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Abstract. The observation of a distributed system’s finite execution can
be abstracted as a partial ordered set of events generally called finite trace.
In practice, this trace can be obtained through a standard code instru-
mentation, which takes advantage of existing communications between
processes to partially order events of different processes. We show that
testing that such a distributed execution satisfies some global property
amounts therefore to model check the corresponding trace. This work can
be time consuming; we therefore provide an efficient symbolic Ctl model-
checking algorithm for traces. This method is based on a symbolic data
structure, called Interval Sharing Trees, allowing to efficiently represent
and manipulate sets of k-uples of naturals. Efficient symbolic operations
are defined on this data structure in order to deal with all Ctl modali-
ties. We show that in practice this data structure is well adapted for Ctl
model checking of traces.
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1 Introduction

A distributed system is typically a set of distributed hardware equipments which
run concurrent processes, communicating through some network. The design of
such system is known to be a difficult task. When the purpose of such a system is
to perform some control of critical equipment like an industrial plant, a plane, or
a satellite, its correctness is extremely important. The designer can ease her work
by various techniques [1, 2] including validation and debugging. In particular,
traditional model-based approaches abstract the action the system can do into
events which change the system’s global state. Validation works therefore on a
labelled directed graph called a Kripke structure which describes the possible
system’s behaviours. Verification tools (e.g. [3–5]) can be used to validate parts of
models. For instance, such tools can be used to check that, in the system, every
time the system goes in a state where a condition p holds, it is followed by a
state where q and r holds. p can for instance be an abstraction for some alarm
detected through some given sensor, while q and r, may correspond to, possibly
distributed, values assignment on some actuators.
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Unfortunately in practice, even with this abstraction, the state-explosion prob-
lem generally prevents the designer from exhaustively verifying the whole system,
even with efficient exploration techniques such as partial order reduction [6, 7] or
symbolic model checking [8–10].

In such cases, the designer generally falls back to testing which cannot guar-
antee that a system is completely bug-free, but if achieved on a large number
of test-cases (e.g. covering all the functionalities of the system), can give a rea-
sonable confidence that the system is correct. In this context, a test-case defines
the model of the part of the system which corresponds to a particular execution.
Testing may therefore be seen as the validation of this smaller model.

To extract this smaller model from a system, the implementation is instru-
mented to record only relevant events. A special process, called the monitor,
records this model (the events of the system), that we can just call execution
here, and then checks that it satisfies some desired property.

Notice that an execution can also be extracted from a design model. In par-
ticular scenarios of executions, modelled as MSC (Message Sequence Charts) is a
particular form of such execution and can also be validated. Hence, at both the
design and implementation levels, it is an important activity for which efficient
methods must be provided.

In the centralized case, an execution of the system is a sequence of events.
Determining if such an execution satisfies a property is in general simple. In
the distributed case, if the system to control is slow enough, one can assume
that all processes of the system are synchronized using a global discrete clock.
This so-called synchrony hypothesis allows to see such distributed execution as a
sequence of set of events where all events in a set are seen as simultaneous. This
hypothesis allows a relatively simple validation of such a distributed execution.
Unfortunately, if the system to control is too fast compared to the synchronization
mechanism offered by the implementation, the synchrony hypothesis cannot be
made and the asynchronism between distributed processes must be taken into
account in the analysis. In this case, the exact order in which two concurrent
events occur in the execution is, in general, not always known or guaranteed. By
taking into account the communications between processes, only a partial order
on the events of the execution can be obtained. In practice, this partial order
relation, often called the happened-before relation [11], can be obtained through
correct code instrumentation using, for instance, vector clocks [11, 12].

Hence in this case, an execution is a finite trace, i.e. a partially ordered set of
events. Since the order in which the events of this partial order trace are inter-
leaved is generally relevant to the safety of the system, testing that a distributed
execution satisfies a global property φ amounts to verifying that every sequential
execution, compatible with the partial order, satisfies φ or, in other terms, model
checking φ on the corresponding trace. Unfortunately, this problem is hard [13],
since the number of compatible sequential executions and the size of the Kripke
structure which models an execution may be exponential in the number of con-
current processes. Therefore, to tackle this complexity, instead of working on the
underlying Kripke structure, efficient techniques have been developed to work
directly on the partial order itself, which is, in general, exponentially more com-



Testing Distributed Systems through Symbolic Model Checking of Traces 3

pact. In this line, in [14], A. Sen and Garg present the temporal logic RCtl (for
regular-Ctl), which is a subset of the branching time temporal logic Ctl [15] and
shows that the compact symbolic data structure called computation slice [16], can
be used to efficiently compute all global states which satisfy a RCtl formula.

However, RCtl does not include such simple Ctl property as AG(p =⇒
AF(q ∧ r)), i.e. every p is eventually followed by a state where q and r hold true;
formula that may be very useful during validation. In general, a computation slice
is too restrictive to represent any arbitrary set of global states of a finite trace.

This motivates our work; in this paper, we introduce an efficient symbolic
method using Interval Sharing Trees (IST) [17, 18]. This data structure allows
to represent any set of global states of a finite trace. We define how to use IST
to provide a full Ctl model checking of finite traces. We show that intervals of
naturals can be used, in practice, to have a compact representation for sets of
global states of the trace satisfying the desired formula and hence, to provide an
efficient algorithm for Ctl model checking of finite traces. Moreover, we show that
our algorithms perform very well compared to standard symbolic model checking
using BDDs [10] and implemented in the tool NuSMV [5].

This paper is organized as follows. In section 2, we detail related works. In
section 3, we introduce our model for traces and define the Ctl over this model.
In section 4, we explain how sets of configurations can be represented compactly
using intervals and interval sharing trees. In section 5, we show how Ctl model
checking on traces can be solved using this symbolic representation. Next, in
section 6, we experimentally validate our method on various examples compared
to Ctl model-checking with the NuSMV tool. Finally, future works are given in
section 7. Note : all proofs from sec. 5 are included for the reviewers in app. A.

2 Related Works

Testing and monitoring the global behaviours of distributed systems can be cat-
egorized in two classes: trace model-checking and global predicate detection.

Trace model checking has been studied mainly theoretically through the def-
inition of several linear temporal logic for Mazurkiewicz traces. A Mazurkiewicz
trace [19], over an alphabet Σ with a independence relation I, can be defined
as a Σ-labelled partial order set of events with special properties not explained
here. For Mazurkiewicz traces, local [20, 21] and global [22–24] trace logics have
been defined. However, in our case, the trace is an abstraction of a distributed
execution (or of a scenario) and models a set of possible interleaving of events
the distributed system may have had. Since we do not suppose to have informa-
tion about independence between actions, none of these actions are independent
a priori; testing must then check that all these possible orderings of events are
correct. Since the independence relation is not a data that trace temporal logics
may exploit, we do not use these logics to model-check our executions and stick
to simple sequence (interleaving) semantics.

Global predicate detection initially aims at answering reachability questions,
i.e. does there exist a possible global configuration of the system, that satisfies
a given global predicate φ. Garg and Chase showed in [13] that this problem is



4 Gabriel Kalyon, Thierry Massart, Cédric Meuter, and Laurent Van Begin

NP-complete for an arbitrary predicate, even when there is no inter-process com-
munication. Efficient (polynomial) methods have been proposed for various classes
of predicates, such as stable predicates proposed by Chandy and Lamport [25],
independent predicates by Charron-Bost et al [26], conjunctive predicates by Garg
and Waldecker [27, 28], linear and semi-linear predicates by Chase and Garg [13],
regular predicates by Garg and Mittal [29] and predicates expressed by a finite
automata that can be checked online by Jard et al [30]. Garg and Mittal implicitly
use a symbolic data structure called computation slice, to compute efficiently all
global states, compatible with a given execution satisfying a given regular predi-
cate [16]. This structure in used by A. Sen and Garg in their work on the temporal
logic RCtl [14]. In [31, 32] K. Sen et al. use an automaton to specify the system’s
monitor. The authors provide an explicit exploration of the state space and to
limit this exploration a window is used. In a previous work [33], we have used this
technique to provide an efficient Ltl tester of distributed executions.

3 Framework

In this section, we detail our framework. We start by formally introducing our
model for traces of distributed systems, i.e. finite partial order trace. Then, we
define the branching time temporal logic Ctl over such finite traces.

3.1 Partial Order Trace

Our executions are obtained by a fixed numbers of concurrent processes, each
executing a finite sequence of assignments. Moreover, due to inter-process com-
munications (shared variable, message passing, ...), other causal dependencies are
added. An execution is modeled as a finite partial order trace, i.e. a finite partially
ordered set of events, where each event belongs to some process and is labeled by
the assignment which took place during this event.

Definition 1 (Partial order trace). A partial order trace of k processes and
over a set of variables V is a tuple T = 〈E,α,�〉 where:

– E = P1 ∪ P2 ∪ ... ∪ Pk is a finite set of events partitioned into k disjoint
non empty subsets Pi, called processes; pid(e) denotes the process of event e
belongs to (pid(e) = i iff e ∈ Pi);

– α : E 7→ V × Q is a labeling function mapping each event to an assignment,
i.e. α(e) = (x, v) associates the assignment x := v to e; if α(e) = (x := v),
var(e) denotes x and val(e) denotes v;

– �⊆ E × E is a partial order relation on E such that ∀e, e′ ∈ E:
(i) pid(e) = pid(e′) ⇒ (e � e′) ∨ (e′ � e)
(ii) var(e) = var(e′) ⇒ (e � e′) ∨ (e′ � e).

Condition (i) on � ensures that all events from the same process are ordered
and condition (ii) enforces that all events assigning the same variable are ordered.
Given an event e ∈ E, we define ↓e = {e′ ∈ E | e′ � e}, the past of e (including
itself), and pos(e) = |↓e∩Ppid(e)| (where | · | denotes the size of sets), the position
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P1 w:=1 y:=3 x:=0

P2 x:=4 w:=0

Fig. 1. Example of partial order trace

of e in its process. A cut is a subset C ⊆ E such that ∀e ∈ C :↓e ⊆ C. cuts(T) =
{C ⊆ E | ∀e ∈ C : ↓e ⊆ C} is the set of all cuts in T. In the remainder of this
paper, we always consider the set of variables V and the partial order trace of k
processes T = 〈E,α,�〉.

Semantics. Given a cut C ∈ cuts(T), we define enabled(C) = {e ∈ E \ C | (↓
e \ {e}) ⊆ C} the set of events enabled in C. If e is enabled in the cut C, then
it can be fired from C leading to C ∪ {e}, the successor of C for e. Note that if
C ∈ cuts(T), so is C∪{e} for all e ∈ enabled(C). Given a set of cuts X ⊆ cuts(T),
pre∃(X) = {C ∈ cuts(T) | ∃e ∈ enabled(C) : C ∪ {e} ∈ X} is the set of existential
predecessors of X, i.e. the set of cuts having at least one successor in X, and
pre∀(X) = {C ∈ cuts(T) | ∀e ∈ enabled(C) : C ∪ {e} ∈ X} is the set of universal
predecessors of X, i.e. the set of cuts having all their successors in X. Additionally,
given a sequence of cuts σ = C0, C1, ..., Cn, σi denotes Ci, the ith element of σ,
and |σ| = n denotes the size of σ. A run from a cut C is a sequence σ ∈ cuts(T)∗

such that (i) σ0 = C, (ii) σ|σ| = E, and (iii) ∀0 ≤ i < |σ| : σi ∈ pre∃({σi+1}), i.e.
a sequence of cuts (i) starting in C, (ii) ending in E, and (iii) σi+1 is a successor
of σi for any i. The set of runs starting in C ∈ cuts(T) is denoted by runs(C).
Finally, runs(∅) is the set of runs of the trace T.

Practical representation. A trace T = 〈E,α,�〉 can be represented using a di-
rected acyclic graph (E,→) called Hasse diagram. In this graph, there is an edge
from event e to event e′ if and only if they are ordered, i.e. e � e′, and if their order
is not imposed by transitivity, i.e. ¬∃e′′ ∈ E : e ≺ e′′ ≺ e′ where e1 ≺ e2 denotes
e1 � e2 and e1 6= e2. As an example, Fig. 1 depicts such a graph for a partial
order trace with two processes. That trace describes an execution of a distributed
system with two concurrent sub-system. During that execution, the first process
makes three assignments to variables w, y, x and the second one makes two assign-
ments to x and w. An edge between two events e and e′ in the Hasse graph such
that pid(e) 6= pid(e′) models a communication between processes (noted e →c e′).
Communication edges model either message passing between processes or the fact
that the event e assigns a value to a shared variable used in e′. Note that v in
event x := v can be obtained by evaluating an expression involving the variable
appearing in e. For instance, the arrow between w:=0 and y:=3 in Fig. 1 can
model that value 3 is obtained at run time by evaluating an expression where w
appears and its value is given by the first assignment. In the following, we always
consider that we have the Hasse diagram corresponding to T.
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3.2 Ctl over Finite Partial Order Trace

We define in this section a version of the logic Ctl (computational tree logic)
evaluated on partial order traces.

Syntax. A predicate p is a constraint x•c where c is a rational constant, x ∈ V and
where • ∈ {<,≤, >,≥,=, 6=}. A formula in the Ctl logic is built on predicates
using classical boolean operators, and temporal modalities. If p denotes a predicate
and φ, φ1, φ2 denote Ctl formulae, then the set of Ctl formulae is defined as
follows:

φ ::= > | p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | EXφ | AXφ | EGφ | AGφ | E[φ1Uφ2] | A[φ1Uφ2]

where A stands for for all runs, E for exists a run, X for next, G for globally and U
for until. Two other temporal modalities, EF and AF, where F stands for finally,
are derived syntactically as follows: EFφ ≡ E[>Uφ] and AFφ ≡ A[>Uφ].

Semantics. Basic formulae are constraints over one variables in V. Since all as-
signments to a particular variable are ordered, each cut C ∈ cuts(T) induces a
unique valuation on the variables in V no matter the order in which the events
are executed. Formally, given a cut C, we can define inductively the valuation
induced by C, noted vC , as follows:

– if C = ∅ then ∀x ∈ V, vC(x) = 0,
– if C = C ′ ∪ {e} with C ′ ∈ cuts(T) then ∀x ∈ V : vC =

{
val(e) if var(e) = x
vC′(x) otherwise

Hence, we forget variables in V and only consider cuts of T when defining the
semantics of Ctl formula. More precisely, the semantics of a Ctl formula is given
by the satisfaction relation |= defined hereafter.

C |= >
C |= p iff vC(p) is true
C |= ¬φ iff C 6|= φ
C |= φ1 ∨ φ2 iff (C |= φ1) ∨ (C |= φ2)
C |= φ1 ∧ φ2 iff (C |= φ1) ∧ (C |= φ2)
C |= EXφ iff ∃e ∈ enabled(C) : C ∪ {e} |= φ
C |= AXφ iff ∀e ∈ enabled(C) : C ∪ {e} |= φ
C |= EGφ iff ∃σ ∈ runs(C),∀i ∈ [0, |σ|] : σi |= φ
C |= AGφ iff ∀σ ∈ runs(C),∀i ∈ [0, |σ|] : σi |= φ
C |= E[φ1Uφ2] iff ∃σ ∈ runs(C),∃i ∈ [0, |σ|] :

(σi |= φ2) ∧ (∀j ∈ [0, i) : σj |= φ1)
C |= A[φ1Uφ2] iff ∀σ ∈ runs(C),∃i ∈ [0, |σ|] :

(σi |= φ2) ∧ (∀j ∈ [0, i) : σj |= φ1)

Note that according to this semantics, when the execution of T is finished
(when the cut E is reached), for any Ctl formula φ, we have that E 6|= EXφ and
E |= AXφ.

[[φ]] denotes the set {C ∈ cuts(T) | C |= φ} of cuts that satisfy formula φ. In
the remainder of the paper, we will present an efficient method to build [[φ]].
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4 Symbolic Representation for Sets of Cuts

The number of cuts, i.e. the size of cuts(T), is in general exponential in the
size of T. Hence, efficient representations for large sets of cuts are needed. Our
proposal is based on the following observation: a cut can be represented by a
k-uple −→x of naturals where the ith component of −→x gives the number of events
of the ith process that already occured. For example, if a trace T is composed of
3 processes, the 3-uple 〈1, 2, 0〉 represents the cut where process P0 has executed
its first event, i.e. e ∈ P1 with pos(e) = 1, process P2 has executed its first 2
events, i.e. e1, e2 ∈ P2 with pos(ei) = i (i ∈ {1, 2}), and process P3 has executed
no events. The successor (predecessor) relation between cuts can be lifted to their
vector representation: an event e ∈ Pi is enabled in −→x = 〈x1, . . . , xk〉 if xpid(e) <
pos(e)∧∀e′ ∈↓e\{e} : pos(e′) ≤ xpid(e) and the successor of −→x for e is 〈x1, . . . , xi+
1, . . . , xk〉. Note that a vector −→x is not necessarily a representation for a cut.
Indeed, if ∃i 6= j ∈ [1, k],∃e ∈ Pi,∃e′ ∈↓e ∩ Pj : (pos(e) ≤ xi) ∧ (pos(e′) > xj)
then −→x does not represent a cut, otherwise it does. Given a subset X ⊆ Nk,
we note sets(X) = {C ⊆ E | ∃−→x ∈ X, ∀1 ≤ i ≤ k : |C ∩ Pi| = xi} the set
of subsets of events represented by the set X. Moreover, −→x ≤ −→x ′ denotes that
∀i ∈ [1..k] : xi ≤ x′i which in terms of cuts corresponds to inclusion. In conclusion,
in order to represent sets of cuts, we show how to efficiently represent large set of
tuples of naturals.

4.1 Multi-rectangles: a Compact Representation for Sets of Cuts

A k-multi-rectangle M is a tuple of intervals over natural values of dimension
k. M defines the set of k-uples 〈x1, . . . , xk〉 over naturals such that ∀1 ≤ i ≤
k : xi is in the interval corresponding to the ith dimension of M . Assuming that
each interval contains n values, M represents a set of nk k-uples. Hence, it is
a compact representation for the set it represents. Moreover, k-multi-rectangles
correspond to a natural class of sets of cuts. Indeed, suppose k = 2 and the events
ei,1, ei,2..., ei,mi of Pi (i ∈ {1, 2}) occurring sequentially without any restrictions
on the events of P3−i and such that ∀j ∈ [1,mi] : pos(ei,j) = j. Then, the
set of cuts where P1 and P2 have executed some of those events corresponds
to the multi-rectangle 〈[1,m1], [1,m2]〉. This multi-rectangle represents succinctly
the result of all possible interleavings of P1, P2. However, due to communications
between processes, sets of cuts are not represented in general by one k-multi-
rectangle, but a set thereof. Hence, to prevent a symbolic state explosion, we use
a data structure, called Interval Sharing Tree (IST), to represent efficiently large
sets of k-multi-rectangles.

4.2 Interval Sharing Tree

Interval Sharing Trees [18] is a compact data structure for representing sets of k-
uples. An IST is basically a sharing tree [34], i.e. a directed acyclic graph, where
each node is labelled with an interval of integers. Each path in such a graph
represents a k-multi-rectangle. The sharing of common prefixes and suffixes of
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k-multi rectangles allows to obtain a compact representation for sets of k-multi-
rectangles. Interval sharing tree are defined as follows.

Definition 2 (Interval Sharing Tree (IST)). An interval sharing tree I, is a
labelled directed acyclic graph 〈N, ι, succ〉 where:

– N = N0 ∪N1 ∪N2 ∪ ...∪Nk ∪Nk+1 is the finite set of nodes, partitioned into
k + 2 disjoint subsets Ni called layers with N0 = {root} and Nk+1 = {end};

– ι : N 7→ Z×Z∪ {>,⊥} is the labelling function such that ι(n) = > (resp. ⊥)
if and only if n = root (resp. end);

– succ : N 7→ 2N is the successor function such that:
(i) succ(end) = ∅;
(ii) ∀i ∈ [0, k],∀n ∈ Ni : succ(ni) ⊆ Ni+1 ∧ succ(ni) 6= ∅;
(iii) ∀n ∈ N,∀n1, n2 ∈ succ(n) : (n1 6= n2) ⇒ (ι(n1) 6= ι(n2));
(iv) ∀i ∈ [0, k],∀n1 6= n2 ∈ Ni : (ι(n1) = ι(n2)) ⇒ (succ(n1) 6= succ(n2)).

In other words, an IST is a directed acyclic graph where each nodes are labelled
with couples of integers except for two special nodes (root and end), such that (i)
the end node has no successors, (ii) all nodes from layer i have their successors in
layer i + 1, (iii) a node cannot have two successors with the same label, (iv) two
nodes with the same label in the same layer do not have the same successors. For
a node n (except root and end), ι(n) is interpreted as an interval of integers. We
note x ∈ ι(n) if an integer value x belongs to that interval. Figure 2 illustrates
some IST. A path of an IST I is a sequence of node root, n1, n2, ...., nk, end such
that n1 ∈ succ(root), end ∈ succ(nk) and ∀i ∈ [1, k) : ni+1 ∈ succ(ni). A k-
uple −→x = 〈x1, x2, ..., xk〉 is accepted by an IST I if and only if there exists a
path root, n1, n2, ..., nk, end in I such that ∀i ∈ [1, k] : xi ∈ ι(ni). The set of
k-uples accepted by I is denoted by tuple(I) and if tuple(I) ⊆ Nk, then sets(I) =
sets(tuple(I)). In practice, sharing of prefixes (iii) and suffixes (iv) in IST allow a
non-negligible memory saving, which can be exponential in the best cases (there
exists IST whose number of nodes and edges is logarithmic in the number of
k-multi rectangles it represents).

Manipulation of sets represented with IST. Standard set operations have been
defined symbolically over IST’s, namely, union, noted I1 ∪ I2, intersection,
noted I1 ∩ I2, set difference, noted I1 \ I2 and complementation, noted I.
Other operations have been defined like downward closure, noted ↓I, such that
tuple(↓I) = {−→x ∈ Nk | ∃−→x ′ ∈ tuple(I) : −→x ≤ −→x ′}, and shift of a variable,
i.e. replace xi by xi + δ for i ∈ [1, k] and δ ∈ Z, noted I [xi←xi+δ]. Formally,
tuple(I [xi←xi+δ]) = {〈x1, ..., xi + δ, ..., xk〉 | −→x ∈ tuple(I)}. Symbolic algorithm,
i.e. algorithms that do not enumerate all the paths of IST, for those operations
have been defined. Since the number of paths is in general larger than the size
of the IST, symbolic algorithms allow efficient manipulation of k-multi-rectangles
sets taking into account their prefix and suffix sharing. Note that the counter-part
of the compactness of IST is that most of their operations cannot be computed in
polynomial time in general. Hence, (most of) the symbolic algorithms to manip-
ulate IST are exponential in their worst case (see [17] for more details). However,
those algorithms are in general far from their worst case in practice and IST have
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been shown to be more efficient than other known data-structure (to represent
subsets of Nk) both in execution time and memory saving [35].

5 Using IST for Ctl Model Checking

A basic approach to solve the Ctl model checking problem over partial order
traces consists to flatten the trace building a graph where nodes are cuts and
edge corresponds to the successor relation and then solve the classical Ctl model
checking on Kripke structures. Unfortunately, that method is not practicable since
the resulting graph is in general exponential in the size of the trace. To overcome
that problem, we propose to build [[φ]] without flattening the partial order trace
but working directly on it. Our method builds [[φ]] inductively on the structure of
φ. Since [[φ]] can be large, we use IST to efficiently represent and manipulate sets
of cuts. We now present in details the construction.

5.1 Tautology

If φ ≡ >, I> is an IST representing all possible cuts of the trace T. The principle to
build I> is to start from the very simple IST I0 where sets(I0) is the set of cuts if
we do not consider communication edges of the Hasse diagram. Then, we consider
communication edges one by one, i.e. we build the IST I0, I1, I2, . . . where Ii is
built from Ii−1 (i > 0) by taking into account one more communication edge until
we have considered all of them. To take into account a communication edge, we
remove from sets(Ii−1) the sets of events that do not satisfy the definition of cuts
because of that edge. Hence, assuming the Hasse diagram has v communication
edges, sets(I0) ⊇ sets(I1) ⊇ . . . ⊇ sets(Iv) = [[>]]. I0 is defined as follows:

– N = {root} ∪ {n1} ∪ {n2} ∪ ... ∪ {nk} ∪ {end}
– ∀i ∈ [1, k] : ι(ni) = [0, |Pi|]
– succ(root) = {n1}, succ(nk) = {end}, and ∀i ∈ [1, k) : succ(ni) = {ni+1},

To take into account a communication e →c e′, we need to remove from sets(I0)
all the sets of events that do not satisfy the definition of cuts, i.e. the sets that
contain e′ but not e. To achieve that goals, we first build an IST B(e) representing
all the sets of events that do not contain e (and have a vector representation). In
other words, B(e) is the same as I0 except for the layer pid(e) where ι(npid(e)) =
[0, pos(e)−1]. Then, we build an IST A(e′) representing all the sets of events that
contain e′ (having a vector representation), i.e. A(e′) is the same as I0 except
for ι(npid(e′)) = [pos(e′), |Ppid(e′)|]. The events to remove from sets(I0) are in the
intersection of sets(A(e′)) and sets(B(e)). Hence, to remove them we compute
I1 = I0\(A(e′)∩B(e)). Then, we iterate the treatment from I1 to build I2, . . . , Iv.
Figure 2 illustrates the method by computing the IST corresponding to the set of
cuts satisfying > in the trace from Fig. 1.

Lemma 1. Given a trace T = 〈E,α,�〉, we have that sets(I>) = [[>]]
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>

[0, 3]

[0, 2]

⊥

\ (
⊤

[0, 3]

[0, 1]

⊥

∩
>

[2, 3]

[0, 2]

⊥

) =

>

[0, 3]

[0, 2]

⊥

\
⊤

[2, 3]

[0, 1]

⊥

=

⊤

[0, 1] [2, 3]

[0, 1] [2, 2]

⊥

I0 \ ( A(e′) ∩ B(e) ) = I0 \ A(e′) ∩ B(e) = I>

Fig. 2. Computation of I>

5.2 Predicates

If φ ≡ p, where p is a predicate x • c, we proceed as follows. First, we collect all
events that can potentially modify the truth value of p. Let Ep = {e ∈ E | var(e) =
x} be the set of those events. All events in Ep assign the same variable, and by
condition (ii) of definition 1, they are totally ordered. Let ρ = e1, e2, ..., em be the
linearization of Ep, i.e. ∀i ∈ [1,m] : ei ∈ Ep, |Ep| = m and ∀i ∈ [1,m) : ei ≺ ei+1.
This sequence can be used to determine slices of T where p is true. Indeed, let
s1, s2, ..., s` be the sequence of indices splitting ρ into ` − 1 contiguous blocks
es1 , ..., es2−1, es2 , ..., es3−1, ...,es`

, ..., em such that the value of p remains the same
inside each block and changes in the following block. Formally, this is the sequence
satisfying the following constraints (m = s`+1 − 1):

(i) 1 = s1 < s2 < ... < s`

(ii) ∀i ∈ [1, `],∀j1, j2 ∈ [si, si+1) : (↓ej1 |= p) ⇐⇒ (↓ej2 |= p)
(iii) ∀i ∈ [1, `) : (↓esi |= p) ⇐⇒ (↓esi+1 6|= p)

Note that, given a block i ∈ [1, `], the value of p in any cuts between esi and esi+1−1

is determined by esi . This set of cuts can be represented using A(esi) ∩ B(esi+1),
as described above. Thus, for all block i ∈ [1, `] such that ↓ esi |= p, we add
A(esi) ∩ B(esi+1) to Ip initially empty. Additionally, we must take into account
the cuts at the beginning and at the end of T. If p is satisfied at the beginning
of T (∅ |= p), we must add B(es1) to Ip, and similarly, if p is true at the end of
T (E |= p), we add A(esm) to Ip. Finally, in order to keep only cuts, we take the
intersection with I>.

Lemma 2. Given a trace T = 〈E,α,�〉 and a predicate p, we have that
sets(Ip) = [[p]].

5.3 Boolean Operators

In order to deal with boolean operators φ1 ∨ φ2 (resp. φ1 ∧ φ2, ¬φ1), we can use
standard operation on IST [17] and compute Iφ = Iφ1 ∪Iφ2 (resp. Iφ = Iφ1 ∩Iφ2 ,
Iφ = Iφ1 ∩ I>).

Lemma 3. Given a trace T = 〈E,α,�〉 and Ctl formulae φ, φ1 and φ2, we have
that sets(Iφ1∨φ2) = [[φ1 ∪ φ2]], sets(Iφ1∧φ2) = [[φ1 ∩ φ2]] and sets(I¬φ) = [[¬φ]].
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5.4 Existential Modalities

The treatment of existential modalities can be computed through the use of the
pre∃ operator, greatest and least fixed point (as explained e.g. in [8]):

[[EXφ]] = pre∃([[φ]])
[[EGφ]] = gfp λX · [[φ]] ∩ pre∃(X)

[[E[φ1Uφ2]]] = lfp λX · [[φ2]] ∪ ([[φ1]] ∩ pre∃(X))

In order to compute ISTs corresponding to those temporal formulae, we only
need an algorithm for computing symbolically the pre∃(·) operation. For that, we
decompose pre∃(·) into a function of pre∃i (·), where pre∃i (X) = {C ∈ cuts(T) |
∃e ∈ enabled(C)∩Pi : C ∪ {e} ∈ X} denotes the set of existential predecessors of
X only for process Pi. This decomposition is provided by the following lemma.

Lemma 4. Given a trace T = 〈E,α,�〉 and a subset X ⊆ cuts(T), we have that
pre∃(X) =

⋃
i∈[1,k] pre

∃
i (X).

The only remaining step is to characterize symbolically pre∃i (X). This charac-
terization is given by the following lemma.

Lemma 5. Given a trace T = 〈E,α,�〉, and an IST I such that sets(I) ⊆
cuts(T), we have that pre∃i (sets(I)) = sets(I [xi←xi−1] ∩ I>).

Finally, we can define the symbolic existential predecessors on IST.

Definition 3 (Symbolic existential predecessors). Given a trace T =
〈E,α,�〉 and an IST I such that sets(I) ⊆ cuts(T), the symbolic existential
predecessors of I, noted spre∃(I), is defined as follows:

spre∃(I) =
⋃

i∈[1,k]

(
I [xi←xi−1] ∩ I>

)
As a direct consequence of lem. 4 and lem. 5, we get the next theorem.

Theorem 1 (Correctness spre∃(·)). Given a trace T = 〈E,α,�〉, and an IST
I such that sets(I) ⊆ cuts(T), we have that pre∃(sets(I)) = sets(spre∃(I)).

5.5 Universal modalities

Universal modalities are treated in a similar way then existential ones. For these,
we can use the following equivalence (taken from [9, sec. 2.4]):

[[AXφ]] = pre∀([[φ]])
[[AGφ]] = gfp λX · [[φ]] ∩ pre∀(X)

[[A[φ1Uφ2]]] = lfp λX · [[φ2]] ∪ ([[φ1]] ∩ pre∀(X))

Computing ISTs corresponding to universal formulae amounts to defining a
symbolical version of the pre∀(·) operator on sets of cuts.



12 Gabriel Kalyon, Thierry Massart, Cédric Meuter, and Laurent Van Begin

pre∀(·) can be computed through the equivalence pre∀([[φ]]) = [[AXφ]] =
[[¬EX¬φ]] = cuts(T)\pre∃([[¬φ]]). On the other hand, we may compute pre∀(·) in an
alternate way, similarly to what we did for the pre∃(·). We can decompose pre∀(·)
as a function of pre∀i (·), where pre∀i (X) = {C ∈ cuts(T) | ∀e ∈ enabled(C) ∩ Pi :
C ∪ {e} ∈ X} denotes the set of universal predecessors of X only for process Pi.
This decomposition is given by the following lemma.

Lemma 6. Given a trace T = 〈E,α,�〉, and an subset X ⊆ cuts(T), we have
that pre∀(X) =

⋂
i∈[1,k] pre

∀
i (X).

To compute symbolically pre∀i (·), we need to characterize exactly which cuts
are in pre∀i (X). By definition, pre∀i (X) denotes the set of cuts from which all
enabled events of process Pi lead to a cut in X. pre∀i (X) is composed of two
classes of cuts: (i) blockedi = {C ∈ cuts(T) | enabled(C) ∩ Pi = ∅}, the class of
cuts in X where process Pi is blocked; and (ii) the class of cuts where the next
event of Pi is enabled and leads to a cut in X, i.e. pre∃i (X).

Lemma 7. Given a trace T = 〈E,α,�〉, and an subset X ⊆ cuts(T), we have
that pre∀i (X) = pre∃i (X) ∪ blockedi.

We already have a way to compute pre∃i (X) symbolically (see lem.5). The
following lemma characterized blockedi.

Lemma 8. Given a trace T = 〈E,α,�〉 and a process Pi ⊆ E, we have that
C ∈ blockedi holds if and only if ∀e ∈ E ∩Pi : (pos(e) = |C ∩Pi|+ 1) =⇒ (∃e′ ∈
E \ C : e′ →c e).

This result can be used to define an IST Iblockedi
for blockedi. Indeed, from

Lemma 8, we can see that blockedi is composed of the set of all the cuts including
all events of Pi and the set of all the cuts where the next event to be triggered
by Pi is waiting for an incoming communication. Therefore, the computation of
Iblockedi starts with an IST IF representing the set of sets C of events where
process Pi has finished its execution, i.e. where |C ∩ Pi| = |Pi|. IF is the same
as I0 (c.f. sec. 5.1) except for layer i, where ι(ni) = [|Pi|, |Pi|]. Then, for each
incoming communication e →c e′ with e′ ∈ Pi, we build an IST where process Pi

is ready to execute e′ and where process Ppid(e) has not executed e yet. This IST
is the same as I0, except for layer i, where ι(ni) = [pos(e′) − 1, pos(e′) − 1] and
for layer pid(e), where ι(npid(e)) = [0, pos(e)− 1]. The IST representing the sets of
events where Pi is blocked is obtained by making the union between IF and all
the IST built for the communication edges. Finally, in order to keep only valid
cuts, we simply take the intersection of the resulting IST with I>. It is then easy
to see, that Iblockedi contains exactly those cuts satisfying the condition of lem. 8.
This leads us to the following symbolic characterization of pre∀i (·).

Lemma 9. Given a trace T = 〈E,α,�〉, and an IST I such that sets(I) ⊆
cuts(T), we have that pre∀i (sets(I)) = sets((I [xi←xi−1] ∩ I>) ∪ Iblockedi).

We can now define the symbolic universal predecessors.
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Definition 4 (Symbolic universal predecessor). Given a trace T = 〈E,α,�〉
and an IST I such that sets(I) ⊆ cuts(T), the symbolic universal predecessors of
I, noted spre∀(I), is defined as follows:

spre∀(I) =
⋂

i∈[1,k]

(
(I [xi←xi−1] ∩ I>) ∪ Iblockedi

)
As a direct consequence of lem. 6 and 9, we get the next theorem.

Theorem 2 (Correctness spre∀(·)). Given a trace T = 〈E,α,�〉, and an IST
I such that sets(I) ⊆ cuts(T), we have that pre∀(sets(I)) = sets(spre∀(I))

5.6 Improving the computation of [[EFφ]] and [[AGφ]]

To compute IEFφ, one can simply use the equivalence [[EFφ]] = [[E[>Uφ]]] = lfp λX ·
[[φ]]∪ ([[>]]∩pre∃(X)), and compute the fix point using the spre∃(·) operator. But,
in this particular case, since pre∃(X) ⊆ [[>]], this fix point can be reduced to
lfp λX · [[φ]] ∪ pre∃(X). Using IST, we can directly obtain the result of this fix
point symbolically, in one operation using the downward closure. Indeed, we have
that IEFφ =↓Iφ ∩ I>.

Lemma 10. Given a trace T = 〈E,α,�〉 of k processes and a Ctl formula φ,
we have that sets(↓Iφ ∩ I>) = [[EFφ]].

Moreover, the quickest way to compute [[AGφ]] is generally through the translation
AGφ ≡ ¬EF¬φ which avoids the fixpoint computation.

6 Experimental results

In this section, we experimentally validate our method. We compare our symbolic
approach using ISTwith a state-of-the-art symbolic model checking (of the trace)
using the tool NuSMV [5]. We considered several examples and compared the
running time of our early prototype against NuSMV. Running time was limited
to 10 minutes. This seems to be a reasonable assumption considering that the
testing should be achieved on a large number of traces. On all the examples we
considered, memory consumption was not an issue. The IST manipulated in these
examples contains no more than 7000 nodes. Those results are presented in table
1. More detailed results are included for the reviewers in app. B.

The first example we considered was the Peterson mutual exclusion protocol
with two processes (Pet), where communication is done through shared variables.
We used a monitor to check mutual exclusion: AG(ncrit < 2). On this property,
we experimented two ways of computing AG. The first using the downward closure
on IST, as explained in sec. 5.6, and the second using the fixed point on the
spre∀(·) operator, as explained in sec. 5.5. As expected the downward closure
method is quicker (with the fixpoint methods the results recorded for 2000, 5000
and 15000 events were 1.45 sec, 15.2 sec and 323.59 sec). We therefore decided
to keep only the downward closure method for the remaining experiments (a
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Model #proc #events IST NuSMV
(in sec.) (in sec.)

Pet 2 2000 0.46 349.57
2 5000 7.53 ↑↑
2 15000 189.65 ↑↑

PetN 2 2000 0.20 294.46
2 5000 6.44 ↑↑
2 20000 390.90 ↑↑
5 1000 2.04 13.74
5 1500 6.82 ↑↑
5 5000 176.62 ↑↑
10 1500 7.53 150.23
10 2000 27.01 ↑↑
10 5000 147.89 ↑↑

Model #proc #events IST NuSMV
(in sec.) (in sec.)

ABP 2 1000 13.60 297.28
2 2000 27.56 ↑↑
2 5000 257.29 ↑↑

Phil 3 100 0.15 6.36
3 200 1.11 ↑↑
3 2000 366.22 ↑↑
5 100 0.25 ↑↑
5 200 27.05 ↑↑
5 500 125.56 ↑↑
10 100 1.67 ↑↑
10 200 26.94 ↑↑
10 500 ↑↑ ↑↑

Table 1. Experimental results; ↑↑ indicates (> 10 min.).

detailed comparison is included for the reviewers in app. B). Even on this relatively
small example, we can already see a big difference in running time: NuSMV runs
out of time after 2000 events, whereas out tool can handle 15000 events in the
allotted time. We also considered a generalization of this protocol for n processes
(PetN) using the same mutual exclusion property. We experimented on 2, 5 and
10 processes. Again, we can see that our approach using IST outperforms the
traditional symbolic approach using BDD.

The third model we considered was the alternating-bit protocol between two
process ABP, i.e. a sender and a receiver. This time the communication is
achieved using asynchronous channel. We verified that every message tagged with
a 0 is followed by one with the same tag, which translates in Ctl as follows:
AG((sent msg = 0) =⇒ AF(received msg = 0)). This formula is a bit more
complicated. Nonetheless, our method is still scalable up to 5000 events, whereas
NuSMV stops after 1000.

The last example we considered was the Dining Philosopher problem (Phil).
We considered 3, 5 and 10 philosophers. We verified that whenever philosopher
1 is eating, either he keeps eating until the end of the trace or his left neighbour
cannot eat until he stops. In Ctl, this property is expressed as AG((state1 =
eat) =⇒ (AG(state1 = eat) || A[(state0 6= eat) U (state1 6= eat)])). We
deliberately chose a complex formula to test the robustness of our approach.
On this example, NuSMV can only handle 3 philosophers with 100 events, with
the (too complex) property in the allotted time whereas we can still manage to
terminate the analysis on some instances of respectable size. This can be explained
by the fact that, in this models, the processes are more independant, thus leading
to more interleaving.

For each example, we have computed the size of the lattice of cuts. In the 10
minutes of allotted times, our prototype is capable of handling instances of up
to 1010 cuts, whereas NuSMV stops at 105. This leads us to conclude that our
approach is more scalable for this problem.
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7 Future works

As future works, our symbolic method using IST will be intergrated in our tool
TraX 1 and will be fully interfaced with our distributed controllers design environ-
ment dSL [1, 2] to allow efficient testing of real industrial distributed controllers.
We will also continue to investiguate possible further improvements of our tech-
nique, as the one inspired on the RCtl model checking with computation slicing
described in [14]. We also intend to investigate the use of our method in differ-
ent frameworks. A first candidate is the validation of Message Sequence Charts
(MSC). We must study how our method can improve the efficiency of existing
MSC validation methods.

Finally, from a theoretical point of view, the exact complexity class of Ctl
over partial order trace is not known. We plan to determine that full Ctl and
some interesting fragments (like RCtl).
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A Proofs of section 5

A.1 Preliminary results

Before presenting the proofs of sec. 5, we need to establish a few preliminaries.
First, for a k-uple −→x , we note C−→x = {e ∈ E | pos(e) ≤ xpid(e)} the subset of
events represented by −→x represents. We will also need the following results.

Lemma 11. Given a trace T = 〈E,α,�〉, and a process Pi ⊆ E, we have that
∀C ∈ cuts(T) : enabled(C)∩Pi ⊆ {e} where e ∈ E is such that pos(e) = |C∩Pi|+1.

Proof. First, note that enabled(C) ∩ Pi ⊆ Pi. We therefore only consider events
of Pi. Let e be such an event. If pos(e) < |C ∩ Pi| + 1, we have that that e ∈ C
which implies e 6∈ enabled(C). On the other hand pos(e) > |C ∩ Pi|+ 1, the event
e′. such that pos(e′) = |C ∩ Pi| + 1 does not belong to C but is in ↓e \ {e} and
again e 6∈ enabled(C). The only remaining possibility is that pos(e) = |C ∩Pi|+1.

Lemma 12. Given a trace T = 〈E,α,�〉 of k processes and C,C ′ ∈ cuts(T),
if C ⊆ C ′ then there exists a sequence C0, C1, C2, . . . , Cm such that (C = C0) ∧
(Cm = C ′) ∧ (∀i ∈ [1,m] : (Ci−1 ∈ pre∃({Ci})) ∧ (Ci ∈ cuts(T))).

Proof. We proceed by induction on |C ′ \ C|

– base case: if |C ′ \ C| = 0, then C = C ′ and the proof is immediate. The
sequence is simply C = C0 = Cm = C ′.

– induction step: if |C ′ \C| = n, we have that ∃e ∈ (C ′ \C) : e ∈ enabled(C).
Indeed, since � is a partial order, and since |C ′ \ C| is non-empty, we know
that (C ′ \ C) has at least one minimal element, i.e. an event e such that
@e′ ∈ (C ′ \ C) : e′ ≺ e. Since C ′ is a cut and e ∈ C ′, we have that ↓e ∈ C ′

and since e is minimal in C ′ \ C, that ↓e \ {e} ∈ C. It follows directly that
e ∈ enabled(C). We know therefore that C ∪ {e} ∈ cuts(T) and since e ∈
C ′ \ C that C ∪ {e} ⊆ C ′. By induction there exists a sequence C0, ..., Cn−1

of cuts between C ∪ {e} and C ′. The sequence for C, C ′ is then given by
C,C0, ..., Cn−1.

A.2 Proof of lemma 1

Given a trace T = 〈E,α,�〉, we have that:

sets(I>) = [[>]]

Proof. First, note that [[>]] = {C ∈ cuts(T) | C |= >} = cuts(T). Therefore, prov-
ing sets(I>) = [[>]] amounts to proving that sets(I>) = cuts(T). Consequently,
we prove the inclusion in both ways:

– For cuts(T) ⊆ sets(I>), we prove that cuts(T) ⊆ sets(I) is an invariant of the
algorithm. At the initial step, we start with I = I0. It can be easily proven
that sets(I0) = {C ⊆ E | ∀e ∈ C :↓e∩Ppid(e) ⊆ C}. Condition (i) of definition
1 then implies that every �-closed subset of E belongs to sets(I0). Therefore,
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we have that cuts(T) ⊆ sets(I0). Then, at each step of the algorithm, we
remove cuts from I to take into account a communication e →c e′. For that
we compute two ISTs B(e) and A(e′). It can be easily proven that sets(B(e)) =
{C ∈ sets(I0) | e 6∈ C} and that sets(A(e′)) = {C ∈ sets(I0) | e′ ∈ C}. Thus,
sets(A(e′) ∩ B(e)) = sets(A(e′)) ∩ sets(B(e)) = {C ∈ sets(I0) | (e′ ∈ C) ∧ (e 6∈
C)}. Therefore, since e � e′, any C ∈ sets(A(e′) ∩ B(e)) is not �-closed. It
follows directly that sets(A(e′) ∩ B(e)) ∩ cuts(T) = ∅, and that cuts(T) ⊆
sets(I \ (A(e′) ∩ B(e))). We can therefore conclude that cuts(T) ⊆ sets(I) is
an invariant and finally that cuts(T) ⊆ sets(I>).

– For sets(I>) ⊆ cuts(T), we equivalently prove that ∀C ⊆ E : (C 6∈ cuts(T)) ⇒
(C 6∈ sets(I>)). If C 6∈ cuts(T), then ∃e ∈ C, e′ ∈↓e : e′ 6∈ C. In this case,
since e′ ∈↓e, there exists in T a sequence of event e′ = e1, e2, ..., e` = e and
∀i ∈ [1, `) : ei → ei+1. Moreover, since e′ 6∈ C, ∃i ∈ [1, `) : (ei+1 ∈ C) ∧ (ei 6∈
C). From there, we have two cases:
(i) if pid(ei) = pid(ei+1), then C cannot be represented using a k-uple. In-

deed, let (x1, x2, ..., xk) be such an hypothetical k-uple. If ei+1 ∈ C, then
pos(ei+1) ≤ xpid(ei+1). But since ei → ei+1, pos(ei) ≤ pos(ei+1) and ei is
also in C. In this case, we therefore know that C 6∈ sets(I>).

(ii) on the other hand, if pid(ei) 6= pid(ei+1), then there is a communication
ei →c ei+1. Thus, in some step of the algorithm, we will compute B(ei)
and A(ei+1) such that sets(A(ei+1) ∩ B(ei)) = {C ∈ sets(I0) | (ei+1 ∈
C) ∧ (ei 6∈ C)}. Therefore, C will be removed at this step.

In both case, C 6∈ sets(I>) and we can conclude that sets(I>) ⊆ cuts(T)

A.3 Proof of lemma 2

Given a trace T = 〈E,α,�〉 and a predicate p, we have that

sets(Ip) = [[p]]

Proof. We need to prove the inclusion in both ways:

– For sets(Ip) ⊆ [[p]], we prove equivalently that ∀C ∈ sets(Ip) : C |= p. First
note that ∀C ∈ sets(Ip) : C ∈ sets(I>) = cuts(T). Therefore, C is �-closed.
Then, we have three possibilities:
(i) C ∈ sets(B(es1)): in this case, since es1 = e1 6∈ C and since C is �-

closed, we have that vC(p) = v∅(p). However, since C was added to Ip,
by construction we have that ∅ |= p which in turn implies that C |= p.

(ii) ∃i ∈ [1, `) : C ∈ sets(A(esi
) ∩ B(esi+1)): in this case, since esi

∈ C,
esi+1 6∈ C and since C is �-closed, we have that {ej | j ∈ [si, si+1)} ⊆ C.
However, by construction, ∀j ∈ [si, si+1) :↓ej |= p. Thus, if Ci denotes
↓esi , it follows that vC(p) = vCi(p), which in turn implies C |= p.

(iii) C ∈ sets(A(es`
)) : in this case since es`

= em ∈ C and since C �-
closed, vC(p) = vE(p). However, since C was added to Ip, we know by
construction that E |= p, which in turn implies that C |= p.

– For [[p]] ⊆ sets(Ip), we prove equivalently that ∀C ∈ cuts(T) : (C |= p) ⇒
(C ∈ sets(Ip)). Again, we have three possibilities:
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(i) C ∩ Ep = ∅ : in this case, we have that vC(p) = v∅(p) and C |= p, that
∅ |= p. Therefore, since C ∈ B(es1) and since C ∈ cuts(T) = sets(I>), we
can conclude that C ∈ sets(Ip).

(ii) ∅ 6= C ∩ Ep 6= Ep : in this case, let i = max≤({j ∈ [1, `) | esj ∈ C}).
Since esj ∈ C, we have that C ∈ sets(A(esj )). Moreover, we know
that esi+1 6∈ C, otherwise, i would not be maximal. It follows that
C ∈ sets(B(esi+1)) and that C ∈ sets(A(esi) ∩ B(esi+1)). However, if Ci

denotes ↓esi , since C |= p and vC(p) = vCi(p), we have that Ci |= p.
Therefore, A(esi) ∩ B(esi+1) will be added to Ip in the construction. Fi-
nally, since C ∈ cuts(T) = sets(I>), we can conclude that C ∈ sets(Ip).

(iii) C ∩ Ep = Ep : in this case, we have that vC(p) = vE(p) and since C |=
p, that E |= p. Therefore, since C ∈ A(es`

) and since C ∈ cuts(T) =
sets(I>), we can conclude that C ∈ sets(Ip).

A.4 Proof of lemma 3

Given a trace T = 〈E,α,�〉 and Ctl formulae φ, φ1 and φ2, we have that:

sets(Iφ1∨φ2) = [[φ1 ∪ φ2]]
sets(Iφ1∧φ2) = [[φ1 ∩ φ2]]

sets(I¬φ) = [[¬φ]]

Proof. This is a direct consequence of the following equalities:

sets(I¬φ) = sets(Iφ ∩ I>)
= sets(Iφ) ∩ sets(I>)
= (sets(Nk) \ sets(Iφ)) ∩ sets(I>)
= (sets(Nk) ∩ sets(I>)) \ (sets(Iφ) ∩ sets(I>))
= sets(I>) \ sets(Iφ)
= [[>]] \ [[φ]]
= [[¬φ]]

sets(Iφ1∨φ2) = sets(Iφ1 ∪ Iφ2)
= sets(Iφ1) ∪ sets(Iφ2)
= [[φ1]] ∪ [[φ2]]
= [[φ1 ∨ φ2]]

sets(Iφ1∧φ2) = sets(Iφ1 ∩ Iφ2)
= sets(Iφ1) ∩ sets(Iφ2)
= [[φ1]] ∩ [[φ2]]
= [[φ1 ∧ φ2]]

A.5 Proof of lemma 4

Given a trace T = 〈E,α,�〉 and a subset X ⊆ cuts(T), we have that:

pre∃(X) =
⋃

i∈[1,k]

pre∃i (X)
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Proof. This is direct consequence of the following equalities:

pre∃(X) = {C ∈ cuts(T) | ∃e ∈ enabled(C) : C ∪ {e} ∈ X}
= {C ∈ cuts(T) | ∃e ∈ enabled(C) ∩ E : C ∪ {e} ∈ X}
= {C ∈ cuts(T) | ∃e ∈ enabled(C) ∩ (

⋃
i∈[1,k] Pi) : C ∪ {e} ∈ X}

= {C ∈ cuts(T) | ∃e ∈
⋃

i∈[1,k](enabled(C) ∩ (Pi) : C ∪ {e} ∈ X}
=

⋃
i∈[1,k]{C ∈ cuts(T) | ∃e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ X}

=
⋃

i∈[1,k] pre
∃
i (X)

A.6 Proof of lemma 5

Given a trace T = 〈E,α,�〉, and an IST I such that setsI ⊆ cuts(T), we have
that:

pre∃i (sets(I)) = sets(I [xi←xi−1] ∩ I>)

Proof. This is a direct consequence of the following equivalences:

sets(I [xi←xi−1] ∩ I>)
= {C ∈ cuts(T) | ∃−→x ∈ tuple(I [xi←xi−1]) : C = C−→x }
= {C ∈ cuts(T) | ∃−→x ′ ∈ tuple(I) : C = C−→x ′ \ {e ∈ Pi | pos(e) = x′i}}
= {C ∈ cuts(T) | ∃−→x ′ ∈ tuple(I) : C = C−→x ′ \ {e ∈ Pi | pos(e) = |C−→x ′ ∩ Pi|}}
= {C ∈ cuts(T) | ∃−→x ′ ∈ tuple(I) : C = C−→x ′ \ {e ∈ Pi | pos(e) = |C ∩ Pi|+ 1}}
= {C ∈ cuts(T) | ∃−→x ′ ∈ tuple(I) : C−→x ′ = C ∪ {e ∈ Pi | pos(e) = |C ∩ Pi|+ 1}}
= {C ∈ cuts(T) | ∃C ′ ∈ sets(I) : C ′ = C ∪ {e ∈ Pi | pos(e) = |C ∩ Pi|+ 1}}

(by lem. 11)
= {C ∈ cuts(T) | ∃e ∈ enabled(C) ∩ Pi,∃C ′ ∈ sets(I) : C ′ = C ∪ {e}}
= {C ∈ cuts(T) | ∃e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ sets(I)}
= pre∃i (sets(I))

A.7 Proof of lemma 6

Given a trace T = 〈E,α,�〉, and an subset X ⊆ cuts(T), we have that

pre∀(X) =
⋂

i∈[1,k]

pre∀i (X)
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Proof. This is a direct consequence of the following equalities:

pre∀(X) = {C ∈ cuts(T) | ∀e ∈ enabled(C) : C ∪ {e} ∈ X}
= {C ∈ cuts(T) | ¬(∃e ∈ enabled(C) : C ∪ {e} 6∈ X)}
= {C ∈ cuts(T) | ¬(∃e ∈ enabled(C) : C ∪ {e} ∈ (cuts(T) \X))}
= {C ∈ cuts(T) | ¬(C ∈ pre∃(cuts(T) \X))}
= cuts(T) \ pre∃(cuts(T) \X)
= cuts(T) \

(⋃
i∈[1,k] pre

∃
i (cuts(T) \X)

)
=

⋂
i∈[1,k]

(
cuts(T) \ pre∃i (cuts(T) \X)

)
=

⋂
i∈[1,k] (cuts(T) \ {C ∈ cuts(T) | ∃e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ cuts(T) \X})

=
⋂

i∈[1,k] (cuts(T) \ {C ∈ cuts(T) | ∃e ∈ enabled(C) ∩ Pi : C ∪ {e} 6∈ X})
=

⋂
i∈[1,k] (cuts(T) \ {C ∈ cuts(T) | ¬(∀e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ X}))

=
⋂

i∈[1,k]

(
cuts(T) \ {C ∈ cuts(T) | ¬(C ∈ pre∀i (X)}

)
=

⋂
i∈[1,k]

(
cuts(T) \ (cuts(T) \ pre∀i (X))

)
=

⋂
i∈[1,k] pre

∀
i (X)

A.8 Proof of lemma 7

Given a trace T = 〈E,α,�〉, and an subset X ⊆ cuts(T), we have that

pre∀i (X) = pre∃i (X) ∪ blockedi

Proof. We proceed by proving inclusion in both ways.

– For pre∀i (X) ⊆ pre∃i (X) ∪ blockedi, let us examine a cut C ∈ pre∀i (X). Either,
enabled(C) ∩ Pi = ∅, in which case, C ∈ blockedi, or enabled(C) ∩ Pi 6= ∅, in
which case ∃e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ X holds, which, in turn, implies
that C ∈ pre∃i (X).

– For pre∃i (X)∪blockedi ⊆ pre∀i (X), we prove that blockedi ⊆ pre∀i (X) and that
pre∃i (X) ⊆ pre∀i (X) independently. The proof for blockedi is straightforward.
Indeed, for a cut C ∈ blockedi, we know that enabled(C) ∩ Pi = ∅. The
universal quantification over enabled(C) ∩ Pi in pre∀i (X) is therefore trivially
satisfied, and C ∈ pre∀i (X). The proof for prei(X) is also quite simple. For a
cut C ∈ pre∃i (X), we know that ∃e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ X. This
implies that e ∈ enabled(C)∩Pi 6= ∅. The only possibility for enabled(C)∩Pi is
a singleton containing the next event of Pi, by lem.11. Therefore we have that
∃e ∈ enabled(C)∩Pi : C∪{e} ∈ X implies ∀e ∈ enabled(C)∩Pi : C∪{e} ∈ X,
which, in turn implies C ∈ pre∀i (X).

A.9 Proof of lemma 8

Given a trace T = 〈E,α,�〉 and a process Pi ⊆ E, we have that C ∈ blockedi if
and only if:

∀e ∈ E ∩ Pi : (pos(e) = |C ∩ Pi|+ 1) =⇒ (∃e′ ∈ E \ C : e′ →c e)

Proof. We prove the equivalence in both ways.
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– (⇐) Let us examine a cut C such that ∀e ∈ E∩Pi : (pos(e) = |C∩Pi|+1) =⇒
(∃e′ ∈ E \C : e′ →c e). By lem. 11, we know that enabled(C)∩Pi ⊆ {e} where
e is such that pos(e) = |C ∩ Pi|+ 1. We have then that ∃e′ ∈ E \C : e′ →c e.
Since e′ 6∈ C and since e′ →c e implies that e′ � e, we have that e 6∈ enabled(C)
hence enabled(C) ∩ Pi = ∅ and C ∈ blockedi.

– (⇒) We proceed by proving the contraposition. Let us examine a cut C such
that ∃e ∈ E ∩ Pi : (pos(e) = |C ∩ Pi| + 1) ∧ (∀e′ ∈ E \ C : e′ 6→c e). Since
pos(e) > |C ∩ Pi|, we can conclude that e 6∈ C. Moreover, since C ∈ cuts(T),
we have that ∀e′ ∈ Pi : (pos(e′) ≤ |C∩Pi|) =⇒ (e′ ∈ C). Finally, ∀e′ ∈ E\C :
e′ 6→c e implies that @e′ ∈ E \Pi : e′ � e. We can deduce that e ∈ enabled(C)
and that enabled(C) ∩ Pi 6= ∅, which implies that C 6∈ blockedi.

A.10 Proof of lemma 9

Given a trace T = 〈E,α,�〉, and an IST I such that I ⊆ cuts(T), we have that:

pre∀i (sets(I)) = sets((I [xi←xi−1] ∩ I>) ∪ Iblockedi)

Proof. This is a direct consequence of the following equalities:

pre∀(sets(I)) = pre∃i (sets(I)) ∪ blockedi (by lem. 7)
= sets(I [xi←xi−1] ∩ I>) ∪ blockedi (by lem. 5)
= sets(I [xi←xi−1] ∩ I>) ∪ sets(Iblockedi) (by constr. of Iblockedi)
= sets((I [xi←xi−1] ∩ I>) ∪ Iblockedi

)

A.11 Proof of lemma 10

Given a trace T = 〈E,α,�〉 of k processes and a Ctl formula φ, we have that:

sets(IEFφ) = [[EFφ]]

Proof. This is a direct consequence of the following equalities:

sets(↓Iφ ∩ I>)
= sets(↓Iφ) ∩ sets(I>)
= sets({−→x ∈ Nk | ∃−→x ′ ∈ tuple(Iφ) : −→x ≤ −→x ′}) ∩ sets(I>)
= {C ⊆ E | ∃C ′ ∈ sets(Iφ) : C ⊆ C ′} ∩ cuts(T)
= {C ∈ cuts(T) | ∃C ′ ∈ sets(Iφ) : C ⊆ C ′}
= {C ∈ cuts(T) | ∃C ′ ∈ [[φ]] : C ⊆ C ′}

(by lem. 12)

=
{

C ∈ cuts(T)
∣∣∣∣ ∃C ′ ∈ [[φ]],∃C0, ..., Cm : (C0 = C) ∧ (Cm = C ′)∧
(∀i ∈ [1,m] : (Ci−1 ∈ pre∃({Ci})) ∧ (Ci ∈ cuts(T)))

}
= [[EFφ]]
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B Details of the experimental results

#events #comm. #cuts TraX (f.p.) TraX (d.c.) NuSMV

100 7 290 0.01 sec. 0.01 sec. 0.06 sec.
200 15 600 0.02 sec. 0.01 sec. 0.17 sec.
500 36 1380 0.30 sec. 0.02 sec. 0.88 sec.
1000 74 2860 0.70 sec. 0.07 sec. 3.43 sec.
2000 147 5570 1.45 sec. 0.46 sec. 349.57 sec.
5000 366 14030 15.2 sec. 7.53 sec. ↑↑
10000 729 27995 96.51 sec. 58.12 sec. ↑↑
15000 1093 41980 323.59 sec. 189.65 sec. ↑↑
20000 1451 55848 ↑↑ 528.74 sec. ↑↑

Table 2. Peterson mutual exclusion protocol for two process; the property is AG(ncrit <
2) where ncrit is the number of process in their critical section; ↑↑ indicates that the
execution did not terminate in under 10 min; f.p. (resp. d.c.) indicates that AG was
computed using a fixed point (downward closure) .

Fig. 3. Graphical results for the simple Peterson with 2 processes

#events #comm. #cuts TraX NuSMV

100 22 1653 0.32 sec. 1.44 sec.
200 32 2319 0.45 sec. 1.67 sec.
500 75 5278 1.82 sec. 14.79 sec.
1000 149 11314 13.60 sec. 297.28 sec.
2000 276 21075 27.56 sec. ↑↑
5000 682 51531 257.29 sec. ↑↑
10000 1360 102714 ↑↑ ↑↑

Table 3. Alternating Bit protocol with one sender and one receiver; the property is
AG((sent msg = 0) =⇒ AF(received msg = 0)); ↑↑ indicates that the execution did
not terminate in under 10 min.
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#processes #events #comm #cuts TraX NuSMV

2 100 7 107 0.00 sec. 0.03 sec.
2 200 14 206 0.00 sec. 0.09 sec.
2 500 34 506 0.01 sec. 0.42 sec.
2 1000 68 1016 0.04 sec. 2.80 sec.
2 2000 134 2039 0.20 sec. 294.46 sec.
2 5000 334 5106 6.44 sec. ↑↑
2 10000 667 10047 48.10 sec. ↑↑
2 20000 1335 20267 390.90 sec. ↑↑
5 100 56 404 0.03 sec. 0.09 sec.
5 200 97 1009 0.07 sec. 0.16 sec.
5 500 202 2618 0.33 sec. 0.85 sec.
5 1000 402 5393 2.04 sec. 13.74 sec.
5 1500 602 11732 6.82 sec. ↑↑
5 2000 773 13885 12.61 sec. ↑↑
5 5000 1926 27835 176.62 sec. ↑↑
5 10000 3801 55535 ↑↑ ↑↑
10 100 328 14072 0.82 sec. 0.01 sec.
10 200 314 22173 0.79 sec. 0.46 sec.
10 500 493 43908 2.12 sec. 1.60 sec.
10 1000 796 72567 5.42 sec. 4.20 sec.
10 1500 1024 92340 7.53 sec. 150.23 sec.
10 2000 1405 147219 27.01 sec. ↑↑
10 5000 3255 203002 147.89 sec. ↑↑
10 10000 6361 452897 ↑↑ ↑↑

Table 4. Peterson mutual exclusion protocol generalized for n process; the property is
AG(ncrit < 2) where ncrit is the number of process in their critical section; ↑↑ indicates
that the execution did not terminate in under 10 min.

Fig. 4. Graphical results for Peterson with 10 processes
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#processes #events #comm #cuts TraX NuSMV

3 100 31 2060 0.15 6.36
3 200 61 5879 1.11 ↑↑
3 500 160 11587 6.24 ↑↑
3 1000 324 20780 28.90 ↑↑
3 2000 613 55680 366.22 ↑↑
3 5000 1654 104591 ↑↑ ↑↑
5 100 65 41334 0.25 ↑↑
5 200 101 405858 27.05 ↑↑
5 500 229 1021052 125.56 ↑↑
5 1000 547 1342108 ↑↑ ↑↑
10 100 130 377853293 1.67 ↑↑
10 200 189 797010724 26.94 ↑↑
10 500 474 1478286661 ↑↑ ↑↑

Table 5. Dining philosophers using shared variables for the forks; the property is
AG((state1 = eat) =⇒ (AG(state1 = eat) || A[(state0 6= eat) U (state1 6= eat)]))
where statei is the state of philosopher i (eat, hungry or idle); ↑↑ indicates that the
execution did not terminate in under 10 min.


