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Research Groups
Machine Learning Group (Gianluca Bontempi)

10 researchers (2 Profs, 1 postDoc, 7 PhD students), 2 graduate
students).

Research topics : Bioinformatics, Classification, Regression, Time
series prediction, Sensor networks.

Website : http://www.ulb.ac.be/di/mlg.

Scientific collaborations in ULB : IRIDIA (Sciences Appliquées),
Physiologie Molculaire de la Cellule (IBMM), Conformation des
Macromolcules Biologiques et Bioinformatique (IBMM), CENOLI
(Sciences), Functional Genomics Unit (Institut Jules Bordet), Service
d’Anesthesie (Erasme).

Scientific collaborations outside ULB : UCL Machine Learning Group
(B), Politecnico di Milano (I), Universitá del Sannio (I), George
Mason University (US).

The MLG is part to the ”Groupe de Contact FNRS” on Machine
Learning and to CINBIOS: http://babylone.ulb.ac.be/Joomla/.
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Research Groups
Functional Genomics Unit (Christos Sotiriou)

9 researchers (1 Prof, 5 postDocs, 3 PhD students), 5 technicians.

Research topics : Genomic analyses, clinical studies and translational
research.

Website :
http://www.bordet.be/en/services/medical/array/practical.htm.

National scientific collaborations : ULB, Erasme, ULg, Gembloux,
IDDI.

International scientific collaborations : Genome Institute of Singapore,
John Radcliffe Hospital, Karolinska Institute and Hospital, MD
Anderson Cancer Center, Netherlands Cancer Institute, Swiss Institute
for Experimental Cancer Research, NCI/NIH, Gustave-Roussy
Institute.
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Part I

Introduction
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Breast Cancer

Breast cancer is a global public health issue.

It is the most frequently diagnosed malignancy in women in the
western world and the commonest cause of cancer death for European
and American women.

In Europe, one out of eight to ten women, depending on the country,
will develop breast cancer during their lifetime.
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Breast Cancer Prognosis
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5–15% for the various microarray platforms, 
whereas it was 10–20% for between-labora-
tory replicates. These results are in line with 
— or possibly better than — those reported 
for the immunohistochemical assessment 
of hormone receptors in breast tumours11,12. 
There was an average 89% overlap of the 
differentially expressed genes between test 
sites using the same platform and a 74% 
overlap across different microarray platforms. 
Interestingly, there was a high correlation 
between the ranks of log ratios among the 
microarrays, indicating that all platforms, 
which use different approaches to measure 

gene expression, were detecting similar 
changes in gene abundance. Similar results 
were reported by other investigators13.

Despite the positive outcome of these 
studies, which clearly demonstrated the 
technical robustness of microarray technol-
ogy performed under stringent conditions, 
further doubts have been raised regarding 
the reliability of this new tool in clinical 
applications such as disease diagnostics, 
staging, prognostication and treatment 
prediction. This scepticism finds its roots in 
several microarray studies that investigated 
the same clinical problem (for example, 

the prediction of good outcome versus 
poor outcome) but generated different 
gene-expression classifiers with only a small 
number of overlapping genes14. Again, there 
are several expected technical, analytical and 
biological reasons for these seemingly dis-
crepant results. These include the use of dif-
ferent microarray platforms with different 
probe sets and data normalization methods, 
as well as differences in the study popula-
tions. Two other major explanations are the 
lack of independent measurements between 
the expressed genes analysed during the 
microarray experiments and the often 

Box 1 | Microarray technology

The concept behind DNA chip or microarray technology relies on the accurate binding, or hybridization, of strands of DNA with their precise 
complementary copies in experimental conditions where one sequence is also bound onto a solid-state substrate73.

At present there are several DNA microarray platforms used for genome-wide gene-expression studies. The oligonucleotide-based microarrays are 
popular10,74. There are two major approaches to constructing oligonucleotide arrays: in the first, microarrays composed of short oligonucleotides (25 
bases) are synthesized directly onto a solid matrix using photolithographic technology (Affymetrix). Alternatively, microarrays composed of long 
oligonucleotides (55–70 bases) can either be deposited by an ink-jet printing process (Agilent) or spotted by a robotic printing process onto glass 
slides (CodeLink). The Affymetrix microarray system uses a single-colour detection scheme, whereby one sample is hybridized per chip. Agilent 
technology uses a two-colour scheme, whereby the same array is hybridized with two different samples.

RNA is extracted from frozen breast tumour samples collected either at surgery (a), or before treatment (b), labelled with a detectable marker 
(fluorescent dye), and hybridized to the array containing individual gene-specific probes. Gene-expression levels are estimated by measuring the 
fluorescent intensity for each gene probe. A gene-expression vector is then collected by summarizing the expression levels of each gene in the 
sample. To facilitate the comparison between the different experiments and compensate for differences in labelling, hybridizations and detection 
methods, a normalization step is usually performed.

Gene-expression prognostic classifiers are usually built by correlating gene-expression patterns, generated from tumour surgical specimens, with 
clinical outcome (development of distant metastases during follow-up) (a). Gene-expression predictive classifiers of response to treatment are 
generated by correlating gene-expression data, derived from biopsies taken before pre-operative systemic therapy, with clinical and/or pathological 
response to the given treatment (b).
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Current Clinical Tools for Prognosis
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Need to improve current clinical tools to detect patients who need
adjuvant systemic therapy.
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Potential of Genomic Technologies for Prognosis

In the nineties, new biotechnologies emerged:
I Human genome sequencing.
I Gene expression profiling (low to high-throughput).

Genomic data could be used to better understand cancer biology

. . . and to build efficient prognostic models.
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Biology Paradigm
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Gene Expression Profiling

Gene expression profiling using microarray chip:

Microarray chip
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Microarray Data

Few samples (dozens to hundreds).
I Microarray technology is expensive.
I Frozen tumor samples are rare (biobank).

On the other hand, numerous gene expressions are measured.
I The new microarray chips cover the whole genome (≈ 50,000 probes

representing 30,000 ”known genes”).

ß High feature-to-sample ratio (curse of dimensionality).

Microarray is a complex technology.

ß High level of noise in the data.

Biology is complex.

ß Variables are highly correlated (gene co-expressions due to biological
pathways).
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Microarray Data
Warning

You can easily find spurious patterns in the data, biologically
”meaningful”.

Personal experience:
I At the beginning of my thesis, I had accidentally mixed the patients

labels, so the relation between input (gene expressions) and output (a
mutation) was completely random.

I I gave a list of genes differentially expressed between wild type and
mutated patients, to the biologists in charge of the project and they
found it very interesting (known genes, meaningful biological story).

I When I saw my mistake, I corrected the bug and sent a new gene list
I . . . and the results were even better!

In conclusion, the complexity of microarray data and the biology
behind should make you very critic and cautious with your results.
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Part II

Breast Cancer Molecular Subtypes
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Breast Cancer Subtypes

Early microarray studies showed that BC is a molecularly
heterogeneous disease [Perou et al., 2000; Sorlie et al., 2001, 2003; Sotiriou

et al., 2003].
I Hierarchical clustering on microarray data [Sorlie et al., 2001]:

Fig. 1. Gene expression patterns of 85 experimental samples representing 78 carcinomas, three benign tumors, and four normal tissues, analyzed by hierarchical
clustering using the 476 cDNA intrinsic clone set. (A) The tumor specimens were divided into five (or six) subtypes based on differences in gene expression. The
cluster dendrogram showing the five (six) subtypes of tumors are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light
blue; normal breast-like, green; basal-like, red; and ERBB2!, pink. (B) The full cluster diagram scaled down (the complete 456-clone cluster diagram is available
as Fig. 4). The colored bars on the right represent the inserts presented in C–G. (C) ERBB2 amplicon cluster. (D) Novel unknown cluster. (E) Basal epithelial
cell-enriched cluster. (F) Normal breast-like cluster. (G) Luminal epithelial gene cluster containing ER.

Sørlie et al. PNAS ! September 11, 2001 ! vol. 98 ! no. 19 ! 10871
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Fig. 1. Gene expression patterns of 85 experimental samples representing 78 carcinomas, three benign tumors, and four normal tissues, analyzed by hierarchical
clustering using the 476 cDNA intrinsic clone set. (A) The tumor specimens were divided into five (or six) subtypes based on differences in gene expression. The
cluster dendrogram showing the five (six) subtypes of tumors are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light
blue; normal breast-like, green; basal-like, red; and ERBB2!, pink. (B) The full cluster diagram scaled down (the complete 456-clone cluster diagram is available
as Fig. 4). The colored bars on the right represent the inserts presented in C–G. (C) ERBB2 amplicon cluster. (D) Novel unknown cluster. (E) Basal epithelial
cell-enriched cluster. (F) Normal breast-like cluster. (G) Luminal epithelial gene cluster containing ER.

Sørlie et al. PNAS ! September 11, 2001 ! vol. 98 ! no. 19 ! 10871
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Breast Cancer Subtypes
Clinical Outcome

The molecular subtypes exhibited different clinical outcomes,
suggesting that the biological processes involved in patients’ survival
might be different.

prognosis and are associated with poor response to systemic
therapy (7, 8, 18, 19). Our findings of TP53 mutations in tumors
simultaneously expressing genes in the ERBB2 amplicon at high
levels supports previous observations of an interdependent role
for TP53 and ERBB2 (15, 20).

Identification of Tumor Subtypes using SAM Supervised by Patient
Survival. To search for additional sets of genes useful for tumor
classification, we performed SAM (16), using patient survival as
the supervising variable on the data set comprising the 76
carcinomas from which clinical data were available (i.e., exclud-
ing patient H6 and the second tumor in patient 65). Starting with
their expression values from the set of 1,753 genes (14), this
approach resulted in a list of 264 cDNA clones, using a signif-
icance threshold expected to produce fewer than 30 false posi-
tives. This SAM264 clone set was used to perform a hierarchical-
clustering analysis on all samples, and the resulting diagram
showed that almost all of the 264 cDNA clones that were selected
in this analysis fell into three main gene expression clusters, the
luminal!ER! cluster, the basal epithelial cluster that contained
keratins 5 and 17, and the previously described proliferation
cluster (Figs. 7 and 8, which are published as supporting infor-
mation). The branching patterns in the resulting dendrogram
organized the tumors into four main groups. The largest group
(Fig. 7, dark blue labels) consisted of tumors with the luminal!
ER! characteristics and corresponded almost exactly to the
luminal subtype A from Fig. 1. The genes comprising the ERBB2
amplicon from the intrinsic gene list were not included in the
SAM clone set, which resulted in a merging of the ERBB2!
subtype with the basal-like tumors into a larger group (Fig. 7, red
and pink sample names); notably, all but one of the basal-like
tumors clustered together on a distal branch within this larger
group. The luminal subtype C and the normal breast-like group
were seen, whereas the luminal subtype B samples were spilt

between subtypes A and C. In conclusion, 71 of 78 carcinomas
were organized into the same main subtypes when using the list
of 264 survival-correlated cDNA clones as compared with using
the intrinsic set of 456 clones (with only 81 genes overlap).

Correlations to Clinical Outcome. To investigate whether the five
different groups identified by hierarchical clustering may rep-
resent clinically distinct subgroups of patients, univariate sur-
vival analyses comparing the subtypes with respect to overall
survival and relapse-free survival were performed (Fig. 3). For
all of the following analyses, only 49 of the patients from the
prospective study with locally advanced disease and with no
distant metastases were used (see Statistical Analysis section).
Including the two patients with minor metastases did not influ-
ence the outcome of the survival analysis. The Kaplan–Meier
curves based on the subclasses from Fig. 1 showed a highly
significant difference in overall survival between the subtypes
(Fig. 3A, P " 0.01), with the basal-like and ERBB2! subtypes
associated with the shortest survival times. Similar results were
obtained with respect to relapse-free survival (Fig. 3B). These
two tumor subtypes were characterized by distinct variations in
gene expression that were different from the luminal subtype
tumors. Overexpression of the ERBB2 oncoprotein is a well-
known prognostic factor associated with poor survival in breast
cancer, which also was found for the ERBB2! group defined in
this study. The basal-like subtype may represent a different
clinical entity that is associated with shorter survival times and
a high frequency of TP53 mutations. Interestingly, the two
deaths among the T1!T2 tumors (new york 2, new york 3)
withdrawn from the data set for the purpose of the survival
analysis, occurred in this subgroup of tumors; both harbored
mutations in the TP53 gene.

We observed a difference in outcome for tumors classified as
luminal A versus luminal B ! C. Whereas the ER protein value

Fig. 3. Overall and relapse-free survival analysis of the 49 breast cancer patients, uniformly treated in a prospective study, based on different gene expression
classification. (A) Overall survival and (B) relapse-free survival for the five expression-based tumor subtypes based on the classification presented in Fig. 1 (luminals
B and C were considered one group). (C) Overall survival estimated for the six-subtype classification with the three different luminal subtypes presented in Fig.
1. (D) Overall survival based on the five-subtype classification presented in Figs. 2 Lower and 5.

Sørlie et al. PNAS " September 11, 2001 " vol. 98 " no. 19 " 10873
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Breast Cancer Subtypes
Early Results

These early studies showed similar results, i.e. ER and HER2
pathways are the main discriminators in breast cancer (confirmed by
[Kapp et al., 2006]).

However, this classification has strong limitations [Pusztai et al., 2006]:
I Instability: the results are hardly reproducible due to the instability of

the hierarchical clustering method in combination with microarray data
(high feature-to-sample ratio).

I Crispness: hierarchical clustering produces crisp partition of the dataset
(hard partitioning) without estimation of the classification uncertainty.

I Validation: the hierarchical clustering is hardly applicable to new data.
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Breast Cancer Subtypes
New Clustering Model

Because of these limitations we sought to develop a simple method to
identify the breast cancer subtypes.

ß We introduced a model-based clustering (mixture of Gaussians) in a
two-dimensional space defined by the ESR1 and ERBB2 module
scores [Wirapati et al., 2008; Desmedt et al., 2008].

I We used the Bayesian information criterion (BIC) to select the most
likely number of subtypes [Fraley and Raftery, 2002].

I We validated our model (fitted on Wang et al. series) on 14
independent datasets in terms of number of clusters and prediction
strength [Tibshirani and Walther, 2005].
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New Clustering Model
Training
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New Clustering Model
Validation
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New Clustering Model
Validation: Prediction Strength

Dataset ER-/HER2- HER2+ ER+/HER2-
NKI 1.00 1.00 0.99

TBG 1.00 1.00 0.83
UPP 1.00 0.93 0.87
UNT 1.00 0.89 0.92

MAINZ 1.00 1.00 0.90
STNO2 1.00 0.69 0.97

NCI 0.85 0.83 0.93
MSK 1.00 1.00 0.96
STK 1.00 0.91 0.87

DUKE 1.00 0.82 0.92
UNC2 1.00 0.87 0.96

CAL 1.00 1.00 0.95
DUKE2 1.00 0.64 0.95

NCH 1.00 0.82 0.98
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New Clustering Model
Validation: Number of Clusters
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Breast Cancer Subtypes
Clinical Outcome

ER-/HER2-: 20-25%

HER2+: 15-20%

ER+/HER2-: 60-70%

of the global population of
BC patients.

Node-negative untreated patients
NKI/TBG/UPP/UNT/MAINZ
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Time (years)

No. At Risk

ER!/HER2!    119 111 91 83 78 71 68 64 53 46 37

HER2+    106 98 91 81 73 69 64 58 52 47 44

ER+/HER2!    516 507 487 462 435 410 363 319 282 257 223
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Breast Cancer Subtypes
New Clustering Model (dis)Advantages

Advantages:
I Simple model-based clustering:

F Easily applicable to new data.
F Returning for each patient the probability to belong to each subtype

(soft partitioning).

I Low dimensional space:
F Low computational cost to fit the model.
F Simple visualization of the results.

Disadvantages:
I Low dimensional space: which dimension could we add in order to find

another robust subtype?
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Part III

Prognostic Gene Signatures
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Prognostic Gene Signatures

Use of microarray technology to improve current prognostic models
(NIH/St Gallen guidelines, NPI, AOL).

A typical microarray analysis dealing with breast cancer
prognostication involves 5 key steps:

1 Data preprocessing: quality controls and normalization.
2 Filtering: discard the genes exhibiting low expressions and/or low

variance.
3 Identification of a list of prognostic genes (called a gene signature).
4 Building of a prognostic model, i.e. combination of the expression of

the genes from the signature in order to predict the clinical outcome of
the patients.

5 Validation of the model performance and comparison with current
prognostic models.
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Prognostic Gene Signatures
Fishing Expedition

Prognostic models derived from gene expression data by looking for
genes associated with clinical outcome without any a priori biological
assumption [van’t Veer et al., 2002; Wang et al., 2005].
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Promising results but a lot criticisms from a statistical point of view.
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Prognostic Gene Signatures
Hypothesis-driven

Prognostic models were also derived from gene expression data based
on a biological assumption.

I Example: GGI [Sotiriou et al., 2006] was designed to discriminate
patients with low and high histological grade (proliferation).

I GGI was able to discriminate patients with intermediate histological
grade (HG2).
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Prognostic Gene Signatures
Independent Validation

These preliminary resulting were promising but validation was
required.

A first validation was published by the authors of the GENE70 and
GENE76 signatures in [van de Vijver et al., 2002] and [Foekens et al., 2006]

respectively.

Our group was involved in a second validation:
I Complete independence: the authors of the signatures were not aware

of the clinical data of the patients in the dataset.
I The statistical analyses were performed by an independent group.
I Aim: validate definitively the prognostic power of these two models in

order to start a large clinical trial called MINDACT (Microarray In
Node negative Disease may Avoid ChemoTherapy).
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Prognostic Gene Signatures
Independent Validation (cont.)

Although the performance in this validation series was less impressive
than in the original publications, GENE70 and GENE76 sufficiently
improved the current clinical models to go ahead with MINDACT.
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to standard Affymetrix protocols. Expression values for each gene were
calculated using Affymetrix GeneChip analysis software MAS 5.0. For
chip normalization, probe sets were scaled to a target intensity of
600, and scale mask filters were not selected. Chips with signal to noise
ratio < 24 were excluded. Each probe set was considered as a separate
gene. Genomic high- and low-risk groups were defined by Veridex
blinded to clinical data, as described previously (3, 4), using the array
based ER assay results and the 76-gene prognostic signature. The raw
and normalized gene expression data, together with the patient’s
characteristics are publicly available on GEO (http://www.ncbi.nlm.
nih.gov/geo), with accession number GSE 7390.

Statistical analyses. All statistical analyses were carried out by the
International Drug Development Institute, Brussels, Belgium, using SAS
version 9.1 and SPLUS version 7. Patient clinical data and outcomes were
blinded to Jules Bordet Institute and Veridex. The end points considered

in this study were time from diagnosis to distant metastases (TDM),
which was the end point used to identify the gene signature (3), and
overall survival, defined as time from diagnosis to death from any cause.

The main analytic approach used to validate the gene signature was
to estimate hazard ratios (HR), which quantified the relative risk of an
event in the high-risk group compared with the low-risk group. HRs
were estimated through Cox’s proportional hazard regression models,
stratified by clinical center to account for the possible heterogeneity in
patient selection or other potential confounders among the various
centers. HRs for the risk groups defined by the gene signature were
estimated with stratification for clinical risk, using the Adjuvant! Online
software13 to reflect the prognostic effect of the gene signature over and

Fig. 1. Kaplan-Meier curves by genomic risk group.The
HRs and log-rank tests are stratified by center. A,TDM.
B, overall survival.

13 http://www.adjuvantonline.com

IndependentValidation of the 76-Gene Signature

www.aacrjournals.org Clin Cancer Res 2007;13(11) June1, 20073209

GENE70 GENE76

ß Validation of GENE70 [Buyse et al., 2006] and GENE76 [Desmedt et al.,

2007].
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Prognostic Gene Signatures
Independent Validation (cont.)

We sought to compare the GGI to the GENE70 and GENE76
signatures in this validation series

. . . and showed that GGI has very similar performance [Haibe-Kains

et al., 2008b].!"#$%&'()*+,!"##$%!!&'() *++,&--.../012345647+89:/623-;)<;=";>)-(-'()
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Although all three concordance indices were highly signif-
icant, the 70-gene signature and GGI displayed a higher
concordance index compared to the 76-gene signature
(0.90 compared to 0.80; Figure 2A). However, this differ-
ence was not statistically significant (Table 2). In contrast,
the clinical risk calculated using AOL displayed a lower
concordance index value (0.69) compared to either ones
generated by the genomic signatures.

We next performed univariate and multivariate Cox anal-
yses, which included the traditional clinico-pathological
parameters, for each signature separately. The univariate
hazard ratios (HR) were 7.12 (95% CI: 2.52–20.11; p =
2.1 × 10-4), 3.18 (95% CI: 1.35–7.53; p = 8.4 – 10-3) and
5.85 (95% CI: 2.3–15; p = 2.1 – 10-4) for the 70-gene sig-
nature, 76-gene signature and the GGI respectively. We
additionally computed the HR for the clinical risk as
defined by AOL, which was not statistically significant for
DMFS evaluation in this cohort of patients (2.01; 95% CI:
0.89–4.5; p = 0.091). The log2 of these HR are illustrated
in Figure 2B. Although the HR of the 70-gene signature

and the GGI were higher than the HR of the 76-gene sig-
nature, the differences were not statistically significant
(see Table 2). Figure 3 illustrates the Kaplan-Meier esti-
mates of DMFS for the four groups of patients (two groups
with concordant results in risk assessment and two with
discordant results) for the different signatures two by two.

From the multivariate analyses (Table 3), we can conclude
that the three signatures added significant information to
the traditional parameters and were the strongest predic-
tive variables of DMFS, as reflected by their lowest p-val-
ues compared to the other variables. The additional
information of these signatures over the clinical risk was
also confirmed by the fact that the univariate HRs for the
three signatures remained similar when adjusted for the
clinical risk, with a HR of 7.25 (95% CI: 2.4–21.5; p = 3.5
– 10-4), 2.8 (95% CI: 1.2–6.8; p = 0.018) and 6.25 (95%
CI: 2.3–17; p = 3.3 – 10-4) for the 70-gene signature, 76-
gene signature and the GGI respectively.

Lastly, we combined the three gene signatures in order to
assess the potential improvement in BC prognostication.
We used a simple combination scheme that defined the
risk of a patient as the sum of the classifications (low-risk
= 0 and high-risk = 1) by the three gene signatures. As
illustrated in Supplementary Figure 1 in [Additional File
1], the patients for whom the three gene signature classifi-
cations were concordant are well defined, with only 2
patients relapsing in the low-risk group after 9 years of fol-
low up. However, the patients with discordant classifica-
tions exhibited good survival and their survival curves
were not distinguishable. The combination of the three
gene signatures did not yield significant improvement in
prognostication (the hazard ratio between the concordant
cases, i.e. 'All Low' and 'All High', is not significantly
higher than when each gene signature was considered sep-
arately), maybe due to their high concordance and the
sample size of the TBVDX series

Survival data with the full follow-up
We computed the concordance index of all the gene signa-
tures using the survival data with the full follow-up. The
three concordance indices were significant. We observed
higher concordance indices for the 70-gene signature and
GGI compared to the 76-gene signature (0.84 and 0.79 for
GENE70 and GGI respectively compared to 0.71 for

Venn diagram illustrating the classification of the tumor sam-ple according to the prognostic signaturesFigure 1
Venn diagram illustrating the classification of the 
tumor sample according to the prognostic signa-
tures. Dark red = high-risk patients and blue = low-risk 
patients. GENE70 = 70-gene signature, GENE76 = 76-gene 
signature, and GGI = Gene expression Grade Index.

GENE70 GENE76

GGI

7

915
103

5 25

0
5

32

09

25

15

7

Table 2: P-values of the Student t test for the difference between concordance indices and hazard ratios for the 70-gene signature 
(GENE70), the 76-gene signature (GENE76), and the Gene expression Grade Index (GGI) risk classifications.

p-value for difference in concordance indices p-value for difference in hazard ratios

GENE70 vs GENE76 0.15 0.11
GENE70 vs GGI 0.53 0.42
GENE76 vs GGI 0.22 0.19

!"#$%&'()*+, !"##$%!! 746543210/...--&,++*)('& +89:/623-;)<;=";>)-(-'()

GENE76; Supplementary Figure 12 in [Additional File 1]).
This di!erence was not statistically signi"cant (Supple-
mentary Table 5 in [Additional File 1]) although we noted
a trend for GENE70 to have a higher concordance index (p
= 0.065). In contrast, the clinical risk calculated using AOL
displayed a lower concordance index value (0.69) com-
pared to either ones generated by the genomic signatures.

We next performed univariate and multivariate Cox anal-
yses, which included the traditional clinico-pathological
parameters, for each signature separately. The univariate
hazard ratios (HR) were 2.77 (95% CI: 1.41–5.43; p = 3.1
– 10 -3), 1.76 (95% CI: 0.92–3.34; p = 0.086) and 2.41
(95% CI: 1.29–4.5; p = 5.9 – 10 -3) for the 70-gene signa-

statistically signi"cant (see Supplementary Table 5 in
[Additional File 1]). Supplementary Figures 14–16 in
[Additional File 1] illustrate the Kaplan-Meier estimates of
DMFS for the four groups of patients for the di!erent sig-
natures two by two.

From the multivariate analyses (Supplementary Table 6 in
[Additional File 1]), we can conclude that the three signa-
tures added signi"cant information to the traditional
parameters and were the strongest predictive variables of
DMFS, as re#ected by their lowest p-values compared to
the other variables. We computed the univariate HRs
adjusted for the clinical risk, i.e. 2.8 (95% CI: 1.35–5.82;
p = 5.8 – 10 -3), 1.55 (95% CI: 0.81–2.97; p = 0.18) and
2.13 (95% CI: 1.12–4.02; p = 0.02) for the 70-gene signa-
ture, 76-gene signature and the GGI respectively.

Contrary to the analyses using the survival data censored
at 10 years, the HRs with and without adjustment for clin-
ical risk were not signi"cant for GENE76, highlighting the
decrease in performance we observed by using the survival
data with the full follow-up. This performance degrada-
tion was due to a group of late relapses occurring after 10
years of follow-up, classi"ed as low-risk by the three gene
signatures (see Supplementary Figure 17 in [Additional
File 1]).

We combined the three gene signatures using the method
described previously. In agreement with the results from

Forest plots (and 95% CI) for the three gene signatures and the Adjuvant! Online classification showing: A/the concord-ance indices, and B/the log2 hazard ratiosFigure 2

Forest plots (and 95% CI) for the three gene signa-

tures and the Adjuvant! Online classification showing: 

A/the concordance indices, and B/the log2 hazard 

ratios. GENE70 = 70-gene signature, GENE76 = 76-gene 

signature, GGI = Gene expression Grade Index and AOL = 

Adjuvant! Online.
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Part IV

Subtypes and Prognosis
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Prognosis in Specific Subtypes

The first publications attempted to build a prognostic model from the
global population of BC patients.

In 2005, Wang et al. were the first to divide the global population
based on ER status:

I As BC biology is very different according to the ER status, prognostic
models might be different too.

I They built a prognostic model for each subgroup of patients (ER+ and
ER-).

I To make a prediction, they used one of the two models depending on
the ER-status of the tumor.

I Unfortunately the group of ER- tumors was too small and their
corresponding model was not generalizable.
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Prognosis in Specific Subtypes
(cont.)

Recently, Teschendorff et al. built a new prognostic model for ER-
tumors [Teschendorff et al., 2007] and validated it [Teschendorff and Caldas,

2008] using large datasets.
I The signature is composed of 7 immune-related genes.

We showed in two meta-analyses [Wirapati et al., 2008; Desmedt et al.,

2008] that:
I Proliferation (AURKA) was the most prognostic factor in ER+/HER2-

tumors and the common driving force of the early gene signatures.
F Actually, these early signatures (e.g. GENE70, GENE76, GGI) are

prognostic in ER+/HER2- tumors only.

I Immune response (STAT1) is prognostic in ER-/HER2- and HER2+
tumors.

I Tumor invasion (PLAU or uPA) is prognostic in HER2+ tumors.

Finak et al. introduced a stroma-derived prognostic predictor (SDPP)
particularly efficient in HER2+ tumors [Finak et al., 2008].
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New Prognostic Model

Since current prognostic models/gene signatures are limited to some
subtypes, we sought to develop a new prognostic model integrating
the breast cancer subtypes identification in order to:

I Build a prognostic gene signatures specifically targeting each subtype.
I Build a global prognostic model able to predict the risk of the patients

whatever the tumor subtype (ER-/HER2-, HER2+ or ER+/HER2-).

We assessed the performance and compared it to current prognostic
models using the thorough statistical framework developed in
[Haibe-Kains et al., 2008a].

This new prognostic model is called GENIUS, standing for

Gene Expression progNostic Index Using Subtypes ,
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GENIUS
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GENIUS
Performance Assessment and Comparison

We trained GENIUS on VDX:
I 286 node-negative untreated BC patients.

We assessed the performance in an independent dataset composed of
I 765 node-negative untreated patients
I coming from 5 different datasets (NKI, TBG, UPP, UNT and MAINZ).

Risk score prediction: continuous value.

Risk group prediction: binary value (application of a cutoff on the risk
score).
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GENIUS
Risk Score Prediction
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GENIUS
Risk Group Prediction
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GENIUS
Risk Group Prediction (cont.)
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GENIUS
Risk Group Prediction (cont.)

GENIUS

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
ro

b
a
b
il
it
y
 o

f 
s
u
rv

iv
a
l

Low

High

HR=3.1, 95%CI [1.5,6.6], p−value=2.8E−03

0 1 2 3 4 5 6 7 8 9 10

Time (years)

No. At Risk
Low 47 45 42 40 39 37 37 36 31 27 21

High 72 67 50 44 40 35 32 29 23 20 16

ER-/HER2-

GGI

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
ro

b
a

b
il
it
y
 o

f 
s
u

rv
iv

a
l

Low

High

HR=0.8, 95%CI [0.4,1.6], p−value=5.4E−01

0 1 2 3 4 5 6 7 8 9 10

Time (years)

No. At Risk
Low 43 40 32 31 28 25 25 24 19 18 13

High 76 72 60 53 51 47 44 41 35 29 24

ER-/HER2-

Benjamin Haibe-Kains (ULB) Visit to IGC October 16, 2008 41 / 76



GENIUS
Risk Group Prediction (cont.)
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Part V

Conclusion
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Conclusion

Numerous studies confirmed the great potential of gene expression
profiling using microarrays to better understand cancer biology and to
improve current prediction models.

This technology becomes more and more mature (MAQC [shi, 2006])
and is now ready for clinical applications.

The promising results of early publications were validated in different
independent studies.

Recent meta-analyses successfully recapitulated the main discoveries
made these late decades and refined our knowledge on breast cancer
biology.
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Conclusion (cont.)

We benefit from this strong basis to go a step further to improve
breast cancer prognosis using microarrays.

I Prognostic models/gene signatures in specific subtypes [Teschendorff

et al., 2007; Desmedt et al., 2008; Finak et al., 2008].
I Development of GENIUS, a prognostic model integrating BC molecular

subtypes identification [manuscript in preparation].

A major issue remains: ”How to combine these microarray prognostic
models with clinical variables?”

I Several studies showed the additional information of tumor size, nodal
status, . . .

I However, we currently lack of data to fit robust prognostic models
combining microarray and clinical variables.
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Thank you for your attention.

This presentation is available from http://www.ulb.ac.be/di/map/

bhaibeka/papers/haibekains2008molecular.pdf.
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Gene Expression Profiling Technologies

There exist several technologies to measure the expression of genes.

Low throughput technologies such as RT-PCR, allow for measuring
the expression of a few genes.

High throughput technologies, such as microarrays, allows for
measuring simultaneously the expression of thousands of genes (whole
genome).

Microarray principles will be illustrated through the Affymetrix
technology.
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Microarray

A microarray is composed of
I DNA fragments (probes) fixed on a solid support.
I Ordered position of probes.
I Principle of hybridization to a specific probe of complementary

sequence.
I Molecular labeling.

ß Simultaneous detection of thousands of sequences in parallel.
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Affymetrix GeneChip
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Affymetrix GeneChip
Probes

AA
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Hybridization
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Detection
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Affymetrix Design
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Affymetrix Equipment
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Prognostic Gene Signatures
A Single Gene?

From the validation studies, we learned that GGI yields similar
(sometimes better) performance than other gene signatures
[Haibe-Kains et al., 2008b].

Since GGI is a very simple model from a statistical and a biological
(proliferation genes) points of view, we challenged the use of complex
statistical methods for BC prognostication.

We compared simple to complex statistical methods to a single
proliferation gene (AURKA) [Haibe-Kains et al., 2008a].

ß Due to the complexity of microarray data, it is very hard to build
prognostic models statistically better than AURKA.
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Prognostic Gene Signatures
A Single Gene? (cont.)

Forestplot of the concordance index for each method in the training
set and the three validation sets:

A single gene for breast cancer prognostication?

2 CONCORDANCE INDEX FOR RISK SCORE PREDICTION
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Supplementary Figure 1: Forest plot of the concordance indices for the risk scores predicted by all the methods in the training set (VDX) and
in the three validation sets (TBG, TAM, and UPP). AURKA and GGI models were not fitted on VDX which can be considered as a validation
set for these models.
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GENIUS
Identification of Subtypes

The first step of GENIUS method is the identification of subtypes in
the dataset.

In BC, we applied the clustering model developed previously (training
set: VDX).

The model returns the probabilities Pr(s) for a patient to belong to
each subtype s ∈ S .

I S is composed of the ER-/HER2-, HER2+ and ER+/HER2- subtypes.
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GENIUS
Identification of Prognostic Genes

We used a ranking-based gene selection method.

The score (relevance) given to each gene is based on the significance
of the concordance index.

We introduced a weighted version of the concordance index in order
to select genes relevant for a specific subtype;

The weights were defined as the probability for a patient to belong to
the subtype of interest.

ß This feature selection allowed for using all the patients in the dataset.
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GENIUS
Weighted Concordance Index

Survival data for the ith patient:
I ti stands for the event time
I ci for the censoring time

C -index computes the probability that, for a pair of randomly chosen
comparable patients, the patient with the higher risk prediction will
experience an event before the lower risk patient.

C -index =

∑
i ,j∈Ω 1{ri > rj}
|Ω|

I where ri and rj are the risk predictions of the patient i and j
I Ω is the set of all the pairs of patients {i , j} such that:

F ri 6= rj (no ties in r)
F meet one of the following conditions: (i) both patients i and j

experienced an event and time ti < tj or (ii) only patient i experienced
an event and ti < cj .
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GENIUS
Weighted Concordance Index (cont.)

We introduced a weighted version of the concordance

C -indexwted =

∑
i ,j∈Ω wij1{ri > rj}∑

i ,j∈Ω wij

I where wij = wiwj is the weight for the pair of patients {i , j} ∈ Ω.

Significance of the C -index was computed by assuming asymptotic
normality [Pencina and D’Agostino, 2004].
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GENIUS
Signature Stability

Once the genes were ranked, the only hyperparameter to tune was the
signature size k (number of selected genes in the signature).

We assessed the stability with respect to the signature size by
resampling the training set.

The stability criterion was inspired from [Davis et al., 2006]:
I Let X be the set of features and freq(xj) be the number of sampling

steps in which a feature xj ∈ X has been selected out of m sampling
steps.

I The set X is sorted by frequency into the set x(1), x(2), . . . , x(n) where
freq(x(i)) ≥ freq(x(j)) if i < j where i , j ∈ {1, 2, . . . , n}.

I A first measure of stability for a given signature size k is returned by

Stab(k) =

∑k
i=1 freq(x(i))

km
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GENIUS
Signature Stability (cont.)

Since the Stab statistic can be made artificially high by simply
increasing k, we formulated an adjusted statistic

Stabadj(k) = max

{
0, Stab(k)− αk

n

}
I where α is a penalty factor depending on the number of selected

features (usually α = 1).
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GENIUS
Signature Stability (cont.)
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In the training set (VDX), the most stable signatures were composed
of 63 and 22 genes for the ER-/HER2- and HER2+ subtypes.
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GENIUS
Risk Score Prediction

The risk score predictions for the subtype s is defined as

R(s) =

∑
i∈Q wixi

nQ

I where Q is the set of of genes in the signature for subtype s
I xi is the expression of gene i
I wi ∈ {−1,+1} depending on the concordance index (> 0.5 or ≤ 0.5)
I nQ is the signature size.

The global risk score is defined as

R =
∑
s∈S

Pr(s)R(s)
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Tools

Bioinformatics softwares
I R is a widely used open source language and environment for statistical

computing and graphics
I Bioconductor is an open source and open development software

project for the analysis and comprehension of genomic data
I Java Treeview is an open source software for clustering visualization
I BRB Array Tools is a software suite for microarray analysis working as

an Excel macro
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Links

Personal webpage: http://www.ulb.ac.be/di/map/bhaibeka/

Machine Learning Group: http://www.ulb.ac.be/di/mlg

Functional Genomics Unit:
http://www.bordet.be/en/services/medical/array/practical.htm

Master in Bioinformatics at ULB and other belgian universities:
http://www.bioinfomaster.ulb.ac.be/
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