Improved Algorithms for the Automata-based Approach to Model-Checking

L. Doyen (EPFL) and J.-F. Raskin (ULB)

TACAS 2007
Braga - Portugal
March 28, 2007

Automata-based approach to model-checking

- Programs and properties are formalized as regular languages of infinite words;
- Any regular language of infinite words is accepted by a nondeterministic Büchi automaton (NBW);
- The verification problem: given a NBW A
 (that formalizes Prg) and a NBW B (that
 formalizes Prop), check if L(A) ⊆ L(B).

Automata-based approach to model-checking

- The language inclusion problem for NBW is PSpace-Complete;
- So, the complexity is rather high but similar (or easier than) to the complexity of many other verification problems;
- Nevertheless, currently there is no practical algorithms to solve this language inclusion problem. The usual approach through explicit complementation is difficult.

Automata-based approach to model-checking

- Because there are no practical algorithms for language inclusion, we need either to:
 - restrict the properties to LTL or to languages expressible by deterministic
 Büchi automata (DBW). Those are easier to complement than NBW;
 - specify the **bad behaviors**. Let C be a NBW that models bad behaviors then the verification problem boils down to check that $L(A)\cap L(C)=\emptyset$.

Plan of the talk

- Complementation of NBW
- Simulation pre-orders and fixed points
- An improved algorithm for emptiness of ABW
- The universality and language inclusion problems

Complementation of NBW

A forty year Saga (M. Vardi)

- 1961, Büchi: doubly exponential construction
- 1986, Sistla Vardi Wolper: simply exponential construction $O(2^{n^2})$
- 1988, Michel: lower bound $O(2^{n \log n})$
- 1989, Safra: (nearly) optimal solution $O(2^{n \log n})$ construction using determinization
- 1991, Klarlund: $O(2^{n \log n})$ construction without determinization
- 1997, Kurpferman Vardi : $O(2^{n \log n})$ similar to Klarlund but more modular
- 2004, Yang: slightly better lower bound (0.76n)ⁿ
- 2004, Friedgut Kupferman Vardi: slightly better upper bound (0.97n)ⁿ

Complementation of NBW

- **Few** attempts to implement the successive procedures:
 - Safra procedure have been implemented by Tasiran et al. (1995) and Thomas et al. (2005): need of intricate data structures and very low scalability (6 states);
 - KV procedure implemented by Gurumurthy et al. (2003): use several optimisations (based on simulation equivalences) but very low scalability (6 states);
 - Recently, Tabakov (2006) implemented KV with BDDs for checking universality but very low scalability (8 states).

KV construction ABW and AcoBW

- The KV construction uses alternating Büchi word
 (ABW) and alternating coBüchi word (AcoBW) automata
- Alternating automata are generalizations of nondeterministic Büchi automata
- Let $A=(Q,q_0,\Sigma,\delta,\alpha)$
 - in **nondeterministic** automata:

$$\delta(q,\sigma) = \{q_1,q_2,..,q_n\}$$

• in **alternating** automata:

$$\delta(q,\sigma) = \{\{q_1,q_2,...,q_n\},\{r_1,r_2,...,r_m\},...\}$$

KV construction ABW and AcoBW

- The KV construction uses alternating Büchi word
 (ABW) and alternating coBüchi word (AcoBW) automata
- Alternating automata are generalizations of nondeterministic Büchi automata
- Let $A=(Q,q_0,\Sigma,\delta,\alpha)$
 - in **nondeterministic** automata:

$$\delta(q,\sigma) = \{q_1,q_2,...,q_n\}$$
 equivalent to $\{\{q_1\},\{q_2\},...,\{q_n\}\}\}$

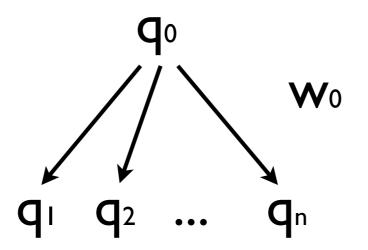
• in **alternating** automata:

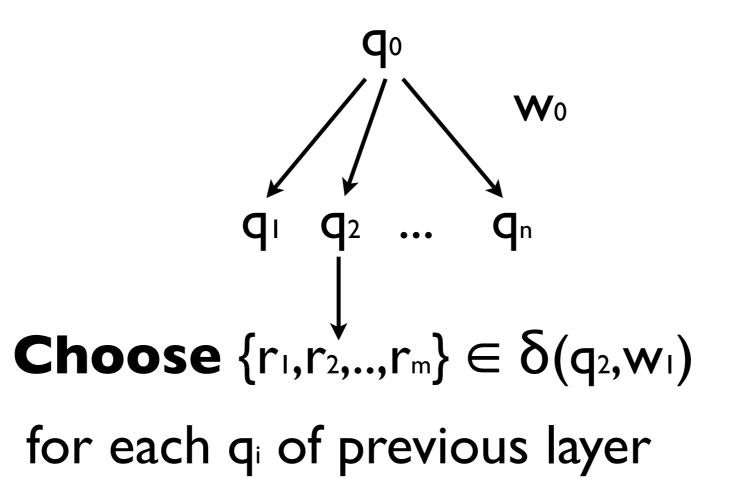
$$\delta(q,\sigma) = \{\{q_1,q_2,...,q_n\},\{r_1,r_2,...,r_m\},...\}$$

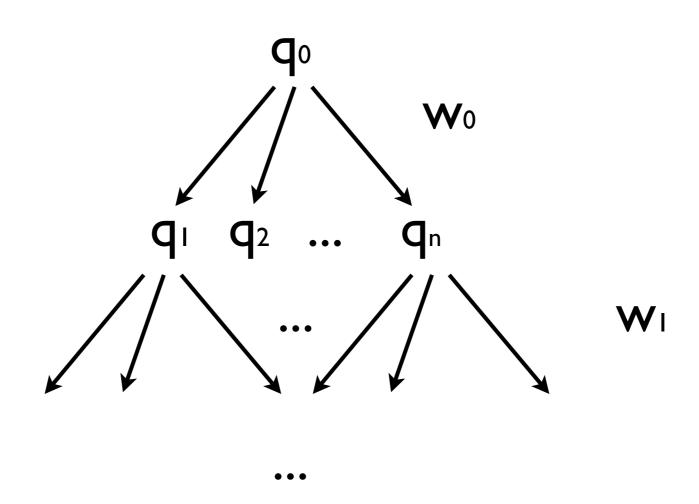
$$q_0$$

$$\downarrow \qquad \qquad w_0$$

$$Choose \{q_1,q_2,...,q_n\} \in \delta(q_0,w_0)$$

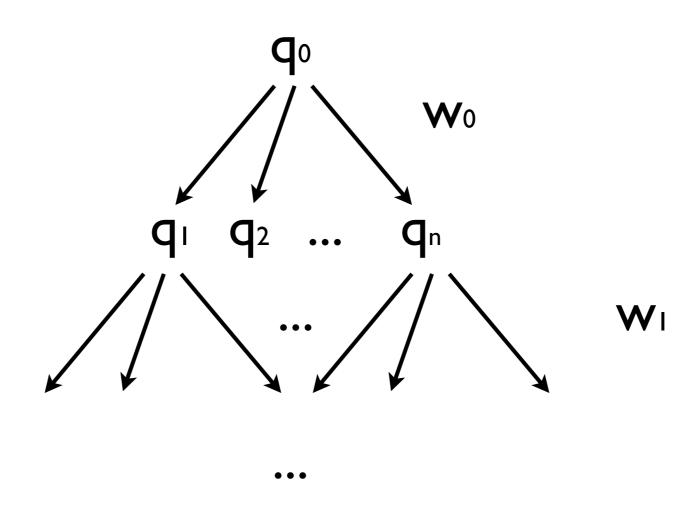






The run is **accepting** if every branch intersects **infinitely often** α

Run of an AcoBW A=(Q,q₀, Σ , δ , α) on a word w=w₀w₁...w_n...



The run is accepting if every branch intersects only finitely often α

Input: A an NBW

B an AcoBW that accepts the complement of A

C an ABW that accepts the same language as B

Output: D an NBW that accepts the same language as C

Input: A an NBW

This step is trivial O(1)

B an AcoBW that accepts the complement of A

C an ABW that accepts the same language as B

Output: D an NBW that accepts the same language as C

- Let A be an **NBW** with transition relation δ ;
- Let B be an **AcoBW** identical to A but with transition relation δ ' defined as follows: for all $q \in \mathbb{Q}$: for all $\sigma \in \Sigma$:

```
if \delta(q,\sigma) = \{\{q_1\}, \{q_2\}, ..., \{q_n\}\}\} then \delta'(q,\sigma) = \{\{q_1,q_2,...,q_n\}\};
```

- So in B, we have dualized the transition relation: a run of the AcoBW on a word w is the tree that contains the set of all runs of the NBW on w;
- ... and the accepting condition: B has an accepting run (tree) on w iff all the runs of A are rejecting;
- So, B accepts the complement of A.

Input: A an NBW

This step is conceptually interesting and costs $O(n^2)$

B an AcoBW that accepts the complement of A

C an ABW that accepts the same language as B

Output: D an NBW that accepts the same language as C

Accepting runs of AcoBW

- Accepting runs of AcoBW are memoryless (Emerson and Jutla, 1991).
- Memoryless runs are structured and that structure can be exploited to transform an AcoBW into an ABW (Kupferman and Vardi, 1997).

Input: A an NBW

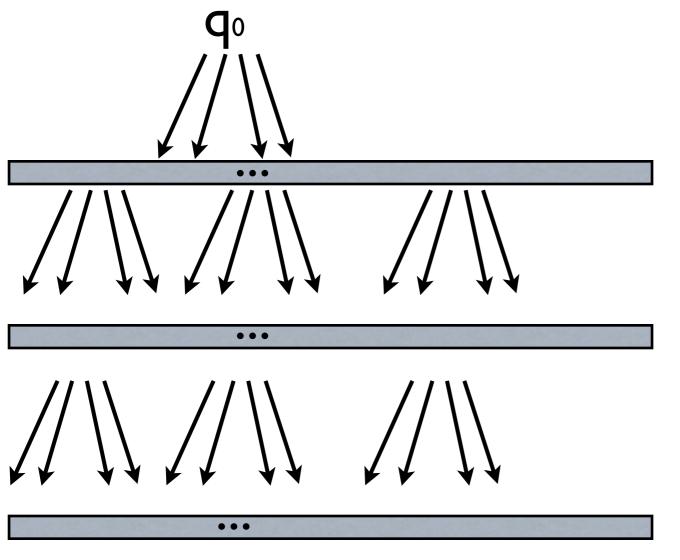
B an AcoBW that accepts the complement of A

This step is conceptually simple but costs O(2ⁿ)

C an ABW that accepts the same language as B

Output: D an NBW that accepts the same language as C

Accepting runs of ABW



level i: all paths has visited α at least once.

level j: all paths has visited α at least twice.

A NBW can guess a run by maintaing pairs (S,O): S states of a level and $O\subseteq S$ states that need a visit to α .

Miyano-Hayashi construction

- Given an ABW C=(Q,q₀, Σ , δ , α), the NBW that accepts the same language is given by D=(2^Qx2^Q,({q₀}, \varnothing), Σ , δ ', α ') where:
 - for any $(S,0) \in 2^Q \times 2^Q$, for any $\sigma \in \Sigma$:
 - if $O\neq\emptyset$ then $\delta'((S,O),\sigma)$ is the set of elements $\{(S',O'\setminus\alpha)\}$ s.t. $O'\subseteq S', \forall q\in S: \exists T\in\delta(q,\sigma): T\subseteq S', \text{ and } \forall q\in O: \exists T\in\delta(q,\sigma): T\subseteq O'.$
 - if $O=\emptyset$ then $\delta'((S,O),\sigma)$ is the set of elements $\{(S',O'\setminus\alpha)\}$ s.t. $O'=S', \forall q \in S: \exists T \in \delta(q,\sigma): T \subseteq S'.$
 - $\alpha'=2^Qx\{\emptyset\}$

Miyano-Hayashi construction

• Given an ABW C=(Q,q₀, Σ , δ , α), the NBW that accepts the same language is given by D=(2^Qx2^Q,({q₀}, \varnothing), Σ , δ ', α ') where:

• for any $(S,0) \in 2^Q \times 2^Q$, for any $\sigma \in \Sigma$:

Unfortunately, this automaton is (usually) **huge** as it is constructed on the set of locations 29x29

Miyano-Hayashi construction

- Given an ABW C=(Q given by D=(2Qx2Q,({
 - for any $(S,0) \in 2^Q x'$

Unfortun (usually) **hu** This explains the **poor** performances reported for current implementations of the construction

the set of locations 29x29

But, we do not need explicit complementation ...

- To check universality of A, we do not need to construct D explicitely;
- ... we only need to check if D is empty or not;
- ... similarly to check inclusion, i.e. L(A)⊆L(B), we
 do **not** need to construct the complement of B
 but we need to check that L(A)∩L^c(B) is **empty**.

But, we do not need explicit complementation ...

- To check universality of A, we do not need to construct D explicitely;
- ... we only need to check if D is empty or not:

How can we check efficiently the emptiness of D?

Emptiness of NBW

To evaluate **emptiness** of $A=(Q,q_0,\Sigma,\delta,\alpha)$

Check if

 $q_0 \in Vy. \mu x. (Pre(x) U (Pre(y) \cap \alpha))$

Let A= be a NBW, $\leq \subseteq Q \times Q$ is a **simulation pre-order** iff for any $q_1, q_2, q_3 \in Q$, for any $\sigma \in \Sigma$,

Let A = be a NBW, $\leq Q \times Q$ is a **simulation pre-order** iff

for any $q_1, q_2, q_3 \in Q$, for any $\sigma \in \Sigma$,

then there exists $q_4 \in Q$ s.t.:

$$q_3 \xrightarrow{\sigma} q_4$$
if $\leq \qquad \qquad \leq$

$$q_1 \xrightarrow{\sigma} q_2$$

1)

Let A = be a NBW, $\leq Q \times Q$ is a **simulation pre-order** iff

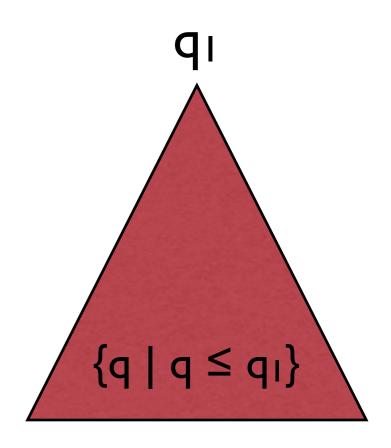
for any $q_1, q_2, q_3 \in Q$, for any $\sigma \in \Sigma$,

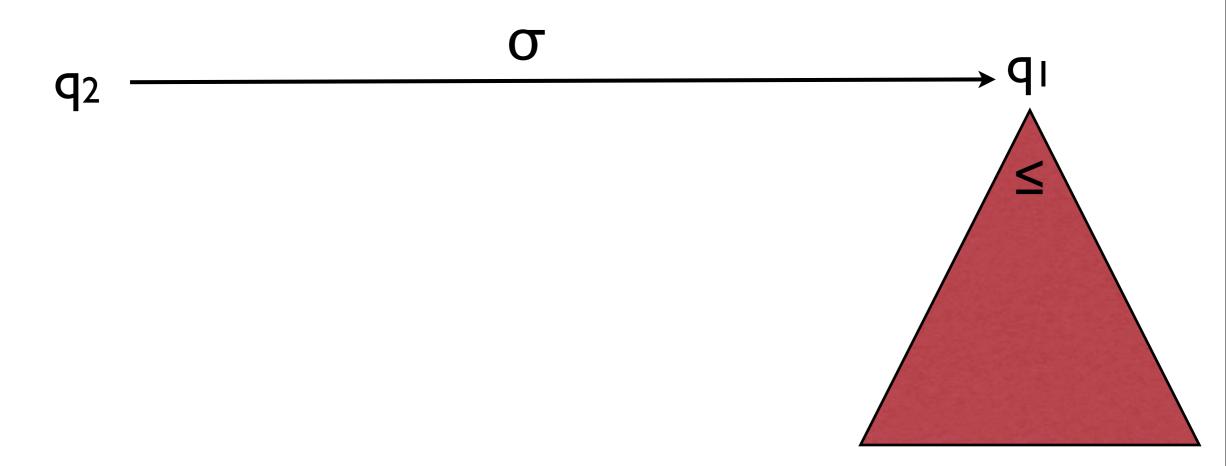
then there exists $q_4 \in Q$ s.t.:

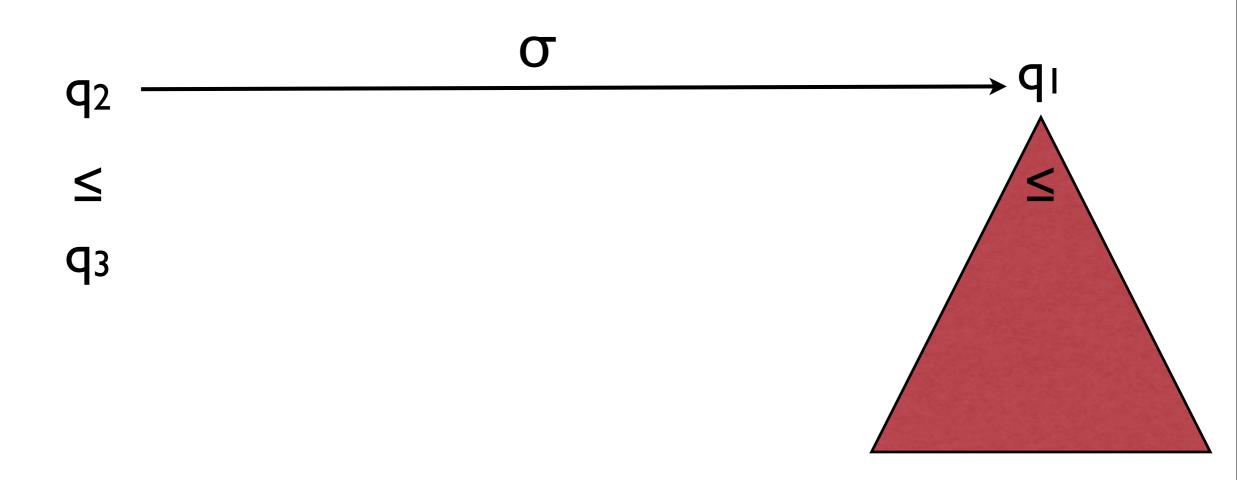
2) and, for any $q_1,q_2 \in Q$: if $q_1 \le q_2$ and $q_2 \in \alpha$ then $q_1 \in \alpha$

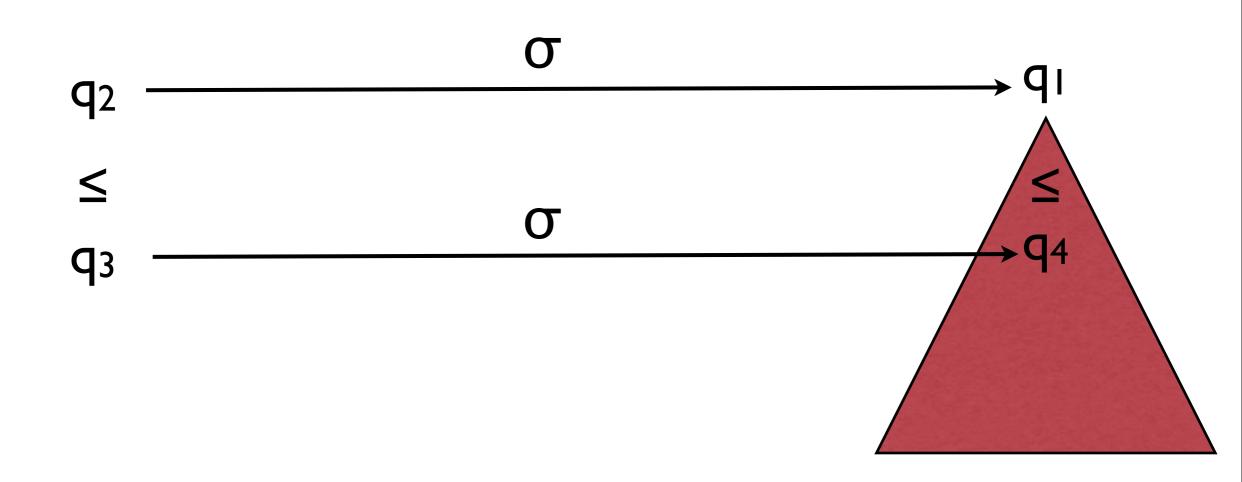
1)

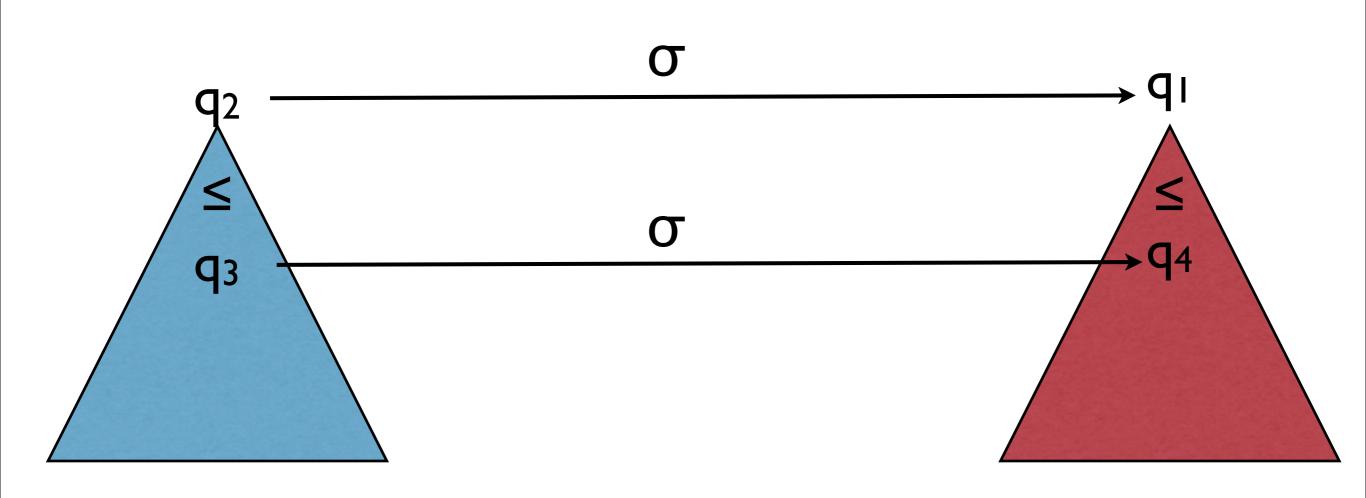
- Lemma: for any NBW $A=(Q,q_0,\Sigma,\delta,\alpha)$, for any **simulation pre-order** \leq , for any \leq -closed $S,T\subseteq Q$:
 - (1) for all $\sigma \in \Sigma$: Pre(σ)(S) is \leq -closed;
 - (2) SUT and S \cap T are \leq -closed;
 - (3) α is \leq -closed;



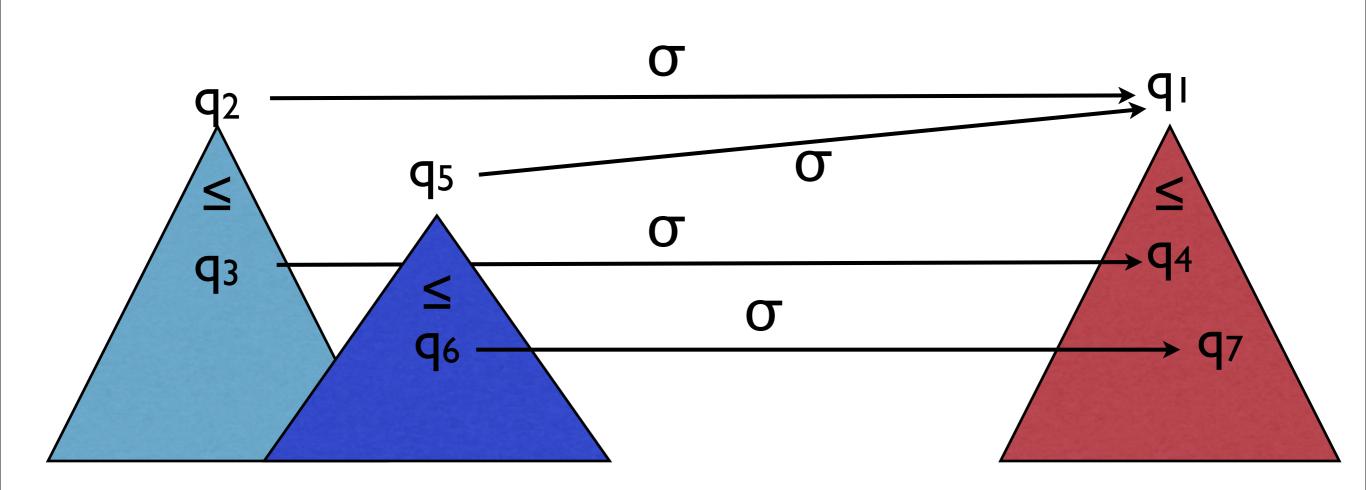








Simulation pre-orders and fixed points



Simulation pre-orders and fixed points

• Lemma: for any NBW $A=(Q,q_0,\Sigma,\delta,\alpha)$, for any **simulation pre-order** \leq , for any \leq -closed $S,T\subseteq Q$:

(1) for all $\sigma \in \Sigma$: Pre(σ)(S) is \leq -closed;

```
So, all the sets that we manipulate in 
Vy . \mu x . ( Pre(x) U ( Pre(y) \cap \alpha ) 
are \leq-closed.
```

Simulation pre-orders and fixed points

• Lemma: for any NBW $A=(Q,q_0,\Sigma,\delta,\alpha)$, for any simulation pre-order ≤, for any <-closed S T⊂O:

(I) for ≤-closed can be represented symbolically by their maximal elements only

So, all the set

Vy . μx . (Pre(x) U (Pre(y) Ω α))are ≤-closed.

Simulation pre-orders and fixed points

Lemma: for any simul
 ≤-closed

(I) for

We can potentially compute vy . μx . (Pre(x) U (Pre(y) \cap α))

≤-closed more efficiently by working on maximal elements only.

symbolically by their maximal elements only

So, all the set

Vy . μx . (Pre(x) U (Pre(y) $\cap \alpha$)) are \leq -closed.

Good news!

The NBW that results from the KV procedure is equipped by construction with a simulation pre-order ≤.

Idea: do not construct the huge NBW but check emptiness directly and evaluate the fixed point efficiently by exploiting the ≤-pre-order.

- Remember that given an ABW $A=(Q,q_0,\Sigma,\delta,\alpha)$, the Miano-Hayashi construction specifies an NBW $B=(2^Qx2^Q,(\{q_0\},\varnothing\}),\Sigma,\delta',\alpha')$.
- The following relation ≤ ⊆ 2^Qx2^Q defined by
 (S,O) ≤ (S',O') iff (I) (O=Ø iff O'=Ø) and (2) S⊆S' and O⊆O' is a simulation pre-order on B.
- Note that the ≤-closure of a pair (S,O) contains an exponential number of elements in the size of S and O!

- Remember that given an ABW $A=(Q,q_0,\Sigma,\delta,\alpha)$, the Miano-Hayashi construction specifies an NBW $B=(2^Qx2^Q,(\{q_0\},\varnothing\}),\Sigma,\delta',\alpha')$.
- The following relation $\leq \subseteq 2^Q \times 2^Q$ defined by

(S,O) ≤ (S',O') iff (I) (O=Ø iff O'=Ø) and (2) S⊆S' and O⊆O'

is a **simulation** p

Note that the ≤-cleen
 exponential nu

We can check emptiness of B by manipulating ≤-closed sets represented by their maximal elements only.

• Remember that given an ABW $A=(Q,q_0,\Sigma,\delta,\alpha)$, the Miano-Hayashi construction specifies an

This potentially saves us an exponential!

ed by

nd (2) S⊆S' and O⊆O'

exponential nu

represented by their maximal elements only.

emptiness of B by

Remember that give
 Hayashi constructi

This potentiall expone

We have a **polynomial** time algorithm that given (S,O) and $\sigma \in \Sigma$, compute a

compact representation of $Pre(\sigma)(\downarrow(S,O))$

exponential nu

emptiness of B by ≤-closed sets represented by their maximal elements only.

Practical evaluation

- We have implemented our new algorithm to check universality of NBW;
- Evaluation on a randomized model proposed by Tabakov and Vardi (2005) that generates random NBW (two parameters: r,f);
- On that randomized model Tabakov's BDD implementation can handle 6 states on the most difficult instances with median time <20s.

Input: A an NBW

Implicit

B an AcoBW that accepts the complement of A

Implicit

C an ABW that accepts the same language as B

Implicit

Output: D an NBW that accepts the same language as C

Input: A an NBW

Implicit

Implicit

Implicit

We evaluate the fixed point for emptiness directly, that is, **without** constructing the automaton specified by the construction.

We evaluate this fixed point by manipulating ≤-closed sets through their **maximal elements only**.

Table 1. Automata size for which the median execution time for checking universality is less than 20 seconds. The symbol \propto means *more than 1500*.

f	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
0.1	\propto	\propto	\propto	550	200	120	60	40	30	40	50	50	70	90	100
0.3	\propto	\propto	\propto	500	200	100	40	30	40	70	100	120	160	180	200
0.5	\propto	\propto	\propto	500	200	120	60	60	90	120	120	120	140	260	500
0.7	\propto	\propto	\propto	500	200	120	70	80	100	200	440	1000	\propto	\propto	\propto
0.9	\propto	\propto	\propto	500	180	100	80	200	600	\propto	\propto	\propto	\propto	\propto	\propto

For r=2, f=0.5, Tabakov can handle 8 states while our algorithm handles 120 states in less than 20s.

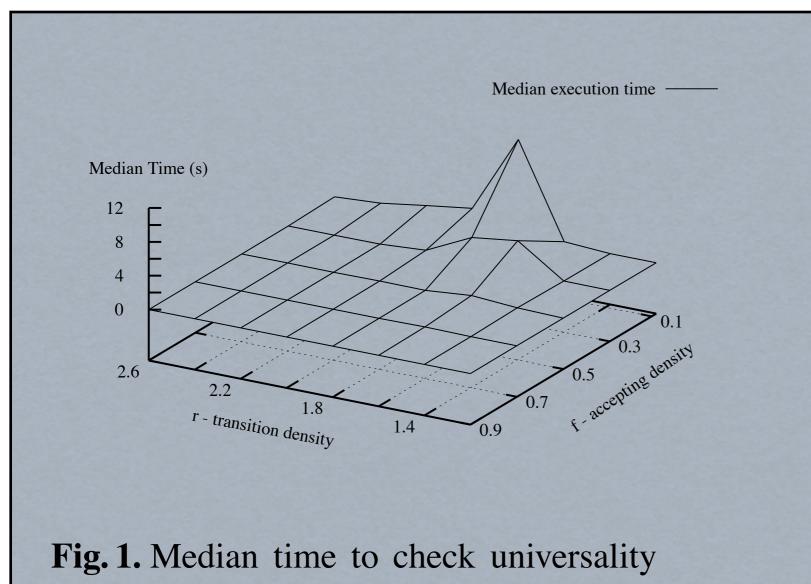


Fig. 1. Median time to check universality of 100 automata of size 30 for each sample point.

To compare,
Tabakov's BDD
implementation was
able to handle
automata of size 6 on
the entire state space
(within 20s as in our
expermients).

Conclusions

- In the automata-based approach to model-checking: keep implicit the complementation step and check for emptiness efficiently by exploiting simulation pre-orders that exists by construction;
- Implementation for universality problem shows promising results: several orders of magnitude on the randomized model!

Future Works

- Implement and evaluate the new language inclusion algorithm;
- Evaluate beyond the randomized model;
- Revisit the LTL model-checking problem:
 do not construct the NBW of the
 negation of the formula but use ABW and
 check directly for emptiness.