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Research Groups

Machine Learning Group (Gianluca Bontempi)

@ 10 researchers (2 Profs, 1 postDoc, 7 PhD students), 2 graduate
students).

@ Research topics : Bioinformatics, Classification, Regression, Time
series prediction, Sensor networks.

@ Website : http://www.ulb.ac.be/di/mlg.

e Scientific collaborations in ULB : IRIDIA (Sciences Appliquées),
Physiologie Molculaire de la Cellule (IBMM), Conformation des
Macromolcules Biologiques et Bioinformatique (IBMM), CENOLI
(Sciences), Functional Genomics Unit (Institut Jules Bordet), Service
d'Anesthesie (Erasme).

@ Scientific collaborations outside ULB : UCL Machine Learning Group
(B), Politecnico di Milano (I), Universitd del Sannio (1), George
Mason University (US).

@ The MLG is part to the " Groupe de Contact FNRS" on Machine
Learning and to CINBIOS: http://babylone.ulb.ac.be/Joomla/.
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Research Groups

Functional Genomics Unit (Christos Sotiriou)

@ 9 researchers (1 Prof, 5 postDocs, 3 PhD students), 5 technicians.

@ Research topics : Genomic analyses, clinical studies and translational
research.

o Website :
http://www.bordet.be/en/services/medical/array/practical.htm.

o National scientific collaborations : ULB, Erasme, ULg, Gembloux,
IDDI.

@ International scientific collaborations : Genome Institute of Singapore,
John Radcliffe Hospital, Karolinska Institute and Hospital, MD
Anderson Cancer Center, Netherlands Cancer Institute, Swiss Institute
for Experimental Cancer Research, NCI/NIH, Gustave-Roussy
Institute.
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Introduction
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Breast Cancer

@ Breast cancer is a global public health issue.

o It is the most frequently diagnosed malignancy in women in the
western world and the commonest cause of cancer death for European
and American women.

@ In Europe, one out of eight to ten women, depending on the country,
will develop breast cancer during their lifetime.
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Breast Cancer Prognosis

Breast surgery

+ radiotherapy
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Current Clinical Tools for Prognosis
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@ Need to improve current clinical tools to detect patients who need
adjuvant systemic therapy.
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Potential of Genomic Technologies for Prognosis

@ In the nineties, new biotechnologies emerged:

» Human genome sequencing.
> Gene expression profiling (low to high-throughput).

@ Genomic data could be used to better understand cancer biology

@ ...and to build efficient prognostic models.
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Gene Expression Profiling

@ Gene expression profiling using microarray chip:

Microarray chip Hybridization Detection
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Microarray Data

e Few samples (dozens to hundreds).

» Microarray technology is expensive.
» Frozen tumor samples are rare (biobank).

On the other hand, numerous gene expressions are measured.

» The new microarray chips cover the whole genome (= 50,000 probes
representing 30,000 " known genes”).

i

High feature-to-sample ratio (curse of dimensionality).

@ Microarray is a complex technology.
= High level of noise in the data.

Biology is complex.
= Variables are highly correlated (gene co-expressions due to biological
pathways).
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Microarray Data

Warning

@ You can easily find spurious patterns in the data, biologically
"meaningful”.
@ Personal experience:
> At the beginning of my thesis, | had accidentally mixed the patients
labels, so the relation between input (gene expressions) and output (a
mutation) was completely random.
> | gave a list of genes differentially expressed between wild type and
mutated patients, to the biologists in charge of the project and they
found it very interesting (known genes, meaningful biological story).
» When | saw my mistake, | corrected the bug and sent a new gene list
> ...and the results were even better!

@ In conclusion, the complexity of microarray data and the biology
behind should make you very critic and cautious with your results.
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Breast Cancer Molecular Subtypes
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Breast Cancer Subtypes

@ Early microarray studies showed that BC is a molecularly
heterogeneous disease [Perou et al., 2000; Sorlie et al., 2001, 2003; Sotiriou
et al., 2003].

» Hierarchical clustering on microarray data [Sorlie et al., 2001]:

Subtype A
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Breast Cancer Subtypes

Clinical Outcome

@ The molecular subtypes exhibited different clinical outcomes,

suggesting that the biological processes involved in patients’ survival
might be different.
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Breast Cancer Subtypes

Early Results

@ These early studies showed similar results, i.e. ER and HER2
pathways are the main discriminators in breast cancer (confirmed by

[Kapp et al., 2006]).

@ However, this classification has strong limitations [Pusztai et al., 2006]:
> Instability: the results are hardly reproducible due to the instability of
the hierarchical clustering method in combination with microarray data
(high feature-to-sample ratio).
» Crispness: hierarchical clustering produces crisp partition of the dataset
(hard partitioning) without estimation of the classification uncertainty.
» Validation: the hierarchical clustering is hardly applicable to new data.
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Breast Cancer Subtypes

New Clustering Model

@ Because of these limitations we sought to develop a simple method to
identify the breast cancer subtypes.

= \We introduced a model-based clustering (mixture of Gaussians) in a
two-dimensional space defined by the ESR1 and ERBB2 module
scores [Wirapati et al., 2008; Desmedt et al., 2008].

» We used the Bayesian information criterion (BIC) to select the most
likely number of subtypes [Fraley and Raftery, 2002].

> We validated our model (fitted on Wang et al. series) on 14
independent datasets in terms of number of clusters and prediction
strength [Tibshirani and Walther, 2005].
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New Clustering Model

Training
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New Clustering Model

Validation
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New Clustering Model

Validation: Prediction Strength

Dataset
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New Clustering Model

Validation: Number of Clusters
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Breast Cancer Subtypes

Clinical Outcome

e ER-/HER2-: 20-25%

e HER2+: 15-20%

e ER+/HER2-: 60-70%
of the global population of
BC patients.

Node-negative untreated patients
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ER-/HER2- 119 111 91 83 78 71 68 64 53 46 37
HER2+ 106 98 91 81 73 69 64 58 52 47 44
ER+HER2- 516 507 487 462 435 410 363 319 282 257 223
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Breast Cancer Subtypes

New Clustering Model (dis)Advantages

o Advantages:

» Simple model-based clustering:
* Easily applicable to new data.
* Returning for each patient the probability to belong to each subtype

(soft partitioning).

» Low dimensional space:
* Low computational cost to fit the model.
* Simple visualization of the results.

o Disadvantages:

» Low dimensional space: which dimension could we add in order to find
another robust subtype?
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Prognostic Gene Signatures
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Prognostic Gene Signatures

@ Use of microarray technology to improve current prognostic models
(NIH/St Gallen guidelines, NPI, AOL).

@ A typical microarray analysis dealing with breast cancer
prognostication involves 5 key steps:

@ Data preprocessing: quality controls and normalization.

@ Filtering: discard the genes exhibiting low expressions and/or low
variance.

© Identification of a list of prognostic genes (called a gene signature).

© Building of a prognostic model, i.e. combination of the expression of
the genes from the signature in order to predict the clinical outcome of
the patients.

© Validation of the model performance and comparison with current
prognostic models.

Benjamin Haibe-Kains (ULB) Visit to IGC October 16, 2008 26 / 76



Prognostic Gene Signatures

Fishing Expedition

@ Prognostic models derived from gene expression data by looking for
genes associated with clinical outcome without any a priori biological
assumption [van't Veer et al., 2002; Wang et al., 2005].

GENE70 signature GENE76 signature
3 10
$ _‘Tt‘:—-—._,_‘_
2 H Good (n=59)
= g o8 T
4 3 .
&2 £ o6
5
2s Poor signature E s Poor (n=112)
£3 5
|= E
€ 3
2 EE
& Hazard ratio=5-67 (95% Cl 2.59-12:4) Log-ranki9.0001
| T T T T T T 1
0o 2 4 6 8 10 12 o 1 2 3 4 5 6 7
Years Years
NoaT Risk Patients at risk
Goodsgnawre 60 57 sa 45 3 2 1 Goodsignature 59 S8 s6 55 55 55 53 48
Poorsignatre 91 72 55 41 26 17 9 Poorsignature 112 103 %0 75 6 6 55 52
van't Veer et al. Wang et al.

van de Vijver

@ Promising results but a lot criticisms from a statistical point of view.
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Prognostic Gene Signatures

Hypothesis-driven

@ Prognostic models were also derived from gene expression data based
on a biological assumption.
» Example: GGI [Sotiriou et al., 2006] was designed to discriminate
patients with low and high histological grade (proliferation).

> GGl was able to discriminate patients with intermediate histological
grade (HG2).
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Prognostic Gene Signatures

Independent Validation

@ These preliminary resulting were promising but validation was
required.

@ A first validation was published by the authors of the GENE70 and
GENETY6 signatures in [van de Vijver et al., 2002] and [Foekens et al., 2006]
respectively.

@ Our group was involved in a second validation:

» Complete independence: the authors of the signatures were not aware
of the clinical data of the patients in the dataset.

» The statistical analyses were performed by an independent group.

» Aim: validate definitively the prognostic power of these two models in
order to start a large clinical trial called MINDACT (Microarray In
Node negative Disease may Avoid ChemoT herapy).
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Prognostic Gene Signatures

Independent Validation (cont.)

@ Although the performance in this validation series was less impressive
than in the original publications, GENE70 and GENE76 sufficiently
improved the current clinical models to go ahead with MINDACT.
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= Validation of GENE70 [Buyse et al., 2006] and GENE76 [Desmedt et al.,
2007].
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Prognostic Gene Signatures

Independent Validation (cont.)

@ We sought to compare the GGI to the GENE70 and GENE76
signatures in this validation series

@ ...and showed that GGI has very similar performance [Haibe-Kains

et al., 2008b].
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Part IV

Subtypes and Prognosis
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Prognosis in Specific Subtypes

@ The first publications attempted to build a prognostic model from the
global population of BC patients.

@ In 2005, Wang et al. were the first to divide the global population
based on ER status:

» As BC biology is very different according to the ER status, prognostic
models might be different too.

> They built a prognostic model for each subgroup of patients (ER+ and
ER-).

» To make a prediction, they used one of the two models depending on
the ER-status of the tumor.

» Unfortunately the group of ER- tumors was too small and their
corresponding model was not generalizable.
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Prognosis in Specific Subtypes

(cont.)

@ Recently, Teschendorff et al. built a new prognostic model for ER-
tumors [Teschendorff et al., 2007] and validated it [Teschendorff and Caldas,
2008] using large datasets.

» The signature is composed of 7 immune-related genes.

@ We showed in two meta-analyses [Wirapati et al., 2008; Desmedt et al.,
2008] that:
> Proliferation (AURKA) was the most prognostic factor in ER+/HER2-
tumors and the common driving force of the early gene signatures.

* Actually, these early signatures (e.g. GENE70, GENE76, GGlI) are
prognostic in ER+/HER2- tumors only.
> Immune response (STAT1) is prognostic in ER-/HER2- and HER2+
tumors.
» Tumor invasion (PLAU or uPA) is prognostic in HER2+ tumors.
e Finak et al. introduced a stroma-derived prognostic predictor (SDPP)
particularly efficient in HER2+ tumors [Finak et al., 2008].
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New Prognostic Model

@ Since current prognostic models/gene signatures are limited to some
subtypes, we sought to develop a new prognostic model integrating
the breast cancer subtypes identification in order to:

» Build a prognostic gene signatures specifically targeting each subtype.
» Build a global prognostic model able to predict the risk of the patients
whatever the tumor subtype (ER-/HER2-, HER2+ or ER+/HER2-).

@ We assessed the performance and compared it to current prognostic
models using the thorough statistical framework developed in
[Haibe-Kains et al., 2008a].

@ This new prognostic model is called GENIUS, standing for
Gene Expression progNostic Index Using Subtypes ©
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GENIUS

Training set Validation set
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GENIUS

Performance Assessment and Comparison

@ We trained GENIUS on VDX:
» 286 node-negative untreated BC patients.
@ We assessed the performance in an independent dataset composed of

» 765 node-negative untreated patients
» coming from 5 different datasets (NKI, TBG, UPP, UNT and MAINZ).

@ Risk score prediction: continuous value.

@ Risk group prediction: binary value (application of a cutoff on the risk
score).
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GENIUS

Risk Score Prediction
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GENIUS

Risk Group Prediction

Global population )
Global population
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GENIUS

Risk Group Prediction (cont.)
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GENIUS

Risk G

up Prediction (cont.)
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Part V

Conclusion
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Conclusion

@ Numerous studies confirmed the great potential of gene expression
profiling using microarrays to better understand cancer biology and to
improve current prediction models.

@ This technology becomes more and more mature (MAQC [shi, 2006])
and is now ready for clinical applications.

@ The promising results of early publications were validated in different
independent studies.

@ Recent meta-analyses successfully recapitulated the main discoveries
made these late decades and refined our knowledge on breast cancer
biology.
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Conclusion (cont.)

@ We benefit from this strong basis to go a step further to improve
breast cancer prognosis using microarrays.
» Prognostic models/gene signatures in specific subtypes [Teschendorff
et al., 2007; Desmedt et al., 2008; Finak et al., 2008].
» Development of GENIUS, a prognostic model integrating BC molecular
subtypes identification [manuscript in preparation].

@ A major issue remains: "How to combine these microarray prognostic
models with clinical variables?”
» Several studies showed the additional information of tumor size, nodal
status, ...
» However, we currently lack of data to fit robust prognostic models
combining microarray and clinical variables.
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Thank you for your attention.

This presentation is available from http://www.ulb.ac.be/di/map/
bhaibeka/papers/haibekains2008molecular.pdf.
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Gene Expression Profiling Technologies

@ There exist several technologies to measure the expression of genes.

@ Low throughput technologies such as RT-PCR, allow for measuring
the expression of a few genes.

@ High throughput technologies, such as microarrays, allows for
measuring simultaneously the expression of thousands of genes (whole
genome).

@ Microarray principles will be illustrated through the Affymetrix
technology.
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Microarray

@ A microarray is composed of

» DNA fragments (probes) fixed on a solid support.

» Ordered position of probes.

» Principle of hybridization to a specific probe of complementary
sequence.
Molecular labeling.

v

= Simultaneous detection of thousands of sequences in parallel.
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Affymetrix GeneChip
Probes
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Affymetrix Equipment
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Prognostic Gene Signatures

A Single Gene?

From the validation studies, we learned that GGI yields similar
(sometimes better) performance than other gene signatures
[Haibe-Kains et al., 2008b].

Since GGl is a very simple model from a statistical and a biological
(proliferation genes) points of view, we challenged the use of complex
statistical methods for BC prognostication.

@ We compared simple to complex statistical methods to a single
proliferation gene (AURKA) [Haibe-Kains et al., 2008a].

i

Due to the complexity of microarray data, it is very hard to build
prognostic models statistically better than AURKA.
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Prognostic Gene Signatures

A Single Gene? (cont.)

@ Forestplot of the concordance index for each method in the training
set and the three validation

AURKA

BD.COMBUNIV.WILCOXON.HG
BD.COMBUNIV.COX.SURV
BD.MULTIV.LM.TOE
BD.MULTIV.COX.SURV
GW.RANK.COMBUNIV.WILCOXON.HG
GW.RANKCV.COMBUNIV.WILCOXON.HG
GW.RANK.COMBUNIV.COX.SURV
GW.RANKCV.COMBUNIV.COX.SURV
GW.RANK.MULTIV.RCOX.SURV
GW.RANKCV.MULTIV.RCOX.SURV
GW.PCA.COMBUNIV.WILCOXON.HG
GW.PCACV.COMBUNIV.WILCOXON.HG
GW.PCA.COMBUNIV.COX.SURV
GW.PCACV.COMBUNIV.COX.SURV
GW.PCAMULTIV.RCOX.SURV
GW.PCACV.MULTIV.RCOX.SURV
GENE76

GGl

sets:
== —+ —=
— —_ R
— — —
- L -
J— R R
. i
- S -
I R
- [ A
- - .
- - .-
- L PR
— e la— —
S [
— — 1
— — ] [
l i
T T T T T T T T T T T T T T T T T T T T T 1 T T T T T T 1
0 &0 KRN ANASN 70 760 AN ARKN AN0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Training set Validation set 1 Validation set 2 Validation set 3

Benjamin Haibe-Kains (ULB)

Visit to IGC

October 16, 2008



GENIUS

Identification of Subtypes

@ The first step of GENIUS method is the identification of subtypes in
the dataset.

@ In BC, we applied the clustering model developed previously (training
set: VDX).
@ The model returns the probabilities Pr(s) for a patient to belong to
each subtype s € S.
» S is composed of the ER-/HER2-, HER2+ and ER+/HER2- subtypes.
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GENIUS

Identification of Prognostic Genes

=S

We used a ranking-based gene selection method.

The score (relevance) given to each gene is based on the significance
of the concordance index.

We introduced a weighted version of the concordance index in order
to select genes relevant for a specific subtype;

The weights were defined as the probability for a patient to belong to
the subtype of interest.

This feature selection allowed for using all the patients in the dataset.
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GENIUS

Weighted Concordance Index

@ Survival data for the jth patient:
» t; stands for the event time
» ¢; for the censoring time
@ C-index computes the probability that, for a pair of randomly chosen
comparable patients, the patient with the higher risk prediction will
experience an event before the lower risk patient.

Zi,jeﬂ Hri > r}

C-index =
12|

> where r; and r; are the risk predictions of the patient i and j
» Q is the set of all the pairs of patients {/, j} such that:
* r; # rj (no ties in r)
* meet one of the following conditions: (i) both patients i and j
experienced an event and time t; < t; or (ii) only patient i experienced
an event and t; < ;.
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GENIUS

Weighted Concordance Index (cont.)

@ We introduced a weighted version of the concordance

>ijeq wil{r > rj}
Zi,jeﬂ Wij

C—indeXWted =

» where wjj = w;w; is the weight for the pair of patients {7, j} € Q.

@ Significance of the C-index was computed by assuming asymptotic
normality [Pencina and D'Agostino, 2004].
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GENIUS

Signature Stability

@ Once the genes were ranked, the only hyperparameter to tune was the
signature size k (number of selected genes in the signature).

@ We assessed the stability with respect to the signature size by
resampling the training set.
@ The stability criterion was inspired from [Davis et al., 2006]:

» Let X be the set of features and freq(x;) be the number of sampling
steps in which a feature x; € X has been selected out of m sampling
steps.

> The set X is sorted by frequency into the set x(1), X(2), - - -, X(n) Where
freq(x(iy) > freq(x(;)) if i < j where i, j € {1,2,...,n}.

» A first measure of stability for a given signature size k is returned by

SO freq(x(i)

Stab(k) = —
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GENIUS

Signature Stability (cont.)

@ Since the Stab statistic can be made artificially high by simply
increasing k, we formulated an adjusted statistic

Stab,qj(k) = max {0, Stab(k) — ak}

n

» where « is a penalty factor depending on the number of selected
features (usually o = 1).
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GENIUS

Signature Stability (cont.)
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@ In the training set (VDX), the most stable signatures were composed
of 63 and 22 genes for the ER-/HER2- and HER2+ subtypes.
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GENIUS

Risk Score Prediction

@ The risk score predictions for the subtype s is defined as

o WiX;
R(S) — ZIEQ 1

nQ
where @ is the set of of genes in the signature for subtype s
X; is the expression of gene i

w; € {—1,41} depending on the concordance index (> 0.5 or < 0.5)
ng is the signature size.

v vy VvYy

@ The global risk score is defined as

R = Z Pr(s)R(s)

seS
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@ Bioinformatics softwares

» R is a widely used open source language and environment for statistical
computing and graphics

» Bioconductor is an open source and open development software
project for the analysis and comprehension of genomic data

» Java Treeview is an open source software for clustering visualization

» BRB Array Tools is a software suite for microarray analysis working as
an Excel macro
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@ Personal webpage: http://wuw.ulb.ac.be/di/map/bhaibeka/
@ Machine Learning Group: http://www.ulb.ac.be/di/mlg

@ Functional Genomics Unit:
http://www.bordet.be/en/services/medical/array/practical.htm

@ Master in Bioinformatics at ULB and other belgian universities:
http://www.bioinfomaster.ulb.ac.be/
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