A Language-Based Comparison of Extensions of Petri
Nets with and without Whole-Place Operations

P. A. Abdulla’, G. Delzanno?, and L. Van Begin®

1 Uppsala University, Sweden, parosh@it .uu.se
2 Universita di Genova, Italy, giorgio@disi.unige.it
3 Université Libre de Bruxelles, Belgium, lvbegin@ulb.ac.be

Abstract. We use language theory to study the relative expressiveness of infinite-
state models laying in between finite automata and Turing machines. We focus
here our attention on well structured transition systems that extend Petri nets. For
these models, we study the impact of whole-place operations like transfers and
resets on nets with indistinguishable tokens and with tokens that carry data over
an infinite domain. Our measure of expressiveness is defined in terms of the class
of languages recognized by a given model using coverability of a configuration
as accepting condition. Our main result is that, perhaps surprisingly, whole-place
operations augment the expressive power of Petri nets only in the case of black
indistinguishable tokens. The results of our analysis can be used to build a com-
plete hierarchy of well-structured models like Petri nets, affine well-structured
nets, lossy fifo channel systems, constrained multiset rewriting systems, and data
nets.

Keywords Languages; Expressiveness; Well-structured systems; Verification.

1 Introduction

The class of well-structured transition systems (wsts) [10] includes several interesting
examples of infinite-state models whose expressiveness lay in between that of finite au-
tomata and that of Turing machines. Some examples of wsts are Petri nets [10], transfer
and reset nets [8], lossy FIFO channel systems (LCS) [4, 6], and constrained multiset
rewriting systems (CMRS) [2]. Petri nets is a widely used model of concurrent systems
defined by a finite set of places containing multisets of tokens and by a finite set of tran-
sitions that define the flow of tokens among places. Each transition consumes/produces
a fixed number of tokens in each place. Transfer/reset nets extend Petri net with whole-
place operations that operate simultaneously on all tokens in a given set of places. In
a lossy FIFO channel system places are viewed instead as unreliable FIFO channels.
Finally, CMRS can be viewed as an extension of Petri nets in which tokens carry nat-
ural numbers and transitions are guarded by constraints on data attached to tokens. For
all the above mentioned models, the coverability problem is decidable [2,4, 6, 8]. This
decision problem is of great importance for verification of safety properties like mutual
exclusion.

An interesting research question concerns the study of the relative expressiveness
of well-structured models. For this purpose, it comes natural to use tools from language

theory, i.e., to compare the languages generated by labeled transition systems that de-
scribe their operational semantics. Unfortunately, standard notions of acceptance like
reachability of a configuration are not adequate to obtain a fine-grained classification of
wsts models. For instance, with this notion of acceptance transfer/reset nets are equiva-
lent to Turing machines.

As shown in 3,9, 11], a finer classification of wsts can be obtained by considering
the class of languages recognized with coverability acceptance conditions (c-languages
for short). A classification of wsts based on c-languages is particularly interesting since
it can be used to extend the applicability of a decision procedure for coverability (e.g.
the symbolic backward reachability algorithm in [1]) from a particular wsts model to
an entire class.

New contribution In this paper we use c-languages as a formal tool to study the impact
of whole-place operations on the expressiveness of Petri nets with black indistinguish-
able tokens and with tokens that carry data over an ordered domain. For this purpose,
we compare the expressiveness of Petri nets, LCS, and CMRS with that of affine well-
structured nets (AWNSs) [13], and data nets [14]. AWNSs are a generalization of Petri
nets and transfer/reset nets in which the firing of a transition is split into three steps:
subtraction, multiplication, and addition of black tokens. Data nets can be viewed as a
generalization of AWNS in which these steps are defined on tokens that carry data taken
from an infinite, ordered domain. Conditions on data values can be used here to restrict
the type of tokens on which apply whole-place operations. Although presented in a dif-
ferent style, a data net can be viewed as a CMRS enriched with whole-place operations.
For all these models, our technical results are as follows.

We first show that AWNSs are strictly more expressive than Petri nets and strictly
less expressive than lossy FIFO channel systems. The proof of the second result ex-
ploits a non-trivial property of the class of c-languages recognized by AWNSs based on
Dickson’s lemma [7].

We then show that, differently from nets with indistinguishable tokens, whole-place
operations do not augment the expressive power of models in which tokens carry data
taken from an ordered domain. The proof is based on a weak, effectively constructible
encoding of data nets into CMRS that can be used to reduce the coverability problem
from one model to the other. Weakness refers here to the fact that the CMRS encoding
simulates a lossy version of data nets, i.e., data nets in which tokens may get lost. How-
ever this is enough to show that the two models define the same class of c-languages.

Our analysis has several interesting consequences. First, it can be used to give a
strict classification of the expressiveness of a large class of wsts models taken from
the literature. Furthermore, it shows that the symbolic backward reachability algorithm
for solving the CMRS coverability problem given [2] can also be applied in presence of
whole-place operations like transfer and reset of colored tokens. Finally, as discussed in
the conclusions, our weak encoding of data nets into CMRS can naturally be adapted to
extend the decidability of coverability to a more general definition of data nets transition
than the one given in [14]. Our extensions include, for instance, generation of fresh
values, a feature present in several models of concurrency like CCS and m-calculus.

Related work In [9, 11] the authors compare the relative expressiveness of Petri nets
with reset, transfer, and non-blocking arcs. A classification of infinite-state systems in
terms of decidable properties is presented in [12]. The classification is extended to well-
structured systems in [5]. Both classifications do not include models like CMRS and
data nets. A classification of the complexity of the decision procedures for coverability
of different formulations of data nets is studied in [14]. In [3] we have compared CMRS
with lossy FIFO channel systems and other weaker models like relational automata.
However, we have not considered whole-place operations like those in AWNSs and data
nets. We believe that a comparative study of all these sophisticated models can be useful
to find new applications of the theory of well-structured transition systems.

Preliminary Notions In this paper we consider extensions of finite automata defined
by using labelled transition systems. A transition system 7" = (S, R) consists of a set
S of configurations and of a set R of transitions, where a transition ig S x S. A
transition system 7' is said to be well-structured (wsts) with respect to a quasi ordering
= on configurations iff the following conditions hold: (i) = is a well-quasi ordering,
i.e., for any infinite sequence of configurations 17z ..."; . .. there exist indexes 7 < j
such that v; =< «y;; (ii) T' is monotonic, i.e., for any L.e R,ify1 < v and 11 £, Y35
then there exists 4 s.t. v3 = 4 and o £, V4.

Given a wsts T', we label each transition in R either with a symbol ¢ from an al-
phabet X' or with the empty word € (silent transition). If we associate to a wsts 1" an
initial configuration 7y and a final configuration ~,.., the language recognized by T’
with coverability acceptance (c-language for short) is defined as follows:

L(T) ={w € X* | o = v and Yacc =7}

where 79 == ~ denotes a finite sequence of application of transitions such that the
concatenation of their labels produces the word w. We use L.(M) to denote the class
of c-languages recognized by instances " of a given model M (e.g. Petri nets, transfer
nets, etc.), i.e., L.(M) ={L |35 e M, L = L.(5)}.

Given a wsts T = (S, R, =) with labels in X' U {e}, a lossy version of T is a wsts
T = (S, R’, X) for which there exists a bijection A : R — R’ such that 2. Rand

240, have the same label, &QM and if o), ~/, theny & 4" withy’ < ~4”.Ina

lossy version of a wsts, the set of reachable configurations contains configurations that
are smaller than those of the original model. The following lemma then holds.

Lemma 1. For any lossy version T’ of a wsts T, we have that L.(T) = L.(T").

2 Whole-place operations in nets with black tokens

In this section we use c-languages as a formal tool to compare the expressiveness of
Petri nets, affine well-structured nets (AWNs) [13], and lossy FIFO channel systems
(LCS) [4, 6]. AWNSs are a generalization of Petri nets in which transitions admit whole-
place operations, i.e., operations that operate simultaneously on the whole set of tokens
in a given place. Examples of whole-place operations are reset (all tokens in a place

(1) o
q

Fig. 1. An example of AWN transition.

[RS
O O v
_/
=

Il
VRS
o
e
~—

are consumed) and transfer arcs (all tokens in a place are transferred to another place)
[8]. Formally, an AWN consists of a finite set P of places and of a finite set 7" of
transitions. As in Petri nets, AWN-configurations, called markings, are vectors in N P
i.e., finite multisets with symbols in P. A marking counts the current number of tokens
in a given place in P. In the rest of the paper we use [a1, .. ., a,] to indicate a multiset
with elements aq, . . ., a,. Furthermore, for a marking M, we use M (a) to denote the
number of tokens in place a. Finally we use, — and + to denote multiset difference and
union.

An AWN-transition ¢ is defined by two vectors F; and H; in N*, and by a N x N-
matrix G;. Intuitively, F; defines a subtraction step (how many tokens to remove from
each place), G; defines a multiplication step (whole-place operations), and H; defines
an addition step (how many tokens are added to each place). ¢ is enabled at marking M
if F; < M where < denotes marking (multiset) inclusion, i.e., M < M iff M(p) <
M'(p) for each p € P. The firing of ¢ at a marking M amounts to the execution of
the three steps in sequence. Formally, it produces a new marking M’ = (M — F}) -
G+) + H;, where - denotes the multiplication of vector (M — F}) and matrix G;. As an
example, let P = {p, ¢} and consider the transition ¢ in Fig. 1. This transition removes
a token from p and resets the number of tokens in ¢ to 1. For instance, from the marking
M = [p,p,q,q,ql, ie., the vector (2,3) € N¥, we obtain the new marking M’ = [p, q|
defined by the vector ((2,3) — (1,0)) - Gy +(0,1) = (1%14+3%0,1%0+3%0) +
(0,1) = (1,1)

As shown in [13], AWN are well-structured with respect to marking inclusion <.
Petri nets are the subclass of AWNSs in which Gy is the identity matrix, i.e., with no
whole-place operations. In [9] the authors have shown that there exists a c-language
L € L.(transfer nets) such that L ¢ L.(Petri nets). Since transfer nets are a
special case of AWNs, we obtain the following property.

Proposition 1. L.(Petri nets) C L.(AWN).

To obtain a sort of upper bound bound on the expressive power of nets with whole-place
operations, we can consider nets in which places maintain some kind of order between
their tokens as in lossy FIFO channel systems (LCS). A LCS is a tuple (Q,C, N, J),
where @ is a finite set of control states, C' is a finite set of channels, [V is a finite set
of messages, 0 is a finite set of transitions, each of which is of the form (g1, Op, ¢2)
where ¢1,q2 € @, and Op is a mapping from channels to channel operations. For
any ¢ € C and a € N, an operation Op(c) is either a send operation la, a receive
operation 7a, the empty test €7, or the null operation nop. A configuration -y is a pair
(¢, w) where ¢ € @, and w is a mapping from C to N* giving the content of each
channel. The initial configuration ~;,;; of JF is the pair (go,&) where ¢ € @, and &
denotes the mapping that assigns the empty sequence € to each channel. The (strong)

transition relation (that defines the semantics of machines with perfect FIFO channels)
is defined as follows: (q1,w;) —— (g2, wy) if and only if ¢ = (q1, Op, ¢2) € J such
that if Op(c) =la, then wa(c) = wi(c) - a; if Op(c) =?a, then wy(c) = a - wa(c); if
Op(c) = €? then w1 (c) = e and wz(c) = €; if Op(c) = nop, then wz(c) = w;(c). Now
let <; be the well-quasi ordering on LCS configurations defined as: (g1, w1) =; (g2, w2)
iff g = g2 and Ve € C : wy(c) < wa(c), where <, indicates the subword relation.
We introduce then the weak transition relation == that defines the semantics of LCS:
we have y; == ~, iff there exists 7} and v} s.t. ¥, <; 71,7 —— 7%, and 72 =; 5.
Thus, 41 == 7, means that 7, is reachable from ; by first losing messages from
the channels and reaching ~y1, then performing a transition, and, thereafter losing again
messages from channels. As shown in [4, 6], LCS are well-structured w.r.t. <;. The
following theorem then holds.

Theorem 1. L. (AWN) C L.(LCS).

Proof. (1) We first prove the inclusion L.(AWN) C L.(LCS). Assume an AWN
W = (P,T,F,G,H) with P = {p1,...,pn}. We build a LCS F = (Q,C, N, ?)
such that L.(W) = L.(F). The set of channels is defined as C = P U P’ where P’
(auxiliary channels) contains a primed copy of each element in P. The set of messages
N contains the symbol e (a representation of a black token). Assume that gy € () is the
initial state of F. Then, a marking M is encoded as a LCS configuration enc(M) with
state go and in which channel p; € P contains the word ™ containing m; = M (p;)
occurrences of symbol e for i € 7*
For each transition ¢ with label ¢, we need to simulate the three steps (subtraction,
multiplication, and addition) that correspond to Fy, G; and H;. Subtraction and addition
can be simulated in a straightforward way by removing/adding the necessary number
of tokens from/to each channel. The multiplication step is simulated as follows. For
each 7 € m, we first make a copy of the content of channel p; in the auxiliary channel
p}. Each copy is defined by repeatedly moving a symbol from p; to p; and terminates
when p; becomes empty. When the copy step is terminated, we start the multiplication
step. For each ¢ € 7, we remove a msg e from p; and add as many e’s to channel p;
as specified by G¢(p;, p;) for j € m. This step terminates when the channels p/, ..., p/,
are all empty. For an accepting AWN-marking M, the accepting LCS-configuration is
such that the control state is gg, each channel p; € P contains M (p;) occurrences of
message e, and all channels in P’ are empty.
The following properties then hold: i) We first notice that M < M’ iff enc(M) =
enc(M'); ii) Furthermore, if My == M in W, then enc(My) == enc(M;) in F;
iii) Finally, since ® symbols may get lost in F, if enc(My) == enc(M) then there
exists My such that M =% M, and M, < M. Since we consider languages with
coverability acceptance, L.(W) = L.(F) immediately follows from properties (i),(ii),
(iii) and Lemma 1.
(2) We prove now that L.(LCS) € L.(AW N). For this purpose, we exhibit a language
in L.(LCS) and prove that it cannot be recognized by any AWN.

Fix a finite alphabet X = {a, b, 1} and let £ = {w#w'| w € {a,b}* and v’ < w}.
It is easy to check a LCS that accepts the language L: we first put w in a lossy channel

* We use 72 as an abbreviation of [1, ..., 7).

and then remove one-by-one all of its messages. Thus, we have that £ € L.(LCS).
We now prove that there is no AWN that accepts £. Suppose it is not the case and there
exists a AWN N, with (say) n places, that recognizes £ with initial marking M;,;; and
accepting marking M.

For each w € {a,b}*, there is a marking M,, such that M, ki M, = M
and M; < M (otherwise w#w would not be in L.(N)). Consider the sequences
W, W1, W2, ... and My, My, , My,, ... of words and markings defined as follows:

- wp:=0b"
- If My, = (M1, ...,my) then w;q :=a™ ba™2b--- ba™,fori=0,2,...

We observe that (a) wg A w; for all ¢ > 0, since w; contains n occurrences of b,
while w; contains only n — 1 occurrences of b; and (b) for any i < j, M,,, < ij iff
Wiy1 = wjy1. By Dickson’s lemma [7], there are ¢ < j such that M,,, < ij.Without
loss of generality, we can assume that j is the smallest natural number satisfying this
property. Remark that we have that w; A w;. Indeed, wg A w; for any j > 0 by
(a), and in the case of i > 0 we have by (b) that w; A w; since My, , £ My, .
Since M,,, < Mw]. , by monotonicity of AWNs, we have that M, =4 M with M 5 <

M implies that M,,, =% M’ with My < M < M’. Hence, M, "2 M’ and
wj#w; € L.(N) = L, which is a contradiction. O

By combining Prop. 1 and Theorem 1 we obtain the following strict classification.
L.(Petrinets) C L.(AWN) C L.(LCS)

As a corollary, we have that transfer/reset nets are strictly less expressive than LCSs.

3 Whole-place operations in nets with colored tokens

In this section we study the impact of whole-place operations on the expressiveness of
well-structured colored Petri nets like CMRS [2] and data nets [14]. CMRS is an exten-
sion of Petri nets in which tokens are labelled with natural numbers. For a fixed number
of places P, if we represent a token in place p with value v as the term p(v), then CMRS
configurations are nothing but multisets of ground terms like [p(1),p(3),q(4)] (we re-
call that markings are multisets over P, i.e., a special case of CMRS configurations).
We use P-terms to denote terms associated to colored tokens. CMRS transitions are
defined in terms of conditional multiset rewriting rules of the form L ~» R : ¥ where
L and R are terms with variables that describe colored tokens and ¥ is a condition over
such variables. Conditions are expressed by a finite conjunction of constraints in the
following form: z +c < y,z <y,x =y, x < ¢,z > ¢, x = c where x, y are variables
appearing in L and/or R and ¢ € N is a constant. A rule r is enabled at a configuration
c if there exists a valuation of the variables Val (Val(x) € N) such that Val(¥) is sat-
isfied. Firing r at ¢ leads to a new multi-set ¢’ = ¢ — Val(L) + Val(R), where Val(L),
resp. Val(R), is the multi-set of ground terms obtained from L, resp. R, by replacing
each variable = by Val(x). As an example, consider the CMRS rule:

p=Ip@), a@)] ~ laz), r@@), r@)] : {z+2<y,z+4<z, 2z <w}

p
3
Ro 51 T pRoq pSIQ pqu
Fy = P qg|lp qg|pgq

0 0[1 0|0 0 R, P 1 03 0100
o - ¢ 3 1|0 0/0 0

L =
p 0 0[1 0[O0 O
o Ro S I Slq200000
Sl
Y'¢ 0 0l0 0]0 1

Fig. 2. Two data net markings (s and s") and a transition ¢ with arity 1.

A valuation which satisfies the condition is Val(z) = 1, Val(y) = 4, Val(z) = 8,
and Val(w) = 10. Thus, to fire t on ¢ = [p(1), p(3), ¢(4)] we first remove p(1) and
q(4) and then add the new tokens ¢(8), r(1), and r(1), producing the configuration
¢ =[p(3),4(8),r(1),r(10)].

The coverability problem for CMRS is decidable for an ordering <. that extends
multi-inclusion by taking into consideration the relative “gaps” among the values on
different tokens [2]. We come back to this point later.

It is important to remark that CMRS rules does not provide whole-place operations
(the semantics is defined using rewriting applied to sub-multisets of tokens). Despite of
it, in [3] we show that colors and gap-order conditions is enough to obtain a model that
is strictly more powerful than LCS. By combining this property with Theorem 1, we
have that L.(Petri nets) C L.(AWN) C L.(LCS) C L(CMRS).

A natural research question now is whether whole-place operations add power to
models like CMRS or not. To answer this question, instead of defining a new version
of CMRS, we compare its expressiveness with that of data nets [14]. Data nets are an
extension of AWNs in which tokens are colored with data taken from a generic infinite
domain D equipped with a linear ordering < As discussed in [14], for coverability
we can equivalently consider dense or discrete orderings. A data net has a finite sets
of places P and transitions 7. A data net marking s is a multiset of tokens that carry
(linearly ordered) data in D, i.e., s is a finite sequence of vectors in N* \ {0}, where 0
is the vector that contains only 0’s. Each index ¢ in the sequence s corresponds to some
d; € D (data values that occur in some token) such that ¢ < j if and only if d; < d;;
s(%)(p) is the number of tokens with data d; in place p. In Fig. 2 we show two examples
of configurations, namely, s and s, for a data net with places P = {p, ¢}. The data in
D that occur in tokens in s and s’ are e; < e3 < e3 < e4.

Data net transitions like that in Fig. 2 are defined by vectors (of vectors) F; and H;
and by a matrix G, that define resp. subtraction, addition, and multiplication of colored
tokens. These matrices are indexed by regions R(«y) = (R, S1, R, ..., Sk, Ri) asso-
ciated to the arity ; = k of the rule. The arity is used to select k data values dy, . . ., dy,
either fresh or occurring in the current configuration). Region .S; represents the single-
ton {d;}. Regions R;’s are used to define whole-place operations (e.g. transfers) for

tokens whose data are not in {dy,...,d;}. Ry contains all data d : d < d; in s, R;
containsalld : d; <d < d;y1insforv:1,...,k —1,and Ry contains all d : dj, < d
in s. To explain this idea, consider the marking s and the rule ¢ of Fig. 2. ¢ has arity 1,
thus R(ay) = {Ro, S1, R1}. Let us assume that ¢ (non-deterministically) partitions the
data in s as follows Ry = {e1,e2}, S1 = {e3}, and Ry = {e4}, its firing is defined as
follows.

Subtraction: F; specifies the number of tokens with data d, . . . , dj that have to be
removed, for each place in P, from the current configuration s. ¢ is enabled if places
have enough tokens to remove. In our example p contains two tokens with value eg,
and F; specifies that one token with value es must be removed. Thus, ¢ is enabled in
s. The subtraction step produces an intermediate configurations s; obtained from s by
removing one token with data es from place p.

Multiplication: G, specifies whole-place operations on the regions in R(ay). In our
example the third column of G, defines the effect of multiplication on the number of
tokens with data e3 in place p in s;. Specifically, we add to the tokens in place p with
value es (1 in position Sy, p, S1, p in G;), three new tokens with value e3 for each token
with value in Ry that lay into place p in s1 (3 in position Ry, p, S1,p in G¢). Thus, the
total number of tokens with value e3 in p becomes (3 + 5) * 3 + 1 = 25. Furthermore,
since the fourth column has only zeroes, all tokens with data es are removed from place
q (a reset restricted to all tokens with value e3 in ¢). The first column of G; defines the
effect on the tokens with values in Ry in place p. Specifically, for each d € Ry, we add
to p: three tokens with value d for each token with the same value laying into ¢ in 51 (3
in position Ry, q, R, p in G¢); two tokens with data d for each token with data e3 in ¢
(2 in position S1, q, Ry, p in G¢). Thus, the total number of tokens with value e in p is
now 3 + 3 x 2 + 2 % 10 = 29 and that for value es in pisnow 5 + 3« 1 + 2 % 10 = 28.
The other columns of G; leave the same tokens as those in the corresponding regions
and places in s;. We use ss to refer to the resulting intermediate configuration.

Addition H, specifies the number of tokens that are added, for each place, region,
and data to the configuration so to obtain the successor configuration s’. In our example,
we simply add one token with data es to place g. Finally, the new configuration s’ is
given in Fig. 2.

It is important to remark that whole-place operations are uniformly applied to each
data value in a region. Whole-place operations between region R; and R; as well as
subtractions from a region R; are forbidden. Furthermore, in case of whole-place oper-
ations from R; to S; (or viceversa) tokens may change data value (e.g. all tokens with
data d € R; in p are moved to place ¢ with value d;), whereas in operations within a
single region R; tokens do not change data value.

As proved in [14], data nets are well-structured with respect to the well-quasi order-
ing <4 defined on markings as follows. Let Data(s) be the set of data values that occur
in a marking s. Then, s; =<4 so iff there exists an injective function h : Data(s1) —
Data(s3) such that (¢) h is monotonic and (i7) s1(d)(p) < s2(h(d))(p) for each
d € Data(s1) and p € P. In other words we compose subword ordering (condition
(¢)) with multiset inclusion (condition (4)).

3.1 CMRS, Petri data nets, and Data nets

Data nets without whole place operations (i.e. in which G is the identity matrix) are
called Petri data nets. Petri data nets defined on a domain with a single data value d are
equivalent to Petri nets. Furthermore, as discussed in [14], it is possible to effectively
build an encoding of CMRS into Petri data nets such that coverability in CMRS can be
reduced to coverability into Petri data nets. Indeed, the well-quasi ordering <. used in
CMRS is basically the same as that used in Data nets (the only technical difference is
due to the presence of constants in conditions of CMRS rules). Thus, we have that

L.(CMRS) = L.(Petri data nets) C L.(Data nets)

We show next that the inclusion is not strict, and that Petri data nets, CMRS, and data
nets have all the same expressive power. To prove this result, we have to show that
for each Data nets D we can effectively build a Petri data net or a CMRS S such that
L.(S) = L.(D). Since CMRS rules have a format similar to a (logic) programming
language, we find more convenient to describe the encoding in CMRS.

Configurations Given a multi-set M with symbols in P and a value or variable x, we
use M?* to denote the multi set of P-terms such that M*(p(z)) = M (p) (=number of
occurrences of p in M) for each p € P, and M*(p(y)) = 0 forany y # x and p € P.
Now assume an initial data net marking sg with datad; < ... < d,,. We build a CMRS
representation of sy by non-deterministically selecting n natural numbers v; < ... <
vy, strictly included in some interval [f,[]. P-terms with parameter v; represent tokens
with data d; in place p. Formally, we generate the representation of sg by addingto S a
rule that rewrites an initial zerary term init as follows:

[init] ~ [first(f),last(l)] + >,

where M; is the multiset so(d;) for each i € 7. The non-determinism in the choice of
fyl,z1, ..., x, make the CMRS representation of sy independent from specific param-
eters assumed by terms.

Transitions are encoded by CMRS rules that operate on the values in [f,!] used
in the representation of a marking. Most of the CMRS rule are based on left-to-right
traversals of P-terms with parameters in [f, {].

2ZMT o f<ai <. <z, <l (init)

,,,,,

Subtraction Consider a transition ¢ with oy = k. We first define a (silent) CMRS-rule
that implements the subtraction step of ¢:

[first(f),last(D)] + F1(S1)™ + ...+ F(Sk)™ ~ (subtract)
[t0(f)s21(21)y ooy e(@r), o1 (1), mewy) : f <@y < .o <ap <l

In the subtract rule we non-deterministically associate a value w; to region ;. The se-
lection is performed by removing (from the current configuration) the multiset £} (S;)*
that contains F3(S;, p) occurrences of p(x;) for each p € P. The association between

> We recall that [t1, ..., t,] denotes a multisets of terms. Furthermore, >
...+ My, where + is multiset union.

w Mi = M +

:1,...,

value x; and region S; is maintained by storing x; in a 7;-term (introduced in the right-
hand side of the rule). If F;(S;,p) = 0 for any p € P, then v; may be associated to
a data d; not occurring in the current marking (i.e. selection of fresh data is a special
case). Furthermore, by removing both the first- and the last-term, we disable the fir-
ing of rules that encode other data net transitions.

In the rest of the section we refer to The values x1, ...,z stored in 21-,...,2,-terms
play the role of pointers to the regions Sy, ..., S, We refer to them as to the set of
ay-indexes. The parameters of terms in [f, [] associated to the other regions Ry, . .., R
are called region-indexes.

Multiplication To simulate the multiplication step we proceed as follows. We first make
a copy of the multiset of P-terms with parameters vy, ..., v, in [f,] by copying each
p-term with parameter v; in a p-term with parameter w; such that f/ < w; < ... <
wy, < I and [f',1'] is an interval to the right of [f,], i.e., ! < f’. The new;-term in the
subtract rule is used to enable the set of (silent) CMRS rules in Section A in appendix
that create the copy-configuration. During the copy we add a v'-term for any visited
region index. These terms are used to remember region indexes whose corresponding
P-terms are all removed in the multiplication step (e.g. when all tokens with data d €
R,; are removed).

For instance, [p(v1), p(v2),p(v2), q(vs)] with f < v1 < vy < w3 < [is copied
as [p(w1), v (w1), p(ws), P(ws), v (w2), g(ws)v (ws)] for some wy, we, ws such that
f<l<f <w < wy < ws < I The CMRS rules of Section A use a special
term as a pointer scan the indexes in [f,[] from left to right and create new P-term
with parameters in the interval [f’,{’]. The pointer is non-deterministically moved to
the right. Thus during the traversal we may forget to copy some token. This is the first
type of loss we find in our encoding. Notice that lost tokens have parameters strictly
smaller that f'.

The simulation of the multiplication step operates on the copy-configuration only
(that with P-terms). The (silent) CMRS rules that implement this step are shown in
Section A in appendix. The intuition behind their definition is as follows.

We first consider all oi-indexes of P-terms from left to right. For each a;-index v;,
we proceed as follows. We first select and remove a term P(v;) (encoding a given token).
We compute then the effect of the whole-place operation on the entire set of o;-indexes
(including v; itself). More specifically, for an oi-index v; we add G(S;, p, S}, ¢) occur-
rences of the term ¢(v;) to the current CMRS configuration. The use of P- and P-terms
with parameters in the same interval allows us to keep track of tokens still to transfer
(P-terms) and tokens already transferred (P-terms). We then consider all remaining
indexes by means of a left-to-right traversal of region-indexes in the current configura-
tion. During the traversal, we add new P-terms with region-indexes as parameters as
specified by G. During this step, we may forget to transfer some P-term. This is the
second type of loss we find in the encoding. After this step we either consider the next
token with o;-index v; or we move to the next o;-index.

After the termination of the whole-place operations for terms with a;-indexes, we
have to simulate the transfer of P-terms with region-indexes. For each such an index,
we transfer tokens within the same region-index or to an a;-index. To simulate these op-
erations we scan region-indexes from left-to-right to apply the matrix G;. Furthermore,

we mark visited region-indexes using v'-terms. The v'-terms are used in the simulation
of the addition step. The (silent) CMRS rules that implement this step (enabled by the
by term ¢rR;) are shown in Section A in appendix.

As alast step we add tokens to a;-indexes and visited region indexes as specified by
H,. For ay-indexes, we need a single rule that applies the matrix H;. For region-indexes,
we traverse from left-to-right the current configuration and apply H; to each marked
(with a v'-term) region-index w. As mentioned before, the v'-term allows us to apply
H, to regions emptied by the multiplication step. The rules for this step (associated to
terms add; and addR;) are shown in Section A. All the rules are silent except the last
one whose label is the same as that of ¢.

During the traversal, we may ignore some (marked) region-index. This is the last
type of loss in our encoding. The new configuration is the final result of the simulation
of the transition. Due to the possible losses in the different simulation steps, we may get
arepresentation of a data net configuration smaller than the real successor configuration.

To formalize the relation between a data net D and its CMRS encoding £(D), for a
configuration s with data d; < ... < di we use sV to denote the CMRS representation
with indexes v = (vy, . .., v). For configurations sg, s1, s, s’, we have that (i) if so ==
sy in D, then there exists v such that [init] == 5,7 in £(D). Furthermore, (ii) if
[init] == cin £(D) and s¥ =.. ¢ for some v, then there exists s; such that sp == s;
in D with s <4 s1. Finally, suppose that the accepting data net marking is a sequence
M; ... M, of k vectors (multi-sets) over N*. Then, we add a silent CMRS rule

[first(f),last(])] + Z M ~ Jace @ f<zi1<z0<...<z <l,z=0
i€{1,....k}

where acc is a fresh (with arity zero) predicate. By adding this rule, the accepting CMRS
configuration can be defined as the singleton [acc]. From properties (4), (¢4) and Lemma
1, we have the following result.

Theorem 2. L.(data nets) = L.(CMRS)

4 Conclusions

By combining the results in the present paper with the relation between LCS and CMRS
describe in [3], we obtain the following classification of well-structured extensions of
Petri nets

L.(Petrinets) C L.(aWSN) C L.(LCS) C L.(CMRS) = L.(data nets)

This classification reveals a different impact of whole-place operations on nets with
black and colored tokens: they augment the expressive power of basic models like Petri
nets, but they can be simulated in extended models in which tokens carry ordered data.

Our analysis can also be applied to extend the scope of the decidability results given
in [14]. For instance, in the semantics of data nets some of the k data values selected by
a transition may be fresh (they do not occur in the current configuration). Our CMRS
encoding of the substraction step can naturally be extended to rules in which some of the

data must necessarily be fresh (i.e. distinct from all data occurring in the current config-
uration). For this purpose, before selecting the data values, we make a copy (in a new
interval) of the current configuration. In the new configuration we non-deterministically
mark (with a predicate) a value x distinct from the values used to represent tokens. Af-
ter this preliminary step, we apply the subtraction phase by requiring that the value x is
one of the selected ones (i.e. we need «; rules for this last step). Similar extensions of
the CMRS encoding of data nets can be used to relax some of the syntactic restrictions
in the original definition of data nets. For instance, we can extend the CMRS encoding
to simulate transfers between two different regions I2; and R; (a type of transfer that
is forbidden in data nets). The above mentioned extensions of data net transitions are
still monotonic w.r.t. <4. Thus, a weak CMRS simulation immediately extends the de-
cidability result for coverability to these more general forms of transitions with whole-
place operations for colored tokens.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability theorems for
infinite-state systems. LICS 1996: 313-321.
2. P. A. Abdulla and G. Delzanno: On the Coverability Problem for Constrained Multiset
Rewriting Systems. AVIS 2006 (ETAPS 2006 workshop), to appear in ENTCS.
URL: http://www.disi.unige.it/person/DelzannoG/Papers/avis06.pdf
3. P. A. Abdulla, G. Delzanno, and L. Van Begin: Comparing the Expressive Power of Well-
Structured Transition Systems. CSL 2007: 99-114
4. P. A. Abdulla and B. Jonsson: Verifying Programs with Unreliable Channels. Inf. Comput.
127(2): 91-101 (1996)
5. N. Bertrand and Ph. Schnoebelen: A short visit to the STS hierarchy. ENTCS 154(3): 59-69
(2006)
6. G. Cécé, A. Finkel, and S. Purushothaman Iyer: Unreliable Channels are Easier to Verify
Than Perfect Channels. Inf. Comput. 124(1): 20-31 (1996)
7. L. E. Dickson: Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Amer. Journal Math. 35: 413422
8. C. Dufourd, A. Finkel, and Ph. Schnoebelen: Reset Nets Between Decidability and Unde-
cidability. ICALP 1998: 103-115
9. A.Finkel, G. Geeraerts, J.-F. Raskin, and L. Van Begin. On the w-language expressive power
of extended petri nets. TCS 356(3):374-386, 2006.
10. A. Finkel and Ph. Schnoebelen: Well-structured transition systems everywhere! TCS 256(1-
2): 63-92 (2001)
11. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Well-structured languages. Acta Informatica
44(3-4):249-288 (2007).
12. T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic transition sys-
tems. ACM Trans. Comput. Log. 6(1): 1-32 (2005)
13. A. Finkel, P. McKenzie, and C. Picaronny: A well-structured framework for analysing petri
net extensions. Inf. Comput. 195(1-2): 1-29 (2004)
14. R. Lazic, T. C. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell: Nets with Tokens
Which Carry Data. ICATPN 2007: 301-320

A Encoding of Data Nets into CMRS

(1) Silent CMRS rules for new,; The selection of k distinct data values, i.e., k oy
indexes, is defined by means of the following CMRS rules.

Fork=oay, 1€{0,...,k}, and anyp € P :
Copy of indezes in oy
[10(20)s - -y tht1(Tht1), nEWL] ~>

[Zo(ﬂ?o), R Zk+1(xk+1)a.]0(x/0)7 s 7]k+1(x;c+1)7 T(l‘o), ﬂ(mé)] :
Tpy1 <) < ... < Ty,

Copy p to P for ay — indexes

[1(@), (@), 1Y), 2:(y), p(2)] ~ [1(),%(2), M(¥), 25 (y), D(y)] : true

Copy p to P for region — indexes

[0 (), T(u), p(w), 21 (%), 2:(y), R(v); gi1 (¥)] ~
[i(2), T(w), i1 (27), 2:(y), P(0), M(0), g (¥)] s 2 <w < 2lyy <w <y

Move pointers to the right

[T(U),p(ul), Zk—!—l(x), ﬂ(v)7]k+l(y)] ~
[T(u/)72k+1(m)a ﬂ(’l}/),p(vl), ‘/<U/)m7k+1(y)] ru<u < r,v < v < Y

Terminate copy, replace current conf with new one

[0 (f), 11 (@1), ooy e (@h) s w1 (1), 90 (1), 01 (@1), ooy 26 (@) S 1 (1), T(w), M(0)] ~
[0(f"),010(2h), ooy e (@), kg r () t1e] = true

(2) Silent CMRS rules for simulation of whole-place operations.

In the following rules G(S;,p,m)* is the multiset that, for each ¢ € P, contains
G+(S;, p, 7, q) occurrences of the term g(x).

Fork=oay, i€e{l,....,k},7€{0,....k}, andp € P:
Start from first index
[tre] ~ [trea] @ true
Select a token from an index in oy, apply Gy to other indezes :
[10(20),01(z1)s - 0a(xs), - - - s (k) thtr (Thpn), P(24), By 5] ~
[t0(z0),21(z1)s -+ st (®h), o1 (®het1), aPPlYLip ()] + E]’-“:th(Si,p Si)% g < T < Thg
Apply Gy to indezes inside regions, move to the right
[1;(v), applysi,p(u), P(u), 1j41(v")] ~
[0 (v), applys,i p(u'), D(w), 241 (V)] + G¢(Si,p, Rj)* 1 v <u < v u <
Terminate visit continue with next token
[applys ; p(w)] ~ [tre;] @ true
Mowe to next index
[tre ;] ~ [tre 1] o true

Terminate transfer of tokens for indexes in oy, start transfer of tokens of regions
[10(f), tre k] ~ [trRy(f)] : true

(3) Silent CMRS rules for ¢rR

The following rules model a transfer inside a region-index and from a region-index to
ay-indexes. We use here G¢(R;,p, 7)* to denote the multiset that, for each ¢ € P,
contains G(R;, p, 7, q) occurrences of the term ¢(x).

Fork = o, 1€{0,...,k}, andanyp € P:
Remowve token and apply Gy to indexes inside regions
[0(20),21(21), -2 (24), 11 (Tig1), - o1 (Thp1), P(W), tr Ry (u)] ~

[0(20), 11 (1), (@), vi1 (@ig1), - - oy o1 (T1), i Ry ()]
+ Gi(Ri, p, Ri)" 4+ X5_1Gy(Ri,p, 5;)" + wi <u < i

Move pointers to the right

[trR:(uw), 1+1(1)] ~ [trRe(u'),241(D),] + u<u' <l
Terminate visit, move to addition step

[trR(u)] ~ [add,] : true

(4) CMRS rules for add; and addR;
In the following rules, H;(m)® is the multiset that, for each p € P, contains Hy(w, p)
occurrences of the term p(x) for any 7 € R(a). All rules are silent except the last one.

Fork = oy, i € {0,...,k}, andanyp € P :
Apply H; to indexes in «y

[t0(z0), 01 (z1), ... 2k(Tk), addy] ~
[10(0),21(x1), - - 26 (2k), addRe(x0)] + ijlHt(Sj)"j : true
Apply Hy to an index inside a region and advance pointer

[Zi(v)’ bit1 (UI>7 addRy (u)’ ‘/(u>] ~
[1:(0), 2541 (V"), addRe(u)] + He(R)" tv < u < v,u <
Terminate simulation of transition t

[10(20),21.(21), - - s thsr (@rsn), addRe(w)] 2 [First (o), last(zpsr)] : true

