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Research Groups
Machine Learning Group

7 researchers (1 prof, 6 PhD students), 4 graduate students).

Research topics : Bioinformatics, Classification, Regression, Time
series prediction, Sensor networks.

Website : http://www.ulb.ac.be/di/mlg.

Scientific collaborations in ULB : IRIDIA (Sciences Appliquées),
Physiologie Molculaire de la Cellule (IBMM), Conformation des
Macromolcules Biologiques et Bioinformatique (IBMM), CENOLI
(Sciences), Microarray Unit (Hopital Jules Bordet), Service
d’Anesthesie (Erasme).

Scientific collaborations outside ULB : UCL Machine Learning Group
(B), Politecnico di Milano (I), Universitá del Sannio (I), George
Mason University (US).

The MLG is part to the ”Groupe de Contact FNRS” on Machine
Learning and to CINBIOS (http://babylone.ulb.ac.be/Joomla/)
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Research Groups
Functional Genomic Unit

7 researchers (1 prof, 3 postDocs, 6 PhD students), 3 technicians).

Research topics : Genomic analyses and clinic studies.

Website : http:
//www.bordet.be/en/services/medical/array/practical.htm.

National scientific collaborations : ULB, Erasme, ULg, Gembloux

International scientific collaborations : Genome Institute of Singapore,
John Radcliffe Hospital, Karolinska Institute and Hospital, MD
Anderson Cancer Center, Netherlands Cancer Institute, Swiss Institute
for Experimental Cancer Research, NCI/NIH, Gustave-Roussy
Institute, IDDI
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Machine Learning
Definition

The field of machine learning is concerned with the question of how to
construct computer programs that automatically improve with
experience. [Mitchell, 1997]
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Machine Learning
. . . and Applied Statistics

Reductionist attitude : ML is a modern buzzword which equates to
statistics plus marketing

Positive attitude : ML paved the way to the treatment of real problems
related to data analysis, sometimes overlooked by
statisticians (nonlinearity, classification, pattern recognition,
missing variables, adaptivity, optimization, massive datasets,
data management, causality, representation of knowledge,
parallelisation)

Interdisciplinary attitude : ML should have its roots on statistics and
complements it by focusing on: algorithmic issues,
computational efficiency, data engineering.
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Notations

x random variable
x realization of random variable x
I number of patients
J number of genes

Xi , i = 1, 2, . . . , I gene expression profile of patient i
xij , j = 1, 2, . . . , J expression of gene j of patient i

DI×J dataset represented by a matrix of gene ex-
pressions with I lines (iid patients) and J
columns (genes)
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Microarray Analysis Design

Experimental
design

Normalization

Image
analysis

Expression
quantification

Biological
question

Microarray
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Preprocessing

Class predictionClass discovery
Class 

comparison

Biological verification and 
interpretation

Statistics

Biology

Graphs and 
networks
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Part I

Unsupervised Learning
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Unsupervised Learning
Outline

1 Introduction

2 Clustering

3 Distances

4 Clustering Methods

5 Multidimensional Scaling

6 Clustering Validity
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Introduction

Training
Data

Classifier

biological data class ?

predicted class

Biological
Phenomenon

unsupervised 
learning
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Class Discovery Example
Breast Cancer Subtypes

biological question : are there any natural gene patterns for different
types of breast cancer ?

input data : microarray data (let say 10.000 genes and 50 patients)

output data : none

result : a clustering of the 50 patients. Each group of patients
exhibits distinct gene patterns
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Design

Training data

Dimension 
reduction

Clustering

Validity 
assessment

unsupervised
learning
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Clustering

gene1 gene2

gene3

Example of 17 samples drawn
in a 3-diensional gene space
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Clustering
cont’d

clustera

clusterb

clusterc

gene1 gene2

gene3
The samples can be divided
into 3 clusters.

Clustering can be viewed as a
mapping from the empirical
ditribution of X1,X2, . . . ,XI

to a sequence of k clusters.
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Key Components of Clustering Algorithms

Distance matrix : J × J symmetric matrix which quantifies the
similarity of each pair of objects. An object could be a gene or a
patient.

Number of clusters : should be specified by the user or defined by an
algorithm optimizing some criterion.

Criterion : is often a continuous function of the cluster labels that
measures how similar objects are within clusters ad how different
objects are between clusters.

Searching strategy : algorithm trying to find the clustering result that
globally maximizes the criterion. Due to computational issues,
heuristic search strategies, guaranteeing only the convergence to a
local maximum, are often needed.
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Classes of Clustering Algorithms

Partitioning : partitioning methods map a collection of objects into
k ≥ 2

I disjoint clusters maximizing a particular criterion. Example : k-means,
partioning around medoids (PAM), . . .

I overlapping clusters maximizing a particular criterion. Example :
self-organizing map (SOM), c-means, model-based clustering, . . .

Hierarchical : hierarchical methods involve constructing a tree of
clusters in which the root is a single cluster containing all the objects
and each leave contains only one object. Contruction of such a tree
can be

I divisive : build from the top down by recursively partitioning the
objects. Example : diana

I agglomerative : build from the bottom up by recursively combining the
objects. Example : hclust and agnes
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Distances

Distances, metrics and similarities are related concepts.

Definitions : a metric d needs to satisfy the following properties
I non-negativity : d(Xi1 ,Xi2 ) ≥ 0
I symmetry : d(Xi1 ,Xi2 ) = d(Xi2 ,Xi1 )
I identification mark : d(Xi1 ,Xi1 ) = 0
I definiteness : d(Xi1 ,Xi2 ) = 0 iff Xi1 = Xi2
I triangle inequality :d(Xi1 ,Xi2 ) + d(Xi2 ,Xi3 ) ≥ d(Xi1 ,Xi3 )
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Distances
cont’d

Minkowski metric family
(∑J

j=1 d(xi1j , xi2j)
λ
) 1

λ
:

I Euclidian (λ = 2)

deuc(Xi1 ,Xi2 ) =

√√√√ J∑
j=1

(xi1j − xi2j)
2

I Manhattan (λ = 1)

dman(Xi1 ,Xi2 ) =
J∑

j=1

|xi1j − xi2j |
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Distances
cont’d

Correlation-based distance :
I Pearson

dcor (Xi1 ,Xi2 ) = 1− ρ(xi1j , xi2j)

I Spearman

dspear (Xi1 ,Xi2 ) = 1−
X ′i1 Xi2

‖ Xi1 ‖‖ Xi2 ‖
I Kendall’s τ

dspear (Xi1 ,Xi2 ) = 1− τ(Xi1 ,Xi2 )
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Distances
Standardization in MicroArray Data

Distances depend on the scale of the data

Standardization
x − center(x)

scale(x)

may improve the comparison between objects but may also remove
some interesting features in the data.

We usually apply gene centering in one-channel microarray data, ie
xij = xij − center(x.j) with center being the median.
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Hierarchical Clustering

Widely used clustering method [Hartigan, 1975, Eisen et al., 1998].

Organizing objects in a hierarchical binary tree (dendrogram) based
on their degree of similarity.

Definition of a linkage method, ie the computation of a distance
between a cluster (called A) and another object/cluster (called B)

I complete : max{d(x , y) : x ∈ A, y ∈ B}
I single : min{d(x , y) : x ∈ A, y ∈ B}
I average : mean{d(x , y) : x ∈ A, y ∈ B}
I Ward : var{A ∪ B} − var{A}
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Hierarchical Clustering
Example
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Dendrogram

Apparent ease of interpretation but may be misleading

Dendrogram corresponding to a given hierarchical clustering is not
unique :

I for each merge one needs to specify which subtree should go on the left
and which on the right

I so there are 2n−1 choices.

Dendrogram imposes structure on the data, instead of revealing
structure in these data.

I such a representation will be valid only to the extent that the pairwise
dissimilarities possess the hierarchical structure imposed by the
clustering algorithm.

I Cophenetic correlation coefficient tests if the hierarchical structure
represents the pairwise distances.
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Hierarchical Clustering

Advantages :
I no number of clusters to specify (full hierarchical binary tree)
I deterministic
I computationally efficient.

Disadvantages :
I impose a hierarchical structure for the clusters
I dendrogram may be misleading
I need to define a linkage method
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K-Means

Method introduced in [MacQueen, 1967].

Partitioning objects in k disjoint subsets.

Minimization of the (squared) distance between the samples and the
cluster centroids.

Advantage :
I computationally efficient.

Disadvantages :
I need to specify the number of clusters
I not deterministic
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K-Means
Example : k = 3

gene1 gene2

gene3

gene1
gene2

gene3

gene1
gene2

gene3

clustera
clusterb

clusterc

gene1 gene2

gene3
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K-Means Variants

PAM : method introduced in [Kaufman and Rousseeuw, 1990].
I it operates on the distance matrix only because of use of medoids

instead of cluster centroids
I it minimizes a sum of distances (instead of a sum of squared distances)
I it uses the silhouette statistic to select the ”good” number of clusters

Fuzzy c-means : method introduced in [Dunn, 1973, Bezdek, 1981]
I it allows objects to belong to 2 or more clusters
I It minimizes the following objective funtion

I∑
i=1

K∑
k=1

um
ik ‖ Xi − Ck ‖2

where 1 ≤ m <∞, uik is the degree of membership of Xi in the cluster
k, Ck is the J-dimensional center of cluster k and ‖ · · · ‖ is any
distance
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Model-Based Clustering

Approach consisting in using some models for clusters and attempting
to optimize the fit between the data and the model

Each cluster can be mathematically represented by a parametric
distribution

The entire dataset is therefore modeled by a mixture of these
distributions
Advantages

I well-studied statistical inference techniques are available
I flexibility in choosing the distribution
I density estimation for each cluster
I model for further classification

Disadvantages
I assumption about the distributions

Example : mixture of Gaussians using an expectation-maxmimization
(EM) algorithm to maximize the likelihood [Dempster et al., 1977]
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Dimension Reduction

Microarray experiments generate a huge amount of data (thousands
of probes).

Microarray data are noisy.

Common practice is to reduce dimension of the data because
I most of the probes are non-informative
I in removing these probes, we remove noise.

Widely used methods :
I filtering based on variance
I multidimensional scaling.
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Multidimensional Scaling

Provide a low (e.g. 2 or 3) dimensional representation of the
distances which conveys information on the relationships between the
objects [Kruskal and Wish, 1978].

MDS with Euclidean distance = principal component analysis (PCA)
I rotation of the original variable maximizing the variance
I new axes = principal components (sometimes called eigen-genes)
I principal components are orthogonal.

Advantages :
I deterministic
I computationally efficient.

Disadvantages :
I need to select the number of principal components
I need complete data
I new dimensions are complex to interpret.
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Multidimensional Scaling
Example : Reduction from 3 to 2 Dimensions Using PCA

gene1 gene2

gene3

pc1

pc2

pc1

pc
2
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Clustering Validity

Clustering algorithms always find structure in the data.

Need of methods to assess the reliability of the discovered classes.

Procedure

1 Perturb the original dataset

F by resampling the original dataset (eg in using jackknife
[Ben-Hur et al., 2002])

F by randomized projections in lower dimensional subspaces preserving
approximately the distances between samples [Valentini, 2006].

2 Generate several clusterings.

3 Compute statistics assessing the reliability of clusters

F single individual clusters inside a clustering
F overall clustering (estimate of the ”optimal” number of clusters)
F confidence by which object may be assigned to each cluster.
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Conclusion

Pay attention to
I select a meaningful distance depending of the problem under study
I the impact of feature selection before clustering (also called

semi-supervised clustering)
I look at the validity of the clustering w.r.t. the dimension reduction and

the dataset.

Keep in mind that all these methods may give different results :

som

kmeans

single

centroid

complete

averageHclust average

Hclust complete

Hclust single

K-Means

Hclust centroid

Cluster 1 Cluster 2 Cluster 3 Cluster 4

SOM

Example with only
3 probes (KI67,
ESR1 and PGR)
and 254
Tamoxifen treated
patients.
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Part II

Supervised Learning
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Supervised Learing
Outline

1 Introduction

2 Class Comparison

1 (Non-)parametric Tests
2 Multiple Testing Problem

3 Prediction

1 Regression (Survival Analysis)
2 Classification

1 Classifiers
2 Aggregation of Classifiers

3 Feature Selection
4 Accuracy Estimation
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Introduction

Training
Data

Classifier

biological data class

predicted class

Biological
Phenomenon

supervised 
learning
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Part III

Class Comparison
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Class Comparison Example
Normal vs Tumor Tissue

biological question : what are the genes differentially expressed
between normal and tumor tissues ?

input data : microarray data (let say 10.000 genes and 50 tissues)

output data : label classes (25 normal tissues and 25 tumor tissues)

result : a list of significantly differentially expressed genes
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Class Comparison
Introduction

Class comparison is often referred as ”differential gene expression
analysis”

Classes are defined by phenotypes or experimental conditions and can
have ≥ 2 levels

Characteristics of microarray data influencing class comparison
I gene expressions are noisy
I number of genes much larger than number of patients
I gene expressions are highly correlated, so they are not independent

Analysis of joint distribution of genes is not feasible in practice

ß We will focus on gene-by-gene analysis
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Topics

Important topics in class comparison :

parametric vs non-parametric methods : gene expression
distributions ? power of the statistical test ?

multiple testing correction : estimation of Type I error ?
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Parametric vs Nonparametric Methods

Nonparametric methods may be used when :
I the sample size is small (no way to test the assumptions)
I problems in measurement (nominal values, rankings, . . . ).

Parametric tests are more powerful when assumptions are not violated

Hybrid: use a statistic from a parametric test (eg Student t) and
estimate its null distribution by resampling
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Nonparametric Methods
Overview

Test differences between independent groups :
I Wilcoxon Rank Sum/Mann-Whitney U (2 groups)
I Kruskal-Wallis (≥ 2 groups).

Test differences between dependent groups :
I Sign test
I Wilcoxon’s Matched Pairs test
I McNemar’s Chi-square (dichotomous variable).

Relationship between variables, nonparametric equivalents to the
standard correlation coefficient :

I Spearman’s ρ
I Kendall’s τ
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Affymetrix c© Two-Chip Comparison
S-Score Algorithm

Algorithm introduced in [Zhang et al., 2002]

It allows for comparison of two Affymetrix c© chips

How ?
I classical tests work at probeset level, after summarization step (see

preprocesing of Affymetrix c© data)
I s-score algorithm works at the probe level
I so the comparison 1 vs 1 is transformed in a paired comparison 20 vs

20 (1 probeset ≈ 20 probes)
I be aware that the biological variation of a population is not taken into

account (1 patient vs 1 patient)
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Multiple Testing Problem

The problem of multiple testing can be described as the potential
increase in Type I error (α) that occurs when statistical tests are used
repeatedly.

If n independent comparisons are performed, the experiment-wide
significance level αglobal = 1− (1− α)n.
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Multiple Testing Problem
Example

One might declare that a gene is differentially expressed if the
statistical test leads to a p-value < 0.01.

A multiple testing problem arises if one wanted to use this test (which
is appropriate for testing the differential expression of one gene), to
test the differential expression of many genes.

Imagine if one wants to test 100 equally expressed genes by this
method.

Given that the probability to do a type I error is 0.01, see a
differentially expressed gene would be a relatively likely event.

The likelihood that all 100 equally expressed genes are identified as
equally expressed by this test is (1− 0.01)100 = 0.366.

ß False positive rate must be controlled at the experiment-wide level.
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Multiple Testing Problem
Bonferroni’s Method

n independent tests.

Desired experiment-wide level of type I error is α.

ß Test each hypothesis at level
α

n
.

Strong control of the family wise error rate (FWER), very stringent.
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Multiple Testing Problem
Benjamini’s and Hochberg’s Method

Method controlling the false discovery rate (FDR) of a set of
predictions [Benjamini and Hochberg, 1995]

FDR is the expected percent of false predictions in the set of
predictions.

I example : if the algorithm returns 100 differentially expressed genes
with a false discovery rate of 0.3 then we should expect 70 of them to
be correct.

FDR is very different from a p-value, so a higher FDR an be tolerated
I example : a set of 100 differentially expressed genes of which 70 are

correct might be very useful, especially if there are thousands of genes
on the array, most of which are equally expressed

I in contrast p-value of 0.3 is generally unacceptable in any circumstance.
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Benjamini’s and Hochberg’s Method
Formulation

Let m be number of tested null hypotheses of which m0 are true

Let R denote the number of hypotheses rejected by a procedure

Let V denote the number of null hypotheses erroneously rejected by a
procedure

Let Q =
V

R
if R > 0, 0 otherwise

then FDR = E (Q)
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Benjamini’s and Hochberg’s Method
Estimation

For each hypothesis Hj , a test statistic is computed with the
corresponding p-value Pj

Linear step-up procedure :
I rank p-values P1 ≤ P2 ≤ · · · ≤ Pm

I let q be the desired level of FDR

I let k = max{j : Pj ≤ q
j

m
}

I reject H1,H2, . . . ,Hk if such a k exists
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Conclusion

Gene-by-gene class comparison is one of the most widely used analysis
of microarray data

However, due to intrinsic characteristics of microarray data, we must
deal with :

I the choice of an appropriate statistical test
I the problem of multiple testing

Because of low sample size, we are sometimes not able to reach
significant results even in the presence of strong biological signal

So we need to reduce the number of tested hypotheses by filtering the
data or by focusing the analysis on a set of genes (eg selected by
annotations)
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Part IV

Prediction
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Design

Training data

Feature 
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Classifier

Performance 
assessment

Independent 
data

supervised
learning
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Classification Example
Breast Cancer Prognostication

biological question : can we build a gene classifier that discriminates
patients at low and high-risk of relapse ?

input data : microarray data (let say 10.000 genes and 100 patients)

output data : survival data (25 events and 75 censored observations)

result : a model using the gene expression of a set of genes (called
gene signature) that is able to classify with high accuracy new
patients.
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Classifiers

Classification
I Linear : logistic regression, naive Bayes, linear disciminant analysis

(LDA), . . .
I Non-linear : k-nearest neighbors (KNN), Support Vector Machines

(SVM), classification trees, . . .

Regression
I Linear : linear regression, Cox regression . . .
I Non-linear : lazy learning, artificial neural networks (ANN or NNET),

. . .
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General Linear Models

Family of regression models

Outcome variable determines the choice of model

Outcome Model

continuous linear regression
counts Poission regression
survival Cox regression
binomial logistic regression

Applications :
I estimate force of association between outcome and covariates
I control of confounding
I model building, risk prediction
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Regression
Survival Analysis

Survival analysis deals with (right-)censored data, ie time to event t

Survivor function
S(t) = Pr{t > t}

I S(t) is the probability that an event time is greater than t

Hazard function

h(t) = lim
∆t→0

Pr{t ≤ t < t + ∆t | t ≥ t}
∆t

I h(t) quantifies the instantaneous risk that an event will occur in the
small interval between t and t + ∆t
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Regression
Survival Analysis : Cox Model

Most famous model for is the semiparametric regression model
proposed in [Cox, 1972] to estimate a hazard function given a dataset

I no assumption about the probability distribution of survival times
(proportional hazards model)

I efficient estimation method (maximum partial likelihood).

Cox model :

hi (t) = λ0(t)︸ ︷︷ ︸
baseline hazard function

exp (βXi )︸ ︷︷ ︸
risk score

exp(βj) is the hazard ratio corresponding to feature xj

if xj is binary, it is a summary of the difference between two survival
curves, representing the reduction in the risk of event. For a
continuous feature xj , the same interpretation applies to a unit
difference.
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Classification
Logistic Regression

Variation of ordinary regression introduced in [Agresti, 1990]

Method uses when :
I output is a dichotomous variable
I input variables are continuous, categorical, or both

The form of the model is

Pr(y|X ) = p =
eβ0+βX

1 + eβ0+βX

log

(
p

1− p

)
︸ ︷︷ ︸

logit(p)

= β0+β1X1+· · ·+βkXk
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
ob
ab
ili
ty

X

Pr(y|X) =
e
β0+βX

1 + e
β0+βX

Haibe-Kains B (ULB) IDDI presentation part 2 March 23, 2007 59 / 129



Classification
Naive Bayes

Simple probabilistic classifier with y a categorical variable having ≥ 2
levels

Strong assumption of conditional independence of features
I ”naive” underlying probabilistic model
I however, good accuracy in real-world situations

Advantages :
I simple model
I inclusion of prior knowledge (class prior)
I computationally efficient.

Disadvantage :
I over-simplified assumptions.
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Classification
Naive Bayes : Problem Formulation

Using Bayes’ theorem

Pr(y|x1, x2, . . . , xJ) =
Pr(y) Pr(x1, x2, . . . , xJ |y)

Pr(x1, x2, . . . , xJ)

The numerator is the joint probability

Pr(y, x1, x2, . . . , xJ) = Pr(y) Pr(x1, x2, . . . , xJ |y)

= Pr(y) Pr(x1|y) Pr(x2, . . . , xJ |y, x1)

. . .
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Classification
Naive Bayes : Problem Formulation (2)

Under conditional independence assumption

Pr(y, x1, x2, . . . , xJ) = Pr(y)
J∏

j=1

Pr(xj |y)

where class prior Pr(y) and independent probability distributions
Pr(xj |y)

Finally, combine this model with a decision rule as maximum a
posteriori (MAP)

classify(x1, x2, . . . , xJ) = argmaxj Pr(y = y)
n∏

j=1

Pr(xj |y = y)
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Classification
Naive Bayes : Classifier

We have to estimate two terms
I Pr(y = y) : frequency of each class in training set
I Pr(xj |y = y), j = 1, 2, . . . , J :

F if xi is discrete, just compute the observed frequency of xi for a given
class y

F else you can use non-parametric density estimation such as kernel

Even if the assumption of independence is violates in microarray data,
the naive Bayes classifier still exhibits very accuracy in real problems
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Classification
K-Nearest Neighbors

gene1 gene2

gene3

k = 1

k = 2

k = 3

k = 4

Lazy model.

Majority of voting over
the k nearest neighbors.

k is like a smoothing
parameter.

Distance to the query
point can be used as
weight in voting.
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Classification
Support Vector Machines

SVMs [Vapnik, 1998] are composed of 2 parts:

1 linear classifier called the maximum margin hyperplane

2 (non)linear transformation of the input space called the kernel
function

gene1

gene2

gene1

gene2

marge

m
ax

im
um

 m
ar

gi
n 

hy
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ne support vector

different separator
hyperplanes
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Classification
Support Vector Machines cont’d

SVMs [Vapnik, 1998] are composed of 2 parts:

1 linear classifier called the maximum margin hyperplane

2 (non)linear transformation of the input space called the kernel
function

gene1

gene2

kernel

input space feature space

maxi
mum

 marg
in

hyp
erp

lan
e{ {
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Classification
Classification Trees

class 0
class 1

X12

X23 X5

X7

X7

Method introduced in
[Breiman et al., 1984]

Hierarchical tree-structured plan
of a set of attributes to test in
order to predict the output.

Select recursively the attributes
that maximize a criterion as

I information gain
I predictive accuracy
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Classification
Classification Trees cont’d

Classification trees are flexible and easily interpretable

Full classification trees are prone to overfitting and variability
I may require to prune the tree
I may require to aggregate several trees (as boosting or bagging see

next slides about the aggregation of classifiers).
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Aggregation of Classifiers

Bagging (bootstrap aggregating) [Breiman, 1996] :
I create k bootstrap samples S1,S2, . . . ,Sk

I train distinct classifiers on each Si

I classify new instances by majority voting.

Boosting [Freund and Schapire, 1996] :
I generate a sequence of classifiers
I each classifier put more weight on the instances of the training set that

were not successfully classified previously
I combine the different classifiers to derive one aggregated classifier

Random forests for classification trees use the bagging for the samples
and for the variables simultaneously.
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Feature Selection

Microarray data deal with a very large number n of variables
(thousands of probes) and comparably few samples (dozens or
hundreds of patients).

Microarray data deal with highly correlated variables.

In these cases, it is common practice to adopt feature selection
algorithms to improve the generalization accuracy
[Guyon and Elisseeff, 2003, Kohavi and John, 1997].

There are many potential benefits of feature selection :
I facilitating data visualization and data understanding
I reducing the measurement and storage requirements
I reducing training and utilization times
I defying the curse of dimensionality to improve prediction accuracy.
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Approaches to Feature Selection

Filter methods : preprocessing methods attempting to assess the
relevance of features from the data, ignoring the effects of the
selected feature subset on the accuracy of the learning algorithm.

I Example : ranking variables through variance or compression
techniques like PCA

Wrapper methods : assess subsets of variables according to their
usefulness to a given predictor. The method conducts a search for a
good subset using the learning algorithm itself as part of the
evaluation function.

I Example : forward, backward and stepwise feature selections

Embedded methods : perform variable selection as part of the learning
procedure and are usually specific to given learning machines.

I Example : classification trees, regularization techniques like LASSO
[Tibshirani, 1997]

Haibe-Kains B (ULB) IDDI presentation part 2 March 23, 2007 70 / 129



Feature Selection Issues

Two main issues make the problem of feature selection a highly
challenging task :

Search in a high dimensional space : this is known to be a NP-hard
problem.

Estimation on the basis of a small set of samples : this is made
difficult by the high ratio between the dimensionality of the problem
and the number of measured samples.

Open issue : searching for the best subset in very large spaces is prone to
overfitting, even if estimation relies on cross-validations.
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Feature Selection in Microarray Analysis
Small Overlap of Gene Signatures

Important concern in microarray analysis is the small overlap observed
between gene signatures dealing with the same biological question (eg
breast cancer prognostication)

Potential sources of variation :
I sampling error (different patient cohorts)
I different microarray technologies
I different set of genes
I different bioinformatics methods

I or just noise discovery ? [Ioannidis, 2005]
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Feature Selection in Microarray Analysis
Small Overlap of Gene Signatures cont’d

Sampling error :
I several recent studies investigate the variability of simple feature

selection methods (filters)
[Ein-Dor et al., 2005, Davis et al., 2006, Baker and Kramer, 2006]

I such analyses attempt to estimate the variability due to sampling error
but consider only one microarray technology

I because of the high feature to sample ratio and the co-expression of
many genes, it is expected to see different sets of genes providing
similar accuracy

Microarray technologies :
I the microarray quality control (MAQC) project by the US Food and

Drug Administration highlights a high concordance between
technologies

Haibe-Kains B (ULB) IDDI presentation part 2 March 23, 2007 73 / 129



Feature Selection in Microarray Analysis
Small Overlap of Gene Signatures cont’d

A meta-analysis about the survival prediction of more than 2000
breast cancer patients will be published soon by Sotiriou et al.
showing that :

I Despite sampling error and microarray technologies, we can observe
same relation with survival for some sets of genes

I the proliferation set of genes seems to be the common denominator of
many existing gene signatures

I this set of genes recapitulating their predictive power
[Sotiriou et al., 2006]
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Accuracy Estimation

Accuracy estimators :
I specificity, sensitivity, PPV, NPV, (time-dependent) ROC curves, . . .
I statistical test to compare the different groups of patients (eg hazard

ratio in survival analysis)

Classification accuracy can be estimated by resampling, eg bootstrap
[Efron and Tibshirani, 1997] or cross-validation
[Ambroise and McLachlan, 2002]

Take into account feature selection and other training decisions in the
accuracy estimation process (number of neighbors in KNN, kernel in
SVMs, ...)

Otherwise, accuracy estimates may be severely overly optimistic

ß overfitting
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Accuracy Estimation
Overfitting

Low model complexity (large
bias)

x

y
true model
underfitted model

High model complexity (large
variance)

x

y
true model
overfitted model

A good model should achieve a trade-off between bias and variance to
ensure low generalization error

In classification, it is better to have small variance (even with large
bias) [Friedman, 1996]
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Accuracy Estimation
Overfitting cont’d

complexity

er
ro

r

empirical error
generalization error

trade-off Empirical error refers to
estimated error on training set

Generalization error refers to
estimated error on test set

As we can see, it is possible to have an empirical error ≈ 0 if the
complexity of the model is high

However, the generalization error increases when the model is too
complex
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Accuracy Estimation in MicroArray Analysis
Breast Cancer Prognostication

2 research groups have published key publications in the field of breast
cancer prognostication :

Agendia :
I first article [van’t Veer et al., 2002]
I external validation [van de Vijver et al., 2002]
I external and independent validation [Buyse et al., 2006]

Veridex :
I first article [Wang et al., 2005]
I external validation [Foekens et al., 2006]
I external and independent validation [Desmedt et al., 2007]
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Accuracy Estimation in MicroArray Analysis
Breast Cancer Prognostication cont’d

Univariate hazard ratios for Agendia and Veridex related publications :

vantveer2002 n=78
vandevijver2002 n=295
buyse2006 n=307

0 2 4 6 810 14 18 22

hazard ratio

Agendia

wang2005 n=286
foekens2006 n=180
desmedt2007 n=198

0 2 4 6 8 101214161820

hazard ratio

Veridex
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Accuracy Estimation in MicroArray Analysis
Breast Cancer Prognostication cont’d

Remarks about Agendia related publications :

In [van’t Veer et al., 2002], authors performed a gene ranking based
on the correlation with a binary output (binarization of survival data)
and applied a cross-validation afterwards

I problem : all the patients are used for the feature selection ß biased
accuracy estimates [Varma and Simon, 2006]

I solution : include the feature selection in the global loop of
cross-validation to have a better estimate of the generalization error

In [van de Vijver et al., 2002], authors analyzed a new dataset
containing a subset of patients from the previous publication

I problem : the external validation series is not independent
I solution : don’t include patients used for model fitting, even if the aim

is to have a more representative patient cohort

In [Buyse et al., 2006] . . . no problem ©
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Accuracy Estimation in MicroArray Analysis
Breast Cancer Prognostication cont’d

Remarks about Veridex related publications :

in [Wang et al., 2005], they split the data in training/test sets
without specifying the exact composition

I problem : impossible to reproduce the results
I problem : is the test set a specially good case ?
I solution : use thousands of random splits instead (in controlling the

composition of both sets, see [Michiels et al., 2005])
I solution : finally, report the distribution of the accuracy estimates (in

the test sets)

In [Foekens et al., 2006] . . . no problem

In [Desmedt et al., 2007] . . . no problem ©
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Conclusion

Pay attention to
I use simple models in taking into account the model assumptions

[Dudoit et al., 2002]
I the impact of feature selection (maybe most important part of the

analysis)
I design the classifier to be able to validate its accuracy on different

datasets as in [Loi et al., 2005] (article to be published)
I be careful in doing the accuracy estimation

Review and guidelines for microarray analysis
[Simon et al., 2003, Dupuy and Simon, 2007]
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Part V

Graphs and Networks
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Knowledge Representation

Use of graphs to represent knowledge such as gene annotations

Gene ontology (GO) [Ashburner et al., 2000] is frequently used in
microarray analysis to interpret gene lists

I it provides a structured vocabulary for the annotation of genes and
proteins.

I GO terms are structured in a hierarchy (directed acyclic graph),
ranging from more general to more specific.

I GO is structured in three ontologies, corresponding to biochemical
function, cellular processes, and cellular components.

I data can be annotated at varying levels, depending on the information
available.

I list of available GO tools :
http://www.geneontology.org/GO.tools.shtml
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Knowledge Representation
cont’d

GO2

GO9

GO8

GO5

GO7

GO6

GO4

GO3

GO1
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Biological Networks Inference
cont’d

Use of graphs to represent interaction between genes
I simplified biological dogma : gene ß RNA ß protein
I a gene codes for a protein that blocks or activates another gene

(interaction)

A biological network is graph where
I each node is a gene
I each link represents an interaction between 2 genes
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Biological Networks Inference
cont’d

G1

G2

G1

G6

G4

G7

G3

G8

G5
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Biological Networks Inference
cont’d

We can infer such networks from microarray data in modeling the
interactions using

I information theory [Butte et al., 2000]
I correlation [de la fuente et al., 2004]
I . . .

MLG applied successfully such methods on yeast genome
[Kontos and Bontempi, 2006, Meyer et al., 2007]
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Part VI

Bioinformatics Software
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Bioinformatics Softwares

R is a widely used open source language and environment for
statistical computing and graphics

I Software and documentation are available from
http://www.r-project.org

Bioconductor is an open source and open development software
project for the analysis and comprehension of genomic data

I Software and documentation are available from
http://www.bioconductor.org
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Bioinformatics Softwares
cont’d

Java Treeview is an open source software for clustering visualization
I Software and documentation are available from

http://jtreeview.sourceforge.net

Cluster3 is a open source clustering software with GUI
I Software and documentation are available from http://bonsai.ims.

u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm#ctv
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Bioinformatics Softwares
cont’d

BRB Array Tools is a software suite for microarray analysis working
as an Excel macro

I Software and documentation are available from
http://linus.nci.nih.gov/BRB-ArrayTools.html

TIGR is a java-based software suite for microarray analysis
I Software and documentation are available from http://www.tm4.org
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Links

Master in Bioinformatics at ULB and other belgian universities :
http://www.bioinfomaster.ulb.ac.be/

Personal homepage : http://www.ulb.ac.be/di/map/bhaibeka/

This presentation : http://www.ulb.ac.be/di/map/bhaibeka/
papers/haibekains2007iddistats.pdf

Haibe-Kains B (ULB) IDDI presentation part 2 March 23, 2007 93 / 129

http://www.bioinfomaster.ulb.ac.be/
http://www.ulb.ac.be/di/map/bhaibeka/
http://www.ulb.ac.be/di/map/bhaibeka/papers/haibekains2007iddistats.pdf
http://www.ulb.ac.be/di/map/bhaibeka/papers/haibekains2007iddistats.pdf


Thank you for your attention.
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Part VII

Appendix
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Self-Organizing Maps

Method introduced in [Kohonen, 1997].

Use of self-organizing neural networks (map) to reduce dimension.

Most SOMs uses a map of 2 dimensions but user can increase the
dimensions (in losing nice visualization)

Advantages :
I no number of clusters to specify
I display similarities.

Disadvantages :
I need to define the size of the feature map
I need to define the neighborhood and update functions
I not deterministic
I computationally intensive.
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Self-Organizing Maps
Procedure

Initialize a map, ie a matrix of nodes.

Set the update parameter t to 1 and decrease it to 0 by small amounts

Randomly select a sample

Get the closest feature in the map
I if there are several equally distant features, pick one randomly

Update the feature and its neighborhood
I Methods to define the neighborhood and update features can be tuned

by the user

Continue till t equals 0 (no more update)
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Self-Organizing Map
Procedure cont’d

clustera

clusterb
clusterc

initial map

gene
expressions

{ {
SOM
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Criterion for Number of Clusters
Cophenetic Correlation Coefficient

Cophenetic correlation coefficient can be used to measure how well
the hierarchical structure from the dendrogram represents the actual
distances.

This measure is defined as the correlation between the
n(n − 1)

2
pairwise dissimilarities between observations and their cophenetic
dissimilarities from the dendrogram, i.e., the between cluster
dissimilarities at which two observations are first joined together in
the same cluster.
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Criterion for Number of Clusters
PAM : Silhouette

Each cluster is represented by one silhouette
Consider any object Xi of the dataset and let A be the cluster to
which it is assigned

mA(Xi ) = mean{d(Xi ,XA)}
where XA are all objects assigned to A
Consider any cluster C different from A

mC (Xi ) = mean{d(Xi ,XC )}
where XC are all objects assigned to C
let B be the cluster such that

mB(Xi ) = min{mC (Xi )}
silhouette statistic is

s(Xi ) =
mB(Xi )−mA(Xi )

max{mB(Xi ),mA(Xi )}
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Criterion for Number of Clusters
PAM : Silhouette cont’d

s(Xi ) lies betwen −1 and +1
I s(Xi ) = 1 : within distance mA(Xi ) is much smaller than the smallest

between distance. In other words, object Xi has been assigned to an
appropriate cluster. The second best cluster B is not nearly as close as
the actual cluster A.

I s(Xi ) = 0 : mA(Xi ) and mB(Xi ) are approximately equal. Hence, it is
not clear whether Xi should be assigned to A or B. It can be
considered as an intermediate case.

I s(Xi ) = −1 : object Xi is badly classified. When s is close to −1, the
object is poorly classified. Its distance with other objects in its cluster
is much greater than its distance with objects in the nearest cluster.

A silhouette of a cluster is a barplot of ranked s(Xi )

The mean of all silhouette statistics may be used to select the ”good”
number of clusters
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Criterion for Number of Clusters
PAM : Silhouette Plot

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

silhouette plot

Average silhouette width :  0.32

n = 254 4    clusters    Cj

j :  nj | avei∈∈Cj    si

1 :   114  |  0.31

2 :   58  |  0.40

3 :   16  |  0.43

4 :   66  |  0.23
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Criterion for Number of Clusters
Bayesian information criterion

Bayesian information criterion (BIC) [Schwarz, 1978]
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Bayesian information criterion
Akaike”s Information Criterion

Akaike’s information criterion (AIC) [Akaike, 1974]
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Introduction
Statistical Hypothesis Testing

The hypothesis must be stated in mathematical/statistical terms that
make it possible to calculate the probability of possible samples
assuming the hypothesis is correct.

I example : the mean response to treatment being tested is equal to the
mean response to the placebo in the control group.

A test statistic must be chosen that will summarize the information in
the sample that is relevant to the hypothesis (also called sufficient
statistic).

I example : the numerical difference between the two sample means,
mean1 −mean2
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Introduction
Statistical Hypothesis Testing cont’d

The distribution of the test statistic is used to calculate the
probability sets of possible values.

I assumptions about the distribution of the test statistic :
parametric statistic

I no assumptions about the distribution of the test statistic :
nonparametric statistic

Among all the sets of possible values, we must choose one that we
think represents the most extreme evidence against the hypothesis
(critical region of the test statistic).

Truth

Decision

H0 H1

H0 correct acceptance type II error (β)

H1 type I error (α) correct rejection
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Introduction
Statistical Hypothesis Testing cont’d

If the test statistic is inside the critical region, then our conclusion is
one of the following :

I the hypothesis is incorrect, therefore reject the null hypothesis
I an event of probability less than or equal to α has occurred.

If the test statistic is outside the critical region, the only conclusion is
that there is not enough evidence to reject the hypothesis.

This is not the same as evidence in favor of the hypothesis.
I lack of evidence against a hypothesis is not evidence for it.

On this basis, statistical research progresses by eliminating error, not
by finding the truth.
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Linear Regression

We assume that the relation between the outcome variable y and the
features X is linear

The form of the model is

y = β0 + βX + ε

where ε ∼ N(0, σ2)

To fit the unknown parameters of the model, ie β0, β and σ, we can
use either the least squares or the maximum likelihood methods
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Regression
Lazy Learning

Traditional approach to supervised learning is global modeling which
describes the relationship between the input and the output with an
analytical function over the whole input domain

x

y

q
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Regression
Lazy Learning cont’d

Lazy learning [Bontempi, 1999] uses a local modeling approach where
a complex problem is divided into simpler problems
Solutions of these simpler problems can be combined to yield a
solution to the original problem
The algorithm is lazy because all computations are made at query only
It fits local linear models using cross-validation, via the PRESS
statistic [Allen, 1974], to select the best model

x

y

q
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Information Gain

Suppose x can have one of m values v1, v2, . . . , vm such that

Pr(x = v1) = p1,Pr(x = v2) = p2, . . . ,Pr(x = vm) = pm

Entropy : H(x) = −
m∑

j=1

pj log pj

I ”High Entropy” means x is from a uniform (flat) distribution
I ”Low Entropy” means x is from varied (peaks and valleys) distribution

Conditional entropy : H(y|x) =
m∑

j=1

Pr(x = vj)H(y|x = vj)

Information gain : IG (y|x) = H(y)− H(y|x)
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