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Research Groups

Machine Learning Group (Gianluca Bontempi)

@ 10 researchers (2 Profs, 1 postDoc, 7 PhD students), 2 graduate
students).

@ Research topics : Bioinformatics, Classification, Regression, Time
series prediction, Sensor networks.

@ Website : http://www.ulb.ac.be/di/mlg.

e Scientific collaborations in ULB : IRIDIA (Sciences Appliquées),
Physiologie Molculaire de la Cellule (IBMM), Conformation des
Macromolcules Biologiques et Bioinformatique (IBMM), CENOLI
(Sciences), Functional Genomics Unit (Institut Jules Bordet), Service
d'Anesthesie (Erasme).

@ Scientific collaborations outside ULB : UCL Machine Learning Group
(B), Politecnico di Milano (I), Universitd del Sannio (1), George
Mason University (US).

@ The MLG is part to the " Groupe de Contact FNRS" on Machine
Learning and to CINBIOS: http://babylone.ulb.ac.be/Joomla/.
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Research Groups

Functional Genomics Unit (Christos Sotiriou)

@ 9 researchers (1 Prof, 5 postDocs, 3 PhD students), 5 technicians.

@ Research topics : Genomic analyses, clinical studies and translational
research.

o Website :
http://www.bordet.be/en/services/medical/array/practical.htm.

o National scientific collaborations : ULB, Erasme, ULg, Gembloux,
IDDI.

@ International scientific collaborations : Genome Institute of Singapore,
John Radcliffe Hospital, Karolinska Institute and Hospital, MD
Anderson Cancer Center, Netherlands Cancer Institute, Swiss Institute
for Experimental Cancer Research, NCI/NIH, Gustave-Roussy
Institute.
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Breast Cancer and Prognosis
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Part |

Breast Cancer and Prognosis
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Breast Cancer

@ Breast cancer is a global public health issue.

o It is the most frequently diagnosed malignancy in women in the
western world and the commonest cause of cancer death for European
and American women.

@ In Europe, one out of eight to ten women, depending on the country,
will develop breast cancer during their lifetime.
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Breast Cancer Prognosis
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Current Clinical Tools for Prognosis
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@ Need to improve current clinical tools to detect patients who need
adjuvant systemic therapy.
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Potential of Genomic Technologies for Prognosis

@ In the nineties, new biotechnologies emerged:

» Human genome sequencing.
> Gene expression profiling (low to high-throughput).

@ Genomic data could be used to better understand cancer biology

@ ...and to build efficient prognostic models.
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Gene Expression Profiling
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Gene Expression Profiling Technologies

@ There exist several technologies to measure the expression of genes.

@ Low throughput technologies such as RT-PCR, allow for measuring
the expression of a few genes.

@ High throughput technologies, such as microarrays, allow for
measuring simultaneously the expression of thousands of genes (whole
genome).

@ Microarray principles will be illustrated through the Affymetrix
technology.
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Microarray

@ A microarray is based on

» DNA fragments (probes) fixed on a solid support.

» Ordered position of probes.

» Principle of hybridization to a specific probe of complementary
sequence.
Molecular labeling.

v

= Simultaneous detection of thousands of sequences in parallel.
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Affymetrix GeneChip
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Microarray Chip
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Affymetrix Equipment
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Breast Cancer Molecular Subtypes
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Breast Cancer Subtypes

@ Early microarray studies showed that BC is a molecularly
heterogeneous disease [Perou et al., 2000; Sorlie et al., 2001, 2003; Sotiriou
et al., 2003].

» Hierarchical clustering on microarray data [Sorlie et al., 2001]:

Subtype A
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Breast Cancer Subtypes

Clinical Outcome

@ The molecular subtypes exhibited different clinical outcomes,

suggesting that the biological processes involved in patients’ survival
might be different.
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Breast Cancer Subtypes

Early Results

@ These early studies showed similar results, i.e. ER and HER2
pathways are the main discriminators in breast cancer (confirmed by

[Kapp et al., 2006]).

@ However, this classification has strong limitations [Pusztai et al., 2006]:
> Instability: the results are hardly reproducible due to the instability of
the hierarchical clustering method in combination with microarray data
(high feature-to-sample ratio).
» Crispness: hierarchical clustering produces crisp partition of the dataset
(hard partitioning) without estimation of the classification uncertainty.
» Validation: the hierarchical clustering is hardly applicable to new data.
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Breast Cancer Subtypes

New Clustering Model

@ Because of these limitations we sought to develop a simple method to
identify the breast cancer subtypes.

= We introduced a model-based clustering in a two-dimensional space

defined by the ESR1 and ERBB2 module scores [Wirapati et al., 2008;
Desmedt et al., 2008].

» We used the Bayesian information criterion (BIC) to select the most

likely number of subtypes.
» We validated our model (fitted on Wang et al. series) on 14
independent datasets.

24 / 57
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Breast Cancer Subtypes

Clustering Model
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Breast Cancer Subtypes

Validation
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Breast Cancer Subtypes

Clinical Outcome

Node-negative untreated patients
NKI/TBG/UPP/UNT/MAINZ
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ER-/HER2- 119 111 91 83 78 71 68 64 53 46 37
HER2+ 106 98 91 81 73 69 64 58 52 47 44
ER+HER2- 516 507 487 462 435 410 363 319 282 257 223
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Breast Cancer Subtypes

New Clustering Model (dis)Advantages

o Advantages:

» Simple model-based clustering:
* Easily applicable to new data.
* Returning for each patient the probability to belong to each subtype

(soft partitioning).

» Low dimensional space:
* Low computational cost to fit the model.
* Simple visualization of the results.

o Disadvantages:

» Low dimensional space: which dimension could we add in order to find
another robust subtype?
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Part IV

Prognostic Gene Signatures
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Prognostic Gene Signatures

@ Use of microarray technology to improve current prognostic models
(NIH/St Gallen guidelines, NPI, AOL).

@ A typical microarray analysis dealing with breast cancer
prognostication involves 5 key steps:

@ Data preprocessing: quality controls and normalization.

@ Filtering: discard the genes exhibiting low expressions and/or low
variance.

© Identification of a list of prognostic genes (called a gene signature).

© Building of a prognostic model, i.e. combination of the expression of
the genes from the signature in order to predict the clinical outcome of
the patients.

© Validation of the model performance and comparison with current
prognostic models.
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Prognostic Gene Signatures

Fishing Expedition

@ Prognostic models derived from gene expression data by looking for
genes associated with clinical outcome without any a priori biological
assumption [van't Veer et al., 2002; Wang et al., 2005].
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@ Promising results but a lot criticisms from a statistical point of view.
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Prognostic Gene Signatures

Hypothesis-driven

@ Prognostic models were also derived from gene expression data based
on a biological assumption.
» Example: GGI [Sotiriou et al., 2006] was designed to discriminate
patients with low and high histological grade (proliferation).

> GGl was able to discriminate patients with intermediate histological
grade (HG2).
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Prognostic Gene Signatures

Independent Validation

@ These preliminary resulting were promising but validation was
required.

@ A first validation was published by the authors of the GENE70 and
GENETY6 signatures in [van de Vijver et al., 2002] and [Foekens et al., 2006]
respectively.

@ Our group was involved in a second validation:

» Complete independence: the authors of the signatures were not aware
of the clinical data of the patients in the dataset.

» The statistical analyses were performed by an independent group.

» Aim: validate definitively the prognostic power of these two models in
order to start a large clinical trial called MINDACT (Microarray In
Node negative Disease may Avoid ChemoT herapy).
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Prognostic Gene Signatures

Independent Validation (cont.)

@ Although the performance in this validation series was less impressive
than in the original publications, GENE70 and GENE76 sufficiently
improved the current clinical models to go ahead with MINDACT.
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= Validation of GENE70 [Buyse et al., 2006] and GENE76 [Desmedt et al.,
2007].
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Prognostic Gene Signatures

Independent Validation (cont.)

@ We sought to compare the GGI to the GENE70 and GENE76
signatures in this validation series

@ ...and showed that GGI has very similar performance [Haibe-Kains
et al., 2008b].
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Prognostic Gene Signatures

A Single Gene?

From the validation studies, we learned that GGI yields similar
(sometimes better) performance than other gene signatures
[Haibe-Kains et al., 2008b].

Since GGl is a very simple model from a statistical and a biological
(proliferation genes) points of view, we challenged the use of complex
statistical methods for BC prognostication.

@ We compared simple to complex statistical methods to a single
proliferation gene (AURKA) [Haibe-Kains et al., 2008a].

i

Due to the complexity of microarray data, it is very hard to build
prognostic models statistically better than AURKA.
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Prognostic Gene Signatures

A Single Gene? (cont.)

@ Forestplot of the concordance index for each method in the training
set and the three validation sets:
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Part V

Subtypes and Prognosis
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Prognosis in Specific Subtypes

@ The first publications attempted to build a prognostic model from the
global population of BC patients.

@ In 2005 , Wang et al. were the first to divide the global population
based on ER status:

» As BC biology is very different according to the ER status, prognostic
models might be different too.

> They built a prognostic model for each subgroup of patients (ER+ and
ER-).

» To make a prediction, they used one of the two models depending on
the ER-status of the tumor.

» Unfortunately the group of ER- tumors was too small and their
corresponding model was not generalizable.
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Prognosis in Specific Subtypes

(cont.)

@ Recently, Teschendorff et al. built a new prognostic model for ER-
tumors [Teschendorff et al., 2007] and validated it [Teschendorff and Caldas,
2008] using large datasets.

» The signature is composed of 7 immune-related genes.

@ We showed in two meta-analyses [Wirapati et al., 2008; Desmedt et al.,
2008] that:
> Proliferation (AURKA) was the most prognostic factor in ER+/HER2-
tumors and the common driving force of the early gene signatures.

* Actually, these early signatures (e.g. GENE70, GENE76, GGlI) are
prognostic in ER+/HER2- tumors only.
> Immune response (STAT1) is prognostic in ER-/HER2- and HER2+
tumors.
» Tumor invasion (PLAU or uPA) is prognostic in HER2+ tumors.
e Finak et al. introduced a stroma-derived prognostic predictor (SDPP)
especially efficient in HER2+ tumors [Finak et al., 2008].
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Work in Progress

@ We plan to develop a new prognostic model integrating the breast
cancer subtypes identification in order to:

» Build prognostic gene signatures targeting a specific subtype.
» Build a global prognostic model able to predict the risk of the patients
having a tumor of ER-/HER2-, HER2+4 or ER+/HER2- subtype.

@ ...and to assess/compare its performance with current prognostic
models using the thorough statistical framework developed in
[Haibe-Kains et al., 2008a].

@ We already find a name, GENIUS, standing for
Gene Expression progNostic Index Using Subtypes ©
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Part VI

Conclusion
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Conclusion

@ Numerous studies confirmed the great potential of gene expression
profiling using microarrays to better understand cancer biology and to
improve current prediction models

@ This technology becomes more and more mature (MAQC [shi, 2006])
and is now ready for clinical applications.

@ The promising results of early publications were validated in different
independent studies.

@ Recent meta-analyses successfully recapitulated the main discoveries
made these late decades and refined our knowledge on breast cancer
biology.

@ We benefit from this strong basis to go a step further to improve

breast cancer prognosis using microarrays, especially by integrating
the breast cancer molecular subtypes identification.
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Thank you for your attention.

This presentation is available from http://www.ulb.ac.be/di/map/
bhaibeka/papers/haibekains2008microarrays.pdf.
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Prognosis Using Subtypes
GENIUS: Analysis Design
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@ Bioinformatics softwares

» R is a widely used open source language and environment for statistical
computing and graphics

» Bioconductor is an open source and open development software
project for the analysis and comprehension of genomic data

» Java Treeview is an open source software for clustering visualization

» BRB Array Tools is a software suite for microarray analysis working as
an Excel macro
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@ Personal webpage: http://wuw.ulb.ac.be/di/map/bhaibeka/
@ Machine Learning Group: http://www.ulb.ac.be/di/mlg

@ Functional Genomics Unit:
http://www.bordet.be/en/services/medical/array/practical.htm

@ Master in Bioinformatics at ULB and other belgian universities:
http://www.bioinfomaster.ulb.ac.be/
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