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Context - Motivations




Embedded systems

Hybrid systems mixe discrete and
continuous components : non trivial
interactions
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Controller Synthesis
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Controller Synthesis
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Iwo-player

game structures




Square positions
belong to Player 2
(Environment)
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Rounded positions
belong to Player |
(Controller)




Rounded positions belong to Player |
Square positions belong to Player 2
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A game is played as follows: in each round, the game is in a position, if
the game is in a rounded position, Player | resolves the choice for the next
state, if the game is in a square position, Player 2 resolves the choice. The
game is played for an infinite humber of rounds.
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Play : 0000 0100 0101l 1101l




0000

Play : 0000 0100 OI10I 1101 ...




Who is winning !

1101
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Play : 0000 0100 OI10I 1101 ...




Who is winning !

1101
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Play : 0000 0100 OI10I 1101 ...

s this a good or a bad play for Player k!




Who is winning !
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A winning condition (for Player k)
is a set of plays

W C (Q1UQ2)”




Game

Two-=-player game structure
+

Winning condition for Player k




Strategies

Players are playing according to strategies.

A strategy for Player | is a function that, given
a sequence of positions (visited so far) that ends in a

Player I’s position, returns the choice for the next
position.

Player I's
position
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Choice for

Preﬁx Of Play the next position




Strategies

Players are playing according to strategies.

A strategy for Player | is a function that, given
a sequence of positions (visited so far) that ends in a

Player I’s position, returns the choice for the next
position.

Strategies for Player |
are defined symetrically




Outcome of strategies

If we fix a strategy for the two players and we let the
two players apply their strategies, we get a play:

If we fix a strategy only for Player |, we get a set of plays

A strategy for Player | is winning for objective W iff




Outcome of strategies

A strategy for Player | is winning for objective W iff




Winning strategies

Controllers that enforce
winning plays




Safety Games




A Safety Game

‘ 0100 0101 1101
—
| 1000 1010 1110

Does Player |, who owns the rounded positions, have a strategy
(against any choices of Player |l) to stay within the set of states

Q\{1111}|?

PO




Symbolic algorithms to

solve games




Symbolic algorithm for
safety games

From where can Player | avoid Bad !
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Symbolic algorithm for
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Symbolic algorithm for
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From where can Player | avoid Bad !




Symbolic algorithm for
safety games

From where can Player | avoid Bad !




Symbolic algorithm for
safety games

This is exactly the set of states
where Player | has a strategy
to avoid the bad states.




Player | Controllable
Predecessors

X is a set of positions

1CPreg(X) ={qe Q1 |3¢ : (¢, ¢)N¢g € X}U{qe Q2 |Vq :0(q,q") : ¢ € X}

d

Set of Player | positions where she has
a choice of successor that lies in X

Set of Player |l positions where all
her choices for successors lie in X




Player | Controllable
Predecessors

1CPreg(X)={qe Q1 |3¢ :0(q,d)Nqd €e X}U{qe Q> |Vq :6(q,¢) : ¢ € X}

Symmetrically

2CPreg(X) ={qe€ Q2 13¢ :6(q,¢)Ng €e X}U{qge Q1 |V :6(q,¢"):¢ € X}




Player | Controllable
Predecessors

1CPreg(X)={qe Q1 |3¢ :0(q,d)Nqd €e X}U{qe Q> |Vq :6(q,¢) : ¢ € X}

Monotonic functions over (2€1Y%2 C)

2CPreg(X)={qe Q2| 3¢ : 6(q,¢)Nq € X} U{q e Q4 \Vﬂq’:(?(q,q’):q’ e X}
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Complete lattice







1CPre(

) =

{0000}

Rounded positions,
there exists a red successor

U {0100, 1101}




1CPre(

) =

{0000}

Rounded positions,
there exists a red successor

Squared positions,
all successors are red




Fixed points to solve games

Let Q be a set of safe states, the states in which
Player | can force the game to stay within Q is the
following greatest fixed point (computed by the
previous algorithm):

U{R|R=QnCPre;(R)}




Fixpoint for a safety game

Xo|= (Q\ {1111}) N 1CPre(Q)
X |= (Q\ {1111}) N 1CPre(X)

N2 —[(@\ {1111}) N 1CPre(X,)




Fixpoint for a safety game

This is th .: (Q\ {1111}) N 1CPre(Q)
ngZz::etste .: (Q\ {1111}) N 1CPre(X,)

ted poinc | - - (@ ITIICHEN]




Fixpoint for a safety game

X2 is exactly the set of positions
from which Player | can avoid

entering {1111}, no matter how
Player |l behaves.

— (Q\ {1111}) N 1CPre(Q
This is the . @A D @)

greatest .: (Q \ {1111}) M ].CPFG(X())
fixed point




Fixpoint for a safety game

Xz is exactly the set of positions
from which Player | can avoid
entering {1111}, no matter how

Player |l behaves.

Player | has a positional
(memoryless) strategy
to win the game

| e(Q)
T;'j:;ze’:sl':e Xi]= (@ \ {1111}) N 1CPre(Xo)

fixed point | A2 :_













Perfect information hypothesis!?

Finite precision = imperfect information

The temperature
is in the interval

Thermometer
(c—1,c+1)
N4
k Digital
&/ Controller

Typical hybrid system




a a
b a
1 b
a b
b

a

Player O chooses a letter
Player | resolves nondeterminism
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Imperfect information
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Imperfect information




a a
b a
1 b
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b
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Slight generalization of
incomplete information

Imperfect information




a a
b a
1 b
a b
b
a

When observing Obs 0,
there is no unique good choice:

memory is hecessary

Imperfect information




- A game of imperfect information:
game structure + observation structure

-Observation structure : (Obs,Y) where ODbs is a finite
set of observations and Y maps every observation to
a set of states (we require that every state has at
least one observation).

-A observation based strategy is a function that maps
every sequence 0,0,0....0. to a letter in 2.

Our objective is to find an algorithm to construct
observation based strategies that avoid Bad.
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Notation: a game structure of
imperfect information is a

tuple (S5,S0,2,—,0bs,Y).

Ition structure

vhere ODbs is a finite

set of observations and Y maps every observation to

a set of states (we require that every state has at
least one observation).

-A observation based strategy is a function that maps
every sequence 0,0/0....0. to a letter in 2.

Our objective is to find an algorithm to construct
observation based strategies that avoid Bad.
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Notation: a game structure of
imperfect information is a

Ition structure
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-A observation based strategy 1s a function that maps

every sequence 0,0/0....0. to a letter in 2.

Our objective is to find an algorithm to construct
observation based strategies that avoid Bad.
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® TJo solve games of perfect information :

® (elegant) fixed point algorithms using a
controllable predecessor operator

® TJo solve games of imperfect information

® [Reif84] builds a game of perfect
information using a knowledge-based
subset construction and then solve this
games using classical techniques




® TJo solve games of perfect information :

® (el
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® [Reif84] builds a game of perfect
information using a knowledge-based
subset construction and then solve this
games using classical techniques




® TJo solve games of perfect information :

e of perfect
knowledge-based
and then solve this

games using classical techniques




We define a controllable predecessor operator for
a set of sets of states q

CPre(q) = {-] Jo € X - Vobs € Obs - 3s’ € ¢ : Post,(s) N ~(obs) C s}

(ii) there exists os.t. the set of possible successors of s by g is

covered by
(a) no matter how the adversary resolves non-determinism,
(b) no matter the compatible observation Obs







g ={A, B}

Cpre({A,B})= Blue sets




If there is a strategy for set A,
there is a strategy for any B included in A

It is enough to keep only
the maximal sets

30O

CPre(q) = [{s C Bad | 30 € X' - Yobs € Obs - 3s’ € ¢ : Post,(s) N~ (obs) C s’}



Antichains

Definition 4 |[Antichain of sets of states]

An antichain on the partially ordered

set (2°,C) is a set ¢ C 2° such that for any A, B € ¢ we have A ¢ B.

Let us call L the set of antichains on S.

Definition 5 [C| Let ¢q,¢ € 22° and define ¢ C ¢/ if and only if

VAcg:JA €q : AC A

lub: g1Uge=[{s|s€q Vsecqg}]

glb: ¢1Mge=[{s1Ns2|s1E€qNS2Eq}]

The minimal element is (), the maximal element {S}.




CPre(q) = Es C Bad | 30 € X' - Vobs € Obs - 3s’ € ¢ : Post, (s) N ~(obs) C s'}]
® CPre is 2a monotone function over

the lattice of antichains

® CPre has a least and a greatest fixed
point




Main theorem

Let (G = <S, SO,E,—>,ObS,’Y>

be a two-player game of imperfect
information. Player | has a winning
observation based strategy to avoid Bad, iff

{So N~(obs) | obs € Obs} C |_|{q | g = CPre(q)}.

We can extract a strategy from the fixed point




a a
b a
1 b
a b
b
a

Does Player 0 have an observation
based strategy to avoid Bad !




a a
b a
1 b
a b
b
a

Does Player 0 have an observation
based strategy to avoid Bad !

Let us compute the gfp of CPre over L.




. . go = |
b a % i d1 = {{17273}01,,(7}



d1 = {{1 2 3}a b}

= CPre({{1,2,3}})



d1 = {{1 2 3}a b}

= CPre({{1,2,3}})
= 112}p, 11, 3}a}




qgo = |
d1 — {{17273}a,b}

Indeed,

Post,, ({1,3}) N {1,2,4} C {1,2,3}
Post, ({1,3}) N 41,3} C {1,2,3}
DOStb({Z}) a {173} C {17 273}
Post, ({2}) N {1,2,4} C{1,2,3}




d1 = {{1 2 3}a b}
= 12}5,11,3}a}

— CPre({{2},{1,3}})



d1 = {{1 2 3}a b}
= 12}5,11,3}a}

— CPre({{2},{1,3}})
_‘{{1}a7{2}b7{3} f



d1 = {{1 2 3}a b}
= 12}5,11,3}a}

Indeed,

— CPre({{2},{1,3}}) Post,({1}) N {1,2,4} C {2}
{1}, {2, {31, Post,({1}) N{1,3} C {3}

Adding any state would
break this property




o=T
d1 = {{1 2 3}a b}
= 12}5,11,3}a}

= 111}a,12}6513}a)
Q4-—-{{1}a 12}6, 13}a}

Fixed point




go = |

a 0= {{1,2,3}0)
b a q2 — {{2}67 {173}61}
b a3 = {{1}a; {210, {3}a}
a ; ; ib qa = {{1}a; 12}, {3}a}
b

Fixed point

We have
{{2,3} N Obsy,{2,3} N Obs;} C LI{q | ¢ = CPre(q)}

and so, Player 0 has an observation
based winning strategy to avoid Bad




go = |

a a1 = {{1.2,3}a}
b a q2 — {{2}67 {173}61}
1 b g3 = {{1}a; 1210, {3}a}
a b qa = {{1}a; 12}, {3}a}
] b Fixed point

We can extract a strategy from the fixed point




qo = T
d1 = {{17273}a,b}
42 — {{Q}ba {17 S}a}

g3 = {{1}a, {2}, {3}ta}
qa — {{1}a7 {2}67 {S}CL}

Fixed point




Complexity for finite
state games

® The imperfect information control problem
is EXPTIME-complete

There exist finite state games of
incomplete information for which the
algorithm of [Rei84] requires an
exponential time where our algorithm
needs only polynomial time




Complexity for finite
state games

® The imperfect information control problem
is EXPTIME-complete

There exist finite state games of
incomplete information for which the

algorithm of [Rei[
5 . [ We compute exactly
exponential time

eeds onlv bolvn what is needed to
Y PO control the system
for a given objective




Infinite state games

We can drop the assumption that S if finite
Our fixed point algorithm will terminate if
There exists a finite quotient of the state space in

which Post, Enabled, "/ are definable using this
quotient

Application : Discrete Time Control of RHA




Discrete time control of RHA

z > bl : : .
Player | (contr.) chooses an action every | time unit

Player 2 (env.) resolves nondeterminism
(in discrete and continuous steps).




Discrete time control of RHA

Everything else

<70




Discrete time control of RHA
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The Strategy




The symbolic CPre can be encoded
in the script language of Hy Tech







Universality of NFA




Universality of NFA

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

T he protagonist has to provide a finite word w such that no
matter how the antagonist reads it using A, the automaton
ends up in a rejecting location.

—= This is a one-shot game.




Universality of NFA

Consider a game played by a protagonist and an antagonist
The protagonist wants to establish that A is not universal.

T he protagonist has to provide a finite word w such that no
matter how the antagonist reads it using A, the automaton
ends up in a rejecting location.

—= This is a one-shot game.

The game is turn-based: the protagonist provides the
word w one letter at a time, and the antagonist updates
the state of A. The protagonist cannot observe the state

chosen by the antagonist.

—— This is a blind game (or game of null information).




Let A= (Loc,47,2-,64, F).

Consider the following controllable predecessor operator
over sets of sets of locations. For g C 2Lo¢ |et:

CPre(q) ={s|3s'cq-Joe X -Ves-Vl ecloc:64(0,0,0) — ¢ €5}

So s € CPre(q) if thereis a set s’ € g that is reached from any
location in s, reading input letter o, that is Post,(s) C s’.

— (Pre encodes the blindness of the game.




Let A= (Loc,l;,2,64, F).

T heorem:

{0;} € px.(CPre(x) U {T})
ifF
Protagonist has a strategy to win G
ifF

A is not universal

Claim: For sy C so, if Posty(s5) C s’ then Post,(sq1) C s’
and if so» € CPre(-), then s1 € CPre(-)

Idea: Keep in CPre(x) only the maximal elements.




Universality - Experimental results (1)

e \\We compare our algorithm Antichains with the best(1)
known algorithm dk.brics.automaton by Anders Mgller.

(1) According to "D. Tabakov, M. Y. Vardi. Experimental Eval-
uation of Classical Automata Constructions. LPAR 2005".

e We use a randomized model to generate the instances
(automata of 175 locations). Two parameters:

— Transition density: r > 0

— Density of accepting states: 0 < f <1




Universality - Experimental results (2)

Time dk.brics.automaton

Time Antichains

Each sample point: 100 automata with |Loc| = 175, > = {0, 1}.




Universality - Experimental results (3)

| | | |
Antichains

dk.brics.automaton

~
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X
L]

| | | | |
500 1000 1500 2000 2500 3000 3500 4000

Number of states

e Iransition density: r = 2.
e Density of accepting states: f = 1.




Works also for

® [anguage inclusion between NFA

® emptiness of AFA

® See proceedings of next CAV !

(joint work with Martin De Wulf, Laurent Doyen and Tom Henzinger)




Conclusion/Perspectives

We propose a lattice theory to solve games of imperfect
information, those games are needed to make the synthesis of
robust controllers (= finite precision). (see HSCCO06)

Our technique computes only the information that is needed to
find a winning strategy, i.e. we avoid the explicit subset
construction.Works for any regular objective (see CSL06)

Applicable to discrete time control (see HSCCO06) of RHA
and useful to solve efficiently classical problems for NFA and
AFA (see CAV06) and for automata on infinite words (submitted
for publication)

Perspectives : continuous time control, finite automata on infinite
words, efficient implementation issues, etc.
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