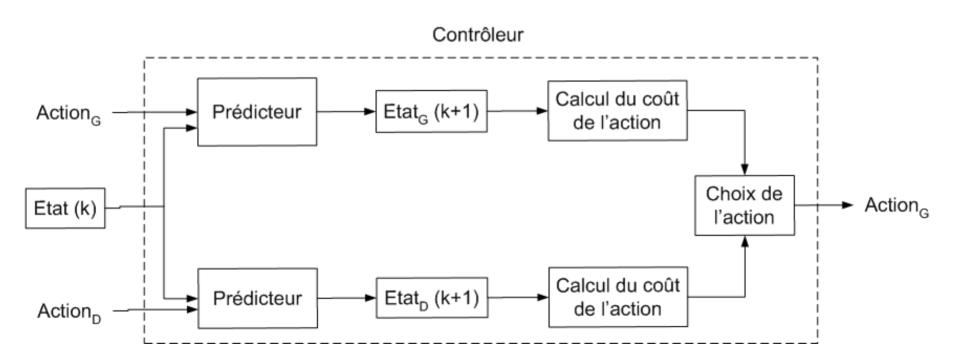


PAR

- Réalisation de la tâche par l'apprentissage de la relation sensorimotrice
- Méthode
 d'apprentissage
 local: Lazy Learning
- Contrôle basé sur les prédictions




Contrôle


 Exemple de contrôle avec 2 actions possibles (déplacement à gauche ou à droite)

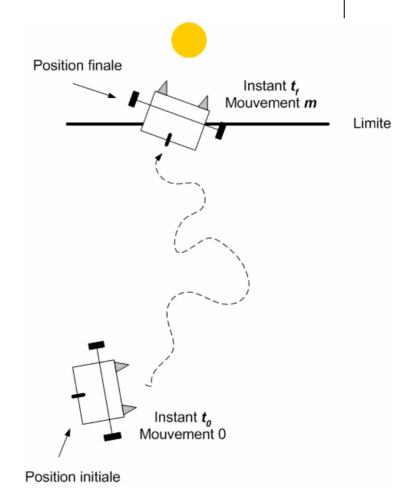
Contrôle (2)

Contrôleur basé sur un prédicteur

Lazy Learning

- Méthode d'apprentissage local supervisé
- Utilisée pour apprendre la relation sensorimotrice
- Comparaison avec un modèle linéaire: le Lazy Learning est plus performant
- Utilisation efficace dans une politique de contrôle
- Apprentissage adaptatif aisé

Plan


- o Introduction
- o Contributions
- > Plateforme Robotique
- o Tâche de Contrôle

Expériences

- o Conclusion
- o Traivalux Futurs

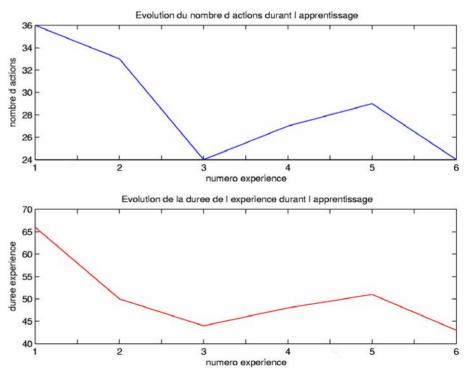
Recherche de la Lumière

- Performances du contrôle:
 - Nombre d'actions
 - Durée de l'expérience

Recherche de la Lumière (2)

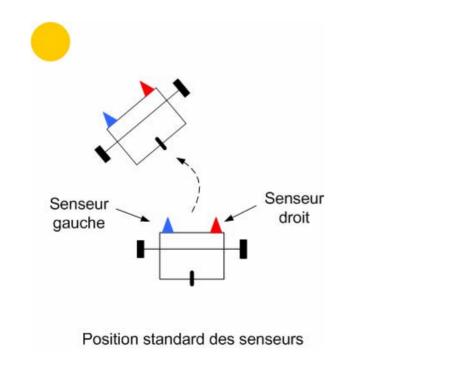
Résultats:

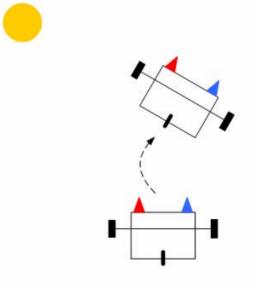
	PF	PAS	PAR
Nombre d'actions	99	52	23
Durée de l'expérience (sec)	168	313	43


Supériorité de la PAR

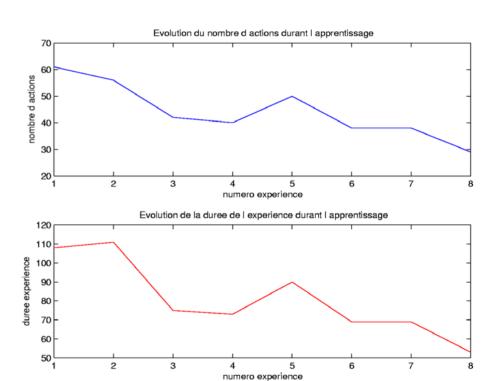
Apprentissage Adaptatif

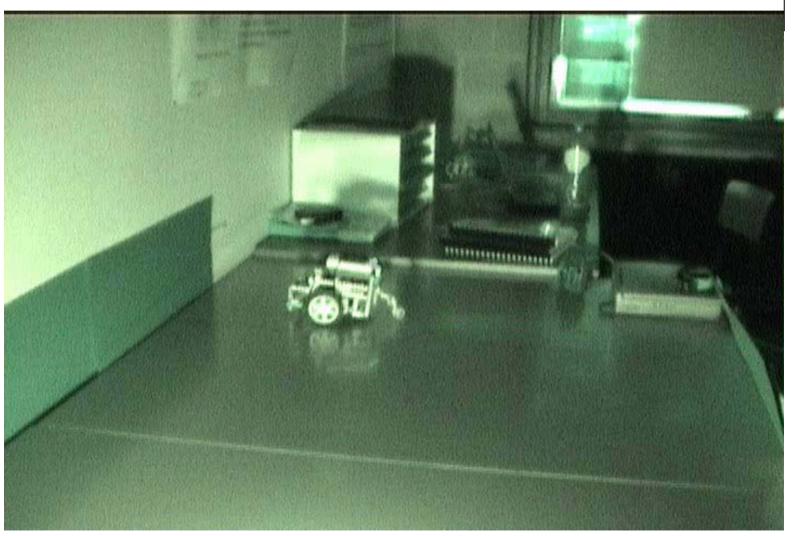
 Politique d'apprentissage adaptatif du contrôle: ajout d'observations en cours de


contrôle


 Diminution du nombre d'actions et de la durée de l'expérience au fur et à mesure de l'ajout d'observations

Apprentissage Adaptatif (2)


 Politique d'apprentissage adaptatif du contrôle: changement de position des senseurs de luminosité

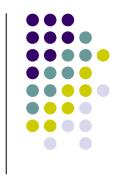

Apprentissage Adaptatif (3)

- Diminution du nombre d'actions et de la durée de l'expérience au fur et à mesure de l'ajout d'observations
- A la quatrième expérience, les données d'apprentissage sont oubliées

Film de la PAR

Plan

- o Introduction
- o Contributions
- > Plateforme Robotique
- o Tâche de Contrôle
- > Expériences
- Conclusion
- o Trayaux Fuiurs



- Développement de la plateforme LEGO Mindstorms permet l'introduction de concepts de base en robotique autonome
- Information sensorielle pauvre et mouvements imprécis
- Mise en œuvre de plusieurs politiques de contrôle met en évidence les performances supérieures de la PAR
- Adaptation du contrôle est une caractéristique importante

Plan

- > Introduction
- o Contributions
- > Plateforme Robotique
- o Tâche de Contrôle
- > Expériences
- o Conclusion
- Travaux Futurs

Travaux Futurs

- Travaux futurs variés grâce à une plateforme robotique fonctionnelle:
 - Autres senseurs, autres tâches de contrôle
 - Contrôle de plusieurs robots
 - Autres méthodes d'apprentissage
 - Mise à disposition publique du code source
 - Développement en tant que plateforme éducative

Questions