Logical Characterization of Weighted Pebble Walking Automata

Benjamin Monmege
Université libre de Bruxelles, Belgium

Benedikt Bollig and Paul Gastin (LSV, ENS Cachan, France)
Marc Zeitoun (LaBRI, Bordeaux University, France)

CSL-LICS 2014

Vienna - July 15, 2014
Equivalence between automata and logic

- Well-known and studied model of computation: NFA over words
- Existing extensions over trees, grids, graphs...
- Robustness of automata intrinsically linked to logical characterization
Equivalence between automata and logic

- Well-known and studied model of computation: NFA over words
- Existing extensions over trees, grids, graphs...
- Robustness of automata intrinsically linked to logical characterization

- Büchi-Elgot-Trakhtenbrot: NFA vs MSO
- Engelfriet-Hoogeboom: pebble walking automata vs FOposTC
- Droste-Gastin: weighted automata vs restricted weighted MSO
Equivalence between automata and logic

- Well-known and studied model of computation: NFA over words
- Existing extensions over trees, grids, graphs...
- Robustness of automata intrinsically linked to logical characterization

- Büchi-Elgot-Trakhtenbrot: NFA vs MSO
- Engelfriet-Hoogeboom: pebble walking automata vs FOposTC
- Droste-Gastin: weighted automata vs restricted weighted MSO

- Aim: extend Engelfriet-Hoogeboom result to the quantitative setting, relating weighted pebble walking automata with weighted FOposTC
Graphs as a general model

Words: $D = \{ \rightarrow \}$

computations of sequential programs

\[
\begin{align*}
a &\rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow b \rightarrow b
\end{align*}
\]
Graphs as a general model

Words: $D = \{ \rightarrow \}$
computations of sequential programs

\[a \rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow b \rightarrow b \]

Nested words: $D = \{ \rightarrow, \bowtie \}$
computations of recursive programs, XML documents

\[a \rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow b \rightarrow b \]
Graphs as a general model

Words: $D = \{\rightarrow\}$
computations of sequential programs

\[\begin{align*}
a &\rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow b \rightarrow b
\end{align*}\]

Nested words: $D = \{\rightarrow, \bowtie\}$
computations of recursive programs, XML documents

\[\begin{align*}
a &\rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow a \rightarrow b \rightarrow a \rightarrow b \rightarrow b
\end{align*}\]

Ranked trees: $D = \{\downarrow_1, \downarrow_2\}$
expressions, formulae, parse trees

\[\begin{align*}
\text{S} &\rightarrow \text{NP} \rightarrow \text{VP} \rightarrow \text{V} \rightarrow \text{N} \\
\text{S} &\rightarrow \text{NP} \rightarrow \text{VP} \rightarrow \text{V} \rightarrow \text{N} \\
\text{John} &\rightarrow \text{hit} \rightarrow \text{the} \rightarrow \text{ball}
\end{align*}\]
Graphs as a general model

Definition: directed graphs

\[G = (V, (E_d)_{d \in D}, \lambda, \iota) \text{ where} \]

- \(V \) is a nonempty and finite set of vertices;
- for all edge label \(d \in D, E_d \subseteq V \times V \) is an *irreflexive relation*, describing the \(d \)-edges of the graph, which is *deterministic and codeterministic*;
- \(\lambda: V \to A \) is a vertex-labeling function;
- \(\iota \in V \) is an initial vertex.

For all edge label \(d \), we consider its reverse \(d^{-1} \) letting \(E_{d^{-1}} = (E_d)^{-1} \).
Graphs as a general model

Definition: directed graphs

\[G = (V, (E_d)_{d \in D}, \lambda, \iota) \]

- \(V \) is a nonempty and finite set of vertices;
- for all edge label \(d \in D \), \(E_d \subseteq V \times V \) is an irreflexive relation, describing the \(d \)-edges of the graph, which is deterministic and codeterministic;
- \(\lambda : V \to A \) is a vertex-labeling function;
- \(\iota \in V \) is an initial vertex.

For all edge label \(d \), we consider its reverse \(d^{-1} \) letting \(E_{d^{-1}} = (E_d)^{-1} \)

Grids: \(D = \{ \rightarrow, \uparrow \} \)

pictures
Weighted pebble walking automata

Definition:
- Finite number of states, initial and final states
- Ability to navigate in the graph (using the deterministic edge labels)
- Bounded supply of pebbles able to mark temporarily a position
- Pebbles are treated with a stack policy: first pebble to lift is the last dropped pebble
- Transitions equipped with weights in a complete semiring \((S, +, \times, 0, 1)\)

Examples of complete semirings:
- \((\{0, 1\}, \lor, \land, 0, 1)\)
- \((\mathbb{R}^+ \cup \{+\infty\}, +, \times, 0, 1)\)
- \((\mathbb{Z} \cup \{+\infty, -\infty\}, \min, +, +\infty, 0)\)
- \((\mathbb{Z} \cup \{+\infty, -\infty\}, \max, +, -\infty, 0)\)
- \(([0, 1], \min, \max, 1, 0)\)
- \((2^{\Sigma^*}, \cup, \cdot, \emptyset, \{\varepsilon\})\)
Weighted pebble walking automata

Definition: Semantics over \((S, +, \times, 0, 1)\)

- Configurations over a graph \(G\): \((G, q, \pi, v)\) with state \(q\), stack \(\pi\) of pebble positions and current vertex \(v\)
- Weight of a run: multiplication of the weights of transitions
- Semantics \(\llbracket A \rrbracket(G)\): sum of weights of accepting runs over \(G\)
Example of weighted pebble walking automaton

computes the biggest size of frames (empty black square)

\((\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)\)
Example of weighted pebble walking automaton

```
computes the biggest size of frames
(\mathbb{N} \cup \{-\infty\}, \text{max}, +, -\infty, 0)
```
Example of weighted pebble walking automaton

computes the biggest size of frames (empty black square)

\((\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)\)
Example of weighted pebble walking automaton

computes the biggest size of frames (empty black square)

$\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0$
Logical characterization

Classical weighted automata are **one-way** (sometimes branching) and **without pebbles**

Logical characterization for them in terms of a restricted weighted MSO logic:

- over words [Droste and Gastin, 2009]
- over trees [Droste and Vogler, 2006]
- over grids [Fichtner, 2011]
- over nested words [Mathissen, 2010]...
Logical characterization

Classical weighted automata are **one-way** (sometimes branching) and **without pebbles**

Logical characterization for them in terms of a restricted weighted MSO logic:

- over words [Droste and Gastin, 2009]
- over trees [Droste and Vogler, 2006]
- over grids [Fichtner, 2011]
- over nested words [Mathissen, 2010]...

Restricted weighted MSO does not even contain full weighted FO a priori

Theorem: Our contribution

Weighted pebble walking automata over graphs (wPWA) = wFOTC
Weighted first-order logic

Definition:

Classical first-order logic

\[\varphi ::= \top \mid (x = y) \mid \text{init}(x) \mid P_a(x) \mid R_d(x, y) \mid R_d^+(x, y) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \]
Weighted first-order logic

Definition:

Classical first-order logic

\[\varphi ::= \top | (x = y) | \text{init}(x) | P_a(x) | R_d(x, y) | R_d^+(x, y) | \neg \varphi | \varphi \vee \varphi | \exists x \varphi \]

Weighted first-order logic over graphs with weights in a semiring \((S, +, \times, 0, 1)\)

\[\Phi ::= s | \varphi ? \Phi : \Phi | \Phi \oplus \Phi | \Phi \otimes \Phi | \bigoplus_x \Phi | \bigotimes_x \Phi \]
Weighted first-order logic

Definition:

Classical first-order logic

\[\varphi ::= \top \mid (x = y) \mid \text{init}(x) \mid P_a(x) \mid R_d(x, y) \mid R_d^+(x, y) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \]

Weighted first-order logic over graphs with weights in a semiring \((S, +, \times, 0, 1)\)

\[\Phi ::= s \mid \varphi ? \Phi : \Phi \mid \Phi \oplus \Phi \mid \Phi \otimes \Phi \mid \bigoplus_x \Phi \mid \bigotimes_x \Phi \]

Semantics over a graph \(G\) and a valuation \(\sigma\) of free variables

\[\llbracket \varphi ? \Phi_1 : \Phi_2 \rrbracket (G, \sigma) = \begin{cases} \llbracket \Phi_1 \rrbracket (G, \sigma) & \text{if } G, \sigma \models \varphi \\ \llbracket \Phi_2 \rrbracket (G, \sigma) & \text{otherwise} \end{cases} \]

\[\llbracket \Phi_1 \oplus \Phi_2 \rrbracket (G, \sigma) = \llbracket \Phi_1 \rrbracket (G, \sigma) + \llbracket \Phi_2 \rrbracket (G, \sigma) \quad \llbracket \bigoplus_x \Phi \rrbracket (G, \sigma) = \sum_{v \in V} \llbracket \Phi \rrbracket (G, \sigma[x \mapsto v]) \]

\[\llbracket \Phi_1 \otimes \Phi_2 \rrbracket (G, \sigma) = \llbracket \Phi_1 \rrbracket (G, \sigma) \times \llbracket \Phi_2 \rrbracket (G, \sigma) \quad \llbracket \bigotimes_x \Phi \rrbracket (G, \sigma) = \prod_{v \in V} \llbracket \Phi \rrbracket (G, \sigma[x \mapsto v]) \]
Weighted first-order logic

Definition:

Classical first-order logic

\[\varphi ::= \top \mid (x = y) \mid \text{init}(x) \mid P_a(x) \mid R_d(x, y) \mid R_d^+(x, y) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \; \varphi \]

Weighted first-order logic over graphs with weights in a semiring \((S, +, \times, 0, 1)\)

\[\Phi ::= s \mid \varphi \? \Phi : \Phi \mid \Phi \oplus \Phi \mid \Phi \otimes \Phi \mid \bigoplus_x \Phi \mid \bigotimes_x \Phi \]

Semantics over a graph \(G\) and a valuation \(\sigma\) of free variables

\[
\llbracket \varphi \? \Phi_1 : \Phi_2 \rrbracket(G, \sigma) = \begin{cases} \llbracket \Phi_1 \rrbracket(G, \sigma) & \text{if } G, \sigma \models \varphi \\ \llbracket \Phi_2 \rrbracket(G, \sigma) & \text{otherwise} \end{cases}
\]

\[
\llbracket \Phi_1 \oplus \Phi_2 \rrbracket(G, \sigma) = \llbracket \Phi_1 \rrbracket(G, \sigma) + \llbracket \Phi_2 \rrbracket(G, \sigma) \\
\llbracket \bigoplus_x \Phi \rrbracket(G, \sigma) = \sum_{v \in V} \llbracket \Phi \rrbracket(G, \sigma[x \mapsto v])
\]

\[
\llbracket \Phi_1 \otimes \Phi_2 \rrbracket(G, \sigma) = \llbracket \Phi_1 \rrbracket(G, \sigma) \times \llbracket \Phi_2 \rrbracket(G, \sigma) \\
\llbracket \bigotimes_x \Phi \rrbracket(G, \sigma) = \prod_{v \in V} \llbracket \Phi \rrbracket(G, \sigma[x \mapsto v])
\]

Examples in \((\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)\)

\[
\Phi_b = \bigotimes_x P_b(x) \? 1 : 0 \\
\Phi_w = \bigotimes_x P_w(x) \? 1 : 0 \\
\Phi_b \oplus \Phi_w
\]
Transitive closure in graphs

Binary predicate $R_\uparrow(x, y) = \exists z[R_\rightarrow(x, z) \land R_\uparrow(z, y)]$
Transitive Closure $\text{TC}_{x,y}R_\uparrow(x, y)$
 test if square (not doable in FO)
Transitive closure in graphs

Binary predicate $R^\triangleright(x, y) = \exists z[R_\rightarrow(x, z) \land R_\uparrow(z, y)]$

Transitive Closure $TC_{x,y}R^\triangleright(x, y)$

test if square (not doable in FO)

\[TC_{x,y}[R^\triangleright(x, y) \land 1 : -\infty] \]

verifies that it is a square and computes the length of its diagonal

Weighted transitive closure: semiring $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$

\[
TC_{x,y}[R^\triangleright(x, y) \land 1 : -\infty]
\]

verifies that it is a square and computes the length of its diagonal
Transitive closure in graphs

Binary predicate $R_\rightarrow(x, y) = \exists z[R_\rightarrow(x, z) \wedge R_\rightarrow(z, y)]$

Transitive Closure $\text{TC}_{x, y} R_\rightarrow(x, y)$
test if square (not doable in FO)

Weighted transitive closure: semiring $(\mathbb{N} \cup \{-\infty\}, \text{max}, +, -\infty, 0)$

$$\text{TC}_{x, y}[R_\rightarrow(x, y) ? 1 : -\infty]$$

verifies that it is a square and computes the length of its diagonal

Semantics given in a complete semiring $(S, +, \times, 0, 1)$

$$[[\text{TC}_{x, y} \Phi](x', y')](G, \sigma) = \sum \prod_{\nu_0, \nu_1, \ldots, \nu_m (m>0) \ 0 \leq k \leq m-1 \ \sigma(x')=\nu_0, \sigma(y')=\nu_m} [[\Phi]](G, \sigma[x \mapsto \nu_k, y \mapsto \nu_{k+1}])$$

sum along sequences of stop-vertices

multiplication along the sequence
Bounding the Transitive Closure

- A necessary restriction to obtain a fragment of logic expressively equivalent to \(wPWA \)
- But not so restrictive in most of the cases!

\[
TC^N_{x,y} \Phi(x, y) = TC_{x,y}[\text{dist}(x, y) \leq N \ ? \ \Phi(x, y) : 0]
\]
Bounding the Transitive Closure

- A necessary restriction to obtain a fragment of logic expressively equivalent to wPWA
- But not so restrictive in most of the cases!

\[\text{TC}_{x,y}^N \Phi(x, y) = \text{TC}_{x,y}[\text{dist}(x, y) \leq N \ ? \Phi(x, y) : 0] \]

Previous example: \(\text{TC}_{x,y}[R^\uparrow(x, y) \ ? \ 1 : -\infty] = \text{TC}_{x,y}^2[R^\uparrow(x, y) \ ? \ 1 : -\infty] \)
Bounding the Transitive Closure

- A necessary restriction to obtain a fragment of logic expressively equivalent to \text{wPWA}
- But not so restrictive in most of the cases!

\[\text{TC}^N_{x,y} \Phi(x, y) = \text{TC}_{x,y} \left[\text{dist}(x, y) \leq N \right. \left. ? \Phi(x, y) : 0 \right] \]

Previous example: \(\text{TC}_{x,y} \left[R^\uparrow(x, y) ? 1 : -\infty \right] = \text{TC}^2_{x,y} \left[R^\uparrow(x, y) ? 1 : -\infty \right] \)

Definition: Logic \text{wFOTC}

\[\Phi ::= s \mid \varphi \ ? \Phi \mid \Phi \oplus \Phi \mid \Phi \otimes \Phi \mid \bigoplus_x \Phi \mid \bigotimes_x \Phi \mid \text{TC}^N_{x,y} \Phi \]

with \(s \in S, \varphi \in \text{FO}, x, y \in \text{Var} \) and \(N \in \mathbb{N} \setminus \{0\} \).

Comparison with restricted \text{wMSO}:

- unrestricted use of \(\bigoplus_x \) and \(\bigotimes \), presence of \(\text{TC}_{x,y} \), absence of \(\bigoplus_X \)
Contribution

Theorem:

over searchable graphs: $\text{wFOTC} \rightarrow$ weighted pebble walking automata

over zonable graphs: weighted pebble walking automata $\rightarrow \text{wFOTC}$
Theorem:

over searchable graphs: \(\text{wFOTC} \rightarrow \text{weighted pebble walking automata} \)

over zonable graphs: \(\text{weighted pebble walking automata} \rightarrow \text{wFOTC} \)

\(\implies \) (un)decidability and complexity results over automata transfer to \(\text{wFOTC} \)
Definition: Hypothesis: searche\textit{ble} graphs

- linear order \leq on vertices with ι (initial vertex) as minimal element
- existence of a guide: walking automaton A_G computing \leq

\textit{All previously classes of graphs are searchable}
Translation of \(\text{wFOTC in wPWA} \)

Definition: Hypothesis: searchable graphs

- linear order \(\leq \) on vertices with \(\iota \) (initial vertex) as minimal element
- existence of a guide: walking automaton \(A_G \) computing \(\leq \)

All previously classes of graphs are searchable

Inductive translation:

\[\Phi \oplus \Psi \] disjoint union of automata

\[\Phi \otimes \Psi \] reset to \(\iota \)

\[A_\Phi \rightarrow \text{reset to } \iota \rightarrow A_\Psi \]
Translation of \(wFOTC \) in \(wPWA \)

Definition: Hypothesis: searchable graphs

- linear order \(\leq \) on vertices with \(\iota \) (initial vertex) as minimal element
- existence of a guide: walking automaton \(A_G \) computing \(\leq \)

All previously classes of graphs are searchable

\[\bigoplus_x \Phi \]
Definition: Hypothesis: **searchable** graphs

- linear order \leq on vertices with i (initial vertex) as minimal element
- existence of a guide: walking automaton A_G computing \leq

All previously classes of graphs are searchable
Translation of wFOTC in wPWA

Definition: Hypothesis: **searchable** graphs

- linear order \leq on vertices with ι (initial vertex) as minimal element
- existence of a guide: walking automaton $A_\mathcal{G}$ computing \leq

All previously classes of graphs are searchable

Boolean fragment: **linear size automata** (pebble and navigation)
Translation of \textit{wFOTC} in \textit{wPWA}

Definition: Hypothesis: \textbf{searchable} graphs

- linear order \leq on vertices with ι (initial vertex) as minimal element
- existence of a guide: walking automaton A_G computing \leq

\textit{All previously classes of graphs are searchable}

Boolean fragment: \textbf{linear size automata} (pebble and navigation)

- disjunction $\xi = \phi \lor \psi$
- existential quantification $\xi = \exists x \, \phi$
Translation of \(w\text{FOTC} \) in \(w\text{PWA} \)

Case of a formula \([\text{TC}_{x,y}^N \Phi(x, y)](x', y') \) with \(A \) a \(w\text{PWA} \) for \(\Phi \): construction of fresh free variables

a \(w\text{PWA} \) \(A' \) with two more layers of pebbles that does the following

1. search free variable \(x' \), and drop pebble \(x \)
2. guess a sequence \(\pi \) of moves of length \(\leq N \), follow it, and drop pebble \(y \) (then flush the sequence to save memory)
3. reset to \(\iota \) and simulate \(A \)
4. search pebble \(y \)
5. guess sequence \(\pi \) of moves of length \(\leq N \), follow it, check that it holds \(x \)
 ▶ test that \(\pi \) is minimal amongst all sequences going from \(y \) to \(x \)
6. lift pebbles \(y \) and \(x \) (hence returning to the vertex of \(x \))
7. follow \(\pi \) to reach back the vertex that held \(y \), and drop pebble \(x \)
8. if \(y' \) is held by the current vertex, enter a final state
9. in every case, go back to step 2
Translation of \(\text{wFOTC in wPWA} \)

Case of a formula \([TC_{x,y}^N \Phi(x, y)](x', y') \) with \(\mathcal{A} \) a wPWA for \(\Phi \): construction of fresh free variables

a wPWA \(\mathcal{A}' \) with two more layers of pebbles that does the following

1. search free variable \(x' \), and drop pebble \(x \)
2. guess a sequence \(\pi \) of moves of length \(\leq N \), follow it, and drop pebble \(y \)
 \(\text{(then flush the sequence to save memory)} \)

3. reset to \(\iota \) and simulate \(\mathcal{A} \)
4. search pebble \(y \)
5. guess sequence \(\pi \) of moves of length \(\leq N \), follow it, check that it holds \(x \)

6. lift pebbles \(y \) and \(x \) (hence returning to the vertex of \(x \))
7. follow \(\pi^R \) to reach back the vertex that held \(y \), and drop pebble \(x \)
8. if \(y' \) is held by the current vertex, enter a final state
9. in every case, go back to step 2
Translation of \(wFOTC \) in \(wPWA \)

Case of a formula \([TC_{x,y}^N \Phi(x, y)](x', y') \) with \(\mathcal{A} \) a \(wPWA \) for \(\Phi \): construction of a \(wPWA \) \(\mathcal{A}' \) with two more layers of pebbles that does the following

1. search free variable \(x' \), and drop pebble \(x \)
2. guess a sequence \(\pi \) of moves of length \(\leq N \), follow it, and drop pebble \(y \)
 (then flush the sequence to save memory)
 ▶ test that \(\pi \) is minimal amongst all sequences going from \(x \) to \(y \)
3. reset to \(\iota \) and simulate \(\mathcal{A} \)
4. search pebble \(y \)
5. guess sequence \(\pi \) of moves of length \(\leq N \), follow it, check that it holds \(x \)
 ▶ test that \(\pi \) is minimal amongst all sequences going \(q \) from \(y \) to \(x \)
6. lift pebbles \(y \) and \(x \) (hence returning to the vertex of \(x \))
7. follow \(\pi^R \) to reach back the vertex that held \(y \), and drop pebble \(x \)
8. if \(y' \) is held by the current vertex, enter a final state
9. in every case, go back to step 2
Translation of wPWA in wFOTC

Theorem:
Let \mathcal{G} be a zonable class of graphs. Then, for every wPWA A, we can construct a formula Φ of wFOTC such that for every graph $G \in \mathcal{G}$, and valuation σ of free variables, $[A](G, \sigma) = [\Phi](G, \sigma)$.

Translation depends on the class \mathcal{G}

for a zonable class of graphs \mathcal{G}
Translation of \textit{wPWA in wFOTC}

Theorem:
Let \mathcal{G} be a \textbf{zonable} class of graphs. Then, for every \textit{wPWA} \mathcal{A}, we can construct a formula Φ of \textit{wFOTC} such that for every graph $G \in \mathcal{G}$, and valuation σ of free variables, $\sem{\mathcal{A}}(G, \sigma) = \sem{\Phi}(G, \sigma)$.

Proof in two steps:
- For the considered class of graphs, prove the \textbf{zonability};
- \textbf{Generic} translation of automata into formulae for zonable class of graphs
Zonable classes of graphs

A zoning of a graph G with parameter N:

- an equivalence relation \sim, decomposing a graph into zones of diameter bounded by a constant M;
- set \mathcal{W} of wires = (directed) edges relating different zones;
- an injective encoding function $\text{enc}: \mathcal{W} \times \{0, \ldots, N - 1\} \rightarrow V$.
Zonable classes of graphs

A zoning of a graph G with parameter N:

- an equivalence relation \sim, decomposing a graph into *zones* of diameter bounded by a constant M;
- set \mathcal{W} of wires = (directed) edges relating different zones;
- an injective encoding function $enc: \mathcal{W} \times \{0, \ldots, N - 1\} \rightarrow V$

\begin{figure}
\centering
\includegraphics[width=\textwidth]{zone_partitioning.png}
\caption{Zone partitioning of a graph: zones are related by wires depicted with dashed convention, and the red area linked to a vertex v of a zone.}
\end{figure}

and \sim and enc must be expressible by some formulae $\text{zone}(z, z')$ and $\text{enc}_n(z, z', x)$ (for $n \in \{0, \ldots, N - 1\}$) in wFOTC
Examples

\[\text{Figure 6.7: Zone partitioning of a word and description of the encoding function}\]

\[\text{Figure 6.8: Zone partitioning of a picture}\]

\[N - 1 \leq |w| - 2KN < 3N - 1\]
Examples

\[N - 1 \leq |w| - 2kN < 3N - 1 \]
Before stating the translation theorems, we give a non-exhaustive list of zonable classes. Each reserved for the wires of one border of the zone. This defines an injection as wires are separated by a distance of \(\frac{w_{\text{FO}} + w_{\text{TC}}}{z} \) (see Figure 6.7), except the last zone that may contain at most positions: hence each zone has a diameter bounded by \(\frac{2(k-1)N}{z} \) (except the largest zone possible is the one on the right bottom corner which can have width and height bounded above by \(\frac{2kN - 1}{z} \)). Forgetting, bounded above by \(\frac{2(k+1)N}{z} \).

For every integer \(k \), they can be described using modulo computations: henceforth, we define \(\mu(z) \), \(\lambda(z) \), and \(\rho(z) \). They are computable but also trees, nested words, Mazurkiewicz traces, rings...
Translation in a zonable class of graphs

- External (bounded) transitive closure jumping from zone to zone: state at the wires encoded using enc;
- Internal (bounded) transitive closures to compute the weights of the infinite set of runs restricted to a zone: computation by McNaughton-Yamada algorithm, state directly encoded in the formulae.
Translation in a zonable class of graphs

Weight of the runs from \(z_i \) in state \(q_i \) to \(z_f \) in state \(q_f \):

\[
\bigoplus_{x',y'} \bigg[\bigoplus_{z_1,z'_1} \bigoplus_{q_1} \text{enc}_{q_1}(z_1, z'_1, x') \otimes \Phi_{q_i,q_1}(z_i, z_1) \bigg] \otimes \big[\text{TC}^{3M}_{y_1,y_2} \Psi \big](x', y') \\
\otimes \bigoplus_{z_2,z'_2} \bigoplus_{q_2,q'_2} \big[\text{enc}_{q_2}(z_2, z'_2, y') \otimes \text{tr}_{q_2,q'_2}(z_2, z'_2) \otimes \Phi_{q'_2,q_f}(z'_2, z_f) \big]
\]

with \(\Psi(y_1, y_2) \) the formula

\[
\bigoplus_{z_1,z'_1} \bigoplus_{q_1,q'_1} \bigoplus_{z_2,z'_2} \bigoplus_{q_2} \big[\text{enc}_{q_1}(z_1, z'_1, y_1) \otimes \text{tr}_{q_1,q'_1}(z_1, z'_1) \otimes \text{enc}_{q_2}(z_2, z'_2, y_2) \otimes \Phi_{q'_1,q_2}(z'_1, z_2) \big]
\]
Translation in a zonable class of graphs

Weight of the runs from z_i in state q_i to z_f in state q_f:

$$
\bigoplus_{x',y'} \left[\bigoplus_{z_1,z_1', q_1 \in Q} \bigoplus \text{enc}_{q_1}(z_1, z_1', x') \otimes \Phi_{q_i,q_1}(z_i, z_1) \right] \otimes \left[\text{TC}_{y_1,y_2}^3 \Psi(x', y') \right] \\
\otimes \bigoplus_{z_2,z_2', q_2,q_2' \in Q} \left[\text{enc}_{q_2}(z_2, z_2', y') \otimes \text{tr}_{q_2,q_2'}(z_2, z_2') \otimes \Phi_{q_2',q_f}(z_2', z_f) \right]
$$

with $\Psi(y_1, y_2)$ the formula

$$
\bigoplus_{z_1,z_1', q_1,q_1', q_1 \in Q} \bigoplus_{z_2,z_2', q_2 \in Q} \left[\text{enc}_{q_1}(z_1, z_1', y_1) \otimes \text{tr}_{q_1,q_1'}(z_1, z_1') \otimes \text{enc}_{q_2}(z_2, z_2', y_2) \otimes \Phi_{q_1',q_2}(z_1', z_2) \right]
$$

$\Phi_{q,q'}(x, x')$ formula computing the weight of the runs from x in q to x' in q', staying in the zone containing both x and x'

- built by McNaughton-Yamada algorithm, with cascade of **bounded** transitive closures (since zones have bounded diameter)
Conclusion and Perspectives

- Expressive equivalence between weighted pebble walking automata and weighted first-order logic with bounded transitive closure, over arbitrary complete semirings
- Additional reasonable requirements on the classes of graphs (searchable and zonable), met by usual examples of graphs (words, nested words, trees, grids, Mazurkiewicz traces, rings...)
- Interesting special case: a logic for graph-to-word transducers (non-commutative semiring of languages over an alphabet \(\Sigma \))

Translation from automata to logic with less transitive closures? as in [Bollig, Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping semantics

Case of strong pebbles to deal with unbounded transitive closure?

Extension to infinite structures?

Thank you!
Conclusion and Perspectives

- Expressive equivalence between weighted pebble walking automata and weighted first-order logic with bounded transitive closure, over arbitrary complete semirings
- Additional reasonable requirements on the classes of graphs (searchable and zonable), met by usual examples of graphs (words, nested words, trees, grids, Mazurkiewicz traces, rings...)
- Interesting special case: a logic for graph-to-word transducers (non-commutative semiring of languages over an alphabet Σ)
- Translation from automata to logic with less transitive closures? as in [Bollig, Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping semantics
- Case of strong pebbles to deal with unbounded transitive closure?
- Extension to infinite structures?
Conclusion and Perspectives

- Expressive equivalence between weighted pebble walking automata and weighted first-order logic with bounded transitive closure, over arbitrary complete semirings
- Additional reasonable requirements on the classes of graphs (searchable and zonable), met by usual examples of graphs (words, nested words, trees, grids, Mazurkiewicz traces, rings...)
- Interesting special case: a logic for graph-to-word transducers (non-commutative semiring of languages over an alphabet Σ)

- Translation from automata to logic with less transitive closures? as in [Bollig, Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping semantics
- Case of strong pebbles to deal with unbounded transitive closure?
- Extension to infinite structures?

Thank you!

