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Chapter 1

Introduction

Thanks to the generalization of the screening mammogram, more patients are diagnosed with
early breast cancer (small tumors and absence of lymph node invasion). Even if these patients
achieve a long term survival, 20 to 30 percent of them will relapse and will die from their disease.
The majority of these deaths is due to distant metastases. Loco-regional treatment (surgery and
radiotherapy) is always carried out and a systemic adjuvant treatment (e.g. chemotherapy) is
proposed to all high risk patients to prevent recurrence.

This risk is defined from several histological criteria (established during consensus conferences
in Europe and USA [2, 16, 39, 1]) which constitutes the cancer “personality” [10]:

e Invasive/non-invasive breast cancer:

— Non-invasive (or "in situ") cancers confine themselves to the ducts or lobules and do
not spread to the surrounding tissues in the breast or other parts of the body. They
can, however, develop into or increase your risk for invasive cancer.

— Invasive (or infiltrating) cancers have started to break through normal breast tissue
barriers and invade surrounding areas. Much more serious than non-invasive cancers,
invasive cancers can spread to other parts of the body through the bloodstream and
lymphatic system.

e Number of involved lymph nodes: some breast cancers spread to the lymph nodes under the
arm. When the lymph nodes are involved in the cancer, they are called "positive". When
lymph nodes are free of cancer, they are called "negative". In large medical studies, there
appears to be a correlation between the number of involved lymph nodes and how aggressive
a cancer’s personality will be. Knowing how many lymph nodes are affected by cancer will
help to select the appropriate treatment to fight the cancer.

e Tumor size.
e Tumor rate/grade:

— Rate of cancer cell growth: the proportion of cancer cells growing and making new cells
varies from tumor to tumor and may be helpful in predicting how aggressive a cancer is.
If more than 6-10% of the cells are making new cells, the rate of growth is considered
unfavorably high.

— Grade of cancer cell growth: patterns of cell growth are rated on a scale from 1 to 3
(also referred to as low, medium, and high instead of 1, 2 or 3). Calm, well-organized
growth with few cells reproducing is considered grade 1. Disorganized, irregular growth
patterns in which many cells are in the process of making new cells is called grade 3.
The lower the grade, the more favorable the expected outcome. At the same time, the
higher the grade, the more vulnerable the cancer is to treatments such as chemotherapy
and radiation.
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— Dead cells within the tumor: it is tempting to think that the only good cancer cell is
a dead cancer cell. However, necrosis (or dead tumor cells) is one of several signs of
excessive tumor growth.

e Hormone receptor status: estrogen and progesterone stimulate the growth of normal breast
cells as well as some breast cancer cells. If a tumor is estrogen-receptor positive (ER-positive),
it is more likely to grow in a high-estrogen environment. ER-negative tumors are usually
not affected by the levels of estrogen and progesterone in your body. ER-positive cancers are
more likely to respond to anti-estrogen therapies (tamoxifen, a drug that works by blocking
the estrogen receptors on the breast tissue cells and slowing their estrogen-fueled growth).

e Oncogene over-expression: oncogene over-expression happens when an oncogene (such as
HER2/neu, EGFR, and p53) over-expresses itself by making excess normal or abnormal
proteins and receptors. Cancers that result from over-expressed oncogenes tend to be more
nasty or belligerent and are more likely to recur than other cancers. They also may respond
to different types of treatment than other breast cancers.

e Margins of resection: the term "margins" or "margins of resection" is used to refer to the
distance between the tumor and the edge of the tissue taken by surgery. The margins are
measured on all six sides: front and back, top and bottom, left and right.

According to these histological criteria, approximatively 80 percent of young patients without
lymph node invasion are candidates for adjuvant treatment. It is obvious that these patients
are over-treated because 70 to 80 percent of them will not develop distant metastases without the
adjuvant treatment [17]. These results highlight the necessity to improve the risk evaluation based
on traditional factors.

During last ten years, several prognosis factors (e.g. HER2 and p53 mutations) have been
assessed and have been correlated to the prognosis but these genes, taken individually, have only
a limited predictive power. This is probably due to the molecular complexity and heterogeneity
of the tumors. The tumor phenotypes are not resumed by an oncogene up-regulation or an anti-
oncogene mutation but can be the result of a series of genetic events. The tumor phenotype is not
determined by isolated aberrations but by a combination of anomalies in a genetic context.

Currently, thanks to technology advances in genome sequencing, new tools are available to
analyze biological experiments at the molecular level. The microarray technology allows to analyze
the genetic identity of a specific tissue for the whole genome. In one microarray experiment,
several thousands of gene expressions can be measured from a tumor tissue. This technology can
be used to study the genetic context of the breast tumor to improve the risk evaluation and our
understanding of this biological phenomenon.

1.1 State of the Art

According to a common view, progression from a primary to a metastatic tumor is accompanied
by the sequential acquisition of phenotype changes, thus allowing breast cancer cells (BCC) to
invade, disseminate, and colonize distant sites. Nevertheless, most investigations have revealed
that progression is not accompanied by major changes in marker expression or grade [29).

These observations suggest that the metastatic signature might already be present in the
primary breast tumor, challenging the traditional model of metastasis, which specifies that most
primary tumor cells have low metastatic potential, but rare cells within large primary tumors
acquire metastatic capacity through somatic mutations.

From that perspective, Van’t Veer et al., applying a supervised learning method [15], sought to
identify whether there exists a gene expression signature strongly predictive of a short interval to
distant metastases in primary breast cancer tumors [26]. For that purpose the authors investigated
a narrow subset of breast cancer patients: node negative breast cancer patients, all under 55 years
of age treated only with local regional therapies. They found 231 genes significantly associated
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with disease outcome as defined by the presence of distant metastasis at the 5-year mark. They
could then subsequently collapse this list into a core set of 70 prognostic markers. Interestingly,
the investigators tested the ability of this array-derived prognostic “expression profile” to correctly
identify patients who would need adjuvant chemotherapy and compared it to accepted guidelines
for treatment of node negative breast cancer (NIH [16] and St. Gallen [2] consensus guidelines).
They found that although the expression profile could correctly identify patients who would need
adjuvant chemotherapy, it could effectively reduce the fraction of women not needing adjuvant
chemotherapy by about 30%. The same Dutch group applied this signature to a larger test set of
node negative and node positive breast cancer patients (295) from the same institution, who had
been followed for 7 years. This study confirmed that the 70-gene prognosis signature could clearly
distinguish patients with excellent 10 year survival from those with a high mortality rate [36].

These results suggest that molecular profiling might be able to substantially refine cancer
prognosis, perhaps well beyond what is possible with other clinical indicators. All these molecular
signatures might be generalizable to populations other than those in which they were initially
developed, and probably across multiple microarray platforms and technologies. These hypotheses,
however, need to be validated prior to implementation of these molecular signatures in the clinic.
Finally, the molecular signatures of breast cancer cells captured by microarray technology suggest
that the potential of breast cancer cells to metastasize may be genetically already determined
earlier in the disease and be tissue-specific.

Several reports described the use of microarrays to assess a molecular classification of human
breast cancers and investigated the possibility to correlate gene expression profiles with clinical
outcome (see table 1.1). A brief introduction to each study is given in [11].

The supervised learning method used in microarray classification is illustrated in the figure 1.1:
the learning method constructs a classifier in the basis of the microarray data (gene expressions)
and the histological criterion (e.g. binary class representing the appearance of distant metastases
in the first 5 years of follow-up). This classifier can be used to predict the class of new data (e.g.
a tumor tissue from a new patient).

Gene Expression
Data N Biological

» class
Phenomenon

Supervised

Learning

Classification Model

A

Diagnostic Tool ——» predicted class

Figure 1.1: Supervised learning method used in microarray classification.
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1.2 TransBIG Project

The validation of all these promising results in larger, independent and, if possible, prospective
series is urgently needed. With respect to the potential prognostic value of a breast cancer gene
signature, the EORTC-BCG group is working to launch such a prospective validation trial with
the support of the Breast International Group (BIG) and a grant from the European Union.
This study, called TransBIG project, is designed to compare (in 5000 women with node negative
breast cancer) treatment selection on the basis of classical prognostic/predictive factors (St-Gallen
2003 Guidelines, 2500 patients) or by the expression signature of the 70 genes identified by the
Amsterdam group (2500 patients). While it is anticipated that the clinical outcome will be similar
for the two groups, it is thought that the need for adjuvant chemotherapy will be reduced by 10
to 20 % in the group managed according to their tumor gene expression profile. Since ongoing
research might show that gene expression arrays are of value in selecting optimal treatment at the
time of relapse, our plan is to try to offer this technology to all women participating in the trial,
but with a delayed potential use in the “control” group.

Another aim of this study is the development of a new signature based on the Affymetrix
microarray platform. This part of the TransBIG project is currently supervised by Christos
Sotiriou’s laboratory at Jules Bordet Institute in collaboration with the SIB for the bioinformatics
analysis [28]. My training concerns the development of this new signature, involving the quality
assessment and supervised classification of breast tumors.

1.3 Contributions

Computer resources Application server installation to carry out large bioinformatics analyzes.

Quality assessment Implementation of R functions to assess quality of Affymetrix chips from CEL
files following Affymetrix [5] and Bioconductor [14] guidelines.

Classification Implementation of R functions to perform a complete classification procedure (struc-
tural identification, feature selection, classification, validation).

Affymetrix data management Implementation of R functions to facilitate the management and
the analysis of Affymetrix data (read data, preprocessing data)

Gene Ontology Use of GO tools (e.g. Onto-Express [47] or gominer [60]) to interpret biological
results. Collaborations in [31, 22].

1.4 Glossary

Expressed Sequence Tag A short strand of DNA that is a part of a cDNA molecule and can act
as identifier of a gene.

Gene Expression Transcription of the information contained within the DNA into messenger RNA
(mRNA) molecules that are then translated into proteins.

Oligonucleotide Short fragment of a single-stranded DNA.

Polymerase Chain Reaction (PCR) Exponential amplification of almost any region of a selected
DNA molecule.

Probe Easily detectable molecule which has the property to be located specifically either on
another molecule, or in a given cellular compartment. Various molecules can be used
as probe with condition that a marker (enzyme, compound radioactive or fluorescent)
can be associated with the probe which allows its detection. Generally the probe is a
nucleic acid fragment (ARN or ADN).
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Meta-analysis Analysis involving several sources of microarray data (e.g. Affymetrix and Agilent
data).

1.5 Abbreviations and Acronyms

BCC Breast Cancer Cell.

BIG Breast International Group.

CEL CELI intensities.

DCIS Ductal Carcinoma In Situ.

EORTC-BCG Breast Cancer Group of the European Organization for Research and Treatment
in Cancer.

ER Estrogen Receptor.

EST Expressed Sequence Tag.

FN False Negatives.

FP False Positives.

GO Gene Ontology.

IGR Institute Gustave Roussy.

1JB Institute Jules Bordet.

JRH John Radcliffe Hospital.

Karolinskal9 19 biological samples hybridized at the IJB and coming from Karolinska.
Karolinska68 68 CEL files coming from Karolinska and hybridized at the Karolinska Institute.
KNN K-Nearest Neighbours.

LN Lymph Node.

L-0-0 Leave-One-Out.

MAS Microarray Affymetrix Suite.

MGED Microarray Gene Expression Data Society.

MIAME  Minimum Information About a Microarray Experiment.

MM MisMatch.
PM Perfect Match.
RMA Robust Multi-array Average expression measure.

RT-PCR Reverse Transcriptase Polymerase Chain Reaction.

SIB Swiss Institute of Bioinformatics.
SVM Support Vector Machines.
TN True Negatives.

TP True Positives.



Chapter 2

Materials and Methods

2.1 Populations
Three different populations of patients are involved in the TransBig project:

e John Radcliffe Hospital (JRH), Oxford, UK (Dr Adrian Harris)
e Gustave Roussy Institute, Villejuif, France (Dr Suzette Delaloge)

e Karolinska Institute and Hospital (Karolinska), Stockholm, Sweden (Dr Jonas Bergh)

All the patients had tumors without lymph nodes invasion, were under 60 years old and have
been not treated by adjuvant treatment (e.g. chemotherapy). The patients have to be followed up
during five years (relapse during the first five years or relapse free during at least five years). The
prognosis concerns the distant metastases. Some patients have had to be discarded because of the
type of the relapse (loco-regional relapse instead of distant relapse), the insufficient follow-up and
the lack of RNA amount.

The Microarray Unity of Institute Jules Bordet (IJB) have hybridized all the Affymetrix chips
for the JRH and the IGR populations. At the beginning of 2004, BioVallee [58] have hybridized
the Affymetrix chips for the Karolinska population with the same Affymetrix devices. For all the
RNA experiments, the chips hgul33a and hgul33b (see section 2.2.1) have been hybridized.

2.2 Microarray Platform

Microarray technology is a powerful tool for genetic research that uses nucleic acid hybridiza-
tion techniques to evaluate the mRNA expression profile of thousands of genes within a single
experiment. The Microarray Unity of the IJB uses the Affymetrix platform [4] which is a short
oligonucleotide platform (see appendix A for an overview of different microarray platforms). A
part of Affymetrix devices can be seen in the figure 2.1.

2.2.1 Affymetrix Technology

Affymetrix chips are short oligonucleotide (25 mers) arrays fabricated by direct synthesis of
oligonucleotides on the glass surface. Each chip contains up to 400,000 different oligos (called
probes, see figure 2.2). Since oligonucleotide probes are synthesized in known locations on the
chip, the hybridization pattern and signal intensities can be interpreted in terms of gene identity
and relative expression levels by a specific software!. Each gene is represented on the chip by
a series of different oligonucleotide probes (see figure 2.3). Each probe pair consists of a perfect

We can mention the official Affymetrix Microarray Suite Software [4] or the Bioconductor [14] packages for R
[43].

10
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Figure 2.2: Manufacturing GeneChip probe array [24].
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match (called PM) and a mismatch (called MM) oligonucleotide. The perfect match has a se-
quence exactly complementary to the particular region of gene and thus the probe set measures
the expression of the gene. The mismatch probe differs from the perfect match probe by a single
base substitution at the center base position, disturbing the bonding of the target gene transcript.
This helps to determine the background and nonspecific hybridization that contributes to the
signal measured for the perfect match oligo. Probes are chosen based on current information
from GenBank and other nucleotide repositories. The sequences are believed to recognize unique
regions of the 3’ end of the gene.

Affymetrix Chips It exists several kind of Affymetrix chips for human: hgu95a, hgu95b,
hgu133a, hgul133b, hgul33+, etc. For each patient the chips hgul33a (22283 affy ids?) and
hgul33b (22645 affy ids) are used. The majority of known genes are on the chip hgul33a but
the chip hgul33b is also used for the completeness (we hope to cover the whole human genome)

2.3 Quality Assessment

Quality assessment of the hybridized chips is an important step, often skipped in the analysis
design.
The quality assessment can be divided in two steps:

1. Before the hybridization: some tests are carried out in the laboratory concerning e.g. mRNA
quality and tissue purity.

2. After the hybridization: the quality control is based on information contained in the CEL
files to assess the chip quality. There is no quality standard for the Affymetrix chip quality
although some information can be found in the Affymetrix technical manual [5] and in studies
from other laboratories [38].

To assess chip quality, several quality controls have been mixed, following the guidelines proposed
by Affymetrix and Bioconductor [14].

Probe Array Image The chips are displayed in gray scale images. The gray intensities are com-
puted on the basis of the CEL files. By inspecting these images, some artifacts can be discovered
(e.g. broken area and bad chip washing).

Average Background Depending to the method, a background information can be computed.
The Affymetrix guidelines suggest to compare the average background intensities (computed by
the MAS 5.0 method, see appendix B.2.1) along all the chips (with a maximum value of 100).

Spike Controls and RNA Degradation Because RNA degradation typically starts from the
5 end of the molecule, we would expect probe intensities to be systematically lowered at that
end of the probe set when compared to the 3’ end. Affymetrix chips use probes at the 3’ and 5’
ends of the GAPDH and beta actin [27] genes to measure the RNA quality. A high 3’ to M or
3’ to 5’ ratio, i.e. more than 3, may indicate degraded RNA or inefficient transcription of cDNA
or biotinylated cRNA. Moreover additional probes are spiked in during the latter stages of the
sample preparation process and are used to assess hybridization efficiency [35, 23]. These probes
(BioB, BioC, BioD and CreX) should be detected as present (see detection calls).

2The majority of affy ids represent human genes but several are used for control or represent large region of
transcribed DNA (EST).
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Detection Calls A detection algorithm, developed by Affymetrix [5], uses probe pair intensities
to generate detection p-value and assign a Present, Marginal, or Absent call. Each probe pair
in a probe set is considered as having a potential vote in determining whether the measured
transcript is detected (Present) or not detected (Absent). The vote is described by a value called
the discrimination score (R). The score is calculated for each probe pair and is compared to a
predefined threshold Teu. Probe pairs with scores higher than Tau vote for the presence of the
transcript and inversely. The voting result is summarized as a p-value associated with the test of
the difference between score and Tau.

The discrimination score is a basic property of a probe pair that describes its ability to detect
its attended target (see figure 2.4):

R = (pm — mm)/(pm + mm)

where pm and mm are the values of the PM and the MM intensity of a probe pair.

S0 & B0 B0 B0 B0 B0 B) BO BO

| [5s] - §

| 20 3 40 50 B0 70 B0 SO 100

i E¢

Discrimination score
=]
b

0.2 — =
O 10 20 30 40 50 60 70 B0 50 100

MM intensity/probe pair

Figure 2.4: Discrimination factor [5]. The PM intensity is fixed to 80 and the MM intensity varies
from 10 to 100. The y-axis represents the discriminant score and the x-axis represents the MM
intensity.

Each discrimination score is compared to the threshold Tau. Teu is a small positive number?
that can be adjusted to increase or decrease sensitivity and/or specificity of the analysis. Detection
p-value is calculated by the One-Sided Wilcoxon’s Signed Rank test. Finally, a detection call
(Present/Marginal/Absent) is assigned for each probe set according to its detection p-value (see
figure 2.5).

Extremely low values of Present calls percentage in the whole chips are a possible indication
of poor sample quality.

Scaling Factor Since the majority of transcripts are not changing® among experiments, the
overall intensities of the chips should be similar. Differences in overall intensity are most likely
due to assay variables including pipetting error, hybridization, washing, and staining efficiencies,
which are all independent of relative transcript concentration.

The scaling factor is used to assess the differences in overall intensity among experiments:
it is the factor allowing to align the mean intensity of one chip on a target value. If the same

3Default value equals to 0.015.
41t is a strong hypothesis supported by the fact that each chip contains about 22,000 transcripts. The new chip
hgul33+, which contains the whole human genome, is less sensible to this hypothesis.
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Figure 2.5: Detection p-value [5].

target value is used among all the experiments, the different factors should be similar: large
discrepancies among scaling factors (e.g. three-fold or greater) may indicate significant assay
variability or experiment degradation leading to noisier data.

Box Plots for PM Intensities Box plot of PM intensities can be useful to detect outliers,
experiments for which the median and the interquartile are significantly different. After normal-
ization, the boxes are typically well aligned. Rigorous statistical test could be implemented to test

the difference between medians and interquartile intervals along all the experiments.

All these quality criteria are resumed in the table 2.1.

| Quality criteria

Guidelines

Probe array image

Visual inspection of the array image. Research of artifacts.

Average background

Values should be similar between experiments and should not
exceed 100.

Spike controls and RNA degradation

(1) RNA degradation: Values should be similar between
experiments and should not exceed the interval [0.33, 3] (i.e. a
ratio of 3). (2) Spike controls: 100% of the spike controls should
be detected as present.

Detection calls

Values should be similar between experiments, should be close to
50% for the Present/Absent calls and should not exceed 10% for
Marginal call.

Scaling factor

Values should be similar between experiments and should not
exceed the interval [0.33, 3] (i.e. a ratio of 3).

box plots for the PM intensities

Detection of outlier and observation of the effect of
normalization.

Table 2.1: Quality criteria and their acceptable values. This criteria are inspired by the Affymetrix

and Bioconductor guidelines.
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2.4 Supervised Classification

The studied diagnosis concerns the appearance of distant metastases during the first five years
of follow-up. If such metastases exist, the patient belongs to the class “relapse”, otherwise to the
class “non-relapse”. The problem consists in a binary supervised classification. Unfortunately, the
common predictors, based on histological criteria presented previously, fail to classify accurately
the breast tumors. However the treatments (e.g. chemotherapy and hormonal therapy) need
to be specialized according to the patient tumor type. It is the reason for which the scientific
community tries to develop new predictors based on gene expression profile to select patients who
would benefit from adjuvant therapy.
The goal is twice:

e Reduce significantly the number of patients who receive unnecessary adjuvant therapy and
reduce the adverse side effects for the treated patient. Moreover such therapies are very
expensive.

e Isolate involved genes in breast cancer to improve our understanding of biological phenomena.

2.4.1 Analysis Design

The “traditional” design of the supervised classification in microarray is composed by several steps®:

1. Read data: the raw data from scanner have to be read in an useful format (e.g. a matrix or
a data frame).

2. Get gene expression measures: the raw data have to be transformed to get the expression
measure for each probe set in the chip. In the case of Affymetrix data, this step can be
divided into three parts:

(a) Background correction: the signal intensity have to be corrected because the measured
intensity is noised. Actually, even an empty position (without oligo) returns a low level
intensity.

(b) Normalization: the background corrected data have to be normalized to allow compar-
ison between the experiments.

(¢) Probe specific correction: the information given by the mismatch intensity can be used
to correct the perfect match intensity.

(d) Summarization: a gene expression measure is obtained by computing an expression
from all the previously corrected probe set values.

3. Prefiltering: the normalized data can be prefiltered by using arbitrary criteria independently
on the outcome (e.g. minimum variance or fold-change).

4. Filtering: the normalized data can be filtered by using the outcome of each experiment (e.g.
wilcozon test or student t-test)

5. Classification: the normalized data are classified by using a specific technique (e.g. linear
discriminant analysis or support vector machine).

It is necessary that such a design considers the validation of the classification (see figure 2.6).
In this case, the input is the microarray data and the histological information relative to each
experiments. The output is a set of genes (called marker genes) which are used by the classifier.
This set is called a marker gene signature.

5The details about all the analysis functions are given in appendix B.
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Figure 2.6: Supervised classification design in microarray data analysis.
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2.4.2 Development Tools

The development tools are R, [43] and Bioconductor [14]. The manifold and the reliability of these
tools allow to perform quickly complex analysis design. Moreover these tools are open-source
what allows to keep a total control during the development. More precisely, R version 1.9.0 and
Bioconductor version 1.4 are used.

2.5 Gene Ontology

The signature of the supervised classification may contain tens or hundreds of genes. The common
task is to translate this list of genes into a better understanding of the involved biological phe-
nomena. Currently, this is done through a tedious combination of searches through the literature
and a number of public databases. Fortunately useful tools allow to annotate automatically a list
of genes.

To obtain some biological information, all genes were annotated according to known function
using the Gene Ontology Consortium categories [30]: biological process, cellular component and
molecular function. The GO consortium is setting a "dynamic controlled vocabulary that can be
applied to all organisms even as knowledge of gene and protein roles in cells is accumulating and
changing".

Onto-Express A java-based program called Onto-Express [40] was used to determine whether
clusters of genes with similar expression profiles were enriched in specific GO functional cate-
gories. Based on the genes present on the chip, Onto-Express calculated the expected number of
occurrences of each functional category in each cluster. The probability model best suited to cal-
culate the significance values would use a hypergeometric distribution [47, 41]. For a microarray
experiment, when the number of genes on the chips is N ~ 10000 and the number of selected
genes is K ~ 100 = N/100, the binomial approximates well the hypergeometric and therefore,
the hypergeometric was not implemented. The x? was also proposed for similar problems [37].
For the current experiments, a binomial model was selected to calculate the probability that each
functional category was over-represented in a cluster and the p-values were corrected for the mul-
tiplicity using the False Discovery Rate method. This method controls the expected number of
false rejections among the rejected hypothesis [6]. Onto-Express provided information about the
statistical significance of each of the pathways and categories represented by the genes in each
cluster. The ontogeny of the biological system can for instance be displayed as a pie with its
different parts representing the relative amount of the biological processes affected by the system
under study.



Chapter 3

Results

After the hybridization process, about 161 Affymetrix chips are available:

e 77 chips for the JRH population
e 65 chips for the IGR population

e 19 chips from the Karolinska population

The results concerns the quality assessment intra and inter-populations, the classification of the
previously selected experiments and the interpretation in using Gene Ontology tools.

3.1 Quality Assessment

Just a part of quality assessment data is shown here because of the huge amount of files generated
by this process. The quality is assessed with the probe array image, the average background, the
spike controls and RNA degradation, the detection calls, the scaling factor and the box plots for
PM intensities.

The source code for quality assessment (medic_ gc.R) is given in appendix E.

3.1.1 Probe Array Image

The inspection of the probe array images is very subjective. Here are examples of a normal chip
and a bad chip (see figure 3.1). This quality criterion can be assessed one chip by one. Only one
chip hgul33a in the JRH population seems to be bad (artifact like a “wave” on the chip, see table
2.1).

3.1.2 Average Background

Since the average background values should be similar among all the experiments, all the values
have to be drawn in a same plot (see figure 3.2). An additional population is taken into account:
we have received 68 CEL files from the Karolinska Institute. These CFEL files come from the
same group of tumors than the 19 CEL files from Karolinska which have been hybridized at the
IJB!. In such plot, four populations are represented and separated by vertical lines: JRH, IGR,
Karolinskal9 and Karolinska68.

We can notice that a large part of the experiments have an average background higher than
the recommended value of 100 (see table 2.1). Moreover there is a significant difference between
populations. A permutation test can assess this difference: the R function perm.test [55] permits

18
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12 A.CEL

(a) (b)

Figure 3.1: Probe array images. (a) Normal chip from chip hgul33a of the JRH population. (b)
Bad chip from chip hgul33a of the JRH population (artifact like a “wave” on the chip).

| Chip hgul33a | | Chip hgul33b |
| Populations | p-value | | Populations | p-value |
JRH <-> IGR 1.903e-9 JRH <-> IGR 2.661e-4
JRH <-> Karolinskal9 | 1.08e-10 JRH <-> Karolinskal9 | 0.03496
IGR <-> Karolinskal9 | 0.06725 IGR <-> Karolinskal9 | 0.6224

Table 3.1: Permutation tests between each pair of population to assess the average background
difference for the chip hgul33a and hgul33b. If the p-value is small, the null hypothesis is rejected,
i.e. the populations are significantly different.

to perform a permutation test between two samples of different size. Results of such a test is given
in table 3.1.

Surprisingly these differences are less significant for the chip hgul33b. None valid explanation
has been found yet.

3.1.3 Spike Controls and RNA Degradation

These quality criteria can be assessed in each population separately. We can see in the figure 3.3
the results for the IGR population: only the beta actin 3’/5’ ratio is higher than the limit fixed by
Affymetrix (see table 2.1) in some experiments. However, Affymetrix considers that one ratio can
be higher without affecting significantly the quality of the chip. All the spike controls are detected
as Present in compliance with Affymetrix guidelines.

Similar observations can be done for the other populations (not shown here).

3.1.4 Detection Calls

These quality criteria can be assessed in each population separately. We can see that the percentage
of present (figure 3.4) and absent (figure 3.5) detection call are about 50% in compliance with
Affymetrix guidelines (see table 2.1). Moreover, the percentage of marginal detection call is very
low (see figure 3.6).

Similar observations can be done for the chip hgul33b and for the other populations (results
not shown here).

IThere are CEL files coming from the same biological samples between the 19 of the IJB and the 68 from
Karolinska. An interesting analysis of reproducibility between laboratories can be done.
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Figure 3.2: Average background values for the JRH, IGR and the Karolinska populations. The
y-axis represents the average background and the x-axis represents the identifiers for each exper-
iment. The three vertical lines separate the different populations: JRH | IGR | Karolinskal9 |
Karolinska68. (a) Chip hgul33a. (b) Chip hgul33b.
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Figure 3.3: Spike controls and internal control genes for the IGR population. The y-axis represents
ratio for the internal control genes and the x-axis represents the identifiers for each experiment.
The green horizontal lines represent the ratio interval recommended by Affymetrix guidelines (ratio
belongs to [0.33, 3]). (a) Chip hgul33a. (b) Chip hgul33b.
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Figure 3.4: Detection calls. Percentage of present calls for the chip hgu133a in the IGR population.
The y-axis represents the percentage of present calls and the x-axis represents the identifiers for

each experiments.
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Figure 3.6: Detection calls. Percentage of marginal calls for the chip hgul33a in the IGR popula-
tion. The y-axis represents the percentage of absent calls and the x-axis represents the identifiers
for each experiments.

3.1.5 Scaling Factor

The scaling factors are compared among all the populations. In an ideal case, all the scaling factors
belong to an interval of a three-fold change around a specific value. In the figure 3.7, this specific
value is the median? and the area between the two green horizontal lines represent the interval of
a three-fold change®. All the experiments which do not belong to this interval are marked in red,
the others are marked in blue. According to this criterion, all the “red” experiments have to be
discarded for the analysis (see table 2.1).

We can see significant differences between populations for the chip hgul33a. A permutation
test can assess this difference: the R function perm.test [55] permits to perform a permutation
test between two samples of different size. Results of such a test is given in table 3.2.

| Chip hgul33a | ] Chip hgul33b |

| Populations | p-value | | Populations | p-value |
JRH <-> IGR 1.166e-6 JRH <-> IGR 3.74e-7
JRH <-> Karolinskal9 | 0.1066 JRH <-> Karolinskal9 | 0.4476
IGR <-> Karolinskal9 | 5.118e-7 IGR <-> Karolinskal9 | 0.002979

Table 3.2: Permutation tests between each pair of population to assess the scaling factor difference
for the chip hgul33a and hgul33b. If the p-value is small, the null hypothesis is rejected, i.e. the
populations are significantly different.

Surprisingly these differences are less significant for the chip hgu133b. None valid explanation
has been found yet.

2Tt is an arbitrary choice: the mean or another value can be selected.
31f the median equals to 1, the interval of three-fold change is [0.33, 3].
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Figure 3.7: Scaling factors for the JRH, IGR and the Karolinska populations. The y-axis represents
the scaling factors and the x-axis represents the identifiers for each experiment. The three vertical
lines separate the different populations: JRH | IGR | Karolinskal9 | Karolinska68. The black
horizontal line is the median of all scaling factors. The two green lines represent the recommended
maximum factor between all the scaling factors. (a) Chip hgul33a. (b) Chip hgul33b.



CHAPTER 3. RESULTS 25

3.1.6 Box Plots for the PM Intensities

Box plots for all the populations can be computed to compare the median and the interquartile
interval of each experiment (see table 2.1 for details). Unfortunately, a common workstation is
insufficient to compute such number of patients*. Each population has been taken separately to
compute the box plots for the PM intensities (see figure 3.8, 3.9, and 3.10 for the box plots of raw
data, data after MAS normalization and after RMA normalization respectively).
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Figure 3.8: Box plots for the raw data from the IGR population (chip hgul33a). The y-axis
represents the boxes from log of raw gene expressions and the x-axis represents the identifiers for
each experiment (only few of them are displayed). For details, see the function bozplot from the

affy package [8].

3.1.7 Preliminary Conclusion

The probe array image allows us to detect one bad chip. The detection calls, spike controls and
RNA degradation have not detected poor quality experiments. The average background and the
scaling factor criteria tend to show that it exists a significant difference between the populations.
The different experiments are not necessary comparable and a data transformation have to be
done before the analysis (not yet investigated).

3.2 Classification

Preliminary results will be shown here. When the classification has been implemented, only 99

patients were taken into account. Actually only 47 patients from JRH and 52 patients from IGR

were valid in terms of quality and histological data (the 19 samples and the 68 CFEL files from

Karolinska were not available). For these 99 patients, the chip hgul33a and hgul33b are used.
The results are represented by four main sections:

4 Actually, Bioconductor functions have to be re-implemented to support larger amount of data.
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Figure 3.9: Box plots for the MAS normalized data from the IGR population (chip hgu133a). The
y-axis represents the boxes from log of MAS normalized gene expressions and the x-axis represents
the identifiers for each experiment (only few of them are displayed). For details, see the function
bozplot from the affy package [8].

1. Selection of sub-optimal parameters by structural identification
2. Misclassification rate during the feature selection
3. Marker genes

4. Misclassification rate

The figure 3.11 illustrates the implemented classification design.

The RMA set of analysis functions is used to carry out the microarray data preprocessing (see
appendix B). The prefiltering and filtering steps are not be carried in this classification design
(the forward feature selection on the ranked genes replace these two steps).

All the results concern the KNN [46, 59] classifier®.

3.2.1 Structural Identification

The structural identification is performed with all the patients (see appendix B.5.1). The number
of neighbours k € [3,4,5, ..., 30] is tested to find a sub-optimal value. We can see the evolution of
the global misclassification rate® in figure 3.12.

Only the global misclassification rate is used to assess the quality of the classifier’. This may
cause a problem because the population is not balanced between the two classes.

The code of medic_ struct_id.R is given in appendix I.

5Results concerning the SVM [12] classifier can be seen in appendix C.

6The global misclassification rate is given by MISCLASSIF = (FP + FN)/(FP + TP + FN +TN).

7 Actually the function tune.foo in R does not allow to chose an assessment function and weights for the different
classes.
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Figure 3.10: Box plots for the RMA normalized data from the IGR population (chip hgul33a).
The y-axis represents the boxes from log of RMA normalized gene expressions and the x-axis
represents the identifiers for each experiment (only few of them are displayed). For details, see
the function bozplot from the affy package [8].

3.2.2 Misclassification Rate during Feature Selection

The feature selection is described by the algorithm 2 and illustrated in figure 3.11.

At each global leave-one-out [54] step (see figure 3.11 and algorithm 3 for the pseudo code
of the whole classification), a feature selection is performed. We can see the evolution of the
misclassification rate in the figure 3.13. On each figure, we can see a very high misclassification
rate for the false negatives on the contrary of the false positives. It is a preliminary indication
that the classifier is poor on our training set.

3.2.3 Marker Genes during Feature Selection

As described in the section 3.2.2, the feature selection is performed at each leave-one-out step
to select a set of marker genes. It would interesting to see if the set of selected genes is robust
against the training set. To assess the robustness, the number of occurrences of each gene selected
during the leave-one-out is computed (see figure 3.14). In an ideal case, the set of marker genes
is composed of genes which appear 99 times during the leave-one out. This would mean that the
set of marker genes is always the same but it is not the case here: the majority of marker genes
are selected only one times but some genes are selected more than once (maximum 6 times). We
see that the marker genes are very dependent on the training set.

3.2.4 Misclassification Rate

The misclassification rate at each global leave-one-out step® can be represented by the three
histograms on figure 3.15. We can see the good classification for the non-relapse patients and the

8For each step of the global 1.-O-0O, the misclassification rate is estimated by a 1.-O-O during feature selection
(see figure 3.11). We have 99 estimations of misclassification rate, represented on the histograms in figure 3.15.
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Figure 3.12: Structural identification for the KNN classifier. The sub-optimal number of neigh-
bours equals to 13.

dramatically poor performance for the relapse patients.

The misclassification rate computed by a global leave-one-out on all the patients with the
maker gene signature, corresponds to 4/75 false positives and 21/24 false negatives. The trend is
to classify patients in the non-relapse class every time.

The results for the classification with SVM are similar but the trend is the inverse: patients
will be classify in the relapse class every time (justification is given in appendix C).

3.2.5 Signature of Marker Genes

After the performance evaluation of the classification technique by leave-one-out, a signature of
marker genes can be computed from all the patients. The feature selection is carried out to
determine the marker genes (see figure 3.16).

3.2.6 Preliminary Conclusion

The implemented analysis design tries to avoid overfitting although some step (e.g. structural
identification, see appendix B.5.1 and B.5.2) have been simplified because of computer resources.
The quality criterion of classification (see appendix B.5.3) is so strict with the FN that the classifier
is poor in global misclassification rate. These two facts can explain the poor performance of the
classifier.

3.3 Gene Ontology

The Gene Ontology can be interrogated to obtain biological information about the two marker
genes but only the probe set id 223529 s at exists in the GO:
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Figure 3.13: Subset of figures which represent the evolution of misclassification rate during the
feature selection in KNN classifier. There are 99 figures but only few of them are shown here.
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Figure 3.14: Marker genes selected during the feature selection for the KNN classifier.

Biological process

| GOID | Function Name | Probe | Gene Symbol | Unigene Cluster | LocusLink ID |
| GO:0009116 | nucleoside metabolism | 224529_s_at | NT5C1A | 307006 | 84618 |
Cellular component
| GOID Function Name | Probe | Gene Symbol | Unigene Cluster | LocusLink ID |
[ GO:0005829 [  cytosol [ 224529 s_at | NT5CIA | 307006 | 84618 |
Molecular function

GO ID Function Name | Probe | Gene Symbol | Unigene Cluster | LocusLink ID |
| GO:0008253 | 5-nucleotidase activity | 224529 _s_at | NT5CI1A | 307006 | 84618 |

Such a gene is not known to be involved in breast cancer (see [25] to have a good overview of
known genes involved in breast cancer).
Another example of the use of GO to interpret marker gene signatures is given in appendix D.
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Figure 3.15: (a) Misclassification rate for the false positives. (b) Misclassification rate for the false
negatives. (c) Global misclassification rate.
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Chapter 4

Discussion

Although microarray analysis of breast cancer has provided valuable information for classifying
tumors on a molecular basis, in predicting the clinical outcome, there are several significant issues
that need to be addressed before this powerful tool can be brought into the clinic. Within the
next decade, as the cost of conducting microarray experiments is expected to decrease, more
academic investigators will include this technology in their arsenal of tools. Microarrays might then
be routinely used for diagnosis and for monitoring desired and adverse outcomes of therapeutic
interventions. Nevertheless, despite the potentially enormous benefits of microarrays to public
health, challenges must be met to ensure the seamless incorporation of this technology into medical
practice. Quality control and assurance must be established; some guidelines exist already but
standards have to be set among the different microarray platforms.

The determination of appropriate levels of analytical and biological validation needed for each
medical application of microarrays and their supporting computer based bioinformatics systems
raises new challenges. These needs are exemplified by a comparison of results generated from
experiments done on different microarray platforms (cDNA versus short-oligonucleotides) showed
that, although there was a similar pattern of expression for some of the genes, there was a large
variation in expression between the tested platforms [21, 56]. All this confirms the requirement
for standardization of the microarray technique as well as the need to validate the expression
pattern of genes of interest by an alternative RNA quantitative method, such as Northern Blot,
quantitative RT-PCR or RNase protection assay, above all when precise quantification is manda-
tory. Such multi-platform validation study is currently under investigation at the IJB. Indeed
we have access to several biological samples hybridized with two different microarray platforms
(Affymetrix/Agilent) and different populations.

The number of relevant publications in the field of microarrays is increasing exponentially:
during the years 1995-1997, there were fewer than ten reports featuring microarray data; by the
time that this review was written, however, approximately 5000 reports had been published in
this burgeoning field, with 240 in the breast cancer research area. Thus, in order to be able
to ensure the interpretability of the experimental results generated by the use of microarrays as
well as their potential independent validation, there is a crucial need for standardization of data
collection. Unfortunately, this is currently lacking in the majority of the published microarray
reports. Such an initiative has been proposed by the Microarray Gene Expression Data Society
(MGED), which developed guidelines for submitting microarray data for publication known as
“Minimum Information About a Microarray Experiment” (MIAME [3]). These guidelines, which
intend to facilitate the interpretation and verification of microarray results, are currently accepted
by most journals and must be applied by every investigator involved in microarray studies [50].

An important challenge posed by this technology lies in discerning the biological meaning of
the huge volume of array data. Although no exact rule exists regarding the statistical approaches
required for such analysis, various methods are continually being developed. Because DNA mi-
croarrays are used for a variety of different purposes (i.e. “class comparison”, “class prediction”
or “class discovery” studies), the analysis strategy should be determined in light of the overall
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objectives of the study. Moreover, because it is likely that gene expression profiles will provide
information that might affect clinical decision making, such profiling studies must be performed
with statistical rigor, and must be reported clearly with unbiased statistics, which again are lacking
in several microarray studies published so far [49].

4.1

Future Works

This preliminary study has highlighted some problems that require future works:

Parallelism: the requirements in computer resources are very high in this research field.
The huge amount of microarray data and the complexity of the classification design imply
efficient parallelized implementations. R functions have been originally implemented for
small experiment with a reasonable amount of data. Such functions could be reimplemented
to perform complex analysis design with large amount of data in using cluster parallelization.

Statistical framework for quality assessment: the need of fixed quality standard implies also
the need of a statistical framework to assess such quality criteria. Permutation test have
been used to compare populations (see section 3.1.2 and 3.1.5) but more complex statistical
tests could be performed.

Preprocessing data: the choice of normalization (e.g. MAS or RMA) and the prefiltering
methods influence considerably the results and the interpretability of microarray analysis.
This influence is not well quantified and further works can be done in this field [9].

Criterion for misclassification rate: populations of patients coming from clinical studies are
often unbalanced (different number of patients for class 0 and 1). The choice of a criterion
for misclassification rate is not trivial [48] (e.g. global misclassification rate, FP/(FP+TP)
or FN/(FN + T'N)) because an error type is often more important than others (FN in
the case of breast cancer classification, see section B.5.3). Such a choice can influence the
performance of classifiers.

Marker gene stability: we have seen in section 3.2.3 that the marker genes selected during the
feature selection are very dependent on the training set. Techniques centered of robustness
could be studied to avoid this problem.

Feature selection: the implemented feature selection, i.e. the forward selection, is not neces-
sary the most efficient method although simple. Currently, more complex feature selection
methods have been studied [20, 33] and could be implemented in this research field.

Independent validation set: we could use another independent population to validate our
marker gene signature (e.g. Karolinska68).

Signature validation and refinement: we have already seen that the marker genes can be
easily annotated in using recent GO tools (see Onto-Express in section 2.5 and appendix D
for an example). However an automatic search in breast cancer literature could be useful to
complete such annotations.

Multi-laboratory variability: as mentioned in section 3.1.2 (footnote), we have several bio-
logical samples hybridized in two different laboratories using the same microarray platform.
An analysis can be performed to assess the laboratory variability.

Multi-platform comparison: in a not too distant future, we will have same biological samples
hybridized in two different microarray platforms (Agilent and Affymetrix). The characteris-
tics of each platform could be studied to improve the potential of meta-analysis.



Bibliography

[1] R.D. Gelber A.S. Coates-B. Thurlimann A. Goldhirsch, W.C. Wood and H.J. Senn. Meeting
highlights: Updated international expert consensus on the primary therapy of early breast
cancer. J. Clin. Oncol., 21(17):3357-3365, 2003.

[2] R.D. Gelber A. Goldhirsh, J.H. Glick and H. Senn. Meeting highlights: International consen-
sus panel on the treatment of primary breast cancer. Journal of National Cancer Institute,
90(1601-1608), 1998.

[3] Ball CA Causton HC-Gaasterland T Glenisson P Holstege FC Kim IF Markowitz V Matese
JC Parkinson H Robinson A Sarkans U-Schulze-Kremer S-Stewart J Taylor R Vilo J Aach J,
Ansorge W and Vingron M. Minimum information about a microarray experiment (miame)-
toward standards for microarray data. Nature Gen, 29(4):365-371, 2001.

[4] Affymetrix. Affymetrix products. http://www.affymetrix.com/.
[5] Affymetrix. GeneChip Ezpression Analysis, 2002.

[6] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat oc, 57:289, 1995.

[7] M. Astrand B.M. Boldstad, R.A. Irizarry and T.P. Speed. A comparison of normalization
methods for high density oligonucleotide array data based on bias and variance. Bioinfor-
matics, 19(2):185-193, 2003.

[8] B. Bolstad. Affy: Built-in processing methods. Technical report, Bioconductor, 2004.

[9] Astrand M Bolstad BM, Irizarry RA and Speed TP. A comparison of normalization meth-
ods for high density oligonucleotide array data based on variance and bias. Bioinformatics,
19(2):185-193, 2003.

[10] breastcancer.org team. breastcancer.org: a non profit organization for breast cancer educa-
tion. http://www.breastcancer.org.

[11] V. Durbecq L. Dal Lago M. Lacroix F. Cardoso C. Sotiriou, C. Desmedt and M. Piccart.
Molecular oncology of breast cancer. Chapter 6: Genomic and Molecular Classification of
Breast Cancer (in press), 2004.

[12] C. Chang and H. Lin. A library for support vector machines.
http://www.csie.ntu.edu.tw/cijlin/libsvm.

[13] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.

[14] V. Carey M. Dettling S. Dudoit B. Ellis L. Gautier R. Gentleman J. Gentry K. Hornik
T.Hothorn W. Huber S. ITacus F Leisch-J. MacDonald-M. Maechler C. Smith G. Smyth A.
Rossini F. Hutchinson G. Sawitzki L. Tierney J.Y.H. Yang J. Zhang D. Bates, B. Bolstad.
Bioconductor.

[15] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley and sons, 2001.

36



BIBLIOGRAPHY 37

[16] P. Eifel et al. National institutes of health consensus development conference statement:
Adjuvant therapy for breast cancer. Journal of National Cancer Institue, 93(979-989), 2001.

[17] Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer:
an overview of the randomized trials. Lancet, 352:930-942, 1998.

[18] Panavally S. Saal L.H. Borg A. Ferno M. Peterson C. Gruvberger S., Ringner M. Chen Y.
and Meltzer P.S. Estrogen receptor status in breast cancer is associated with remarkably
distainct gene expression patterns. Cancer Res, 61(16):5979-5984, 2001.

[19] Francois C Yasmin D Beazer-Barclay Kristen J Antonellis Uwe S Irizarry RA, Bridget H and
Speed TP. Exploration, normalization, and summarization of hight density oligonucletotide
array probe level data. Bioinformatics, 2003. in press.

[20] R. Kohavi and G. H. John. Wrappers for feature subset selection. AIJ, 97(1-2):273-324, 1997.

[21] Butte AJ Ohno-Machado L Kuo WP, Jenssen TK and Kohane IS. Analysis of matched mrna
measurements from two different microarray technologies. Bioinformatics, 18(3):405-412,
2002.

[22] B. Haibe-Kains V. Bours J. Boniver L. de Leval, C. Herens and C. Sotiriou. Gene expression
profiling of diffuse large b-cell lymphoma: correlation with bcl-2 and bcl-6 rearrangements.
submitted, 2004.

[23] L. Cope L. Gautier, R. Irizarry and B. Boldstad. Description of affy. Technical report,
Bioconductor, 2004.

[24] W.M. Keck Foundation: Biotechnology Resource Laboratory. Affymetrix genechip technology
overview. http://keck.med.yale.edu/affymetrix/technology.htm, 2002.

[25] M. Lacroix and G. Leclerq. Running head: Comparison of cell lines and tumours. Relevance
of breast cancer cell lines as models for breast tumours.

[26] M.J. van de Vijver Y.D. He A.A.M. Hart M. Mao H.L. Peterse K. van der Kooy M.J. Marton
A.T.Witteveen G.J. Schreiber R.M.Kerkhiven-C. Roberts-P.S. Linsley R. Bernards L.J. van’t
Veer, H. Dai and S.H. Friend. Gene expression profiling predicts clinical outcome of breast
cancer. Nature, 415, 2002.

[27] Berk A Krieger M Matsudaira P Lodish H, Kaiser CA and Scott MP. Molecular Cell Biology.
Sara Tenney, 4 edition, 2003.

[28] Deloreny M. Swiss instittute of bioinformatics. http://www.isrec.ch.

[29] Lacroix M and Leclercq G. Relevance of breast cancer cell lines as models for breast tumors:
an update. Breast Cancer Res and Treat, 415:530-536, 2004.

[30] JA. Blake D. Botstein H. Butler JM. Cherry AP. Davis K. Dolinski SS. Dwoght JT. Eppig
MA. Harris DP. Hill L. Issel-Tarver-A. Kasarskis-S. Lewis JC. Matese JE. Richardson M.
Ringwald GM. Rubin G. Sherlock M. Ashburner, CA. Ball. Gene ontology: tool for the
unfication of biology. the gene ontology consortium. Nat Genet, 25:25-29, 2000.

[31] JF. Laes B. Hennuy F. Lallemand I. Gonze F. Cardoso M. Piccart G. Leclercq M. Lacroix,
B. Haibe-Kains and C. Sotiriou. Gene regulation by phorbol 12-myristate 13-acetate (pma)
in two jighly different breast cancer cell lines. Oncology Report, 2004.

[32] H. Dressman E. Huang S. Ishida R. Spang H. Zuzan J.A. Olson J.R. Marks M. West,
C. Blanchette and J.R. Nevins. Predicting the clinical status of human breast cancer by
using gene expression profiles. PNAS, 98(20):11462-11467, 2001.



BIBLIOGRAPHY 38

[33] Oden Maron and Andrew W. Moore. The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Review, 11(1-5):193-225, 1997.

[34] D. Meyer. Support Vector Machines: The interface to libsvm in Package e1071. Techische
Universitat Wien, Austria, 2004.

[35] C.J. Miller. Description of simpleaffy: Easy analysis routines for affymetrix data. Technical
report, The Paterson Institute Bioinformatics Group, 2004.

[36] L. van’t Veer H. Dai A.A.M. Hart D.W. Voskuil G.J. Schreiber J.L. Peterse C. Roberts M.J.
Marton M. Parrish D. Atsma-A. Witteveen-A. Glas L. Delahaye T. van der Velde H. Bartelink
S. Rodenhuis E.T. Rutgers S.H. Friend M.J. van de Vijver, Y.D. He and R. Bernards. A
gene expression signature as a predictor of survival in breast cancer. The new England,
347(25):1999-2009, 2002.

[37] Z. Wang MZ. Man and Y. Wang. Powersage: Comparing statistical tests for sage experiments.
Bioinformatics, 16:953-959, 2000.

[38] B. Samans O. Hartmann and H. Schafer. Low level analysis for affymetrix genechips: Normal-
ization and quality control. Technical report, Insitiute of Medical Biometry and Epidemiology.
Faculty of Medicine and Hospital, Philippe-University, 2003.

[39] J. Costa J. Crowley W.J. Curran A. Deshler S. Fulton C.B. Hendricks M. Kemeny A.B.
Kornblith T.A. Louis M. Markman R. Mayer D. Roter P. Eifel, J.A. Axelson. National
institutes of health consensus development conference statement: Adjuvant therapy for breast
cancer. J. Natl Cancer Inst., 93(13):979-989, 2001.

[40] GC Ostermeier P. Khatri, S. Draghici and SA. Krawetz. Profiling gene expression using
onto-express. Genomics, 79:266—270, 2003.

[41] RP. Martins GC Ostermeier P. Khatri, S. Draghici and SA. Krawetz. Global functional
profiling of gene xpression. enomics, 81:98-104, 2003.

[42] Eisen M.B. van de Rijn M. Jeffrey S.S. Rees C.A. Pollack J.R. Ross D.T. Jonhsen H. Aklslen
L.A. Fluge O. Pergamenschikov A; Williams C. Zhu S.X Loning P.E. Borresen-Dale A.L.
Brown P.O. Perou C.M., Sorlie T. and Botstein D. Molecular portraits of human breast
tumours. Nature, 406(6797):747-752, 2000.

[43] R Development Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, 2003. ISBN 3-900051-00-3.

[44] F. Collin L.M. Cope B. Hobbs R.A. Irizarrry, B.M. Boldstad and T.R. Speed. Summaries of
affymetrix genechip probe level data. Nucleic Acids Research, 31(4), 2003.

[45] F. Collin Y.D. Beazer-Barclay R.J. Antonellis U. Scherf R.A. Irizarry, B. Hobbs and T.P.
Speed. Normalization, and summaries of high density oligonucleotide array probe level data.
Biostatistics, 4(2):249-264, 2003.

[46] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
ISBN 0 521 46086 7.

[47] P. Bhavsar A. Shah-SA. Krawetz S. Draghici, P. Khatri and MA. Tainsky. Onto-tools, the
toolkit of the modern biologist: Pnto-express, onto-compare, onto-design and onto-translate.
Nucleic Acids Research, 31(13):3775-3781, 2003.

[48] Latinne P Saerens M and Decaestecker C. Adjusting the outputs of a classifier to new a priori
probabilities: A simple procedure. Neural Comp., 14:21-41, 2002.

[49] Dobbin K Simon R, Radmacher MD and McShane LM. Pitfalls in the use of dna microarray
data for diagnostic and prognostic classification. J. Natl Cancer Inst, 95(1):14-18, 2003.



BIBLIOGRAPHY 39

[50] Microarray Gene Expression Data Society. Minimum information about a microarray exper-
iment (miame). http://www.mged.org/miame, 1999.

[61] Parker J. Hastie T.-Marron J.S. Nobel A. Deng S. Johnsen H. Pesich R. Geister S. Demeter
J. Perou C.M. Lonning P.E. Brown P.O. Borresen-Dale A.L. Sorlie T., Tibshirani R. and
Botstein D. Repeated observation of breast tumor subtypes in indepedent gene expression
data sets. Proc Natl Acad Sci USA, 133(14):8418-8423, 2003.

[52] Tibshirani R. Aas T.-Geisher S. Johnsen H. Hastie T. Eisen M.B. van de Rijn M. Jeffrey
S.S. Thorsen T. Quist H. Matese J.C. Brown P.O. Botstein D. Eystein Lonning P. Sorlie T.,
Perou C.M. and Borresen-Dale A.L. Gene expression patterns breast carcinomas distinguish
tumor subclasses with clinical implications. Proc. Matl. Acad. Sci. USA, 98(19):10869-10874,
2001.

[53] McShane L.M. Korn E.L.-Long P.M. Jazaeri A. Martiat P. Fox S.B. Harris A.L. Sotiriou C.,
NEO S.Y. and Liu E.T. Breast cancer classification and prognosis based on gene expression
profiles from a population-based study. Proc. Natl. Acad. Sci., 100(18):10393-10398, 2003.

[54] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society B, 36(1):111-147, 1974.

[55] Hothorn T. Exact distributions for rank and permutation tests. R library, 2004.

[56] Spitznagel EL Jr Xu P Fu D Dimitrov DS Lempicki RA Raaka BM Tan PK, Downey TJ
and Cam MC. Evaluation of gene expression measurements from commercial microarray
platforms. Nucleic Acids Res, 31(19):5676-5684, 2003.

[57] J.W. Tukey. Ezploratory Data Analysis. Addison, 1977.
[58] IBMM ULB and UMH. Biovallee. http://www.biovallee.be, 2003.
[59] W.N. Venables and B.D. Ripley. Modern Applied Statistics with S. Springer, 2002.

[60] Wang G Wang MD Fojo AT Sunshine M Narasimhan S Kane DW Reinhold WC Lababidi S
Bussey KJ Riss J Barrett JC Zeeberg BR, Feng W and Weinstein JN. Gominer: A ressource
for biological interpretation of genomic and proteomic data. Genome Biology, 4(4):R28, 2003.



Appendix A

Microarray Platforms

cDNA Oligonucleotide
Short Long
(Affymetrix) (Agilent/CodeLink)
@ ® (© Gene/mRNA sequences

Gene/mRMNA sequences

Bioinformatics/
oligo design
algorithms

[TTTTT T T Perfect match | oligo

l Bacterial growth

mismatch set
Plasmid isolation/
purification
L3
PCR amplification/ & =
purification of inserts & vl e 2 W
Y - o
- = -
& = o Printingffixin
S22 o Dug“ s i > > Photolithographic
= in situ synthesis

- ‘a'ch

Denaturation/
. ::;‘;‘:E*W"‘jﬂ"f‘"’ Labeling-hybridization/

W/ 9 washing

. Y

Laser

Scanning/data
analysis

Figure A.1: Overview of different microarray platforms.

Laser

Scanning/data
analysis

l

Bioinformatics/oligo
design algorithms

Oligo synthesis/
purification

Library of Oligos

) Printing/fixing or coupling DNA

Labeling-hybridization/washing

-4

Laser

Scanning/data analysis



Appendix B

Analysis Functions

This appendix will introduce the basics of used functions for the analysis.

B.1 Read Data

The data are read through three different functions given in the file medic read.R:

e medic.read: this function just reads all the CEL files in an AffyBatch object (see affy li-
brary)!. The AffyBatch object structure is described in the affy vignette (see Bioconductor
help).

e medic.read.mas: this function reads and carries out the treatments to obtain expression
measures (see the section B.2 for details). The function particularity is the possibility to
read several subsets of CEL files and to concatenate them in a complete exprSet object?. The
correctness of the this procedure is justified by the fact that all the steps are independent of
the number of experiments (in the contrary of rma [7, 45, 44] which needs all the experiments
to compute the normalization). It allows us to read all the data in a workstation with a
reasonable amount of RAM.

e medic.read.justrma: this function reads and carries out the treatments (rma) to obtain
expression measures (the details about these treatments can be found in the Bioconductor
help).

Some string manipulation functions have been implemented to read correctly demographic data
(prognosis and experiment names). The code of medic_read.R is given in appendix F.

Moreover, the chips hgul33a and hgul33b have to be read separately. There are 168 affy ids
in common. Several methods have been implemented to handle this situation (see medic.R). Only
the “mean” method have been used for the rest of the project, the mean between each affy id
double is computed and is kept in the final exprSet object. The code is given in appendix G. This
file contains the definitions of a set of useful functions for Affymetrix data analysis.

B.2 Get Expression Measure

All the treatments are carried out by the functions described above. Here are the details for each
treatment.

1The memory space required to store all the probe values for the 99 patients is about 1,5 Gbytes.
2The exprSet object contains the expression measures for a set of microarray experiments.
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B.2.1 MAS

The medic.read.mas uses the mas function for the background correction, the constant normaliza-
tion, the mas function for the probe specific correction and the mas function for the summarization

[8]-

Background correction The background correction used in the function medic.read.mas is the
mas implementation. This is an implementation of the background correction method outlined
in the Statistical Algorithms Description Document [5]. The chip is broken into a grid of sixteen
rectangular regions. For each region the lowest 2% of probe intensities are used to compute a
background value for that grid. Each probe is then adjusted based upon a weighted average of the
backgrounds for each of the regions. The weights are based on the distances between the location
of the probe and the centroids of sixteen different regions. This method correct both PM and MM
probes [8].

Normalization The constant normalization used in the function medic.read.mas is a scaling
normalization. All the chips are scaled so that they have the same mean value. This would be
typical of the approach taken by Affymetrix. However the Affymetrix normalization is usually
done after summarization and this normalization is done before.

Probe Specific Correction The mas probe specific correction is used in the function medic.read.mas.
An ideal mismatch is subtracted from PM. This mismatch value is the result of a small set of rules
described in [5] and allows to avoid negative values of PM intensity which do not make physiological
sense.

Summarization The mas summarization method is used in the function medic.read.mas. As
documented in [5], a robust weighted average using one-step Tukey biweight [57] on logy scale is
performed on all corrected probe intensities in each probe set.

B.2.2 RMA

The medic.read.justrma uses the rma function for the background correction, the quantile nor-
malization, the pmonly function for the probe specific correction and the medianpolish function
for the summarization [8].

Background Correction The background correction used in the function medic.read.justrma
is the rma implementation. The PM intensities are corrected by using a global model for the
distribution of probe intensities. The model is suggested by looking at plots of the empirical
distribution of probe intensities. In particular the observed PM probes are modeled as the sum
of a normal noise component N (Normal with mean p and variance 02) and an exponential signal
component S (exponential with mean «). To avoid any possibility of negatives, the normal is
truncated at zero. Given we have O the observed intensity, this then leads to an adjustment

o 6 (8) —o(5*)
HO e g e ey

where @ = s — u—o0?a and b = 0. Note that ¢ and ® are the standard normal distribution density
and distribution functions respectively.
The MM intensities are not, corrected.
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Normalization The normalization used in the function medic.read.justrma is the quantile im-
plementation. The quantile was introduced by Bolstad et al. in 2003 [8, 9]. The goal is to give
each chip the same empirical distribution. The algorithm 1 carries out this operation with X is
the matrix pxn of probe intensities per array.

Algorithm 1 Quantile normalization [8].

1. Let X be a matrix pxn where p is the number of probes and n is the number of arrays

2. Sort each column of X to give Xsort

3. Take the means across the columns of X+ and assign this mean to each element in the row
to give X! .,

4. Get X, ormalized Dy rearranging each column of X! ., to have the same ordering as original X

The algorithm is illustrated in figure B.1.

I, . I <I;=
1> I- . <I>=>
. Iz Iz <Iz>=

I I I <Ij>
In In In =In>
Chip #1 Chip #2 Chip #3 Average
chip

Figure B.1: Tllustration of quantile normalization. Each color represents the same probe.
Probe Specific Correction The probe specific correction used in the function medic.read.justrma
is the pmonly implementation. Actually only the PM intensities are kept.

Summarization The summarization used in the function medic.read.justrma is the medianpol-
ish implementation. The medianpolish was introduced by Irizarry et al. in 2003 [19]. A multi-chip
linear model is fit to data from each probe set. In particular for a probe set k with 14,2, ..., Iy
probes and data from j = 1,2, ..., J, the following model is fitted
k k) (k) (k)
logs (PMZ(j )) = ag + ﬁj + €;;

where o is a probe effect and §; is the logs expression value. The medianpolish is an algorithm
[57] for fitting this model robustly. The calculated expression value is in logs scale.

B.3 Prefiltering

This step is skipped in this analysis design.

B.4 Filtering

This step is skipped in this analysis design.
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B.5 Classification

Two classification techniques are used in this analysis design: the k-nearest neighbours (KNN)
[46, 59] and the support vector machine (SVM) [12]. The pseudo-code of the classification is given
in algorithm 3. The code of the medic_ simple_ classif.R is given in appendix H.

For the KNN and the SVM classifier, a structural identification and a feature selection steps
are implemented:

e Structural identification [15] : the structural identification permits to tune the parameters
(the structure) of the considered classifier to increase performance.

o Feature selection [54] : the feature selection permits to assess subsets of variables (i.e. the
most discriminating genes for the classification) according to their usefulness to a given
classifier.

Detailed descriptions about the classifiers, their structural identification, and the feature selection
are given below.

B.5.1 KNN

The function knn in R (library class) can be used for classification. It uses the Euclidean distance
to select the k-nearest neighbours and the classification is decided by majority vote, with ties
broken at random. If there are ties for the k-th nearest vector, all candidates are included in the
vote.

Structural identification The parameter k is chosen by a preliminary structural identification
step. Actually a global loop with the structural identification could be done but will increase
dramatically the computation time. All the patients are used to identify a sub-optimal & (selected
between 3 and 30) and the first 100 ranked genes are used (be careful with these arbitrary criteria)
in a L-O-0O cross-validation procedure. This procedure can be lead to some overfitting because
the choice of k is based on the whole dataset. However the global loop could be implemented with
an efficient computer architecture (like a cluster).

B.5.2 SVM

The function svm in R (library €1071) can be used for classification. SVM’s were developed by
Cortes and Vapnick [13] for binary classification. Basically, the optimal separating hyperplane
between the two classes is computed by maximizing the margin between the classes’ closest points
(see figure B.2). The points lying on the boundaries are called support vectors, and the middle of

Margin

~
Separating

.
\
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‘\
t‘ L ]
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Figure B.2: Linear separable case of classification [34].
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the margin is the optimal separating hyperplane.

The points on the “wrong” side of the discriminant margin are weighted down to reduce their
influence. When a linear separator can not be found, the points are projected into a higher-
dimensional space where the points effectively become linearly separable (see kernel techniques).
A program able to perform such optimization tasks is called a Support Vector Machine.

The mode selected for the SVM is C-classification [34] with the radial basis function (RBF)
[34] kernel because its good general performance and the few number of parameters (only two, the
cost and the gamma parameters).

Structural identification Like the KNN, some parameters can be tuned, the cost and the
gamma parameters. In [12], authors suggest to perform a grid search for the parameters:

e A large grid search is performed to detect interesting range of parameters:
cost = 2715 213915 _, 4
gamma = 2712325 — 1,

e A small grid search is performed to improve fine the classification performance:

21171 211+0.752X1+1

cost = — cOStiyned

212+0.75212+1

gamma = 2271 — gaMMAtyned

As described previously, the structural identification is equivalent for the KNN and the SVM (L-
0-0 cross-validation procedure with the first 100 ranked genes). The grid search needs also a lot
of computation time and a global structural identification loop would be too much for a common
workstation.

B.5.3 Class Weights

We can see that the two populations (JRH and IGR) are not perfectly balanced: There are only
1/4 of patients who have developed distant metastases during the first five years. In clinical
studies, one type of error is more important than another, the false negative rate. If we consider
that that the relapse is positive and the absence of relapse is negative (see table B.1), the false
negatives represent the patients for which the diagnosis suggests to not give a therapy but it is
necessary in reality.

Reality
Prediction | relapse(+) | non-relapse(-)
relapse(+) TP FP
non-relapse(-) FN TN

Table B.1: Contingency table in our classification.

To avoid such a problem, the class weight parameter can be tuned. We consider than the class
of relapses is more important (weight of 10) than the class of healthy patients (weight of 1).

B.5.4 Feature Selection

The feature selection described in algorithm 2 is a forward procedure. To control the exploration
space of the selection, a specific method was introduced:when the added gene does not increase
the classification performance more than some level (specified in parameter), the feature selection
is stopped and the best set of genes is selected. Otherwise, even the classification performance
decreased, the feature selection continues to search another sub-optimal set of marker genes.
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The quality estimator ¢ selected for the feature selection is given in equation B.1.
¢ = clWnon—relapseF false_positive + clwyeapse * # false_negative (B.1)

where clw is the weight of the considered class. Even if the classifier is tuned to take into
account the weights of each class, this quality estimator penalizes again the false negatives.

Algorithm 2 Pseudo-code of the feature selection (see medic_ simple_ classif.R in appendix H).

Compute the correlation between expression measures of each gene and the outcome on the training
set
Rank the genes according to the absolute valor of their correlation coefficient
For each i from 1 to number of genes //feature selection
Select the i first ranked genes as marker genes
For each patient in the training set //leave-one-out for feature selection
Evaluate the classification with the selected genes, for the patient left out
endFor
Stop the feature selection if no further improvement
Save the best set of marker genes
endFor
Saved best set of marker genes contains the feature selected

B.5.5 Pseudo-code for the Whole Classification Procedure

Algorithm 3 Pseudo-code of the classification for the implemented analysis design (see
medic_ simple_ classif.R in appendix H).

Structural identification for the selected classification technique
For each of n patients of the whole dataset //global leave-one-out
Divide the whole dataset in training set (n-1 patients) and validation set (1 patient)
Compute the correlation between expression measures of each gene and the outcome on the
training set
Rank the genes according to the absolute valor of their correlation coefficient
For each i from 1 to number of genes //feature selection
Select the i first ranked genes as marker genes
For each patient in the training set //leave-one-out for feature selection
Evaluate the classification for the patient left out
endFor
Stop the feature selection if no further improvement
Save the best set of marker genes
endFor
Evaluate the classification using the whole training set and the feature selected, for the patient
in the validation set
endFor
Evaluate the global classification rate
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Classification With SVM

All the results shown in this section come from the SVM classifier. The following section and
figures are identical to the KNN section 3.2. Only the remarks specific to SVM are noted.

C.1 Structural Identification

As described in paragraph B.5.2, the structural identification is performed with all the patients.
The parameters, cost and gamma, re tested to find a sub-optimal values. We can see the evolution
of the misclassification rate in figure 3.12.

Structural Identification for svm classification
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Figure C.1: Structural identification for the SVM classifier. The sub-optimal parameters, cost and
gamma, equal to 1.5107° and 1.5 10~° respectively.

Like the KNN, only the global misclassification rate is used to assess the quality of the classifier.
The code of medic_ struct_id.R is given in appendix I.
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C.2 Misclassification Rate during Feature Selection

We can see the evolution of the misclassification rate in the figure C.2. The profiles of figures for
SVM are different to KNN but the misclassification rate is always very high. In comparison to
the KNN classifier, the size of set of marker genes is smaller.

C.3 Marker Genes during Feature Selection

Because of the smaller size of set of marker genes for the SVM classifier, there is less selected
genes during the feature selection and the frequency of each gene is smaller (maximum 3). The
conclusion for the KNN classifier is the same in the case of the SVM classifier.

C.4 Misclassification Rate

The misclassification rate is approximatively the same for the false positives and the false negatives,
very poor. This classifier is not really valuable: The trend is to classify patients in the relapse
class in most of the cases.

The misclassification rate computed by the global leave-one-out is 65/75 false positives and
2/24 false negatives. The SVM classifies better the relapse class than the KNN on the contrary of
the non-relapse class. This is due to the quality parameter ¢ which is too stringent for the SVM
classifier. The performance could be improved by selecting a more adapted values for the class
weights.

C.5 Signature of Marker Genes
After the performance evaluation of the classification technique by leave-one-out, a signature of

marker genes can be computed from all the patients. The feature selection is carried out to
determine the marker genes (see figure C.5).
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Figure C.2: Subset of figures which represent the evolution of misclassification rate during the
feature selection in SVM classifier. There are 99 figures but only few of them are shown here.
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Common Marker Genes
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Figure C.3: Marker genes selected during the feature selection for the SVM classifier.
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Figure C.5: Feature selection for the SVM classifier to determine the signature of marker genes.
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Figure C.4: (a) Misclassification rate for the false positives. (b) Misclassification rate for the false
negatives. (c) Global misclassification rate.



Appendix D

Gene Ontology in Marker Gene
Signature

An example of the usefulness of GO tools like Onto-Express is given here. The list of marker
genes comes from a signature with the KNN classifier in considering only the chip hgul33a. The
signature contains 42 marker genes. The results for the three GO categories (biological process,
cellular component, and molecular function) are represented graphically (see figures D.1, D.2, and
D.3).
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Figure D.1: Biological process category for the signature composed by the 42 marker genes by
using Onto-Express [30].
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Figure D.2: Cellular component category for the signature composed by the 42 marker genes by

using Onto-Express [30].
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Figure D.3: Molecular function category for the signature composed by the 42 marker genes by

using Onto-Express [30].
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Code of medic qc.R

#quality control for the Medic project data

library(affy);

library(simpleaffy) ;

library(AffyExtensions);

setwd("/home/bahamut/project_medic/R_scripts/");

source("medic_sources.R");

med <- medic();

#oxford

abatch.chipA <- med$medic.read("oxford", "../raw_data/oxford/medic_oxford_HG-U133A/",
"../raw_data/oxford/Demographics_oxford_distant+local.csv");

abatch.chipB <- med$medic.read("oxford", "../raw_data/oxford/medic_oxford_HG-U133B/",
"../raw_data/oxford/Demographics_oxford_distant+local.csv");

#IGR

abatch.chipA <- med$medic.read("igr", "../raw_data/igr/medic_igr_HG-U133A/",
"../raw_data/igr/Demographics_igr_distant+loc.csv");

abatch.chipB <- med$medic.read("igr", "../raw_data/igr/medic_igr_HG-U133B/",
"../raw_data/igr/Demographics_igr_distant+loc.csv");

#karolinska68

abaabatchA.k68 <- med$medic.read("karolinska68", "../raw_data/karolinska/karolinska_68/A/",
"../raw_data/karolinska/karolinska_68/Demographics_karolinska_68_relapse.csv");
abatchB.k68 <- med$medic.read("karolinska68", "../raw_data/karolinska/karolinska_68/B/",
"../raw_data/karolinska/karolinska_68/Demographics_karolinska_68_relapse.csv")
nbr.exp <- length(sampleNames(abatch.chipB));

nbr.gene <- length(geneNames(abatch.chipB));

#histogram of PM intensities

pdf ("pm_hist_chipA.pdf");

#chip A

main <- sprintf("IGR Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames(abatch.chipA))), annotation(abatch.chiph));
sub <- sprintf("histogram of PM intensities");
plotDensity.AffyBatch(abatch.chipA, which="pm");

title(main=main, sub=sub);

sub <- sprintf("histogram of MM intensities");
plotDensity.AffyBatch(abatch.chipA, which="mm");

title(main=main, sub=sub);

sub <- sprintf("histogram of PM-MM intensities");
plotDensity.AffyBatch(abatch.chipA, which="both");

title(main=main, sub=sub);

dev.off();

#chip B

pdf ("pm_hist_chipB.pdf");

main <- sprintf("IGR Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames (abatch.chipB))), annotation(abatch.chipB));
sub <- sprintf("histogram of PM intensities");
plotDensity.AffyBatch(abatch.chipB, which="pm");

title(main=main, sub=sub);
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sub <- sprintf("histogram of MM intensities");
plotDensity.AffyBatch(abatch.chipB, which="mm");
title(main=main, sub=sub);

sub <- sprintf("histogram of PM-MM intensities");
plotDensity.AffyBatch(abatch.chipB, which="both");
title(main=main, sub=sub);

dev.off();

H#itit HH## H##

#image of arrays
png("image_chipA_igr%03d.png");
par (mfrow=c(1,1));
image(abatch.chipA);

dev.off();
png("image_chipB_igr%03d.png");
par (mfrow=c(1,1));

image (abatch.chipB) ;

dev.off();

#boxplot of arrays

pdf ("boxplot_chipA_igr.pdf");

main <- sprintf("Igr Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames(abatch.chipA))), annotation(abatch.chipA));
sub <- sprintf("boxplot of arrays");

boxplot(abatch.chipA, col=2:4);

title(main=main, sub=sub);

dev.off();

pdf ("boxplot_chipB_igr.pdf");

main <- sprintf("Igr Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames(abatch.chipB))), annotation(abatch.chipB));
sub <- sprintf("boxplot of arrays");

boxplot(abatch.chipB, col=2:4);

title(main=main, sub=sub);

dev.off();

#RNA degradation

degA <- AffyRNAdeg(abatch.chipA);

#summaryAffyRNAdeg(degh) ;

#compute the ratio between the intensity in the probe at the 5’ side and the 3’ side
ratio.rnadeg.A <- NULL;

for (i in 1:nrow(degA$means.by.number)) {

ratio.rnadeg.A <- c(ratio.rnadeg.A, degA$means.by.number([i,1] /
degA$means.by.number[i,ncol(degA$means.by.number)]);
}
degB <- AffyRNAdeg(abatch.chipB);
#summaryAffyRNAdeg(degB) ;
#compute the ratio between the intensity in the probe at the 5’ side and the 3’ side
ratio.rnadeg.B <- NULL;
for (i in 1:nrow(degB$means.by.number)) {

ratio.rnadeg.B <- c(ratio.rnadeg.B, degB$means.by.number([i,1] /
degB$means.by.number[i,ncol(degB$means.by.number)]);
¥
pdf ("rnadeg_chipA_igr.pdf");

main <- sprintf("\n\n\nIgr Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames(abatch.chipA))), annotation(abatch.chiph));
plotAffyRNAdeg(degh, cols=1:nbr.exp);

title(main=main);

ylab <- "ratio betwen intensities 5°/3’";

xlab <- "samples";

plot(ratio.rnadeg.A, main="", xlab=xlab, ylab=ylab, col="blue")

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [}.5g,%.5gl",
mean(ratio.rnadeg.A, na.rm=TRUE), median(ratio.rnadeg.A, na.rm=TRUE),
sd(ratio.rnadeg.A, na.rm=TRUE), min(ratio.rnadeg.A), max(ratio.rnadeg.A));
title(main=main, sub=stat.info);

dev.off();

pdf ("rnadeg_chipB_igr.pdf");

a7
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main <- sprintf("\n\n\nIgr Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames (abatch.chipB))), annotation(abatch.chipB));
plotAffyRNAdeg(degB, cols=1:nbr.exp);

title(main=main);

plot(ratio.rnadeg.B, main="", xlab=xlab, ylab=ylab, col="blue")

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [%.5g,%.5gl",
mean(ratio.rnadeg.B, na.rm=TRUE), median(ratio.rnadeg.B, na.rm=TRUE),
sd(ratio.rnadeg.B, na.rm=TRUE), min(ratio.rnadeg.B), max(ratio.rnadeg.B));
title(main=main, sub=stat.info);

dev.off();

#RawQ values using the RPT files
pdf ("rawq.pdf");
pop <- "igr";
xlab <- "sample";
ylab <- "RawQ";
my.dir <- "/mnt/bordet/cold/IGR/Medic(IGR)_HG-U133B_COLONNE/";
main <- sprintf("Igr Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames(abatch.chipB))), annotation(abatch.chipB));
rpt.files <- dir(dir(my.dir[j], full.names=TRUE), full.names=TRUE, pattern="x.RPT");
rpt.names <- dir(dir(my.dir[j], full.names=TRUE), pattern="x.RPT");
rawq <- NULL;
for (i in 1:length(rpt.files)) {
rawq <- c(rawq, readLines(rpt.files[i])[grep("RawQ", readLines(rpt.files[il))]1);

T
rawq <- as.numeric(substr(rawq, 15, nchar(rawq)));
names(rawq) <- paste(rpt.names, pop, sep="_");

plot(rawq, main="", xlab=xlab, ylab=ylab, col="blue")

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [%.5g,%.5gl",
mean(rawq, na.rm=TRUE), median(rawq, na.rm=TRUE), sd(rawq, na.rm=TRUE), min(rawq), max(rawq));
title(main=main[j], sub=stat.info);

dev.off();

#average background using the RPT files
my.dir <- "/mnt/bordet/cold/IGR/Medic(IGR)_HG-U133B_COLONNE/";

main <- sprintf("Igr Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames (abatch.chipB))), annotation(abatch.chipB));
rpt.files <- dir(dir(my.dir[j], full.names=TRUE), full.names=TRUE, pattern="*.RPT");
rpt.names <- dir(dir(my.dir[j], full.names=TRUE), pattern="*.RPT");
avg.bg <- NULL;
for (i in 1:length(rpt.files)) {
info.temp <- readLines(rpt.files[i]) [grep("Background", readLines(rpt.files[i]))+1];
info.temp <- unlist(strsplit(info.temp, "\t"));
info.temp <- info.temp[-1];
info.temp <- unlist(strsplit(info.temp, "[ 1"));
info.temp <- as.numeric(info.temp[c(2,4,6,8)]);
names (info.temp) <- c("avg", "std", "min", "max");
#only the average background
avg.bg <- c(avg.bg, info.temp[1]);
¥
names (avg.bg) <- paste(rpt.names, pop, sep="_");
pdf ("avg_background.pdf");
pop <- Iligrll;
xlab <- "sample";
ylab <- "average background";
plot(avg.bg, main="", xlab=xlab, ylab=ylab, col="blue")
stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [%.5g,%.5gl]",
mean(avg.bg, na.rm=TRUE), median(avg.bg, na.rm=TRUE), sd(avg.bg, na.rm=TRUE), min(avg.bg), max(avg.bg));
title(main=main[j], sub=stat.info);
dev.off();

#scaling factor using the RPT files

my.dir <- "/mnt/bordet/cold/IGR/Medic(IGR)_HG-U133B_COLONNE/";

main <- sprintf("Igr Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames (abatch.chipB))), annotation(abatch.chipB));

rpt.files <- dir(dir(my.dir[j], full.names=TRUE), full.names=TRUE, pattern="*.RPT");
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rpt.names <- dir(dir(my.dir[j], full.names=TRUE), pattern="x.RPT");
scf <- NULL;
for (i in 1:length(rpt.files)) {
scf <- c(scf, readLines(rpt.files[i]) [grep("SF", readLines(rpt.files[il))]);

T
scf <- as.numeric(substr(scf, 19, nchar(scf)));
names(scf) <- paste(rpt.names, pop, sep="_");

pdf("scaling_factor.pdf");

pop <- "igr";

xlab <- "sample";

ylab <- "scaling factor";

plot(scf, main="", xlab=xlab, ylab=ylab, col="blue")

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [%.5g,%-5g1",
mean(scf, na.rm=TRUE), median(scf, na.rm=TRUE), sd(scf, na.rm=TRUE), min(scf), max(scf));
title(main=main[j], sub=stat.info);

dev.off();

H#itit HH## H##

#compute the Present/Absent/Marginal calls

#calls in the ’exprs’ and p-value in the ’se.exprs’
abatch.masbcalls <- masbcalls(abatch);

abatch.chipA.masbcalls <- abatch.masbcalls;
save(abatch.chipA.mas5calls, file="abatch_chipA_all_masb5calls.RData");
#percent of P/A/M

p.prct <- apply(exprs(abatch.masbcalls)=="P", 2, sum)/nbr.gene;
a.prct <- apply(exprs(abatch.mas5calls)=="A", 2, sum)/nbr.gene;
m.prct <- apply(exprs(abatch.masbcalls)=="M", 2, sum)/nbr.gene;
pdf ("masbcalls.pdf");

xlab <- "samples";

main <- sprintf("Igr Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames(abatch))), annotation(abatch));
ylab <- "percentage of Present calls";

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [%.5g,%.5g]", mean(p.prct, na.rm=TRUE),
median(p.prct, na.rm=TRUE), sd(p.prct, na.rm=TRUE), min(p.prct), max(p.prct));

plot(p.prct, col="blue", main="", xlab=xlab, ylab=ylab);

title(main=main, sub=stat.info);

ylab <- "percentage of Absent calls";

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [}.5g,%.5g]", mean(a.prct, na.rm=TRUE),
median(a.prct, na.rm=TRUE), sd(a.prct, na.rm=TRUE), min(a.prct), max(a.prct));

plot(a.prct, col="blue", main="", xlab=xlab, ylab=ylab);

title(main=main, sub=stat.info);

ylab <- "percentage of Marginal calls";

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [%.5g,%.5g]", mean(m.prct, na.rm=TRUE),
median(m.prct, na.rm=TRUE), sd(m.prct, na.rm=TRUE), min(m.prct), max(m.prct));

plot(m.prct, col="blue", main="", xlab=xlab, ylab=ylab);

title(main=main, sub=stat.info);

dev.off();

#control genes
#housekeeping controls
hs.control <- c("HUMISGF3A/M97935", "HUMRGE/M10098", "HUMGAPDH/M33197", "HSAC07/X00351", "M27830");
#search the exact probe set id
hs.id <- NULL;
for (i in 1:lemngth(hs.control)) {
#print(grep(hs.control[i], geneNames(abatch.chipB)));
hs.id <- c(hs.id, list(name.control=hs.control[i], index.control=grep(hs.control[i], geneNames(abatch.chij
}
#spike controls
sp.control <- c("BioB", "BioC", "BioDn", "CreX", "DapX", "LysX", "PheX", "ThrX", "TrpnX");
#search the exact probe set id
sp.id <- NULL;
for (i in 1:length(sp.control)) {
#print(grep(sp.control[i], geneNames(abatch.chipB)));
sp.id <- c(sp.id, list(name.control=sp.control[i], index.control=grep(sp.control[i], geneNames(abatch.chij
}
#summary for control genes
#
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#chip hgul33a and hgul33b

#

#HUMISGF3A/M97935: AFFX-HUMISGF3A/M97935_3_at (22234, 22596)
# AFFX-HUMISGF3A/M97935_5_at (2235, 22597)
#

#HUMRGE/M10098: AFFX-HUMRGE/M10098_3_at (22238, 22600)

# AFFX-HUMRGE/M10098_5_at (22239, 22601)
#

#HUMGAPDH/M33197: AFFX-HUMGAPDH/M33197_3_at (22231, 22593)
# AFFX-HUMGAPDH/M33197_5_at (22232, 22594)
#

#HSAC07/X00351: AFFX-HSAC07/X00351_3_at (22228, 22590)

# AFFX-HSACO7/X00351_5_at (22229, 22591)
#

#M27830: AFFX-M27830_3_at (22244, 22606)

# AFFX-M27830_5_at (22245, 22607)
#summary for spike control

#

#chip hgul33a and hgul33b

#

#BioB: AFFX-BioB-3_at (22216, 22578)

# AFFX-BioB-5_at (22217, 22579)

#

#BioC: AFFX-BioC-3_at (22219, 22581)

# AFFX-BioC-5_at (22220, 22582)

#

#BioDn: AFFX-BioDn-3_at (22221, 22583)

# AFFX-BioDn-5_at (22222, 22584)

#

#CreX: AFFX-CreX-3_at (22223, 22585)

# AFFX-CreX-5_at (22224, 22586)

#

#DapX: AFFX-DapX-3_at (22225, 22587)

# AFFX-DapX-5_at (22226, 22588)

#

#LysX: AFFX-LysX-3_at (22241, 22603)

# AFFX-LysX-5_at (22242, 22604)

#

#PheX: AFFX-PheX-3_at (22247, 22609)

# AFFX-PheX-5_at (22248, 22610)

#

#ThrX: AFFX-ThrX-3_at (22250, 22612)

# AFFX-ThrX-5_at (22251, 22613)

#

#TrpnX: AFFX-TrpnX-3_at (22253, 22615)

# AFFX-TrpnX-3_at (22254, 22616)

#exact names for control genes
hs <- c("AFFX-HUMISGF3A/M97935_3_at", "AFFX-HUMISGF3A/M97935_5_at",
"AFFX-HUMRGE/M10098_3_at", "AFFX-HUMRGE/M10098_5_at", "
AFFX-HUMGAPDH/M33197_3_at", "AFFX-HUMGAPDH/M33197_5_at",
"AFFX-HSAC07/X00351_3_at", "AFFX-HSACO7/X00351_5_at", "AFFX-M27830_3_at", "AFFX-M27830_5_at");
#exact names for spike controls
sp <- c("AFFX-BioB-3_at", "AFFX-BioB-5_at", "AFFX-BioC-3_at", "AFFX-BioC-5_at",
"AFFX-BioDn-3_at", "AFFX-BioDn-5_at", "AFFX-CreX-3_at", "AFFX-CreX-5_at",
"AFFX-DapX-3_at", "AFFX-DapX-5_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-PheX-3_at", "AFFX-PheX-5_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at", "AFFX-TrpnX-3_at", "AFFX-TrpnX-5_at");
#load masb5 expression set
load("../medic_quality_control/igr/chipA/esetA_mas_igr.RData");
#load mas5 calls
load("../medic_quality_control/igr/chipA/abatch_chipA_all_masb5calls.RData");
pdf ("affy_control.pdf");
#for each experiment
for (j in 1:length(sampleNames(abatch.chipA.mas5calls))) {
main <- sprintf("IGR Population - Relapse (chip %s)\n%s",
annotation(esetA.mas.igr), as.character(pData(esetA.mas.igr)[j,2]));
#for each housekeeping control
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hs.calls <- NULL;
hs.sig <- NULL;
for(i in 1:length(hs)) {
hs.calls <- c(hs.calls, exprs(abatch.chipA.mas5calls)[geneNames(abatch.chipA.masbcalls) == hs[i],
hs.sig <- c(hs.sig, exprs(esetA.mas.igr)[geneNames(esetA.mas.igr) == hs[i],j1);
¥
#generate the indices
ind <- NULL;
for(i in 1:(length(hs)/2)) {
ind <- c(ind,rep(i, 2));
¥
#compute the colors
hs.colors <- NULL;
for(i in 1:length(hs)) {
if (hs.calls[i] == "P") {
if (i%%2 == 0) { #3’ present
hs.colors <- c(hs.colors, "blue");
}
else { #5’ present
hs.colors <- c(hs.colors, "red");

T
T
else {
if (i%%2 == 0) { #3’ absent
hs.colors <- c(hs.colors, "purple");
T
else { #5° absent
hs.colors <- c(hs.colors, "orange");
T
T

T

ylab <- "signals";

xlab <-"housekeeping controls";

plot(ind, hs.sig, col=hs.colors, main="", xlab=xlab, ylab=ylab, xlim=c(0, (length(hs)/2)+7), ylim=c(0, 80
title(main=main);

legend(x=(length(hs)/2)+1, y=4000, legend=c("signal 3’ (P)",
"signal 3’ (A)", "signal 5’ (P)", "signal 5’ (A)"), col=c("red", "orange", "blue", "purple"), pch=’07);

ylab <- "signal (37/5%)"

xlab <- "housekeeping controls";

plot(hs.sig[(1:1length(hs.sig))%%2 == 1] / hs.sig[(1:length(hs.sig))%%2 == 0], xlab=xlab, ylab=ylab, main=

title(main=main);

#for each spike control

sp.calls <- NULL;

sp.sig <- NULL;

for(i in 1:length(sp)) {
sp.calls <- c(sp.calls, exprs(abatch.chipA.mas5calls)[geneNames(abatch.chipA.mas5calls) == spl[il,
sp.sig <- c(sp.sig, exprs(esetA.mas.igr)[geneNames(esetA.mas.igr) == sp[il,jl);

}

#generate the indices
ind <- NULL;
for(i in 1:(length(sp)/2)) {
ind <- c(ind,rep(i, 2));
¥
#compute the colors
sp.colors <- NULL;
for(i in 1:length(sp)) {
if (sp.calls[i] == "P") {
if (i%%2 == 0) { #3’ present
sp.colors <- c(sp.colors, "blue");
}
else { #5° present
sp.colors <- c(sp.colors, "red");
}
¥
else {
if (i%%2 == 0) { #3’ absent
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sp.colors <- c(sp.colors, "purple");
}
else { #5’ absent
sp.colors <- c(sp.colors, "orange");
}
}
}
ylab <- "signals";
xlab <-"spike controls";

plot(ind, sp.sig, col=sp.colors, main="", xlab=xlab, ylab=ylab, xlim=c(0, (length(sp)/2)+7), ylim=c(0, 85

title(main=main);
legend(x=(length(sp)/2)+1, y=4000, legend=c("signal 3’ (P)",
"signal 3” (A)", "signal 5’ (P)", "signal 5’ (A)"), col=c("red", "orange", "blue", "purple"), pch=’07);
ylab <- "signal (3°/5°)"
xlab <- "spike controls";
plot(sp.sig[(1:length(sp.sig))%%2 == 1] / sp.sig[(1:length(sp.sig))%%2 == 0], xlab=xlab, ylab=ylab);
title(main=main);
T
dev.off();

#use of simpleaffy package

#scaling factor, average background, housekeeping controls and spike controls
abatch <- abatch.chipB;

qc <- qc.stats(abatch);

sf <- qc[,colnames(qc)=="s.f."];

gapdh35 <- qc[,"GAPDH.3°/5°"];

gapdh3M <- qc[,"GAPDH.3’/M"];

beta.actin35 <-qc[,"beta.actin.3’/5°"];

beta.actin3M <- qgc[,"beta.actin.3’/M"];

avg.bg <- qcl[,"avbg"];

spike <- qc[, c("bioB", "bioC", "bioD", "creX")];

spike[spike == 1] <- "P";

spike[spike != "P"] <- "A/M";

main <- sprintf("IGR Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames(abatch))), annotation(abatch));
pdf("scaling_factor.pdf");

pop <- “igr“;

xlab <- "sample";

ylab <- "scaling factor";

col <- rep("blue", nbr.exp);

col[sf > median(sf)*sqrt(3)] <- "red";

col[sf < median(sf)/sqrt(3)] <- "red";

plot(sf, ylim=c(0,2), main="", xlab=xlab, ylab=ylab, col=col)
abline(h=median(sf), col="black");
abline(h=median(sf)*sqrt(3), col='green");
abline(h=median(sf)/sqrt(3), col="green");

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [}.5g,%.5gl",
mean(sf, na.rm=TRUE), median(sf, na.rm=TRUE), sd(sf, na.rm=TRUE), min(sf), max(sf));
title(main=main, sub=stat.info);

dev.off();

pdf ("avg_background.pdf");

pop <- “igr“;

xlab <- "sample";

ylab <- "average background";

plot(avg.bg, main="", xlab=xlab, ylab=ylab, col="blue");

stat.info <- sprintf("\n\nmean: %.5g median: %.5g std: %.5g range: [%.5g,%.5g1",

mean(avg.bg, na.rm=TRUE), median(avg.bg, na.rm=TRUE), sd(avg.bg, na.rm=TRUE), min(avg.bg), max(avg.bg));
title(main=main, sub=stat.info);

dev.off();

pdf ("controls.pdf");

main <- sprintf("IGR Population - Relapse\n(%i patients on chip %s)",
as.integer(length(sampleNames(abatch))), annotation(abatch));

prs <- apply(spike == "P", 2, sum);

prs <- (prs/nbr.exp)#*100;

sub <- sprintf("percent of present calls -> bioB: %i, bioC: %i, bioD: %i, creX: %i",
as.integer(prs[1]), as.integer(prs[3]), as.integer(prs[3]), as.integer(prs([4]));
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xlab <- "sample";

ylab <- "housekeeping control";

plot(gapdh35, xlim=c(0, nbr.exp+30), ylim=c(0,4), main="", xlab=xlab, ylab=ylab, col="blue", pch="o");
points(gapdh3M, col="blue", pch="x");

points(beta.actin35, col="red", pch="o");

points(beta.actin3M, col="red", pch="x");

abline(h=1, col="black");

abline(h=3, col="green");

abline(h=1/3, col="green");

legend(x=nbr.exp, y=3.5, legend=c("GAPDH 3°/5°", "GAPDH 3°’/M", "beta actin 3°/5°",
"beta actin 3 ’/M") s col=c("blue" s "plue" s "red" s Ilredll) ) Pch=c(lloll s nyn s ngn s ||x||)) ;
title(main=main, sub=sub);

dev.off();

#use of the AffyExtensions package
#image of weights computed for fitPLM
#boxplot of the fitPLM object

#Mbox of the fitPLM object

#matrix of scatterplots
eset <- esetA.mas.igr;
maxp <- 25;
#generate names for the pairs files
nm <- NULL;
for (i in 1:ceiling(nbr.exp/maxp)) {
nm <- c(nm, sprintf("pairsi.bmp", as.integer(i)));

¥

main <- sprintf("IGR Population - Relapse\n(%i patients on chip %s)",
as.integer(nbr.exp), annotation(eset));
for (i in 1:length(mm)) {
if (maxp < nbr.exp) {
if (i == length(mm)) {
ind <- (nbr.exp-maxp):nbr.exp;

}
else {
beg <- (i-1)*maxp;
end <- beg+maxp;
if (i == 1) {
beg <- 1;
}
ind <- beg:end;
}
}
else {
ind <- 1:nbr.exp;
}

bitmap(nm[i], height=100, width=100, res=150);

pairs(log2(exprs(eset)[,ind]), pch=".", main="", cex.labels = 0.15, font.labels=0.15);
title(main=main);

dev.off();

#matrix of MA plots
eset <- esetA.mas.igr;
maxp <- 10;
#generate names for the pairs files
nm <- NULL;
for (i in 1:ceiling(nbr.exp/maxp)) {

nm <- c(nm, sprintf("mvapairsi.bmp", as.integer(i)));
}
main <- sprintf("IGR Population - Relapse\n(%i patients on chip %s)",
as.integer(nbr.exp), annotation(eset));
for (i in 1:length(nm)) {

if (maxp < nbr.exp) {

if (i == length(mm)) {
ind <- (nbr.exp-maxp):nbr.exp;

}
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else {
beg <- (i-1)*maxp;
end <- beg+maxp;
if (i ==1) {
beg <- 1;
}
ind <- beg:end;
}
¥
else {
ind <- 1l:nbr.exp;
}

bitmap(nm[i], height=100, width=100, res=150);
#have to find good parameters for the fonts !!!
mva.pairs(exprs(eset)[,ind], main="");
title(main=main);

dev.off();

64
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Code of medic read.R

#Function to read medic data
#
#init
if (!require(affy)) {
stop("require affy library!");
}
medic <- function() {
#local functions

H#itit HH## H##

sn.fct <- function(lst) {
return (1st[[1]]);
¥

transform.name <- function(population, filename) {
if (population=="oxford") {
cut.sn <- "[~0-9]";
fn <- filename;
sn <- lapply(strsplit(fn, cut.sn), sn.fct);
sn <- unlist(sn);
pop <- rep("oxford", length(sn));
fn <- fn[sort(as.numeric(sn), index.return=TRUE)$ix];
sn <- sn[sort(as.numeric(sn), index.return=TRUE)$ix];
#add the string "experiment_" before the experiment number to correspond with demographics file

sn <- paste("experiment", sn, sep="_");
}
else if (population=="igr") {
cut.sn <- " ";
fn <- filename;
sn <- lapply(strsplit(fn, cut.sn), sn.fct);
sn <- unlist(sn);
#remove the char ’P’ at the beginning of the experiment name
sn <- substr(sn, 2, nchar(sn));
pop <- rep("igr", length(sn));
fn <- fn[sort(as.numeric(sn), index.return=TRUE)$ix];
sn <- sn[sort(as.numeric(sn), index.return=TRUE)$ix];
#add the string "experiment_" before the experiment number to correspond with demographics file
sn <- paste("experiment", sn, sep="_");
}

else if (population=="all") {
cut.sn.oxford <- "[~0-9]";

cut.sn.igr <- " ";

fn <- filename;

sn.oxford <- fn[substr(fn,1,1) != "P"];
sn.igr <- fn[substr(fn,1,1) == "P"];

sn.oxford <- lapply(strsplit(sn.oxford, cut.sn.oxford), sn.fct);
sn.oxford <- unlist(sn.oxford);

sn.igr <- lapply(strsplit(sn.igr, cut.sn.igr), sn.fct);

sn.igr <- unlist(sn.igr);

#remove the char ’P’ at the beginning of the experiment name

65
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sn.igr <- substr(sn.igr, 2, nchar(sn.igr));

pop <- c(rep("oxford", length(sn.oxford)), rep("igr", length(sn.igr)));

sn <- c(sn.oxford, sn.igr);

fn <- fn[sort(as.numeric(sn), index.return=TRUE)$ix];

sn <- sn[sort(as.numeric(sn), index.return=TRUE)$ix];

#add the string "experiment_" before the experiment number to correspond with demographics file

sn <- paste("experiment", sn, sep="_");
¥
else {

stop("population name invalid!");
¥

return (list(fn=fn, sn=sn, population=pop));

}

read.population <- function(population, my.wd, progn.file, nbr.experiments) {
#read the prognosis information
progn <- read.csv(file=progn.file, row.names=1);
#keep the sammple names
progn.sn <- row.names(progn);
#keep the first column of data (relapse<b)
progn <- progn[,1];

#remove the experiment where there is no prognosis
progn.sn <- progn.sn[!is.na(progn)]
progn <- progn[!is.na(progn)]
wd.save <- getwd();
setwd(my.wd) ;
#list the CEL files in the target directory
fn <- dir(pattern="*.[CEL|cell");
if (length(fn) == 0) {
cat("no CEL file to read!\n");
return (list(err=-1));
}
fsn <- transform.name(population=population, filename=fn);
fn <- fsn[[1]];
sn <- fsn[[2]];
pop <- fsn[[3]];
#take only the experiments which names are in the prognosis file
progn.checked <- vector(mode="numeric", length=length(sn));
for (i in 1:length(sn)) {
if (is.element(sn[i], progn.sn)) {
progn.checked[i] <- progn[is.element(progn.sn, sn[i])];
¥
else {
progn.checked[i] <- NA;
}
¥
#remove the NA values
sn <- sn[!is.na(progn.checked)];
fn <- fn[!is.na(progn.checked)];
pop <- pop[!is.na(progn.checked)];
progn.checked <- progn.checked[!is.na(progn.checked)];
if (nbr.experiments > 0 && nbr.experiments < length(fn)) {

fn <- fn[l:nbr.experiments];

sn <- sn[l:nbr.experiments];

progn.checked <- progn.checked[1:nbr.experiments];
}
#phenoData

phdata <- new("phenoData", pData=as.data.frame(cbind(filename=fn, experimentname=sn,
prognosis=progn.checked, population=pop)), varLabels=list("filename", "experimentname", "prognosis", "population")
setwd(wd.save) ;

return (list(filename=fn, phenodata=phdata));
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list (
medic.read = function (population, my.wd, progn.file, nbr.experiments=0, verbose=TRUE) {
#function to read CEL files
#all these functions can be applied chip per chip to save memory (like just.rma()
d.read <- read.population(population, my.wd, progn.file, nbr.experiments);
fn <- d.read[[1]];
phdata <- d.read[[2]];
nbr.exp <- length(fn);
if (nbr.experiments > O && nbr.experiments < nbr.exp) {
fn <- fn[l:nbr.experiments];
phdata <- phdata[l:nbr.experiments,];
}
print(pData(phdata));
wd.save <- getwd();
setwd(my.wd) ;

#read the cel files in a affybatch object

#read the first CEL files to get information about affymetrix chip
eset <- ReadAffy(filenames=fn, phenoData=phdata, verbose=TRUE);
setwd(wd.save);

return (eset);

1,

medic.read.mas = function (population, my.wd, progn.file, nbr.experiments=0, read.group=1, verbos
#function to read CEL files 1 by 1 and apply
#background correction: mas
#normalization: mas
#pm correction: mas
#summary: mas
#all these functions can be applied chip per chip to save memory (like just.rma()

d.read <- read.population(population, my.wd, progn.file, nbr.experiments);
fn <- d.read[[1]];
phdata <- d.read[[2]];
nbr.exp <- length(fn);
print(pData(phdata));
wd.save <- getwd();
setwd(my.wd) ;

#construct the exprSet object with a modified expression measures matrix

i <- 0;
while (i < nbr.exp) {

if ((i+read.group) > nbr.exp) {
j <- nbr.exp;
}
else {
j <- itread.group;
}
if (i==0) {#first CEL files to read
#read the first CEL files to get information about affymetrix chip
eset <- ReadAffy(filenames=fn[(i+1):j], verbose=TRUE);
#use methods described above (chip per chip methods)
eset <- expresso(eset, bgcorrect.method="mas", normalize.method="constant",
pmcorrect.method="mas", summary.method="mas", verbose=TRUE);
}
else {

eseti <- ReadAffy(filenames=fn[(i+1):j], verbose=TRUE);



APPENDIX F. CODE OF MEDIC READ.R 68

#use methods described above (chip per chip methods)

eseti <- expresso(eseti, bgcorrect.method="mas", normalize.method="constant",
pmcorrect.method="mas", summary.method="mas", verbose=TRUE);

#merge the current exprSet object and the old exprSet
slot(eset, "exprs") <- cbind(exprs(eset), exprs(eseti));
slot(eset, "se.exprs") <- cbind(se.exprs(eset), se.exprs(eseti));
#free memory
rm(eseti);
T
i<- 3;
T
slot(eset, "phenoData") <- phdata;
setwd(wd.save) ;

return (eset);
}’

medic.read.justrma = function (population, my.wd, progn.file, nbr.experiments=0) {

d.read <- read.population(population, my.wd, progn.file, nbr.experiments);
fn <- d.read[[1]];

phdata <- d.read[[2]];

print(pData(phdata));

wd.save <- getwd();

setwd(my.wd) ;

#background correction using RMA background correction

#data normalization using quantile normalization

#the exprSet result contains the expression measures in log2 scale

eset <- just.rma(filenames=fn, phenoData=phdata, notes="Read affy data with just.rma()
method because of memory limitations", verbose=TRUE, background=TRUE, normalize=TRUE);

#unlog the expression measures

cat("unlog expression measures\n");

slot(eset, "exprs") <- 2"exprs(eset);

setwd(wd.save) ;

return (eset);
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Code of medic.R

#functions used for the medic project
#method to treat duplicated genes between affymetrix HG-U133A an HG-U133B
action.duplic.gene <- function (eset, duplic.method="remove") {
if (!require(Biobase)) {
stop("require Biobase library!");

}

#mean all pairs of duplicated genes
#warning: no management of NA values!
#warning: no management of se.exprs values!

exprs.temp <- exprs(eset);

se.exprs.temp <- se.exprs(eset);

dupl.gene <- geneNames(eset) [duplicated(geneNames(eset))];

if (duplic.method == "mean") {

for (i in 1:length(dupl.gene)) {

dupl.ix <- row.names(exprs.temp)==dupl.genel[i];
dupl <- sort(!dupl.ix, index.return=TRUE)$ix;
#indices of duplicated genes are in dupl[i1] and dupl[2] if only 2 duplicated genes
exprs.temp[dupl[1],] <- apply(exprs(eset)[dupl.ix,], 2, mean);
exprs.temp <- exprs.temp[-dupl[2],];
se.exprs.temp <- se.exprs.temp[-dupl[2],];

T
T
else if (duplic.method == "remove") {
dupl.ix <- !duplicated(geneNames(eset))
exprs.temp <- exprs(eset)[dupl.ix,];
se.exprs <- se.exprs(eset)[dupl.ix,];
T
else {
cat("no valid method to treat the duplicated gene!\n");
T

cat(sprintf("%i duplicated genes\n", as.integer(length(dupl.gene))));
slot(eset, "exprs") <- exprs.temp;
slot(eset, "se.exprs") <- se.exprs.temp;
return (eset);
}
#merge two exprSet objects
merge.exprset <- function(esetl, eset2) {
if (!require(Biobase)) {
stop("require Biobase library!");
¥
if (length(setdiff(geneNames(esetl), geneNames(eset2))) == 0) {#merge experiments
cat("merge by experiments\n");
nbr.exp <- (length(experimentNames(esetl)) + length(experimentNames(eset2)));
#phenoData
phdata <- new("phenoData", pData=rbind(pData(esetl), pData(eset2)), varLabels=varLabels(esetl));
#renumbering the experiments

69



APPENDIX G. CODE OF MEDIC.R 70

row.names (pData(phdata)) <- 1:nbr.exp;
nexprs <- cbind(exprs(esetl), exprs(eset2));
#renumbering the experiments

dimnames (nexprs) [[2]] <- 1:nbr.exp;

se.nexprs <- cbind(se.exprs(esetl), se.exprs(eset2));
#renumbering the experiments
dimnames(se.nexprs) [[2]] <- 1:nbr.exp;

esetm <- new("exprSet", exprs=nexprs, se.exprs=se.nexprs,
phenoData=phdata, annotation=annotation(esetl), description=paste(description(esetl),
" and ", description(eset2)), notes=paste(notes(esetl), " and ", notes(eset2)));
¥
else {#merge genes
cat("merge by genes\n");

esetm <- new("exprSet", exprs=rbind(exprs(esetl), exprs(eset2)),
se.exprs=rbind(se.exprs(esetl), se.exprs(eset2)), phenoData=phenoData(esetl),

annotation=paste(annotation(esetl), " and ", annotation(eset2)), description=paste(description(esetl),
" and ", description(eset2)), notes=paste(notes(esetl), " and ", notes(eset2)));
T
return (esetm);
}
#function to compute the intersection of a list
intersect.list <- function(list.input) {
if (length(list.input) == 0) {
cat("empty list!\n");
return (-1);
}
res <- list.input[[1]];
for (i in 2:length(list.input)) {

res <- intersect(res, list.input[[i]]);
T

return (res);
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Code of medic simple classif.R

medic.simple.classif <- function(eset, duplic.method="mean", classif.method="svm",
hyst1=15, hyst2=0.1, cl.thresh=0.5, nk=5, cost=1.5%10"-5, gamma=1.5%10"-5, clw=10) {

#libraries

if (!require(Biobase)) {
stop("require Biobase library!");

}
if (classif.method == "svm") {
if (!require(e1071)) {
stop("require e1071 library!");
}
}
else if (classif.method == "knn") {
if (!require(class)){
stop("require class library!");
}
}
else if (classif.method == "1m") {
if (!require(base)){
stop("require base library!");
}
}
else {
stop("classification method not valid!");
}
#functions

action.duplic.gene <- function (eset, duplic.method="remove") {

#mean all pairs of duplicated genes
#warning: no management of NA values!
#warning: no management of se.exprs values!

exprs.temp <- exprs(eset);

se.exprs.temp <- se.exprs(eset);

dupl.gene <- geneNames(eset) [duplicated(geneNames(eset))];

if (duplic.method == "mean") {

for (i in 1:length(dupl.gene)) {

dupl.ix <- row.names(exprs.temp)==dupl.gene[i];
dupl <- sort(!dupl.ix, index.return=TRUE)$ix;
#indices of duplicated genes are in dupl[1] and dupl[2] if only 2 duplicated genes
exprs.temp[dupl[1],] <- apply(exprs(eset)[dupl.ix,], 2, mean);
exprs.temp <- exprs.temp[-dupl[2],];
se.exprs.temp <- se.exprs.temp[-dupl[2],];
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¥
else if (duplic.method == "remove") {
dupl.ix <- !duplicated(geneNames(eset))
exprs.temp <- exprs(eset)[dupl.ix,];
se.exprs <- se.exprs(eset)[dupl.ix,];
¥
else {
stop("no valid method to treat the duplicated gene!");
}

cat(sprintf("%i duplicated genes\n", as.integer(length(dupl.gene))));
slot(eset, "exprs") <- exprs.temp;

slot(eset, "se.exprs") <- se.exprs.temp;

return (eset);

cat(sprintf("\nclassification by ¥%s\n", classif.method));
#verif for duplicated gene in the expression set
if (sum(duplicated(geneNames(eset))) != 0) {

cat("duplicated genes in the expression measures set\n");
eset <- action.duplic.gene(eset=eset, duplic.method=duplic.method);
}
nbr.exp <- length(experimentNames(eset));
nbr.gene <- length(geneNames(eset));
cat(sprintf("\n%i genes in %i experiments\n", as.integer(nbr.gene), as.integer(nbr.exp)));
#class weights
if (classif.method == "svm") {
#the class weights are also used in the evaluation criteria
class.weights <- c(1, clw);
names(class.weights) <- c("0", "1");
regr.method <- FALSE;

}

if (classif.method == "knn") {
regr.method <- FALSE;

}

if (classif.method == "1m") {
#the class weights are also used in the evaluation criteria
class.weights <- rep(l, nbr.exp);
#give a weight of 10 for the relapses
class.weights[pData(eset) [,3] == 1] <- clw;
regr.method <- TRUE;

}

#format the output

res.gm <- data.frame(matrix(data=0, nrow=nbr.exp, ncol=(nbr.gene)),
row.names=as.character(pData(eset)[,2]));

names(res.gm) <- geneNames(eset);

res.miscl.global <- NULL;

res.miscl <- data.frame(matrix(data=0, nrow=nbr.exp, ncol=2),
row.names=as.character(pData(eset) [,2]));

names(res.miscl) <- c("false_positive", "false_negative");

#save the error rate plots in the feature selection

pdf ("feature_selection.pdf");

#misclassification (false positive, false negative)

misclassif.global <- ¢(0,0);

for (k in 1:nbr.exp) {

cat(sprintf("\nstep %i:\n", as.integer(k)));
#split the expression set for the leave-one-out
group.loo <- rep(l, nbr.exp);

group.loo[k] <- 2;

eset.split <- split(eset, group.loo);

eset.in <- eset.split[[1]];

eset.out <- eset.split[[2]];
rm(list="eset.split");

#eset.in contains the data for the training set
#eset.out contains the data for the validation set



APPENDIX H. CODE OF MEDIC SIMPLE CLASSIF.R 73

#rank the genes according to their correlation with the outcome
#pearson correlation coefficient

geor
gene
geor
nexp
#for

<- cor(x=t(exprs(eset.in)), y=pData(eset.in)[,3], method="pearson");

.ranked <- geneNames(eset.in) [sort(abs(gcor), index.return=TRUE)$ix];

<- gcor[sort(abs(gcor), index.return=TRUE)$ix];
<- length(experimentNames(eset.in));
the feature selection, the internal cross-validation estimation of svm is used

loo.internal <- c(nexp,clw*nexp);
#control the improvement evolution during feature selection

hyst <- cluxfloor(nexp / hystl); #class weight * 20% of the number of experiments
hyst.param <- clwxhyst2;

cat(sprintf("feature selection -> max of %i ’\#’ will be displayed:\n", as.integer(hyst)));
nbr.rel <- sum(pData(eset.in)[,3] == 1);

nbr.notrel <- sum(pData(eset.in)[,3] == 0);

miscl.save <- c(nbr.notrel, nbr.rel);

for (i in 2:nbr.gene) {#feature selection

#X contains all the data to build the model
X <- as.data.frame(t(exprs(eset.in)[gene.ranked[1:i],]))
#bug when only 1 marker gene
Y <- as.data.frame(pData(eset.in)[,3]);
if (classif.method == "1m") {#1lm does not support factors
Y[,1] <- as.numeric(Y[,1])-1;
T
X <- cbind(Y, X);
row.names(X) <- pData(eset.in)[,2];
names(X) <- c("prognosis", gene.ranked[1:i]);
#leave-one-out validation for feature selection
miscl <- ¢(0,0);
for (h in 1l:nrow(X)) {
if (classif.method == "svm") {
m <- svm(prognosis ~ ., data=X[-h,], class.weights=class.weights);

}
if (classif.method == "1m") {

m <- Im(prognosis ~ ., data=X[-h,], weights=class.weights);
}

#no training require for knn
#evaluate this set on the left experiment
if (classif.method == "svm") {
cl <- predict(m, X[h,-1]);
}
if (classif.method == "1m") {
cl <- predict(m, X[h,-1]1);
}
if (classif.method == "knn") {
cl <- knn(train=X[-h,-1], test=X[h,-1], c1=X[-h,1], k = nk);
}
if (regr.method) {
if (cl < cl.thresh) {

cl <- 0;
}
else {

cl <- 1;
}

}

if (cl !'= X[h,1]) {
if (¢l == 1 && X[h,1] == 0) {#false positives
miscl[1] <- miscl[1] + 1;
}
else {#false negatives
miscl[2] <- miscl[2] + 1;
}
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#save the misclassification rate
miscl.save <- rbind(miscl.save, miscl);
#decrease the threshold for the hysteresis
if (i%%hyst.param == 0 && hyst >0) {

hyst <- hyst-1;

cat ("\#");

}

if ((loo.internal[1]+(clw#*loo.internal[2])) < (miscl[1]+(clw*miscl[2]))-hyst && i >= 10)
break;

}

if ((loo.internal[1]+(clw*loo.internal[2])) >
(miscl[1]+(clw*miscl[2]))) {#fp + clw * fn = misclassification rate
loo.internal <- miscl;
best.gmarker <- gene.ranked[1:i];

}
}
#best.gmarker contains the best set of marker genes
cat("\n");

cat(sprintf("%i selected marker genes - misclassificatIon -> (%i,%i)\n",
as.integer(length(best.gmarker)), as.integer(loo.internal[1]), as.integer(loo.internall[2])));
#save plots for feature selection

main <- sprintf("Feature Selection Misclassification Rate\nL
eave-One-Out Step %i", as.integer(k));

xlab <- "number of genes";

ylab <- "percent of misclassification rate";

plot(miscl.save[,1]/nbr.notrel, col="blue", type="1", ylim=c(0,1),
x1lim=c(0,nrow(miscl.save)+30), xlab=xlab, ylab=ylab, main=main);

lines(miscl.save[,2]/nbr.rel, col="red");

abline(v=length(best.gmarker), col="green");

legend (x=nrow(miscl.save)+1l, y=0.6, legend=c("} false positive", "} false negative",
"\# marker genes"), col=c("blue", "red", "green"));
#save the best marker genes
res.gm[k,is.element(names(res.gm), best.gmarker)] <- 1;
res.miscl[k,] <- miscl;
#keep only the marker genes selected by feature selection
X <- X[,is.element(names(X), c("prognosis", best.gmarker))];
if (classif.method == "svm") {
#fit the svm
m <- svm(prognosis

., data=X, class.weights=class.weights);

#evaluate this set on the left experiment
cl <- predict(m, t(exprs(eset.out)[is.element(geneNames(eset.out), best.gmarker),]));

T
if (classif.method == "knn") {

cl <- knn(train=X[,-1], test=t(exprs(eset.out)[is.element(geneNames(eset.out),
best.gmarker),]), cl=X[,1], k = nk);

T

if (classif.method == "1m") {
#bug

}

if (cl != pData(eset.out)[,3]) {
cat("bad classification\n");
if (cl == 1 && pData(eset.out)[,3] == 0) {#false positives
misclassif.global[1] <- misclassif.global[1] + 1;
}
else {#false negatives
misclassif.global[2] <- misclassif.global[2] + 1;

}
}
else {

cat("good classification\n");
}

print(misclassif.global);

}
dev.off();
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res.miscl.global <- misclassif.global;
return (list(misclassification=res.miscl, marker.gene=res.gm,
global.misclassification=res.miscl.global));

}
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Code of medic struct id.R

#structural identification for the medic simple analysis
medic.struct.id <- function(eset, classif.method="svm", clw=10, marker.gene=100,
cost=c(-15, 15), gamma=c(-15, 5), nk=c(3,30)) {

#libraries

if (!require(Biobase)) {
stop("require Biobase library!");

¥
if (classif.method == "svm") {
if (!require(e1071)) {
stop("require e1071 library!");
}
}
else if (classif.method == "knn") {
if (!require(class))q
stop("require class library!");
}
}
else if (classif.method == "1m") {
if (!require(base)){
stop("require base library!");
}
}
else {
stop("classification method not valid!");
¥
#functions

action.duplic.gene <- function (eset, duplic.method="remove") {

#mean all pairs of duplicated genes
#warning: no management of NA values!
#warning: no management of se.exprs values!

exprs.temp <- exprs(eset);

se.exprs.temp <- se.exprs(eset);

dupl.gene <- geneNames(eset) [duplicated(geneNames(eset))];

if (duplic.method == "mean") {

for (i in 1:length(dupl.gene)) {

dupl.ix <- row.names(exprs.temp)==dupl.gene[i];
dupl <- sort(!dupl.ix, index.return=TRUE)$ix;
#indices of duplicated genes are in dupl[i] and dupl[2] if only 2 duplicated genes
exprs.temp[dupl[1],] <- apply(exprs(eset)[dupl.ix,], 2, mean);
exprs.temp <- exprs.temp[-dupl[2],];
se.exprs.temp <- se.exprs.temp[-dupl[2],];
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T
¥
else if (duplic.method == "remove") {
dupl.ix <- !duplicated(geneNames(eset))
exprs.temp <- exprs(eset)[dupl.ix,];
se.exprs <- se.exprs(eset) [dupl.ix,];
T
else {
stop("no valid method to treat the duplicated gene!");
T

cat(sprintf("%i duplicated genes\n", as.integer(length(dupl.gene))));
slot(eset, "exprs") <- exprs.temp;

slot(eset, "se.exprs") <- se.exprs.temp;

return (eset);

}

H#itit HH## H##

cat(sprintf("\nstructural identification for %s classification\n", classif.method));
#verif for duplicated gene in the expression set
if (sum(duplicated(geneNames(eset))) != 0) {

cat("duplicated genes in the expression measures set\n");
eset <- action.duplic.gene(eset=eset, duplic.method=duplic.method);
}
nbr.exp <- length(experimentNames(eset));
nbr.gene <- length(geneNames(eset));
cat(sprintf("\n¥%i genes in %i experiments\n", as.integer(nbr.gene), as.integer(nbr.exp)));
#class weights
if (classif.method == "svm") {
#the class weights are also used in the evaluation criteria
class.weights <- c(1, clw);
names(class.weights) <- c("0", "1");
regr.method <- FALSE;

}

if (classif.method == "knn") {
regr.method <- FALSE;

}

if (classif.method == "1m") {
#the class weights are also used in the evaluation criteria
class.weights <- rep(l, nbr.exp);
#give a weight of 10 for the relapses
class.weights[pData(eset)[,3] == 1] <- clw;
regr.method <- TRUE;

¥

#save the error rate plots in the feature selection

pdf ("structural_identification.pdf");

#rank the genes according to their correlation with the outcome
#pearson correlation coefficient

geor <- cor(x=t(exprs(eset)), y=pData(eset)[,3], method="pearson");
gene.ranked <- geneNames(eset) [sort(abs(gcor), index.return=TRUE)$ix];
geor <- gcor[sort(abs(gcor), index.return=TRUE)$ix];
#take only the first marker.gene genes
gene.ranked <- gene.ranked[1:marker.genel;
geor <- gcor[1:marker.gene];
if (classif.method == "svm") {
#X contains all the data to build the model
X <- as.data.frame(t(exprs(eset) [gene.ranked,]))
Y <- as.data.frame(pData(eset)[,3]);
X <- cbind(Y, X);
row.names(X) <- pData(eset)[,2];
names(X) <- c("prognosis", gene.ranked);
#first grid search (find a good region of parameters space)
cat("\nlarge grid search:\n");
cost <- 2~(seq(cost[1], cost[2], 2));
gamma <- 2~ (seq(gamma[1], gamma[2], 2));
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tuned.param <- tune.svm (prognosis ~ ., data=X, gamma=gamma, cost=cost,
class.weights=class.weights);

print(tuned.param[1:2]);

#second grid search (refine a good region of parameters space)

cat("fine grid search:\n");

g2 <- as.integer(log2(tuned.param$best.parameters[1]));

c2 <- as.integer(log2(tuned.param$best.parameters[2]));

cost <- 2°(seq((c2-1), (c2+1), 0.25));
gamma <- 2~(seq((g2-1), (g2+1), 0.25));

tuned.param <- tune.svm(prognosis
class.weights=class.weights);

print(tuned.param[1:2]);

cat("\n") ;

cost <- tuned.param$best.parameters[1];

gamma <- tuned.param$best.parameters[2];

res.param <- list(cost=cost, gamma=gamma);

#plot of performances

xlab <- "cost";

ylab <- "gamma";

zlab <- "misclassification rate";

main <- sprintf("Structural Identification for ¥%s classification", classif.method);

sub <- "grid search";

., data=X, gamma=gamma, cost=cost,

scatterplot3d(x=tuned.param$performances[,1], y=tuned.param$performances[,2],
z=tuned.param$performances[,3], xlab=xlab, ylab=ylab, zlab=zlab, main=main, sub=sub, pch="+");

}

if (classif.method == "knn") {
#X contains all the data to build the model
X <- as.data.frame(t(exprs(eset) [gene.ranked,]))
Y <- as.data.frame(pData(eset)[,3]);
X <- cbind(Y, X);
row.names(X) <- pData(eset)[,2];
names(X) <- c("prognosis", gene.ranked);

tuned.param <- tune.knn(x=X[,-1], y=X[,1], k = nk[1]:nk[2]);
print(tuned.param[1:2]);

cat("\n");

#nk <- tuned.param$;

res.param <- list(k=nk);

#plot of performances

xlab <- "k";

ylab <- "misclassification rate";

main <- sprintf("Structural Identification for ¥%s classification", classif.method);
sub <- "exhaustive search";

plot (x=tuned.param$performances[,1], y=tuned.param$performances[,2], xlab=xlab,
ylab=ylab, main=main, sub=sub, type="1", col="red");
abline(v=tuned.param$best.parameters, col="green");

¥

if (classif.method == "knni") {
for (i in nk[1]:nk[2]) {

miscl <- c(0,0);
for (h in 1l:nrow(X)) {

#evaluate this set on the left experiment
cl <- knn(train=X[-h,-1], test=X[h,-1], cl=X[-h,1], k = i);

if (cl != X[h,1]) {
if (¢l == 1 && X[h,1] == 0) {#false positives
miscl[1] <- miscl[1] + 1;
}
else {#false negatives
miscl[2] <- miscl[2] + 1;
}
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}
}
#save the misclassification rate
miscl.save <- rbind(miscl.save, miscl);
#decrease the threshold for the hysteresis
if (i%%hyst.param == 0 &% hyst >0) {

hyst <- hyst-1;

cat ("\#");

T

if ((loo.internal[1]+(clw*loo.internal[2])) < (miscl[1]+(clw*miscl[2]))-hyst && i >= 10)
break;

T

if ((loo.internal[1]+(clw*loo.internal[2])) > (miscl[1]+(clw*miscl[2]))) {#fp + clw * fn
loo.internal <- miscl;
best.gmarker <- gene.ranked[1:i];

T
}
dev.off();
return (res.param);



