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Part I

Class Discovery
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Clustering
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Suite

clustera

clusterb

clusterc

gene1 gene2

gene3

The samples can be divided into 3
clusters.

Haibe-Kains B (ULB) Microarray Data Generation and Analysis February 28, 2006 8 / 37



Hierarchical Clustering

Widely used clustering method [Hartigan, 1975, Eisen et al., 1998].

Organizing objects in a hierarchical binary tree (dendrogram) based
on their degree of similarity.

I distance : 1 - uncentered Pearson correlation, Kendall’s tau, Euclidean
I linkage : complete, single, average, centroid

Advantages :
I no number of clusters to specify (full hierarchical binary tree)
I deterministic
I computationally efficient.

Disadvantages :
I dendrogram may be misleading
I need to define a metric of similarity and a linkage
I need complete data.
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Hierarchical Clustering
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K-Means

Method introduced in [MacQueen, 1967].

Partitioning objects in k disjoint subsets.

Minimization of the distance between the samples and the cluster
centroids.

Advantage :
I computationally efficient.

Disadvantages :
I need to specify the number of clusters
I need to define a distance
I not deterministic
I need complete data.
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K-Means
Example : k = 3
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Self-Organizing Maps

Method introduced in [Kohonen, 1997].

Use of self-organizing neural networks to reduce dimension.

Advantages :
I no number of clusters to specify
I display similarities.

Disadvantages :
I need to define the size of the feature map
I need to define the neighborhood and update functions
I not deterministic
I need complete data
I computationally intensive.
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Dimension Reduction

Microarray experiments generate a huge amount of data (thousands
of probes).

Microarray data are noisy.

Common practice is to reduce dimension of the data because
I most of the probes are non-informative
I in removing these probes, we remove noise.

Widely used methods :
I filtering based on variance
I multidimensional scaling.
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Multidimensional Scaling

Provide a low (e.g. 2 or 3) dimensional representation of the
distances which conveys information on the relationships between the
objects [Kruskal and Wish, 1978].

MDS with Euclidean distance = principal component analysis (PCA)
I rotation of the original variable maximizing the variance
I new axes = principal components
I principal components are orthogonal.

Advantages :
I deterministic
I computationally efficient.

Disadvantages :
I need to select the number of principal components
I need complete data
I new dimensions are complex to interpret.
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Multidimensional Scaling
Example : Reduction from 3 to 2 Dimensions Using PCA
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Clustering Stability

Clustering algorithms always find structure in the data.

Need of methods to assess the reliability of the discovered classes.

Procedure

1 Perturb the original dataset

F by resampling the original dataset using jackknife [Ben-Hur et al., 2002]
F by randomized projections in lower dimensional subspaces preserving

approximately the distances between samples [Valentini, 2006].

2 Generate several clusterings.

3 Compute statistics assessing the reliability of clusters

F single individual clusters inside a clustering
F overall clustering (estimate of the ”optimal” number of clusters)
F confidence by which object may be assigned to each cluster.
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Conclusion

Pay attention to
I select a meaningful distance depending of the problem under study
I the impact of feature selection before clustering (also called

semi-supervised clustering)
I look at the stability of the clustering w.r.t. the dimension reduction

and the dataset.

Keep in mind that all these methods may give different results :
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Part II

Class Prediction
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Classifiers

Example of Classifiers
I Linear : Logistic Regression, Naive Bayes, Linear and Quadratic

Disciminant Analysis, ...
I Non-linear : K-Nearest Neighbors, Support Vector Machines,

Classification Trees, Artificial Neural Networks, ...

Some classifiers can not deal output multiple classes directly
I all pairwise classifications with a voting scheme
I one against all classifications
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Logistic Regression

Variation of ordinary regression used when :
I output is a dichotomous variable
I input variables are continuous, categorical, or both

The form of the model is
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K-Nearest Neighbors
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K-Nearest Neighbors
Suite

Advantages :
I can also be used for regression
I computationally efficient.

Disadvantages :
I need to store all data points
I need to specify the number of neighbors
I need complete data.
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Support Vector Machines

SVMs [Vapnik, 1998] are composed of 2 parts:

1 linear classifier called the maximum margin hyperplane

2 (non)linear transformation of the input space called the kernel
function
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Support Vector Machines
Suite
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Support Vector Machines
Suite (2)

Advantages :
I can perform linear and non-linear classification depending of the kernel

function
I computationally efficient.

Disadvantages :
I need to select the kernel function
I need complete data.
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Feature Selection

Microarray data deal with a very large number n of variables
(thousands of probes) and comparably few samples (dozens or
hundreds of patients).

Microarray data deal with highly correlated variables.

In these cases, it is common practice to adopt feature selection
algorithms to improve the generalization accuracy
[Guyon and Elisseeff, 2003, Kohavi and John, 1997].

There are many potential benefits of feature selection :
I facilitating data visualization and data understanding
I reducing the measurement and storage requirements
I reducing training and utilization times
I defying the curse of dimensionality to improve prediction performance.
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Performance Assessment

Performance estimators :
I specificity, sensitivity, PPV, NPV, ...
I statistical test to compare the different groups of patients (e.g. hazard

ratio in survival analysis)

Classification performance can be estimated by resampling, e.g.
bootstrap or cross-validation.

Take into account feature selection and other training decisions in the
performance estimation process (number of neighbors in KNN, kernel
in SVMs, ...)

Otherwise, performance estimates may be severely biased upward, i.e.
overly optimistic.
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Conclusion

Pay attention to
I use simple models in taking into account the model assumptions
I the impact of feature selection (maybe most important part of the

analysis)
I be careful in doing the performance assessment
I think about the classifier validation on different datasets as in

[loi, 2005].
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Part III

Human Cancer Microarray Datasets
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Differences between Datasets

Different types of microarray technology
I cDNA (dual-channel)
I oligonucleotide

F short oligos (e.g. Affymetrix, single-channel)
F long oligos (e.g. Agilent, dual-channel, CodeLink, single channel)

Be careful when comparing different datasets
I mapping of the probes through annotations (e.g. gene ids, unigene

cluster)
I do meta-analysis to consider several datasets in one study as in

[Shen et al., 2004, Rhodes et al., 2004, Sotiriou et al., 2006].
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Databases

Databases of microarray datasets
I gene expression omnibus (GEO) from NCBI :

http://www.ncbi.nlm.nih.gov/geo/
I array express (AE) from EBI : http://www.ebi.ac.uk/arrayexpress/
I oncomine : http://www.oncomine.org

Databases for mapping
I Cleanex from SIB : http://www.cleanex.isb-sib.ch
I Adapt from Paterson Institute for Cancer Research :

http://bioinformatics.picr.man.ac.uk/adapt
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Thank you for your attention.
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