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Research Themes

I Geometry and combinatorics of specific polytopes

with motivations from mathematical psychology
(model characterization, data analysis)

and motivations from optimization
(finding a best ordering)

I
(
Distances between rankings, phylogenetic networks

with motivations from biology

I Knowledge assessment

I Approximation algorithms for coloring problems

I . . .
)
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The Setting

To be uncovered: some latent ranking of known objects

(alternatives, decisions, etc.)

using one of various types of questions:

I binary choice:
among two objects, which one is the best?

I multiple choice:
among some objects, which one is the best?

I best/worst choice:
among some objects, which one is the best, which
one is the worst?

I approval voting:
which of the objects are acceptable?
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A Non-Deterministic Framework

The latent ranking (which governs the choices) is random:
individual variation;
population variation.

Two basic assumptions:

I the choices made are coherent with the actual latent
ranking;

I the choice probabilities are computed from the latent
ranking probabilities. How?

Take binary choice as a paramount example.
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Binary Choice Probabilities

Notation: Z some finite set of cardinality n,

Π the collection of the n! rankings of Z .

For each probability distribution P on Π,

compute the binary choice probabilities as

pij =
∑

{ P(L) : L ∈ Π and i L j } ,

for i , j ∈ Z and i 6= j .
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An example for Z = {a, b, c}
Can the following data be produced in this way?

pab = 0.12, pba = 0.88,
pac = 0.56, pca = 0.44,
pbc = 0.75, pcb = 0.25.

More precisely: is there some probability distribution P on Π
that would give the following?

0.12 = P(abc) + P(acb) + P(cab),

0.88 = P(bac) + P(bca) + P(cba),

0.56 = P(abc) + P(acb) + P(bac),

0.44 = P(bca) + P(cab) + P(cba),

0.75 = P(abc) + P(bac) + P(bca),

0.25 = P(acb) + P(cab) + P(cba).
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Main Problem: Characterizing Binary Choice Prob.
Given real numbers pij for all i , j ∈ Z with i 6= j ,

can we find some probability distribution P on Π such that the
pij ’s are the binary choice probabilities defined by P?

More precisely:

find a necessary and sufficient condition on the pij ’s

for the existence of P.

A useful comment:

characterizing binary choice probabilities is . . .

. . . a hopeless problem!

An algorithmically tractable answer would lead to P = NP.
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A Geometric Point of View
Vectors of binary choice probabilities p belong to RZnZ

(a space with one real coordinate for each pair (i , j) of distinct
objects).

Example
For Z = {a, b, c}, we have 6-dimensional vectors(

pab, pba, pbc , pcb, pac , pca
)
.

As we know pab + pba = 1, pac + pca = 1, pbc + pcb = 1,
we may work with only(

pab, pbc , pca
)
.

The collection of all (projected) vectors form a polyhedron in R3:
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The Projected Polyhedron for Z = {a, b, c}
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The Linear Ordering Polytope
The binary choice probabilities form a convex polytope, called

the binary choice polytope or linear ordering polytope PZ
LO

of dimension n · (n − 1)/2,
with one vertex xL per ranking L of Z .

The Main Problem can be rephrased as:

find an explicit system of linear inequalities for PZ
LO, or better

find the facets of the polytope PZ
LO.

Hopeless!
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Origins of the Problem

In mathematical psychology/economics:

Guilbaud (1953), Block and Marschak (1960).

In discrete mathematics:

Megiddo (1977).

In operations research:

Grötschel, Jünger and Reinelt (1985).

In voting theory:

Saari (1999).
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Examples of Facet-defining Inequalities for Pn
LO

Starting from obvious necessary conditions:

Theorem
The following affine (linear) inequalities on RZnZ define facets:

pij ≥ 0 (trivial inequalities),

pij + pjk + pki ≤ 2 (triangular inequalities).

j

ki

Many families of nonobvious facets are known today;

here are two examples.

12



Graphical Inequalities (our first family)
Several research advances led to a marvelous result by
Koppen (1995).

Let G = (V , E) be a (simple) graph.

The stability number α(G) of G is the largest number of vertices
no two of which are adjacent.

Assume V , W ⊂ Z with f : V → W some bijective mapping.

Definition
The graphical inequality of G reads∑

i∈V

xi f (i) −
∑
{ij}∈E

(xi f (j) + xj f (i)) ≤ α(G).
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An Example of Graphical Inequality

Example
For the graph a b

d c

with the bijection

f : a 7→ s, b 7→ t , c 7→ u, d 7→ v ,

we get the inequality

xas + xbt + xcu + xdv

− (xat + xbs)− (xbu + xct)− (xcv + xdu)− (xds + xav )

≤ 2.

s t u v

a b c d
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Koppen’s Result

Theorem (Koppen, 1995)
The graphical inequality of G∑

i∈V

xi f (i) −
∑
{ij}∈E

(xi f (j) + xj f (i)) ≤ α(G).

is valid for the linear ordering polytope.

It defines a facet if and only if G is
different from K2,
connected,
and stability critical.

Definition
A graph is stability critical when its stability number increases
whenever any of its edges is deleted.
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An Example of Stability-Critical Graph

Examples

Delete any edge:

Thus: the 5-cycle is stability critical but the 6-cycle is not.
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A Weighted Generalization

Doignon, Fiorini and Joret (2005) generalize Koppen’s result:

weights are assigned to the vertices of the graph
(and used in the generalized graphical inequality).

There results an interesting class of weighted graphs, which
extend stability-critical graphs . . .

. . . and lead to many new problems.
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Möbius-Type Inequalities (our second family)
Other facet defining inequalities for the binary choice polytope
include Möbius Ladders Inequalities.

For k odd, k ≥ 3:
∑
ij∈M

xij ≥
k + 1

2
with M the arc set

k

CC1 C C C

C

2 3 ... k−2 k−1

Theorem (Grötschel, Jünger and Reinelt, 1985)
If M is a Möbius ladder generated by k directed cycles then it
defines a facet of Pn

LO.
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An Alternative Interpretation of the Inequality

The inequality is “obtained by summing up”

xij + xjk + xki ≥ 1 →

j

ki

xij ≥ 0 →

∞i

j

and thus come from (notice point-identification)

2
4

∞

∞

3 6

5
1

2 1

An oriented triangulation
of the projective plane!

19



Non-Orientable Surfaces

Theorem (Fiorini, 2007)
Any nonorientable surface has some facet-defining directed
triangulation.

Orientable: . . .

Nonorientable:
. . .

Open question: how to characterize the “good” triangulations?
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What About the Other Choice Types?

In each case, a polytope whose vertices are known and facets
are to be uncovered.

I Binary Choice:
as said, hopeless, but many interesting, related
problems are there around;

I Multiple Choice:
completely solved by Falmagne (1978),
a new proof by Fiorini (2004);

I Best/Worst Choice:
presently under investigation;

I Approval Voting:
Doignon and Fiorini (2003, 2004) present a solution
. . . which leads to new problems on some specific
classes of graphs.
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Conclusion

The choice polytopes are special cases of 0/1-polytopes
obtained as the convex hull of characteristic vectors

(other examples: the traveling salesperson problem, network
polytopes, etc.).

They are investigated from geometric, combinatorial, etc. points
of view,

using or not computers
(softwares are available for chasing faces in small dimensions,
also handmade programs are needed).

Thank you!
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