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Research Groups
Functional Genomics Unit (Christos Sotiriou)

9 researchers (1 Prof, 5 postDocs, 3 PhD students), 5 technicians.

Research topics : Genomic analyses, clinical studies and translational
research.

Website :
http://www.bordet.be/en/services/medical/array/practical.htm.

National scientific collaborations : ULB, Erasme, ULg, Gembloux,
IDDI.

International scientific collaborations : Genome Institute of Singapore,
John Radcliffe Hospital, Karolinska Institute and Hospital, MD
Anderson Cancer Center, Netherlands Cancer Institute, Swiss Institute
for Experimental Cancer Research, NCI/NIH, Gustave-Roussy
Institute.
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Research Groups
Machine Learning Group (Gianluca Bontempi)

10 researchers (2 Profs, 1 postDoc, 7 PhD students), 2 graduate
students).

Research topics : Bioinformatics, Classification, Regression, Time
series prediction, Sensor networks.

Website : http://www.ulb.ac.be/di/mlg.

Scientific collaborations in ULB : IRIDIA, Physiologie Molculaire de la
Cellule (IBMM), Conformation des Macromolcules Biologiques et
Bioinformatique (IBMM), CENOLI (Sciences), Functional Genomics
Unit (Institut Jules Bordet), Service d’Anesthesie (Erasme).

Scientific collaborations outside ULB : UCL Machine Learning Group
(B), Politecnico di Milano (I), Universitá del Sannio (I), George
Mason University (US).

The MLG is part to the ”Groupe de Contact FNRS” on Machine
Learning and to CINBIOS: http://babylone.ulb.ac.be/Joomla/.
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Part I

Introduction
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Breast Cancer

Breast cancer is a global public health issue.

It is the most frequently diagnosed malignancy in women in the
western world and the commonest cause of cancer death for European
and American women.

In Europe, one out of eight to ten women, depending on the country,
will develop breast cancer during their lifetime.
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Breast Cancer Prognosis
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Current Clinical Tools for Prognosis

Age

Tumor
size

ER
IHC

Nodal 
status

Histological
grade

AOLNPI

Prognosis

Clinical variables

Guidelines
NIH/St Gallen

Need to improve current clinical tools to detect patients who really
need adjuvant systemic therapy.
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Potential of Genomic Technologies for Prognosis

In the nineties, new biotechnologies emerged:
I Human genome sequencing.
I Gene expression profiling (low to high-throughput).

Genomic data could be used to better understand cancer biology

. . . and to build efficient prognostic models.
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Biology Paradigm
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Gene Expression Profiling

Gene expression profiling using microarray chip:

Microarray chip

AA

Hybridization

 

Detection
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Microarray Data

Few samples (dozens to hundreds).
I Microarray technology is expensive.
I Frozen tumor samples are rare (biobank).

On the other hand, numerous gene expressions are measured.
I The recent microarray chips cover the whole genome (≈ 50,000 probes

representing 30,000 ”known genes”).

ß High feature-to-sample ratio (curse of dimensionality).

Microarray is a complex technology.

ß High level of noise in the measurements.

Biology is complex.

ß Variables are highly correlated (gene co-expressions due to biological
pathways).
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Part II

Breast Cancer Molecular Subtypes
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Molecular Heterogeneity

Early microarray studies showed that breast cancer is a
molecularly heterogeneous disease [Perou et al., 2000,

Sorlie et al., 2001, Sorlie et al., 2003, Sotiriou et al., 2003].
I Example: hierarchical clustering on microarray data

[Sorlie et al., 2001].

ß Identification of sets of co-expressed genes.

ß Identification of groups of similar tumors.

Fig. 1. Gene expression patterns of 85 experimental samples representing 78 carcinomas, three benign tumors, and four normal tissues, analyzed by hierarchical
clustering using the 476 cDNA intrinsic clone set. (A) The tumor specimens were divided into five (or six) subtypes based on differences in gene expression. The
cluster dendrogram showing the five (six) subtypes of tumors are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light
blue; normal breast-like, green; basal-like, red; and ERBB2!, pink. (B) The full cluster diagram scaled down (the complete 456-clone cluster diagram is available
as Fig. 4). The colored bars on the right represent the inserts presented in C–G. (C) ERBB2 amplicon cluster. (D) Novel unknown cluster. (E) Basal epithelial
cell-enriched cluster. (F) Normal breast-like cluster. (G) Luminal epithelial gene cluster containing ER.

Sørlie et al. PNAS ! September 11, 2001 ! vol. 98 ! no. 19 ! 10871
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Gene Clusters

Several gene clusters were identified to be the main discriminators of
breast cancer molecular subtypes.

I Example from [Sorlie et al., 2001]:

Fig. 1. Gene expression patterns of 85 experimental samples representing 78 carcinomas, three benign tumors, and four normal tissues, analyzed by hierarchical
clustering using the 476 cDNA intrinsic clone set. (A) The tumor specimens were divided into five (or six) subtypes based on differences in gene expression. The
cluster dendrogram showing the five (six) subtypes of tumors are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light
blue; normal breast-like, green; basal-like, red; and ERBB2!, pink. (B) The full cluster diagram scaled down (the complete 456-clone cluster diagram is available
as Fig. 4). The colored bars on the right represent the inserts presented in C–G. (C) ERBB2 amplicon cluster. (D) Novel unknown cluster. (E) Basal epithelial
cell-enriched cluster. (F) Normal breast-like cluster. (G) Luminal epithelial gene cluster containing ER.

Sørlie et al. PNAS ! September 11, 2001 ! vol. 98 ! no. 19 ! 10871
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Tumor Clusters

Perou et al. and Sotiriou et al. identified at least three breast cancer
molecular subtypes:

I Basal-like, mainly ER- and HER2- tumors.
I ERBB2+ or HER2+ tumors.
I Luminal-like, which could be further separated in low and high

proliferative tumors [Loi et al., 2007].

Fig. 1. Gene expression patterns of 85 experimental samples representing 78 carcinomas, three benign tumors, and four normal tissues, analyzed by hierarchical
clustering using the 476 cDNA intrinsic clone set. (A) The tumor specimens were divided into five (or six) subtypes based on differences in gene expression. The
cluster dendrogram showing the five (six) subtypes of tumors are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light
blue; normal breast-like, green; basal-like, red; and ERBB2!, pink. (B) The full cluster diagram scaled down (the complete 456-clone cluster diagram is available
as Fig. 4). The colored bars on the right represent the inserts presented in C–G. (C) ERBB2 amplicon cluster. (D) Novel unknown cluster. (E) Basal epithelial
cell-enriched cluster. (F) Normal breast-like cluster. (G) Luminal epithelial gene cluster containing ER.

Sørlie et al. PNAS ! September 11, 2001 ! vol. 98 ! no. 19 ! 10871
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Perou et al.

diagnosed further episode of breast cancer, whether the breast
cancer was classified as a recurrence or second primary, and
whatever the histology. Breast cancer survival (BCS) was defined
as the interval elapsed between the date of breast surgery and the
date of breast cancer-related death (documented from hospital
records). ER status was determined by using ligand-binding
assays and immunohistochemistry. Grade was determined by
using the Elston–Ellis grade system (7).

RNA Extraction and Probe Preparation. Isolation of RNA was
performed by using the TRIzol method (Invitrogen) according
to the manufacturer’s instructions. RNA quality from each
tumor biopsy was assessed by visualization of the 28S!18S
ribosomal RNA ratio on 1% agarose gel. Total RNA was linearly
amplified by using a modification of the Eberwine method (8, 9).
Total RNA from the Universal Human Reference (Stratagene)
was amplified and used as reference for cDNA microarray
analysis. The cDNA microarray chips consisted of 7,650 total
features and were manufactured at the National Cancer Institute
microarray facility.

A detailed protocol for RNA amplification and cDNA probe
labeling and hybridization is available at http:!!nciarray.nci.nih.
gov!reference!index.shtml. GENEPIX software (Axon Instru-
ments, Union City, CA) was used to analyze the raw data, which
were then uploaded to a relational database maintained by the
Center for Information Technology at the National Institutes of
Health.

Data Analysis. Images of all of the scanned slides were meticu-
lously inspected for artifacts, and aberrant spots and slide regions
were flagged for exclusion from analyses. Log (base 2) ratios for
each spot were calculated as follows. In each channel, signal was
calculated as foreground median minus background median. If
the signal was !100 in any single channel, the signal value in that
channel was set to 100. If the signal was !100 in both channels,
the spot was flagged as unreliable and not used in any further
analyses. Also, if "50% of the pixels in the foreground in either
channel reached the saturation threshold, the spot was flagged
and not used in analyses. For all remaining (nonflagged) spots,
a log ratio was calculated as log2[(red signal)!(green signal)].
The log ratios were then normalized within each array by
subtracting from each the median log ratio value across the spots

on the array. The channel-specific intensity data and normalized
log ratios of all 99 experiments are available in Tables 3–5, which
are published as supporting information on the PNAS web site.

The first phase of the analysis was to compare expression
profiles between specimens segregated according to values of
standard prognostic variables. In particular, we considered the
following comparisons: tumor grade 1 or 2 vs. 3; tumor size !2
cm vs. "2 cm; age !50 years vs. age "50 years (menopausal
status); node negative vs. node positive; and ER# vs. ER$.
These comparisons were made by parametric t tests using the
statistical software SPLUS (SPLUS 6.0 Professional, Insightful, Seat-
tle). To control for multiple comparisons, we reported as sig-
nificant genes only those that reached significance at level P %
0.001. Testing 7,650 probes at this significance level, we expect
that the average number of spuriously significant (false positive)
results will be eight or less.

Cluster analyses were conducted to search for natural group-
ings in the profiles. Before clustering, a screening procedure was
applied to eliminate genes showing minimal variation across the
set of 99 specimens. Specifically, for each gene, the 5th and 95th
percentiles of the ratios were calculated. If the ratio of the 95th
to 5th percentile was !3 that gene was not included in the cluster
analysis. This process left 706 probe elements for the cluster
analyses. Hierarchical agglomerative clustering using the statis-
tical package BRB-ARRAYTOOLS software (available at http:!!
linus.nci.nih.gov!BRB-ArrayTools.html) was applied to these
normalized log ratios by using both compact linkage and average
linkage and both Euclidean and one minus Pearson correlation
distance metrics. Normalized log ratios were median-centered
within each gene for all of the cluster analyses. The clustering
results obtained by using compact linkage with one minus
Pearson correlation distance applied to the 706 probe elements
appeared by visual inspection to yield the most distinctive
clusters (remaining blinded to any clinical or outcome variables),
and hence this was the clustering algorithm used for the unsu-
pervised cluster analyses based on these probe elements (Fig. 1).
The presence of significant clustering was assessed by applying
the global test of clustering proposed by McShane et al. (10). The
same techniques were applied for the clustering analyses using
gene subsets sets derived from the van’t Veer and Sorlie studies
(Figs. 3–6 which are published as supporting information on the
PNAS web site).

Fig. 1. Dendrogram of 99 breast cancer specimens analyzed by hierarchical clustering analysis using 706 probe elements selected for the high variability across
all tumors (see Materials and Methods). The tumors were separated into two main groups mainly associated with ER status as determined by the ligand-binding
(LB) assay and confirmed by immunohistochemistry (IHC). The dendrogram further branched into smaller subgroups within the ER$ and ER# classes based on
their basal and luminal characteristics: Her-2!neu subgroup, dark blue; basal-like 1 subgroup, pink; basal-like 2 subgroup, yellow; luminal-like 1 subgroup, light
blue; luminal-like 2 subgroup, red; and luminal-like 3 subgroup, green. Black bars represent ER$ tumors assessed by IHC (a), ER$ tumors assessed by LB assay
(b), grade 3 (c), and node-positive tumors (d).
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Clinical Outcome

The molecular subtypes exhibited different clinical outcomes,
suggesting that the biological processes involved in patients’ survival
might be different.

I Example from [Sorlie et al., 2001]:

prognosis and are associated with poor response to systemic
therapy (7, 8, 18, 19). Our findings of TP53 mutations in tumors
simultaneously expressing genes in the ERBB2 amplicon at high
levels supports previous observations of an interdependent role
for TP53 and ERBB2 (15, 20).

Identification of Tumor Subtypes using SAM Supervised by Patient
Survival. To search for additional sets of genes useful for tumor
classification, we performed SAM (16), using patient survival as
the supervising variable on the data set comprising the 76
carcinomas from which clinical data were available (i.e., exclud-
ing patient H6 and the second tumor in patient 65). Starting with
their expression values from the set of 1,753 genes (14), this
approach resulted in a list of 264 cDNA clones, using a signif-
icance threshold expected to produce fewer than 30 false posi-
tives. This SAM264 clone set was used to perform a hierarchical-
clustering analysis on all samples, and the resulting diagram
showed that almost all of the 264 cDNA clones that were selected
in this analysis fell into three main gene expression clusters, the
luminal!ER! cluster, the basal epithelial cluster that contained
keratins 5 and 17, and the previously described proliferation
cluster (Figs. 7 and 8, which are published as supporting infor-
mation). The branching patterns in the resulting dendrogram
organized the tumors into four main groups. The largest group
(Fig. 7, dark blue labels) consisted of tumors with the luminal!
ER! characteristics and corresponded almost exactly to the
luminal subtype A from Fig. 1. The genes comprising the ERBB2
amplicon from the intrinsic gene list were not included in the
SAM clone set, which resulted in a merging of the ERBB2!
subtype with the basal-like tumors into a larger group (Fig. 7, red
and pink sample names); notably, all but one of the basal-like
tumors clustered together on a distal branch within this larger
group. The luminal subtype C and the normal breast-like group
were seen, whereas the luminal subtype B samples were spilt

between subtypes A and C. In conclusion, 71 of 78 carcinomas
were organized into the same main subtypes when using the list
of 264 survival-correlated cDNA clones as compared with using
the intrinsic set of 456 clones (with only 81 genes overlap).

Correlations to Clinical Outcome. To investigate whether the five
different groups identified by hierarchical clustering may rep-
resent clinically distinct subgroups of patients, univariate sur-
vival analyses comparing the subtypes with respect to overall
survival and relapse-free survival were performed (Fig. 3). For
all of the following analyses, only 49 of the patients from the
prospective study with locally advanced disease and with no
distant metastases were used (see Statistical Analysis section).
Including the two patients with minor metastases did not influ-
ence the outcome of the survival analysis. The Kaplan–Meier
curves based on the subclasses from Fig. 1 showed a highly
significant difference in overall survival between the subtypes
(Fig. 3A, P " 0.01), with the basal-like and ERBB2! subtypes
associated with the shortest survival times. Similar results were
obtained with respect to relapse-free survival (Fig. 3B). These
two tumor subtypes were characterized by distinct variations in
gene expression that were different from the luminal subtype
tumors. Overexpression of the ERBB2 oncoprotein is a well-
known prognostic factor associated with poor survival in breast
cancer, which also was found for the ERBB2! group defined in
this study. The basal-like subtype may represent a different
clinical entity that is associated with shorter survival times and
a high frequency of TP53 mutations. Interestingly, the two
deaths among the T1!T2 tumors (new york 2, new york 3)
withdrawn from the data set for the purpose of the survival
analysis, occurred in this subgroup of tumors; both harbored
mutations in the TP53 gene.

We observed a difference in outcome for tumors classified as
luminal A versus luminal B ! C. Whereas the ER protein value

Fig. 3. Overall and relapse-free survival analysis of the 49 breast cancer patients, uniformly treated in a prospective study, based on different gene expression
classification. (A) Overall survival and (B) relapse-free survival for the five expression-based tumor subtypes based on the classification presented in Fig. 1 (luminals
B and C were considered one group). (C) Overall survival estimated for the six-subtype classification with the three different luminal subtypes presented in Fig.
1. (D) Overall survival based on the five-subtype classification presented in Figs. 2 Lower and 5.

Sørlie et al. PNAS " September 11, 2001 " vol. 98 " no. 19 " 10873
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Breast Cancer Subtypes
Early Results

These early studies showed similar results, i.e. ER and HER2
phenotypes are the main discriminators in breast cancer (confirmed by
[Kapp et al., 2006]).

However, this classification has strong limitations [Pusztai et al., 2006]:
I Instability: the results are hardly reproducible due to the instability of

the hierarchical clustering method in combination with microarray data
(high feature-to-sample ratio).

I Crispness: hierarchical clustering produces crisp partition of the dataset
(hard partitioning) without estimation of the classification uncertainty.

I Validation: the hierarchical clustering is hardly applicable to new data.
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New Clustering Model

Because of these limitations we sought to develop a robust method to
identify the breast cancer subtypes.

This method consists in:
1 A prototype-based clustering method to identify sets of co-expressed

genes (gene modules).
2 A model-based clustering in a low dimensional space to identify groups

of similar tumors (subtypes).
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Gene Modules

Aim: identification of co-expressed genes related to a biological
process of interest.

Method:
1 Choice of the biological processes of interest.
2 Selection of a prototype for each biological process.

F A prototype is a gene known to be related to the biological process of
interest (e.g. ESR1 for ER phenotype or AURKA for proliferation).

3 Identification of the genes specifically co-expressed with each prototype
to populate gene modules.

F A gene j is specifically co-expressed with a prototype q if the
co-expression of gene j with prototype q is statistically higher than with
the other prototypes.

ß Computation of gene module scores by averaging the expressions of
the genes in the modules.
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Gene Modules
Example

Choice of three prototypes: P1, P2 and P3.

Gene j assigned to the gene module 1 (prototype P1):
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Gene Modules
Example (cont.)

Gene j not assigned to any gene module:
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Gene Modules
Method

We tackled the problem from a prediction point of view.
I Basic idea: If a gene j is statistically better predicted by prototype q

than by all the other prototypes, then gene j is specifically co-expressed
with prototype q and is assigned to gene module q.

For each gene j , we fit a set of linear models:
I The univariate models using each prototype as explanatory variable and

the gene j as response variable.
I The ”best” multivariate model.

We compute the leave-one-out cross-validation (LOOCV) errors of
these models.
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Gene Modules
Method: LOOCV Errors
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Gene Modules
Method: Statistical Model Selection

We statistically compare the models on the basis of their LOOCV
errors (Friedman test).

ß Identification of the set of best models.
I The models present in the set are statistically better than the absent

models.
I The models present in the set have similar LOOCV errors.

If there is only one univariate model (using prototype q) in the set of
best models, gene j is assigned to the gene module q.
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Gene Modules
Method: Statistical Model Selection (cont.)
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Gene Modules
Method: Meta-Analysis

If the sample size is small, many genes will not be assigned to any
gene module (not enough evidence for the statistical model selection
step).

We can increase the size of gene modules by integrating several
datasets (larger sample size).

However, merging datasets from different laboratories, cohorts of
patients and microarray platforms is a difficult task.

ß Meta-analysis framework (each dataset is analyzed separately and
results are combined).
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Gene Modules
Method: Meta-Analysis (cont.)

Compute the LOOCV errors for the univariate and multivariate
models in each dataset separately.

Check the homogeneity of the standardized coefficients of the
univariate models over datasets (heterogeneity test).

I The relation between gene j and the prototypes should be similar in
each dataset.

I If the coefficients are heterogeneous, discard gene j from the analysis
(conservative way).

Perform a ”meta” Friedman test:
I Combine the p-values returned by the pairwise tests applied in each

dataset separately.
I Consider these meta p-values in the traditional version of Friedman

test.
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Gene Modules
Method (dis)Advantages

Advantages:
I Robust to overfitting (linear models + LOOCV).
I Control for other biological processes, i.e. prevent the use of highly

correlated prototypes (gene modules are then small).
I Integration of several datasets using different microarray platforms.

F Insensitive to ”batch” effect (meta-analysis framework).
F Check for heterogeneity between datasets.

I The gene module scores (signed average) are easily computable
whatever the microarray technology (except for very small platforms).

I Very conservative (control of false positive rate).

Disadvantages:
I Limited to linear relation between gene and prototypes.
I Computationally intensive (statistical model selection step).
I Very conservative (many false negatives).
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Gene Modules
Results

In [Desmedt et al., 2008],

We selected 7 prototypes to be representative of key biological
processes involved in breast cancer:

I ESR1 gene for ER phenotype.
I ERBB2 gene for HER2 phenotype.
I AURKA gene for proliferation
I STAT1 gene for immune response.
I VEGF gene for angiogenesis.
I PLAU gene for tumor invasion.
I CASP3 gene for apoptosis.

We used 2 large breast cancer microarray datasets:
I Wang et al. series: 286 node-negative patients on Affymetrix platform

(22283 probes).
I van de Vijver et al. series: 295 patients on Agilent microarray platform

(24496 probes).
ß ≈ 10,000 probes in common (mapping through EntrezGene IDs).
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Gene Modules
Results (cont.)

We found gene modules of various size:
I ESR1 is the largest gene module as expected.
I AURKA is the second one, highlighting the importance of proliferation.

Gene module Size
ESR1 468

AURKA 228
STAT1 94
PLAU 67

ERBB2 27
VEGF 13

CASP3 8

Gene ontology analysis confirmed the coherence of the gene modules
with respect to the prototypes or biological processes of interest.
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Model-Based Clustering

We know from early microarray studies that breast cancer is a
molecularly heterogeneous disease.

ER and HER2 phenotypes seem to be the main (only?) discriminators.

However the first classification models, based on hierarchical
clustering, are hardly reproducible/applicable to new data.

ß We introduced a simple model-based clustering (mixture of
Gaussians) in a two-dimensional space defined by the ESR1 and
ERBB2 module scores.

I We used the Bayesian Information criterion (BIC) to select the most
likely number of subtypes.

I We validated our model (fitted on Wang’s series, VDX) on 14
independent datasets by estimating the prediction strength
[Tibshirani and Walther, 2005].
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Model-Based Clustering
Training

VDX
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Model-Based Clustering
Validation
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Model-Based Clustering
Validation: Prediction Strength

Reference Dataset ER-/HER2- HER2+ ER+/HER2-
[van de Vijver et al., 2002] NKI 1.00 1.00 0.99

[Desmedt et al., 2007] TBG 1.00 1.00 0.83
[Miller et al., 2005] UPP 1.00 0.93 0.87

[Sotiriou et al., 2006] UNT 1.00 0.89 0.92
[Schmidt et al., 2008] MAINZ 1.00 1.00 0.90

[Sorlie et al., 2003] STNO2 1.00 0.69 0.97
[Sotiriou et al., 2003] NCI 0.85 0.83 0.93

[Minn et al., 2005] MSK 1.00 1.00 0.96
[Pawitan et al., 2005] STK 1.00 0.91 0.87

[Bild et al., 2006] DUKE 1.00 0.82 0.92
[Hoadley et al., 2007] UNC2 1.00 0.87 0.96

[Chin et al., 2006] CAL 1.00 1.00 0.95
[Bonnefoi et al., 2007] DUKE2 1.00 0.64 0.95

[Naderi et al., 2007] NCH 1.00 0.82 0.98
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Model-Based Clustering
Validation: Number of Clusters
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Breast Cancer Subtypes
Clinical Outcome

ER-/HER2-: 20-25%

HER2+: 15-20%

ER+/HER2-: 60-70%

of the global population of
breast cancer patients.

Node-negative untreated patients
NKI/TBG/UPP/UNT/MAINZ
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No. At Risk

ER!/HER2!    119 111 91 83 78 71 68 64 53 46 37

HER2+    106 98 91 81 73 69 64 58 52 47 44

ER+/HER2!    516 507 487 462 435 410 363 319 282 257 223
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Breast Cancer Subtypes
New Clustering Model (dis)Advantages

Advantages:
I Simple model-based clustering:

F Easily applicable to new data.
F Returning for each patient the probability to belong to each subtype

(soft partitioning).

I Low dimensional space:
F Stability/robustness of the clustering model.
F Low computational cost to fit the model.
F Simple visualization of the results.

Disadvantage:
I Low dimensional space: which dimension could we add in order to find

another robust subtype?
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Part III

Prognostic Gene Signatures
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Prognostic Gene Signatures

Use of microarray technology to improve current prognostic models
(NIH/St Gallen guidelines, NPI, AOL).

A typical microarray analysis dealing with breast cancer
prognostication involves 5 key steps:

1 Data preprocessing: quality controls and normalization.
2 Filtering: discard the genes exhibiting low expressions and/or low

variance.
3 Identification of a list of prognostic genes (called a gene signature).
4 Building of a prognostic model, i.e. combination of the genes from the

signature in order to predict the clinical outcome of the patients.
5 Validation of the model performance and comparison with current

prognostic models.
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Prognostic Gene Signatures
Fishing Expedition

Prognostic models derived from gene expression data by looking for
genes associated with clinical outcome without any a priori biological
assumption [van’t Veer et al., 2002, Wang et al., 2005].
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Promising results but some criticisms from a statistical point of view.
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Prognostic Gene Signatures
Hypothesis-driven

Prognostic models were also derived from gene expression data based
on a biological assumption.

I Example: GGI [Sotiriou et al., 2006] was designed to discriminate
patients with low and high histological grade (proliferation).

I GGI was able to discriminate patients with intermediate histological
grade (HG2).
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Prognostic Gene Signatures
Independent Validation

These preliminary resulting were promising but validation was
required.

A first validation was published by the authors of the GENE70 and
GENE76 signatures in [van de Vijver et al., 2002] and [Foekens et al., 2006]

respectively.

Our group was involved in a second validation:
I Complete independence: the authors of the signatures were not aware

of the clinical data of the patients in the dataset.
I The statistical analyses were performed by an independent group.
I Aim: validate definitively the prognostic power of these two models in

order to start a large clinical trial called MINDACT (Microarray In
Node negative Disease may Avoid ChemoTherapy).
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Prognostic Gene Signatures
Independent Validation (cont.)

Although the performance in this validation series was less impressive
than in the original publications, GENE70 and GENE76 sufficiently
improved the current clinical models to go ahead with MINDACT.
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to standard Affymetrix protocols. Expression values for each gene were
calculated using Affymetrix GeneChip analysis software MAS 5.0. For
chip normalization, probe sets were scaled to a target intensity of
600, and scale mask filters were not selected. Chips with signal to noise
ratio < 24 were excluded. Each probe set was considered as a separate
gene. Genomic high- and low-risk groups were defined by Veridex
blinded to clinical data, as described previously (3, 4), using the array
based ER assay results and the 76-gene prognostic signature. The raw
and normalized gene expression data, together with the patient’s
characteristics are publicly available on GEO (http://www.ncbi.nlm.
nih.gov/geo), with accession number GSE 7390.

Statistical analyses. All statistical analyses were carried out by the
International Drug Development Institute, Brussels, Belgium, using SAS
version 9.1 and SPLUS version 7. Patient clinical data and outcomes were
blinded to Jules Bordet Institute and Veridex. The end points considered

in this study were time from diagnosis to distant metastases (TDM),
which was the end point used to identify the gene signature (3), and
overall survival, defined as time from diagnosis to death from any cause.

The main analytic approach used to validate the gene signature was
to estimate hazard ratios (HR), which quantified the relative risk of an
event in the high-risk group compared with the low-risk group. HRs
were estimated through Cox’s proportional hazard regression models,
stratified by clinical center to account for the possible heterogeneity in
patient selection or other potential confounders among the various
centers. HRs for the risk groups defined by the gene signature were
estimated with stratification for clinical risk, using the Adjuvant! Online
software13 to reflect the prognostic effect of the gene signature over and

Fig. 1. Kaplan-Meier curves by genomic risk group.The
HRs and log-rank tests are stratified by center. A,TDM.
B, overall survival.

13 http://www.adjuvantonline.com

IndependentValidation of the 76-Gene Signature

www.aacrjournals.org Clin Cancer Res 2007;13(11) June1, 20073209

GENE70 GENE76

ß Validation of GENE70 [Buyse et al., 2006] and
GENE76 [Desmedt et al., 2007].
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Prognostic Gene Signatures
Independent Validation (cont.)

We sought to compare the GGI to the GENE70 and GENE76
signatures in this validation series

ß GGI yields very similar performance [Haibe-Kains et al., 2008a].!"#$%&'()*+,!"##$%!!&'() *++,&--.../012345647+89:/623-;)<;=";>)-(-'()
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Although all three concordance indices were highly signif-
icant, the 70-gene signature and GGI displayed a higher
concordance index compared to the 76-gene signature
(0.90 compared to 0.80; Figure 2A). However, this differ-
ence was not statistically significant (Table 2). In contrast,
the clinical risk calculated using AOL displayed a lower
concordance index value (0.69) compared to either ones
generated by the genomic signatures.

We next performed univariate and multivariate Cox anal-
yses, which included the traditional clinico-pathological
parameters, for each signature separately. The univariate
hazard ratios (HR) were 7.12 (95% CI: 2.52–20.11; p =
2.1 × 10-4), 3.18 (95% CI: 1.35–7.53; p = 8.4 – 10-3) and
5.85 (95% CI: 2.3–15; p = 2.1 – 10-4) for the 70-gene sig-
nature, 76-gene signature and the GGI respectively. We
additionally computed the HR for the clinical risk as
defined by AOL, which was not statistically significant for
DMFS evaluation in this cohort of patients (2.01; 95% CI:
0.89–4.5; p = 0.091). The log2 of these HR are illustrated
in Figure 2B. Although the HR of the 70-gene signature

and the GGI were higher than the HR of the 76-gene sig-
nature, the differences were not statistically significant
(see Table 2). Figure 3 illustrates the Kaplan-Meier esti-
mates of DMFS for the four groups of patients (two groups
with concordant results in risk assessment and two with
discordant results) for the different signatures two by two.

From the multivariate analyses (Table 3), we can conclude
that the three signatures added significant information to
the traditional parameters and were the strongest predic-
tive variables of DMFS, as reflected by their lowest p-val-
ues compared to the other variables. The additional
information of these signatures over the clinical risk was
also confirmed by the fact that the univariate HRs for the
three signatures remained similar when adjusted for the
clinical risk, with a HR of 7.25 (95% CI: 2.4–21.5; p = 3.5
– 10-4), 2.8 (95% CI: 1.2–6.8; p = 0.018) and 6.25 (95%
CI: 2.3–17; p = 3.3 – 10-4) for the 70-gene signature, 76-
gene signature and the GGI respectively.

Lastly, we combined the three gene signatures in order to
assess the potential improvement in BC prognostication.
We used a simple combination scheme that defined the
risk of a patient as the sum of the classifications (low-risk
= 0 and high-risk = 1) by the three gene signatures. As
illustrated in Supplementary Figure 1 in [Additional File
1], the patients for whom the three gene signature classifi-
cations were concordant are well defined, with only 2
patients relapsing in the low-risk group after 9 years of fol-
low up. However, the patients with discordant classifica-
tions exhibited good survival and their survival curves
were not distinguishable. The combination of the three
gene signatures did not yield significant improvement in
prognostication (the hazard ratio between the concordant
cases, i.e. 'All Low' and 'All High', is not significantly
higher than when each gene signature was considered sep-
arately), maybe due to their high concordance and the
sample size of the TBVDX series

Survival data with the full follow-up
We computed the concordance index of all the gene signa-
tures using the survival data with the full follow-up. The
three concordance indices were significant. We observed
higher concordance indices for the 70-gene signature and
GGI compared to the 76-gene signature (0.84 and 0.79 for
GENE70 and GGI respectively compared to 0.71 for

Venn diagram illustrating the classification of the tumor sam-ple according to the prognostic signaturesFigure 1
Venn diagram illustrating the classification of the 
tumor sample according to the prognostic signa-
tures. Dark red = high-risk patients and blue = low-risk 
patients. GENE70 = 70-gene signature, GENE76 = 76-gene 
signature, and GGI = Gene expression Grade Index.
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Table 2: P-values of the Student t test for the difference between concordance indices and hazard ratios for the 70-gene signature 
(GENE70), the 76-gene signature (GENE76), and the Gene expression Grade Index (GGI) risk classifications.

p-value for difference in concordance indices p-value for difference in hazard ratios

GENE70 vs GENE76 0.15 0.11
GENE70 vs GGI 0.53 0.42
GENE76 vs GGI 0.22 0.19

!"#$%&'()*+, !"##$%!! 746543210/...--&,++*)('& +89:/623-;)<;=";>)-(-'()

GENE76; Supplementary Figure 12 in [Additional File 1]).
This di!erence was not statistically signi"cant (Supple-
mentary Table 5 in [Additional File 1]) although we noted
a trend for GENE70 to have a higher concordance index (p
= 0.065). In contrast, the clinical risk calculated using AOL
displayed a lower concordance index value (0.69) com-
pared to either ones generated by the genomic signatures.

We next performed univariate and multivariate Cox anal-
yses, which included the traditional clinico-pathological
parameters, for each signature separately. The univariate
hazard ratios (HR) were 2.77 (95% CI: 1.41–5.43; p = 3.1
– 10 -3), 1.76 (95% CI: 0.92–3.34; p = 0.086) and 2.41
(95% CI: 1.29–4.5; p = 5.9 – 10 -3) for the 70-gene signa-

statistically signi"cant (see Supplementary Table 5 in
[Additional File 1]). Supplementary Figures 14–16 in
[Additional File 1] illustrate the Kaplan-Meier estimates of
DMFS for the four groups of patients for the di!erent sig-
natures two by two.

From the multivariate analyses (Supplementary Table 6 in
[Additional File 1]), we can conclude that the three signa-
tures added signi"cant information to the traditional
parameters and were the strongest predictive variables of
DMFS, as re#ected by their lowest p-values compared to
the other variables. We computed the univariate HRs
adjusted for the clinical risk, i.e. 2.8 (95% CI: 1.35–5.82;
p = 5.8 – 10 -3), 1.55 (95% CI: 0.81–2.97; p = 0.18) and
2.13 (95% CI: 1.12–4.02; p = 0.02) for the 70-gene signa-
ture, 76-gene signature and the GGI respectively.

Contrary to the analyses using the survival data censored
at 10 years, the HRs with and without adjustment for clin-
ical risk were not signi"cant for GENE76, highlighting the
decrease in performance we observed by using the survival
data with the full follow-up. This performance degrada-
tion was due to a group of late relapses occurring after 10
years of follow-up, classi"ed as low-risk by the three gene
signatures (see Supplementary Figure 17 in [Additional
File 1]).

We combined the three gene signatures using the method
described previously. In agreement with the results from

Forest plots (and 95% CI) for the three gene signatures and the Adjuvant! Online classification showing: A/the concord-ance indices, and B/the log2 hazard ratiosFigure 2

Forest plots (and 95% CI) for the three gene signa-

tures and the Adjuvant! Online classification showing: 

A/the concordance indices, and B/the log2 hazard 

ratios. GENE70 = 70-gene signature, GENE76 = 76-gene 

signature, GGI = Gene expression Grade Index and AOL = 

Adjuvant! Online.
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Prognostic Gene Signatures
A Single Gene?

From the validation studies, we learned that GGI yields similar
(sometimes better) performance than other gene signatures
[Haibe-Kains et al., 2008a].

Since GGI is a very simple model from a statistical and a biological
(proliferation-related genes) points of view, we challenged the use of
complex statistical methods for breast cancer prognostication.

We compared simple to complex statistical methods to a single
proliferation gene (AURKA) [Haibe-Kains et al., 2008b].

ß Due to the complexity of microarray data, it is very hard to build
prognostic models statistically better than AURKA.
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Prognostic Gene Signatures
A Single Gene? (cont.)

Forestplot of the concordance index for each method in the training
set and the three validation sets:

A single gene for breast cancer prognostication?
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Supplementary Figure 1: Forest plot of the concordance indices for the risk scores predicted by all the methods in the training set (VDX) and
in the three validation sets (TBG, TAM, and UPP). AURKA and GGI models were not fitted on VDX which can be considered as a validation
set for these models.
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Part IV

Subtypes and Prognosis
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Prognosis in Specific Subtypes

The first publications attempted to build a prognostic model from the
global population of breast cancer patients.

In 2005, Wang et al. were the first to divide the global population
based on ER status:

I As breast cancer biology is very different according to the ER status
(IHC), prognostic models might be different too.

I They built a prognostic model for each subgroup of patients (ER+ and
ER-).

I To make a prediction, they used one of the two models depending on
the ER-status of the tumor.

I Unfortunately the group of ER- tumors was too small and their
corresponding model was not generalizable.
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Prognosis in Specific Subtypes
(cont.)

Recently, Teschendorff et al. built a new prognostic model for ER-
tumors [Teschendorff et al., 2007] and validated it using large datasets
[Teschendorff and Caldas, 2008].

I The signature is composed of 7 immune-related genes.

We showed in two meta-analyses
[Wirapati et al., 2008, Desmedt et al., 2008] that:

I Proliferation (AURKA) was the most prognostic factor in ER+/HER2-
tumors and the common driving force of the early gene signatures.

F Actually, these signatures (e.g. GENE70, GENE76, GGI) are prognostic
in ER+/HER2- tumors only.

I Immune response (STAT1) is prognostic in ER-/HER2- and HER2+
tumors.

I Tumor invasion (PLAU or uPA) is prognostic in HER2+ tumors.

Finak et al. introduced a stroma-derived prognostic predictor (SDPP)
particularly efficient in HER2+ tumors [Finak et al., 2008].
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New Prognostic Model

Since current prognostic models/gene signatures are limited to some
subtypes, we plan to develop a new prognostic model integrating the
breast cancer subtypes identification in order to:

I Build a prognostic gene signatures specifically targeting each subtype.
I Build a global prognostic model able to predict the risk of the patients

whatever the tumor subtype (ER-/HER2-, HER2+ or ER+/HER2-).

We plan to assess and to compare the performance of this new model
to current prognostic models using the thorough statistical framework
developed in [Haibe-Kains et al., 2008b].

This new prognostic model is called GENIUS, standing for

Gene Expression progNostic Index Using Subtypes ,
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Part V

Conclusion
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Conclusion

Numerous studies confirmed the great potential of gene expression
profiling using microarrays to better understand cancer biology and to
improve current prediction models.

This technology becomes more and more mature (MAQC
[MAQC Consortium, 2006]) and is now ready for clinical applications.

The promising results of early publications were validated in different
independent studies.

Recent meta-analyses successfully recapitulated the main discoveries
made these late decades and refined our knowledge on breast cancer
biology.
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Conclusion (cont.)

We benefit from this strong basis to go a step further to improve
breast cancer prognosis using microarrays.

I Prognostic models/gene signatures in specific subtypes
[Teschendorff et al., 2007, Desmedt et al., 2008, Finak et al., 2008].

I Development of GENIUS, a prognostic model integrating breast cancer
molecular subtypes identification [manuscript in preparation].

A major issue remains: ”How to combine these microarray prognostic
models with clinical variables?”

I Several studies showed the additional information of tumor size, nodal
status, . . .

I However, we currently lack of data to fit robust prognostic models
combining microarray and clinical variables.
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Thank you for your attention.

This presentation is available from http:

//www.ulb.ac.be/di/map/bhaibeka/papers/haibekains2008gene.pdf.
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Part VII

Appendix
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Gene Expression Profiling Technologies

There exist several technologies to measure the expression of genes.

Low throughput technologies such as RT-PCR, allow for measuring
the expression of a few genes.

High throughput technologies, such as microarrays, allows for
measuring simultaneously the expression of thousands of genes (whole
genome).

Microarray principles will be illustrated through the Affymetrix
technology.
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Microarray

A microarray is composed of
I DNA fragments (probes) fixed on a solid support.
I Ordered position of probes.
I Principle of hybridization to a specific probe of complementary

sequence.
I Molecular labeling.

ß Simultaneous detection of thousands of sequences in parallel.
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Affymetrix GeneChip
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Affymetrix GeneChip
Probes

AA
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Hybridization
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Detection
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Affymetrix Design
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Affymetrix Equipment
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Tools

Bioinformatics softwares
I R is a widely used open source language and environment for statistical

computing and graphics
I Bioconductor is an open source and open development software

project for the analysis and comprehension of genomic data
I Java Treeview is an open source software for clustering visualization
I BRB Array Tools is a software suite for microarray analysis working as

an Excel macro
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Links

Personal webpage: http://www.ulb.ac.be/di/map/bhaibeka/

Machine Learning Group: http://www.ulb.ac.be/di/mlg

Functional Genomics Unit:
http://www.bordet.be/en/services/medical/array/practical.htm

Master in Bioinformatics at ULB and other belgian universities:
http://www.bioinfomaster.ulb.ac.be/
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