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1. Background

THE early gene expression studies in breast cancer have provided a molecular classification of
these tumors into at least three clinically relevant subtypes (ER-/HER2-, HER2+ or ER+/HER2).

Our group recently introduced a robust method for subtype identification, exhibiting numerous advan-
tages compared to the hierarchical clustering used in these initial publications [7, 1].
From a prognostic point of view, several signatures have been identified in the global population of
patients. However, the majority of these only yielded good prognostic performance in the ER+/HER2-
subtype [7, 1]. Additionally, we showed that clinical and genomic prognostic factors dramatically
depend on the molecular subtype of breast tumors.

In this work, we propose a novel prognostic model which takes into the account the molecular het-
erogeneity of breast cancer.

2. Methods

WE developed a two-step prognostic model called GENIUS (Gene Expression progNostic Index
Using Subtypes) as depicted in Figure 1:

1. Accurate assessment of the probabilities for a tumor to belong to each of the three breast cancer
molecular subtypes (subtype clustering).

2. Combination of these probabilities with subtype-specific prognostic signatures (subtype prognostic
gene signatures), which results in the final GENIUS risk predictions.

Subtype Clustering

Model-based clustering (mixture of Gaus-
sians) in a two-dimensional space defined
by the ESR1 and ERBB2 module scores
representing the ER and HER2 pheno-
types respectively [1]. Once fitted to the
training set, this clustering model returns
a set of probabilities of a tumor belonging
to each subtype, denoted by ρj where j ∈
{1=ER-/HER2-,2=HER2+,3=ER+/HER2-}
are the subtypes.

Subtype Prognostic Gene Signatures

Stability-based feature ranking method [2]
using a weighted version of the concor-
dance index [3] as scoring function:

Cwted(xi, y, ρj) =

∑
k,l∈Ωwkl1{xki > xli}∑

k,l∈Ωwkl

where xi are the expressions of gene
i, y are the survival data and wkl =
ρj(xk)ρj(xl) is the weight for the pair of
comparable patients {k, l} with ρj(x) be-
ing the probability for a patient’s tumor x
to belong to the subtype j.
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Figure 1: Design of GENIUS prognostic model.

The subtype prognostic gene signatures were therefore used to build the subtype risk prediction mod-
els such that, for a subtype j, the subtype risk score, denoted by rj, was defined as the weighted
combination of all the gene expressions in the corresponding signature:

rj =

∑
i∈Qwixi
nQ

where Q is the set of genes in the prognostic signature specific to subtype j, nQ the number of genes
in Q and wi is either +1 or −1 depending on the concordance index of gene i.

The final risk predictions were computed by combining the three subtype risk scores (Figure 1) in a
local Model Network [4]:

r =
∑
j

ρjrj

3. Results

We focussed our analysis on untreated node-negative patients in order to build a prognostic model
for early stage breast cancer and to avoid any confounding factors due to the treatment effects on
survival (untreated). We used VDX [6, 5] as training set since this population contained the largest
set of untreated patients with early breast cancer.

Subtype Clustering

Once subtype clustering was fitted on the training set (see Figures 2, we were able to robustly iden-
tify three subtypes: ER-/HER2- (99), HER2+ (54) and ER+/HER2- (191) (Figure 3). We validated the
robustness of this clustering model in 21 breast cancer microarray datasets (data not shown).
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Figure 2: The subtype clustering model is com-
posed of a mixture of three Gaussians.
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Figure 3: Identification of breast cancer molecu-
lar subtypes in the training set (VDX).

Subtype Prognostic Gene Signatures

Since we showed in [7, 1] that most of current gene signatures are only prognostic in the ER+/HER2-
subtype and that proliferation-related genes are their driving force, we did not generate a new prog-
nostic signature for this subtype but considered instead the proliferation module (AURKA) introduced
in [1], as subtype signature.

In contrast, very few prognostic signatures have been reported thus far in the ER-/HER2- and HER2+
subtypes. Therefore, we identified two stable signatures composed of 63 and 22 genes for the
ER-/HER2- and HER2+ subtypes respectively.

Using these subtype prognostic gene signatures, we computed the GENIUS risk predictions for a set
of 745 untreated node-negative patients retrieved from 5 public datasets.

Performance Assessment and Comparison

As sketched in Figure 5, GENIUS risk score pre-
dictions significntly outperformed current gene sig-
natures in the global population of patients (C-
index of 0.71, superiority test p-values < 0.05) and
was very competitive in each subtype (C-indices of
0.7, 0.66 and 0.66 in the ER+/HER2-, ER-/HER2-
and HER2+ subtypes, respectively). GENIUS also
outperformed clinical guidelines (superiority test p-
values < 0.05) in most cases (Figure 4).
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Figure 4: Performance of risk score predictions
for GENIUS and prognostic clinical models wrt the
molecular subtype.
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Figure 5: Performance of risk score predictions
for GENIUS and current prognostic gene signa-
tures wrt the molecular subtype.

The performance of the risk group predictions computed by GENIUS is illustrated in Figure 6.
We observed a significant difference between the survival curves of low- and high-risk groups for
both the global population (HR: 3.7; 95%CI [2.7,5]; p=1E-16) and all the subtypes: HRs of 3.7
(95%CI [2.5,5.5]; p=1E-10), 2.7 (95%CI [1.3,5.6]; p=7E-3) and 3.9 (95%CI [1.8,8.8]; p=8E-4) in the
ER+/HER2-, ER-/HER2- and HER2+ subtypes, respectively. The probability of distant metastasis or
relapse free survival of the low-risk group at 5 years was estimated at 91% in the global population,
and 92%, 83% and 89% in the ER+/HER2-, ER-/HER2- and HER2+ subtypes, respectively.
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Figure 6: Survival curves of GENIUS risk group predictions wrt the molecular subtype.

4. Conclusions

THIS novel prognostic model, which considers the molecular heterogeneity of breast cancer, out-
performs the current clinical models and gene signatures. GENIUS was the only signature to be

highly prognostic in all the molecular subtypes. Additionally, the modular architecture of the model
allows plugging in any other gene expression signatures, potentially enlarging its usability.
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