
UNIVERSITÉ LIBRE DE BRUXELLES
Faculté des Sciences

Scheduling of Hard Real-Time Periodic
Systems with Various Kinds of Deadline

and Offset Constraints

Thèse présentée en vue de l’obtention
du grade de Docteur en Sciences

Joÿel GOOSSENS
Année académique 1998-1999

ii

Acknowledgements

Je tiens à adresser mes plus vifs remerciements à toutes les personnes qui m’ont
aidé dans la réalisation de ce travail.

Je remercie Monsieur le Professeur Raymond Devillers d’avoir accepté la
direction de cette thèse. Je voudrais faire honneur ici à sa rigueur scientifique
et à son esprit critique qui ont guidé mon travail de manière significative.

Je voudrais aussi remercier ceux qui ont contribué à mon encadrement de
recherche, ceux qui m’ont donné l’opportunité de participer à des réunions
scientifiques, à confronter mes idées avec d’autres chercheurs, je pense ici à
Messieurs les Professeurs Thierry Massart et Raymond Devillers.

J’exprime aussi ma gratitude à ceux qui ont contribué à créer une atmosphère
cordiale et plaisante dans mon environnement de travail ; je remercie ainsi
Messieurs Laurent Franck, Christian Hernalsteen, Olivier Markowitch,
Grégory Seront, Jean-Yves Vincent et Frank Weis.

Je tiens aussi à remercier Monsieur le Professeur Yves Roggeman pour m’avoir
permis d’intégrer le corps scientifique de notre Université.

Mes remerciements vont aussi aux membres de mon jury : Messieurs les Pro-
fesseurs Raymond Devillers, Guy Louchard, Erik Luit, Thierry Massart
et Yves Roggeman.

Pour terminer, je voudrais également remercier tous ceux qui à des degrés
divers m’ont apporté leur aide par leur intérêt et leurs encouragements.

iii

iv

Contents

1 Introduction 1

1.1 Real-time systems . 2

1.2 Tasks . 3

1.2.1 Task constraints . 4

1.2.2 Requests . 5

1.2.3 Graphical conventions 6

1.3 Scheduling problem . 8

1.4 Model of computation . 10

1.4.1 Periodic task set . 10

1.4.2 Schedule . 12

1.4.3 Hypotheses . 13

1.5 Overview of the thesis . 14

Bibliography . 15

2 Static Schedulers 19

2.1 Introduction . 20

2.2 The rate monotonic scheduler 20

2.2.1 Optimality . 21

2.2.2 Feasibility tests . 27

2.3 The deadline monotonic scheduler 34

2.3.1 Optimality . 34

2.3.2 Feasibility tests . 36

2.4 Synchronous arbitrary deadline systems 36

v

vi CONTENTS

2.5 Asynchronous general deadline systems 43

2.6 Asynchronous arbitrary deadline systems 52

2.7 Stability . 59

2.7.1 Stability of the rate monotonic rule 60

2.8 Conclusion . 60

Bibliography . 60

3 Response times for static schedulers 63

3.1 Introduction . 64

3.2 1st request for synchronous general deadlines 65

3.3 kth request for asynchronous general deadlines 67

3.3.1 Computation of ρk
i . 72

3.4 The worst case response time 83

3.5 The best case response time . 88

3.6 Feasibility tests for general deadline systems 94

3.6.1 Synchronous case . 94

3.6.2 Asynchronous case . 95

3.7 kth request with arbitrary deadlines 97

3.7.1 Computation of ρk
i . 101

3.8 Schedulability tests . 103

3.8.1 The worst case response time for arbitrary systems . . . 103

3.8.2 Synchronous systems . 104

3.8.3 Asynchronous systems 104

3.9 Comparison on the various feasibility tests 105

3.10 Conclusion . 106

Bibliography . 106

4 Dynamic Schedulers 109

4.1 Introduction . 110

4.2 Simplified model of computation 111

4.3 The deadline driven scheduler 111

CONTENTS vii

4.4 Optimality . 114

4.5 Feasibility intervals . 124

4.5.1 Synchronous systems . 138

4.6 Response times . 139

4.6.1 Introduction . 139

4.6.2 1st request for synchronous systems 140

4.6.3 kth request for asynchronous general deadlines 146

4.6.4 Computation of ρk
i . 150

4.6.5 kth request for asynchronous arbitrary deadlines 153

4.6.6 Computation of ρk
i . 156

4.7 Feasibility tests for asynchronous systems 161

4.8 Feasibility tests for synchronous systems 164

4.8.1 Feasibility of bounded general deadline synchronous task
sets . 164

4.8.2 Worst case response time computation 170

4.9 The Least Laxity First scheduling algorithm 184

4.10 The (non-)stability of dynamic priority rules 190

4.11 Conclusion . 190

Bibliography . 192

5 Offset free systems 195

5.1 Introduction . 196

5.2 Offset granularity . 199

5.3 Non-equivalent asynchronous systems 204

5.4 Non-optimality of monotonic schedulers 210

5.4.1 Definitions and properties 212

5.4.2 Optimality in special cases of offset free systems 213

5.4.3 Non-optimality of monotonic schedulers 217

5.5 Optimality of dynamic schedulers 221

5.6 Practical interest of offset free systems 221

5.7 Optimal offset assignment . 224

viii CONTENTS

5.7.1 Two tasks . 226

5.7.2 n tasks . 228

5.8 Dissimilar offset assignment . 229

5.9 Conclusion . 237

Bibliography . 237

6 Conclusion 241

List of Symbol 245

Bibliography 247

Index 259

Chapter 1

Introduction

Le temps est un grand mâıtre, dit-on.
Le malheur est qu’il tue ses élèves.

— Hector Berlioz, Almanach des lettres françaises et étrangères.

Contents

1.1 Real-time systems 2

1.2 Tasks . 3

1.2.1 Task constraints . 4

1.2.2 Requests . 5

1.2.3 Graphical conventions 6

1.3 Scheduling problem 8

1.4 Model of computation 10

1.4.1 Periodic task set . 10

1.4.2 Schedule . 12

1.4.3 Hypotheses . 13

1.5 Overview of the thesis 14

Bibliography . 15

1

2 CHAPTER 1. INTRODUCTION

1.1 Real-time systems

We shall consider in the framework of this thesis the scheduling problem of
real-time systems. First, we must consider specific points that distinguish
real-time systems from non real-time ones.

Real-time systems are computing systems which have timing constraints. Thus,
the correctness of such a system depends not only on its logical results, i.e., it
has to implement the intended algorithms, but also on the time at which the
results are available. Real-time computing systems are widely used in many in-
dustrial applications. Examples of application domains that require real-time
computing include

❑ Control of engines,

❑ Chemical and nuclear plant control,

❑ Traffic,

❑ Time-critical packet communications,

❑ Flight control systems,

❑ Railway switching systems,

❑ Robotics,

❑ Military systems,

❑ Space missions, and

❑ Virtual reality.

Figure 1.1 shows the architecture of a typical real-time system for controlling a
physical system. We have the physical system, i.e., the system to be controlled.
It can be a plant, a car, a robot, or any physical device that has to exhibit a de-
sired behavior. The control system is the computing system which controls the
system. The interactions between the physical system and the control system
are in general bidirectional and occur by means of two peripheral subsystems:
an actuation system, which modifies the physical system through a number of
actuators (such as motors, pumps, etc.), and a sensory system, which acquires
information from the physical system through a number of sensing devices
(such as microphones, cameras, transducers, etc.).

It may be also noticed that a real-time system interacts with the physical
system during the evolution of the latter. As a consequence, the system time

1.2. TASKS 3

Physical system

Sensory system Actuation system

Control system

6

?

6

?

Figure 1.1: Real-time control system.

should be measured with the same time scale used for measuring the time in
the controlled system. In several domains and especially in the operational
research milieu, this notion is know as on-line systems. Remark that on-line
systems are not necessarily real-time systems, since on-line systems do not
necessarily have (hard) timing constraints.

In many real-time systems the consequences of a failure, e.g., the non respect
of a timing constraint, can be catastrophic and lead to serious damage or even
cost human lifes. In this case we speak of real-time systems with hard (timing)
constraints (hard real-time systems).

A major misconception about real-time systems is to think that they are e-
quivalent to fast systems. Of course, minimizing the computation duration is
helpful in satisfying the timing constraints, but it is not enough to meet all
hard timing constraints. Instead of ensuring fast computation, in real-time
systems we are concerned with a most important principle, called the pre-
dictability [SR90], i.e., the ability to predict, a priori, whether the system can
meet all hard (also termed critical) timing requirements.

1.2 Tasks

The main part of a real-time system consists of tasks, i.e., of computer pro-
cesses. A task is a computation that is executed by the cpu in a sequential

4 CHAPTER 1. INTRODUCTION

fashion: it is a sequential execution of code that does not suspend itself during
execution. In the previous section we have introduced the constraint notion,
characterizing real-time systems, these constraints concern more precisely the
tasks.

1.2.1 Task constraints

Mainly, we can distinguish three kinds of constraints: timing constraints, prece-
dence constraints and resource requirements.

Timing constraints

We have seen in the previous section that timing constraints are particular to
real-time systems. This kind of constraint expresses a constraint on the time
at which the computation of a task ends. These constraints are generally ex-
pressed by associating a deadline to the task. The deadline of a task represents
the time before which the computation should complete; we can distinguish
between two kinds of deadlines:

❑ If meeting a task deadline is critical for the system functionality, then
the deadline is said to be hard; missing a hard deadline is considered a
definite failure, and leads to catastrophic consequences.

❑ If it is desirable to meet a task deadline, but occasionally missing it can
be tolerated (but with a certain cost, so that it is preferable to maintain
these faults at the lowest possible level), then the deadline is said to
be soft; a task with a soft deadline is expected to be completed either
before the deadline or as early as possible after it. It may be noticed
that for some task, called soft tasks, the deadlines are not specified but
the system will simply to respond as fast as possible while respecting the
specified deadlines for the other tasks.

Precedence constraints

In some particular systems, the tasks have to respect some precedence rela-
tions. There is a precedence relation between two tasks (say τi and τj) if the
computation of a task (say τj) must be started only (x time units) after the ter-
mination of the first one (say τi); in this case, task τi is said to be a predecessor
of task τj.

1.2. TASKS 5

Resource requirements

We have implicitly assumed in the previous section to have a single kind of
resource: the cpu. It may be noticed that we have to distinguish between
mono-processor and multi-processor systems, according to the number of pro-
cessors in the system (respectively 1 processor and m processors, m > 1).

We may have to consider also other kinds of resources like: shared memory,
message queue, exclusive access to a file, peripheral device, etc. If the various
tasks share some resources (beside the cpu(s)), we speak of dependent tasks;
in the other case we speak of independent tasks. In order to share the various
resources and maintain data consistency, the dependent tasks are synchronized,
for instance by ada rendez-vous, semaphores or monitors.

1.2.2 Requests

Real-time systems are composed of a finite number of tasks, but each task may
re-occur infinitely often, corresponding to activities in the real-time system.
Examples of hard activities, i.e., activities with hard timing constraints, which
may be present in a control application, include

❑ Sensory data acquisition,

❑ Detection of critical conditions,

❑ Actuator servoing, and

❑ Control of system components.

Examples of soft activities include

❑ The command interpreter of the user interface,

❑ Handling input data from the keyboard,

❑ Graphical activities, and

❑ Abnormal events like handling non fatal errors.

Hence a same task may arrive infinitely often, at different time instants. For
this reason we have to distinguish between the task and its requests. The task is
characterized by its resource needs (e.g., its computation time) and constraints

6 CHAPTER 1. INTRODUCTION

(e.g., its deadline); a request of a task (or a task request) corresponds to a
specific occurrence of the task. It may happen that various requests of a same
task coexist. The characteristics of a request vary during the evolution of the
time; in other words, the characteristics of a request are dynamic (e.g., the
remaining processing time, the time available before reaching the deadline,
etc.).

1.2.3 Graphical conventions

In this section we introduce the graphical conventions used in this work to
represent the execution of the various task requests. We suppose that the
system execution starts at time t = 0 and we represent (with some graphical
notations) what happens for each time unit (from time unit 0). The time units
are numbered by the order given by the natural numbers, from the value 0.

Consider first, the simple case where the system is composed of a single task.
We shall take the convention that, if the task is executing during the interval
[a, b] (and consequently during c = b − a + 1 consecutive time units), we
represent this execution by the picture:

a b

c

In the special case where a = b (and consequently the task is executing during
1 time unit), we omit b in our representation and we represent this execution
by the picture:

a

1

Suppose now to have several tasks (say τi and τj), in order to distinguish
between the execution of τi and τj, we represent the execution of each task on
a separate level, the time units of each level coincide as exhibited in Figure 1.2
where τi is executing during the interval [1, 2] and τj during the interval [3, 4].

In this graphical convention we assume that there is at most one request of each
task at each time instant; later, we shall refine the conventions to represent
more general behaviors.

Moreover, we represent a task request which occurs at time t by the picture ?
where the symbol ? is placed at the beginning (i.e., on the left) of the time
unit number t. We represent the task deadline which occurs at time t by the

1.2. TASKS 7

τi

1 2

2

τj

3 4

2

Figure 1.2: Graphical representation of the execution of two tasks.

? ?

0 2

3

10 12

3

Figure 1.3: Two requests of a single task, the first one occurs at time 0, the
second one at time 10.

picture where this symbol is placed at the beginning of the time unit
number t. A deadline failure which occurs at time t is represented by the
symbol 6which is placed at the beginning of the time unit number t.

Now, we have the material to illustrate the notion of task request.

Example 1.1 Consider a real-time system composed of a single resource (the
cpu) and a single task characterized by a computation time of 3 time units
and a hard deadline of 5 time units. Figure 1.3 shows two requests of this task;
the requests are numbered by increasing values of their arrival time, hence we
distinguish the first request which occurs at time 0 and whose computation
must be terminated before or at time 5 (the corresponding deadline); the
second request occurs at time 10, the computation must be finished before or at
time 15. The first request executes its computation during time t ∈ [0, 2], i.e.,
during 3 consecutive time units; the second request executes its computation
during time t ∈ [10, 12]. Hence, both requests meet their deadlines. ■

We shall distinguish between three kinds of real-time tasks, depending on the
arrival pattern of their requests:

❑ Periodic task. The requests of a periodic task arrive regularly: two suc-
cessive requests are separated by exactly the same time delay, called the
period. The deadline of a periodic task is usually hard.

8 CHAPTER 1. INTRODUCTION

❑ Sporadic task. The requests of a sporadic task arrive irregularly with
each arrival separated from the preceding one by at least a certain time
delay called the minimum separation time. The deadline of a sporadic
task is usually soft.

❑ Aperiodic task. The requests of an aperiodic task arrive irregularly with
no minimum separation time. It may be noticed that this kind of task
cannot have a hard deadline since no guarantee can be made for them.
The deadline can be soft (if any) or not specified.

1.3 Scheduling problem

The general scheduling problem is to allocate available resources (e.g., the
cpu) over a period of time to perform a set of tasks so as to achieve some
performance measure (see [Bak74, Cof76] for an introduction to the theory of
scheduling). The goal of the scheduling of hard real-time systems (also termed
the hard real-time scheduling) is quite different, the main objective being to
allocate resources in order to always meet hard (timing) constraints, to mini-
mize the penalties for soft timing constraints and to ensure good performances
for soft tasks. Although the theory of scheduling is born in the operational re-
search domain, the scheduling of hard real-time systems seldom appears in the
operational research literature. The reason is that the problem is of a different
nature; classical approaches are well suited to maximize (or minimize) a per-
formance measure but not to guarantee that the hard constraints are always
met, i.e., the predictability of the system. Moreover, the classical approach
concerns mainly the scheduling of tasks that have to be executed once instead
of infinitively often.

In the framework of this thesis we are mainly concerned by the scheduling of
mono-processor systems composed of independent tasks. Interestingly, as we
shall see, even with such a simple setting the problems are far from obvious.
In this situation, the scheduling algorithm can be understood as a rule which
selects, at each instant, a single request among all active requests (if any), i.e.,
requests which are waiting for the cpu in order to start/continue their execu-
tion. During the life of the system, every time the system considers the cpu
allocation, the processor is assigned to the request selected by the scheduling
algorithm. This request executes its computation until the next time instant
where the system considers the cpu allocation, or until the completion of its
computation. If there is no active request, the processor is not assigned to any
request and the cpu is said to be idle.

Among the various scheduling algorithms proposed for the scheduling of real-

1.3. SCHEDULING PROBLEM 9

time tasks, we can distinguish between the following approaches.

❑ Static. The scheduling algorithm computes the priorities of the tasks be-
forehand, based on the task characteristics (e.g., the worst case execution
time, the deadline, the period, etc.). The priorities are then assigned to
each task before the activation of all tasks. During the execution of the
system, the system selects the highest priority request, i.e., the active
request which corresponds to the highest priority task (if there are many
active requests corresponding to this task, generally the oldest one is
selected).

❑ Dynamic. The scheduling algorithm computes the priorities during the
execution of the system. The priority of each active request is based on
the system state, e.g., the current time, the request characteristics (e.g.,
the remaining execution time of each request, the time available before
reaching the deadline), etc. It follows that the priority of a task or a
request may change during system evolution.

❑ Cyclic executive. The scheduling algorithm prepares beforehand a table
(this table is known as the cyclic schedule [BS88]) which determines
when requests are scheduled. During the execution of the system this
table is followed cyclicly. Hence, the cyclic executive approach needs to
store a table during the execution of the system; the size of this table
is generally proportional to the least common multiple (divided by the
greatest common divisor) of all periods (of periodic tasks) and conse-
quently increases considerably with the number of tasks in the system.
Moreover, sporadic and aperiodic tasks prove to be a problem for the
cyclic executive, since the time at which a sporadic/aperiodic request
occurs is unknown during the construction of the table. Priority based
schedulings (static and dynamic) are more flexible in comparison with
the cyclic executive. For this reason, the priority approaches are more
popular and more used in practice than the cyclic executive approach.
Moreover the cyclic executive is based on the worst case execution time
and cannot handle situations where the execution times vary.

❑ Preemptive. With preemptive algorithms, a request may be interrupted
at any time to give the cpu to an active request with a higher priority.
Note that in this case, the execution of a request may be suspended (by
a higher priority one) and resumed later, consequently the execution of

such a request is represented by several blocs with the shape:
a b

c

10 CHAPTER 1. INTRODUCTION

❑ Non-preemptive. With non-preemptive algorithms, a request, once as-
signed to the cpu, is executed until its completion. In this case, the
scheduling algorithm is used when a task ends its execution, and also
when one or more new requests occur while the cpu is idle.

1.4 Model of computation

Il n’y a pas de grandeur pour qui veut grandir,
il n’y a pas de modèle pour qui cherche ce qu’il n’a jamais vu.

— Paul Eluard, L’Evidence poétique.

We have introduced in the previous sections the scheduling problem of real-
time systems in general. We shall here state precisely the scheduling problem
considered in the framework of this thesis and the related model of computa-
tion.

In many real-time control systems, periodic activities represent the major com-
putational demand in the system. Periodic tasks typically arise from sensor
data acquisition, system monitoring, detection of critical condition, etc. Such
activities need to be cyclically executed at a specific rate. We shall consider
this kind of real-time system and focus our study on the scheduling of periodic
task sets for mono-processor systems. In this case the scheduling algorithm
has to guarantee that each periodic request completes its execution within its
deadline.

In order to analyze this problem rigorously, we first need to construct a math-
ematical model describing the relevant aspects of the system.

1.4.1 Periodic task set

We consider real-time systems constituted of a set of n periodic tasks: τ1, . . . , τn.
Each periodic task (say τi, 1 ≤ i ≤ n) is characterized by the quadruple
(Ti, Di, Ci, Oi) with 0 < Ci ≤ Di, Ci ≤ Ti and Oi ≥ 0, i.e., by a period Ti, a
hard deadline Di, an execution time Ci, and an offset Oi, giving the instant of
the first request. The requests of τi are separated by Ti time units and occur
at time Oi + (k − 1)Ti (k = 1, 2, . . .). The execution time required for each
request is Ci time units; Ci can be considered as the worst-case execution time
for a request of τi. The execution of the kth request of task τi, which occurs

1.4. MODEL OF COMPUTATION 11

at time Oi + (k − 1)Ti, must finish before or at time Oi + (k − 1)Ti + Di; the
deadline failure is fatal for the system: the deadlines are considered to be hard.
Without loss of generality we can assume that min{Oi|i = 1, . . . , n} = 0.

All timing characteristics of the tasks in our model of computation are assumed
to be multiples of the “cpu tick”, the smallest indivisible cpu time unit. We
assume that all task characteristics are natural integers.

Synchronous, asynchronous and offset free task sets

From a theoretical as well as from a practical point of view, it is interesting
to distinguish between three classes of periodic task sets, regarding the offsets:
synchronous, asynchronous and offset free task sets.

❑ Synchronous systems. The offsets are fixed by the constraints of the
system and they are all the same, i.e., O1 = O2 = · · · = On = 0.

❑ Asynchronous systems. The offsets are fixed by the constraints of the
system, but the tasks are not started at the same time: the offsets are
different.

❑ Offset free systems. In such systems there is no definite requirement
about the task start times. Hence, the offsets will be chosen beforehand
by the scheduling algorithm itself. We shall consider specifically this kind
of systems in Chapter 5.

Relation between the period and the deadline

We shall also distinguish three classes of periodic task sets regarding the rela-
tion between the period and the deadline of each task: the late deadline case,
the general deadline case and the arbitrary deadline case.

❑ Late deadline case corresponds to the case where the deadline of each
task coincides with the period (Ti = Di, i = 1, . . . , n). In this case,
each request must simply be completed before the next request (of the
same task) occurs. Since Ti = Di, we shall omit the representation of
the deadlines in the graphics for this kind of systems.

❑ General deadline case corresponds to the case where the deadlines are
not greater than the periods: (Di ≤ Ti, i = 1, . . . , n).

12 CHAPTER 1. INTRODUCTION

Ti Di Ci Oi

τ1 4 4 1 0
τ2 6 5 3 0

Table 1.1: Characteristics of a periodic task set.

0

1

2

0 2 4 6 8 10 12 14 16

σ(t)

t

Figure 1.4: Representation of the function σ(t); we assume that from time
t = 12, the function repeats.

❑ Arbitrary deadline case corresponds to the case where no constraint
exists between the deadline and the period: the deadline of a task τi

may be less (Di ≤ Ti) or greater (Di > Ti) than the period; in the latter
situation, many requests of a same task may coexist at some instants.

1.4.2 Schedule

The scheduling problem is in our case to produce a schedule according to which
all task requests can be executed while meeting their deadlines. Given a set
of tasks, τ1, τ2, . . . , τn, a schedule is an assignment of requests to the processor.
More formally, a schedule can be defined as a function σ : R+ → N. In other
words, σ(t) is an integer function and σ(t) = k, with k > 0, means that a
request of task τk is executing at time t, while σ(t) = 0 means that the cpu is
idle. In the late deadline and general deadline situations, since there is at most
one active request for each task at each instant, this defines unambiguously
the schedule. In the arbitrary deadline case it may be necessary to add a rule
(like attributing the cpu to the oldest active request of task τσ(t)), or an extra
function, to lift ambiguities.

1.4. MODEL OF COMPUTATION 13

τ2

? ? ?

1 3

3

6 7

2

9

1

13 15

3

τ1

? ? ? ?

0

1

4

1

8

1

12

1

Figure 1.5: Representation of a schedule; we assume that from time t = 12 the
schedule repeats.

Example 1.2 Figure 1.4 shows an example of the function σ(t) for scheduling
the task set given by table 1.1; we suppose that the function σ(t) repeats from
time 12. Another representation of a schedule, including task requests and
task deadlines can be found in Figure 1.5; here and later, the meaning of the
various signs is the same as in Figure 1.3; it may be noticed that we shall
preferably use this kind of representation for convenience in this work. ■

We have to distinguish between two kinds of schedules: feasible and unfeasible
schedules.

❑ Feasible schedule: it is a schedule where all requests meet their dead-
line. A feasible schedule is defined for all non-negative time instants.

❑ Unfeasible schedule: in such a schedule a request misses its deadline
(say at time f); we shall take the convention that in this case the schedule
is defined for time instants in the interval [0, f). In some particular
circumstances we shall also define the schedule after (or at) a deadline
failure.

Given the specification of a (periodic) task set and a (non ambiguous) schedul-
ing rule, the schedule (i.e., the function σ(t)) is then univocally determined.
For instance, the schedule given by Figure(s) 1.4 (and 1.5) can be produced by
applying the static and preemptive scheduler on the task set given by table 1.1,
where τ1 has a higher priority than τ2.

1.4.3 Hypotheses

In our analysis the following hypotheses are assumed.

❑ We consider preemptive scheduling algorithms and we assume that switch-
ing times (including scheduling) may be neglected.

14 CHAPTER 1. INTRODUCTION

❑ Successive requests of a periodic task τi are exactly separated by the
period Ti of the task.

❑ All requests of a periodic task τi have the same execution time Ci.

❑ All tasks are independent; there are no precedence relations nor resource
constraints.

1.5 Overview of the thesis

In this section we give an overview of the contents of the rest of this thesis.

Chapter 2: We study static priority scheduling algorithms. We first present
the rate/deadline monotonic priority assignments, we complete and correct the
theory, in particular concerning the optimality of these priority rules. We then
present our results concerning feasibility intervals for the various sub-classes
of periodic task sets considered in this work, i.e., synchronous/asynchronous
regarding the offsets and late/general/arbitrary deadline regarding the dead-
lines.

Chapter 3: We study the response time notion. We extend the theory to
handle the response time computation of all sub-classes of periodic task sets
considered in this work. We show the interest of this notion and we exploit
these results for the feasibility and the schedulability of periodic task sets.

Chapter 4: We study dynamic priority scheduling algorithms. First, we
present the deadline driven scheduler, and we complete and correct the theory.
Then, we consider feasibility intervals for the dynamic deadline driven sched-
uler and we extend the theory to handle the various sub-classes of periodic
task sets considered in this work. We extend the computation of the response
time to the dynamic case, for the various kinds of periodic task sets considered
in this work. We show the interest of our computation regarding previous re-
sults of the literature; in particular we show that our computation exhibits an
exponential improvement in comparison with the works of Spuri and Baruah
et al.

Chapter 5: We consider offset free systems. We first show the interest of this
kind of systems, based on the study presented in previous chapters. We con-
sider first the equivalence relationship between offset assignments. We study
then the optimality of popular scheduling algorithms for offset free systems.
In particular, we show the non-(weak) optimality of monotonic priority assign-
ments for offset free systems and the (strong) optimality of dynamic scheduling
algorithms. We then consider the offset assignment problem; first we propose a

1.5. OVERVIEW OF THE THESIS 15

method, based on the equivalence relationship, to reduce the number of offset
assignments in the optimal assignment, then we present a heuristic rule which
is a (pseudo-) polynomial time algorithm to compute the offsets.

Chapter 6: In this chapter we present concluding remarks; these ones concern
mainly the contribution of our work, which includes a review (with some correc-
tions and gap fillings) of the theory and its extension to handle more general
classes of periodic task sets, including asynchronous and arbitrary deadline
systems; the extension of the response time notion and its computation for
more general classes of periodic task sets, its theoretical as well as its practical
interest for static and dynamic schedulers, and in particular to obtain more
efficient feasibility tests; the interest to consider more optimistic cases than
the synchronous one and hence the interest of offset free systems. Suggestions
for further researches are included in the conclusions of each chapter.

16 CHAPTER 1. INTRODUCTION

Bibliography

[Bak74] K. R. Baker. Introduction to sequencing and Scheduling. John Wiley
& Sons., 1974.

[BS88] T. P. Baker and Alan Shaw. The cyclic executive and ada. ieee
Computer Society Press, pages 120–129, 1988.

[But97] Giorgio C. Buttazzo. Predictable Scheduling Algorithms and Applica-
tions. Hard Real-Time Computing System. Kluwer Academic Pub-
lishers, 1997.

[Cof76] E.G. Jr. Coffman. Computer and Job-Shop Scheduling Theory. John
Wiley & Sons, 1976.

[Kor92] Jan Korst. Periodic Multiprocessor Scheduling. PhD thesis, Technis-
che Universiteit Eindhoven, 1992.

[SR90] John A. Stankovic and Krithi Ramamritham. What is predictability
for real-time systems? Real-Time Systems, 2:247–254, 1990.

[vTK91] André M. van Tilborg and Gary M. Koob. Scheduling and Resource
Management. Foundations of Real-Time Computing. Kluwer Aca-
demic Publishers, 1991.

17

18 BIBLIOGRAPHY

Chapter 2

Static Schedulers

Le commencement de toutes les sciences,
c’est l’étonnement de ce que les choses sont ce qu’elles sont.

— Aristote, Métaphysique, I, 2.

Contents

2.1 Introduction . 20

2.2 The rate monotonic scheduler 20

2.2.1 Optimality . 21

2.2.2 Feasibility tests . 27

2.3 The deadline monotonic scheduler 34

2.3.1 Optimality . 34

2.3.2 Feasibility tests . 36

2.4 Synchronous arbitrary deadline systems 36

2.5 Asynchronous general deadline systems 43

2.6 Asynchronous arbitrary deadline systems 52

2.7 Stability . 59

2.7.1 Stability of the rate monotonic rule 60

2.8 Conclusion . 60

Bibliography . 60

19

20 CHAPTER 2. STATIC SCHEDULERS

2.1 Introduction

We shall consider in this chapter the first priority based scheduling family,
i.e., the static priority schedulers. We consider the scheduling of a periodic
task set: τ1, τ2, . . . , τn; each task has a static and distinct priority; we take
the convention that the notation τi > τj means that task τi has a higher
priority than task τj. We assume that each request of task τi “inherits” the
priority of the corresponding task (τi) and that the priority of each request
does not change with time. Without loss of generality we can assume that τ1

is the highest priority task of the system, τn the lowest one and tasks with
intermediate index have intermediate priorities; more formally we have: τ1 >
τ2 > · · · > τn. For this family of scheduling algorithms the definition of the
schedule (i.e., the function σ(t)) can be refined. Since the priorities of the
requests are static, a task request, once assigned to the cpu, is executed until
a higher priority request occurs or the request ends its computation; in the last
case the system selects the highest priority active request, if any. Since, the task
characteristics are natural numbers, the scheduling rule is invoked at natural
time instants corresponding to task requests and completion of requests. It
follows that function σ(t) changes its value at natural time instants; hence we
can restrict the schedule as follows: σ : N → N. Consequently, σ(t) is an
integer function and σ(t) = k, with k > 0, means that a1 request of task τk is
executing at time t during one time unit, while σ(t) = 0 means that the cpu
is idle at time t (during one time unit).

The remainder of the chapter is organized as follows: in section 2.2 we present
the rate monotonic scheduler, one of the most popular static scheduling algo-
rithms; in section 2.3 we present the deadline monotonic scheduler, an exten-
sion of the rate monotonic scheduler; in sections 2.5, 2.4 and 2.6 we consider
sub-classes of periodic task sets, more general than those for which the mono-
tonic priority assignments were initially defined.

2.2 The rate monotonic scheduler

We study first the rate monotonic scheduler, one of the most popular static
priority rules. The rate monotonic scheduler (rms) was defined by Liu and
Layland [LL73] and Serlin [Ser72] (termed the intelligent fixed priority algo-
rithm -ifp- by Serlin); this scheduler was defined for a sub-class of periodic
task sets:

1We suppose here there are never two active requests for a same task at the same time
instant (e.g., this is the case if Di ≤ Ti, ∀i). We shall see later how to relax this assumption.

2.2. THE RATE MONOTONIC SCHEDULER 21

❑ The rate monotonic scheduler is defined for synchronous systems, i.e., all
tasks are started at the same time (O1 = O2 = · · · = On = 0), and

❑ for late deadline systems, i.e., the deadline of each task coincides with
the period (Di = Ti, i = 1, . . . , n).

We shall assume, in the first part of this chapter, that we schedule only syn-
chronous and late deadline systems. More general classes of periodic task sets
(e.g., asynchronous systems) will be handled later.

The rate monotonic scheduler is a static and preemptive scheduler, which as-
signs a priority to each task in inverse proportion of its arrival rate. More
formally: given two tasks τi, τj and Ti, Tj their respective periods, if the task τi

has a higher priority than τj (τi > τj) then Ti ≤ Tj. It may be noticed that for
task systems with some identical task periods (e.g., Ti = Tj, i 6= j) there are
several rate monotonic priority assignments; the tie (if any) may be broken in
an arbitrary way. The rate monotonic scheduler may therefore be ambiguous:
it does not give a unique priority assignment if several periods are identical.

Computing the priorities of a set of n tasks for the rate monotonic priority rule
amounts to ordering the task set according to their periods. Hence the time
complexity of the rate monotonic priority assignment is the time complexity
of a sorting algorithm, typically: O(n log n).

2.2.1 Optimality

A main property of the rate monotonic priority rule is its optimality. Let us
first define what optimality means in this case.

Definition 2.1 A task set is said schedulable for a priority assignment if all
deadlines of all task requests are met. ■

Definition 2.2 A priority assignment is said feasible if, with this priority as-
signment, the task set is schedulable. ■

Classically, optimality in the framework considered here is defined thus.

Definition 2.3 A static priority assignment rule R is optimal for synchronous
and late deadline systems if, when a feasible priority static assignment exists
for some synchronous and late deadline task set, the priority assignment given
by the rule R is also feasible for that task set. ■

22 CHAPTER 2. STATIC SCHEDULERS

However, this only makes sense if R is unambiguous. Since many priority as-
signments, and in particular the rate monotonic priority assignment as defined
by Liu and Layland, may be ambiguous, we shall refine the optimality notion
and distinguish two kinds of optimality.

Definition 2.4 A static priority assignment rule R is strongly optimal for syn-
chronous and late deadline systems if, when a feasible priority static assignment
exists for some synchronous and late deadline task set, any priority assignment
given by the rule R is also feasible for that task set, whatever the way in which
the ambiguities are resolved. ■

Definition 2.5 A static priority assignment rule R is weakly optimal for syn-
chronous and late deadline systems if, when a feasible priority static assign-
ment exists for some synchronous and late deadline task set, some priority
assignment given by the rule R is also feasible for that task set. ■

In other words, if a task set is unschedulable with a static and (weakly) op-
timal priority rule, it will also be unschedulable for any other static priority
assignment.

Liu and Layland [LL73] have “shown” the (strong) optimality of the rate
monotonic scheduler for synchronous and late deadline systems. The optimal-
ity result given by Liu and Layland is based on the fact that the synchronous
case is the worst case from a schedulability point of view. But this proper-
ty was not really proved in their paper, so that their argument is not fully
satisfactory. This property is based on the response time notion.

Definition 2.6 For a request of task τi, we define the response time as the
time between the arrival of the request and the completion of its processing.

■

According to this definition, the property stated by Liu and Layland can be
formulated as follows:

Conjecture 2.7 Let τ1, τ2, . . . , τn be a periodic synchronous task set with late
deadlines and a static priority assignment: τ1 > τ2 > · · · > τn. The response
time of the first request of any task τi is maximum among all requests of task
τi. ■

Proof from Liu and Layland [LL73]. Let τ1, τ2, . . . , τn denote a set of
periodic synchronous tasks with late deadlines. Consider a particular request

2.2. THE RATE MONOTONIC SCHEDULER 23

τi

? ? ?

t2

Cj

t2 + Tj

Cj

t2 + k · Tj

Cj

t1 t1 + Ti

Figure 2.1: Requests of task τj in the interval [t1, t1 + Ti].

of τi that occurs at time t1. Suppose that between t1 and t1 + Ti, the time at
which the subsequent request of τi occurs, requests for task τj, j < i, occur
at time t2, t2 + Tj, . . . , t2 + k · Tj as illustrated in Figure 2.1. Clearly, the
preemption of τi by τj will cause a certain amount of delay in the completion of
the request for τi that occurred at time t1, unless the request for τi is completed
before t2. :::::::::::

Moreover,
::::::
from

:::::::::
Figure

::::
2.1

::::
we

::::
see

:::::::::::::::
immediately

:::::
that

:::::::::::::
advancing

::::
the

::::::::
request

::::::
time

:::
t2:::::

will
:::::
not

:::::::
speed

::::
up

::::
the

:::::::::::::
completion

:::
of

:::
τi. The completion time

of τi is either unchanged or delayed by such advancement. Consequently, the
delay in the completion of τi is largest when t2 coincides with t1. Repeating
the argument for all τj, j < i, we prove the property. ■

The reasoning of Liu and Layland is incorrect: in their proof, the authors
do not consider the requests of task τj which occurs before time t1 (only the
nearest one matters, in fact). With the following example we show that the
argument of the preceding proof is incorrect.

Example 2.8 Consider the task set given by table 2.1 and consider a request
of τ2 as illustrated in Figure 2.3 (for late deadline systems we do not display
the deadlines since these ones coincide with the requests); the response time of
this request is 5 time units, and advancing the request of task τ1 by one time
unit speeds up the response time of this request of task τ2, since in this case
the response time is 4, as illustrated in Figure 2.2. ■

This first remark concerning a classical result of the literature, and in particular
the wrong argument used in the proof of Liu and Layland, shows that we must
be very careful; our intuition may lead to incorrect reasonings, for the kind of
systems we consider in this work; even in very “simple” cases (e.g., synchronous

Ti Di Ci

τ1 3 3 2
τ2 ≥ 5 T2 2

Table 2.1: Characteristics of a periodic task set.

24 CHAPTER 2. STATIC SCHEDULERS

τ1

? ? ?2

t2

2 2

τ2

?

t1

1 1

Figure 2.2: Response time of τ2, t2 − t1 = 1.

τ1

? ? ?2

t2

2 2

τ2

?

t1

1 1

Figure 2.3: Response time of τ2, t2 − t1 = 2.

and late deadline systems with 2 periodic tasks) it is difficult to anticipate
their behavior. We shall see that this is often the case, for the various kinds
of problems considered during this work.

Nevertheless, while their argument was wrong, Liu and Layland had the correct
intuition and Conjecture 2.7 is indeed valid. Remark that Example 2.8 does
not contradict Conjecture 2.7 since the response time of the first request of τ2

in the synchronous case is 6, which is greater than the response time in both
asynchronous situations considered above.

We shall not give a proof of Conjecture 2.7 in this chapter, since our proof
is based on the general response time computation, which is the purpose of
Chapter 3. We suggest the reader to consider this property as a conjecture till
the presentation of our proof in Chapter 3 (section 3.4). More precisely, we
shall consider a more general Conjecture.

Conjecture 2.9 Let τ1, τ2, . . . , τn be a periodic synchronous task set with
general deadlines and a static priority assignment: τ1 > τ2 > · · · > τn. The
response time of the first request of task τi is maximum among all requests of
task τi. ■

Notice that, as we shall later see, the Conjecture may not be extended to the
arbitrary deadline case.

We come back to the optimality of the rate monotonic scheduler. Even if we
accept the Conjecture 2.9, the optimality proof of Liu and Layland is still not

2.2. THE RATE MONOTONIC SCHEDULER 25

fully convincing. We shall here give a complete proof; in particular we first
show two preliminary results, not considered in the work of Liu and Layland.

Definition 2.10 A scheduler is said to be expedient iff when active request(s)
exist(s) at some time t, the cpu is given to some active request and conse-
quently σ(t) 6= 0. ■

Expedience seems to be a natural property to be imposed on any preemptive
scheduling (while for non-preemptive scheduling it may be wise to stay idle for
a while in order to be able to start a critical request, which would be delayed
if we started a long non-critical request before).

We supposed in the previous definition that the cpu allocation was considered
at each natural time instant (σ(t) : N → {0, . . . , n}). We then have a very
general property, stated as follows.

Lemma 2.11 Let τ1, τ2, . . . , τn be a periodic and asynchronous task set, with
arbitrary deadlines. Let A1 and A2 be two feasible scheduling rules for this
set. Consider the schedules σ1(t) and σ2(t) defined by the rule A1 and A2,
respectively. If A1 and A2 are expedient, it follows that ∀t ∈ N : σ1(t) =
0 iff σ2(t) = 0.

Proof. We show the property by induction on time t. The property is obvious
in the base case, t = 0, since min{Oi|i = 1, . . . , n} = 0 and σ1(0) 6= 0 6= σ2(0),
since at time 0 at least one task makes a request and needs the cpu for at
least one time unit, and A1 as well as A2 are expedient. Suppose the property
is true till time t ≥ 0 and consider the instant t + 1. If the property is no
longer true at time t + 1, we have without loss of generality: σ1(t + 1) = 0
and σ2(t + 1) 6= 0. We shall show that this situation is impossible and leads
to a contradiction. Let t′1 be the largest time instant strictly less than t + 1
such that σ1(t′1) = 0, with t′1 = −1 if the cpu remains busy from time 0; t′2
is defined in the same way for the schedule σ2(). By induction hypothesis, we
have that t′1 = t′2. Since the cpu is idle in both schedules at time t′1 we can
only consider the requests from time t′1. Since in σ2() the cpu remains busy in
the interval [t′1 + 1, t + 1] the demand2 in this interval is greater than or equal
to t− t′1 + 1, and since the demand does not rely on the scheduling rule, with
rule A1 the (same) demand may not be satisfied either at time t + 1. Since A1

is expedient, we have that σ1(t + 1) 6= 0, a contradiction. ■

2The demand in an interval [a, b] is
∑n

i=1 mi · Ci, where mi is the number of requests of
τi which occur in [a, b].

26 CHAPTER 2. STATIC SCHEDULERS

Notice that the property also holds for systems composed of aperiodic and pe-
riodic tasks (an aperiodic task may be considered as an asynchronous periodic
task with infinite period).

We consider now a second preliminary result, not considered in the work of
Liu and Layland.

Lemma 2.12 Let S be an asynchronous system with arbitrary deadlines and
τ1 > τ2 > · · · > τn be a feasible static priority assignment. For any priority
assignment τk1 > τk2 > · · · > τkn−1 > τn, with {k1, . . . , kn−1} = {1, . . . , n− 1},
feasible for the task sub-set {τ1, . . . , τn−1}, the cpu allocation for any request
of task τn remains unchanged with respect to the τ1 > · · · > τn priority assign-
ment, and feasibility is preserved for the whole task set.

Proof. With the priority assignment τ1 > · · · > τn, the set is schedulable;
for any k > 0, the kth request of τn receives the first Cn idle time units left by
the requests of τ1, . . . , τn−1 from time On + (k− 1)Tn. Consider now a priority
assignment such that τk1 > τk2 > · · · > τkn−1 > τn with {k1, . . . , kn−1} =
{1, . . . , n − 1}, feasible for the task sub-set {τ1, . . . , τn−1}. Each request of τn

receives the first Cn idle time units left by the requests of τ1, . . . , τn−1 from its
arrival time, which are the same than for the priority assignment τ1 > τ2 >
· · · > τn−1 by Lemma 2.11 (static priority assignments are expedient). The
property follows. ■

Lemma 2.12 shows that the schedulability of task τi depends on the set of all
higher priority tasks, and not on the priority assignment chosen for this set.

It may be noticed that both Lemma 2.11 and Lemma 2.12 hold for a more
general class of periodic task sets than the one for which the rate monotonic
scheduler was defined, since these properties concern asynchronous systems
with arbitrary deadlines. Moreover, these properties are not dedicated to the
rate monotonic priority rule and concern any static priority assignment for
Lemma 2.12, and any expedient rule for Lemma 2.11.

Theorem 2.13 The rate monotonic priority rule is strongly optimal for syn-
chronous and late deadline task sets.

Proof. We must prove that if a feasible static priority assignment exists for
a task set with late deadlines, any rate monotonic priority assignment is also
feasible for that task set. Let τ1, τ2, . . . , τn be a synchronous and late deadline
task set. Suppose there exists a feasible priority assignment (τ1 > τ2 > · · · >
τn). Let τi and τj be two tasks of adjacent priorities (τi > τj, j = i + 1)
with Ti ≥ Tj. Let us exchange the priorities of τi and τj: if the task set is still

2.2. THE RATE MONOTONIC SCHEDULER 27

schedulable, since any rate monotonic priority assignment can be obtained from
any priority ordering by a sequence of such priority exchanges, we may deduce
that any rate monotonic priority assignment is also feasible. The priority
exchange does not modify the schedulability of the tasks with a higher priority
than τi (i.e., τ1, . . . , τi−1). The task τj remains of course schedulable after the
priority exchange, since it may use all the free slots left by {τ1, τ2, . . . , τi−1}
instead of only those left by {τ1, τ2, . . . , τi−1, τi}. Assuming that the requests
of τi remain schedulable, from Lemma 2.11 the scheduling of each task τk, for
k = i+2, i+3, . . . , n is not altered since the idle periods left by higher priority
tasks are the same. Hence we must only verify that τi also remains schedulable.
From Conjecture 2.7 we can restrict this question to the first request of task
τi. Let rj be the response time of the first request of τj before the priority
exchange: the feasibility implies rj ≤ Dj; it is not difficult to see that during
the interval [0, rj) the cpu (when left free by higher priority tasks) is assigned
first to the (first) request of τi then to the (first) request of τj (the latter is not
interrupted by subsequent request of τi since Ti > Tj = Dj ≥ rj). Hence, after
the priority exchange, the cpu allocation is exchanged between τi and τj, and
it follows that τi ends it computation at time rj and meets its deadline since
rj ≤ Dj = Tj ≤ Ti = Di. ■

2.2.2 Feasibility tests

We shall now consider the feasibility problem, i.e., deciding if a (synchronous
and late deadline) system is feasible (or not), i.e., if there exists a priority rule
which makes the system schedulable. Since the rate monotonic priority rule
is optimal for such systems, we can restrict this question, by considering the
schedulability of the system using the rate monotonic priority rule.

From Conjecture 2.7 it follows that we only have to check if the first request
of each task meets its (first) deadline.

Corollary 2.14 Let τ1, τ2, . . . , τn be a periodic synchronous and late deadline
task set. The set is feasible iff the first request of each task meets its deadline
with the rate monotonic rule.

Proof. Immediately follows from Theorem 2.13 and Conjecture 2.7. ■

We shall see in Chapter 3, explicit formulas and algorithms for the computation
of the response time of the first request of task τi in the synchronous case, hence
the interest of Corollary 2.14.

Liu and Layland have also defined a rather efficient sufficient condition for the
schedulability of a task set, based on the utilization factor.

28 CHAPTER 2. STATIC SCHEDULERS

We define the utilization factor as the fraction of processor time spent in the
execution of the task set:

U =
n

∑

i=1

Ci

Ti
(U ∈ Q).

Suppose that the system starts at time 0. It may be noticed that the utilization
factor does not give the cpu utilization for all instants. For each task (τi)
considered alone, Ci

Ti
represents for all instants multiple of Ti the cpu utilization

by task τi, if the task set is schedulable. For the task set itself, U gives the total
utilization for all instants multiple of P = lcm{Ti|i = 1, . . . , n}. P is called
the hyper-period: we shall see that (when feasible) the schedule is periodic
from time 0 with a period of P (see Corollary 2.49). But it is not difficult to
see that the utilization factor approximates the used fraction of the processor
time as close as we want for instants sufficiently large (in comparison with the
Ti’s); this remains true for asynchronous systems with arbitrary (but finite)
deadlines and dynamic priorities. Lastly, the function U has a true sense only
if all tasks always meet their deadlines, i.e, if the schedule is feasible.

In all generality, i.e., whatever the scheduling algorithm (static or dynamic),
whatever the offsets (synchronous, asynchronous or offset free) and whatever
the deadline configuration (late deadline, general deadline or finite arbitrary
deadline) we have that a task set is certainly not schedulable if

∑n
i=1

Ci
Ti

> 1.
For the case of synchronous and late deadline case, Liu and Layland have shown
that if the utilization factor is less than 69 % the set is always schedulable with
the rate monotonic rule. Again however while the end result is correct, the
reasoning of Liu and Layland to justify this feasibility test is incomplete; we
shall present the completed results here.

Definition 2.15 A task set τ1, . . . , τn is said to fully utilize the processor if
the task set is schedulable and if an increase of any Ci (1 ≤ i ≤ n) makes the
task set unschedulable. ■

Lemma 2.16 Let τ1, . . . , τn be a synchronous and late deadline task set, schedu-
lable with the rate monotonic priority assignment (τ1 > τ2 > · · · > τn). If the
increase of Cn makes the task set unschedulable, the task set fully utilizes the
processor.

Proof. If we cannot increase Cn, that means that the interval [0, Tn) does
not contain idle time units (see Figure 2.4). Hence, we cannot increase any Ci,
since Tn ≥ Tn−1 ≥ · · · ≥ T1. ■

2.2. THE RATE MONOTONIC SCHEDULER 29

τ1
? ? ? ?

.

.

.

τn−1
? ? ?

τn
? ?

0 Tn

Figure 2.4: The interval [0, Tn) with the rate monotonic priority assignment.

Definition 2.17 We define bn as the least upper bound of the processor u-
tilization factor over all the sets of n tasks which fully utilize the processor.

■

In the previous definition we have used the original definition of Liu and Lay-
land, it may be noticed that bn is in fact a lower bound regarding the utilization
factor.

The sufficient feasibility test given by Liu and Layland is based on the com-
putation of the bound bn. Liu and Layland have stated that bn = n(n

√
2 − 1)

but this property was not really proved in their paper: the result is correct but
their argument is not satisfactory.

The property stated by Liu and Layland can be formulated as follows:

Conjecture 2.18 For a set of n periodic synchronous tasks with late deadlines
and the restriction that the ratio between any two task periods is less than 2,
bn = n(n

√
2− 1), for the rate monotonic priority rule. ■

We give here the first part of the original proof of Liu and Layland, and we
shall exhibit why their argument is incorrect.

Proof from Liu and Layland [LL73]. Let τ1, . . . , τn denote the n tasks.
Let C1, . . . , Cn be the execution times of the tasks that fully utilize the pro-
cessor and minimize the processor utilization factor (here we shall allow real-
valued Ci’s, considering they may be arbitrarily approximated by rational val-
ues, hence by integer values up to a multiplication of all task characteristics
by an adequate integer coefficient). We assume that Tn > Tn−1 > · · · > T1

(two tasks with the same period can be represented by a single task with the

30 CHAPTER 2. STATIC SCHEDULERS

same period and a computation time equals to the sum of the original com-
putation times). In this situation we must have: Ci = Ti+1 − Ti (i < n) and
Cn = Tn − 2(C1 + · · ·+ Cn−1), consider first the case of C1:

1. If C1 = T2−T1 +∆ (∆ > 0), the task set τ ′1, . . . , τ
′
n with D′

i = T ′
i = Ti ∀i

and C ′
1 = T2 − T1, C ′

2 = C2 + ∆, C ′
3 = C3, ..., C ′

n = Cn also fully utilizes
the processor (see Figure 2.5, left; let us recall that the feasibility of
the system is determined by the feasibility of each first request), with
U − U ′ = ∆

T1
− ∆

T2
> 0 (contradicting our hypothesis).

2. If C1 = T2−T1−∆ (∆ > 0), the task set τ ′′1 , . . . , τ ′′n with D′′
i = T ′′

i = Ti ∀i
and C ′′

1 = C1 + ∆, C ′′
2 = C2 − 2∆, C ′′

i = Ci for i = 3, 4, . . . , n,
::::
also

::::::
fully

::::::::
utilizes

::::
the

:::::::::::
processor see Figure 2.5, right), with U −U ′′ = − ∆

T1
+ 2∆

T2
> 0

(contradicting our hypothesis).

■

τ1

? ? ?

0

C′1 ∆

T1

C′1 ∆

τ2

? ?C2 C2

T2

τ1

? ? ?

0

C1

T1

C1

τ2

? ?∆ C′′2 ∆

T2

Figure 2.5: Schedule of task set {τ1, τ2}, if C1 = T2 − T1 + ∆ (left) and C1 =
T2 − T1 −∆ (right).

The reasoning of Liu and Layland is incorrect: the second part of their proof
(the case where C1 = T2−T1−∆(∆ > 0)) is incorrect for at least two reasons:

❑ The proof assumes that C2 > 2∆,

❑ The task set τ ′′1 , . . . , τ ′′n does not necessarily fully utilize the cpu, as
exhibited by the following example.

Example 2.19 Consider the task set {τ1 = {T1 = D1 = 8, C1 = 2}, {T2 =
D2 = 11, C2 = 3}, {T3 = D3 = 15, C3 = 5} which fully utilizes the cpu as
exhibited in Figure 2.6, with U = 1130

1320 . If we choose C ′′
1 = T2−T1 = C1+∆ = 3,

C ′′
2 = C2 − 2∆ = 1 and C ′′

3 = C3, the set does not fully utilize the cpu as
exhibited in Figure 2.7. And if we try to correct the situation by increasing
C3, i.e., if we choose C ′′

3 = C3 + 2∆, the set fully utilizes the cpu but in this

2.2. THE RATE MONOTONIC SCHEDULER 31

τ1
? ?

0 1

2

8 9

2

τ2
? ?

3 5

3

11 13

3

τ3
? ?

5 7

3

10

1

14

1

Figure 2.6: The task set fully utilizes the cpu.

τ1
? ?

0 2

3

8 10

3

τ2
? ?

3

1

11

1

τ3
? ?

4 7

4

12

1

Figure 2.7: The task set does not fully utilizes the cpu, the system is idle in
the interval [13, 15).

case U ′′ = 1231
1320 > U . This shows that the argument of Liu and Layland is

wrong. ■

Remark however that Example 2.19 does not contradict the fact that we must
have Ci = Ti+1 − Ti (i < n) and Cn = Tn − 2(C1 + · · · + Cn−1), since in the
previous example if we choose C ′′′

1 = 3, C ′′′
2 = 4 and C ′′′

3 = 1, the set fully
utilizes the cpu and U ′′′ = 1063

1320 < U . Indeed, while their argument was wrong,
Liu and Layland had again the correct intuition and Conjecture 2.18 is valid.
We give here a complete proof of Conjecture 2.18:

Lemma 2.20 For a set of n periodic synchronous tasks with late deadlines
and the restriction that the ratio between any two task periods is less than 2,
bn = n(n

√
2− 1), for the rate monotonic priority rule.

Proof. Let τ1, . . . , τn denote the n tasks. Let C1, . . . , Cn be the execution
times of the tasks that fully utilize the processor and minimize the processor
utilization factor (here we shall allow real-valued Ci’s, considering they may
be arbitrarily approximated by rational values, hence by integer values up to
a multiplication of all task characteristics by an adequate integer coefficient).
We assume that Tn > Tn−1 > · · · > T1 (two tasks with the same period can

32 CHAPTER 2. STATIC SCHEDULERS

be represented by a single task with the same period and a computation time
equals to the sum of the original computation times). In this situation we must
have: Ci = Ti+1 − Ti (i < n) and Cn = Tn − 2(C1 + · · · + Cn−1). To show
this, we shall first prove that ∀i < n, Ci ≤ Ti+1 − Ti. We shall proceed by
contradiction: let us assume the property does not hold.

Consider first the case of C1 and suppose that C1 = T2 − T1 + ∆ (∆ > 0);
notice that we must have that T2 < 2T1, otherwise C1 > T1 and the task set
may not be schedulable; now, the task set τ ′1, . . . , τ

′
n with D′

i = T ′
i = Ti ∀i

and C ′
1 = T2 − T1, C ′

2 = C2 + ∆, C ′
3 = C3, ..., C ′

n = Cn also fully utilizes
the processor (see Figure 2.5, left), and U − U ′ = ∆

T1
− ∆

T2
> 0, since T2 > T1,

contradicting our hypothesis; hence we must have C1 ≤ T2−T1. We can apply
the same argument for C2, . . . , Cn−1.

Next, we may observe that if ∀i < n : Ci ≤ Ti+1 − Ti and Tn < 2T1, the task
set fully utilizes the processor iff Cn = Tn − 2

∑n−1
i=1 Ci (the first n − 1 tasks

are schedulable and between 0 and T1, as well as between T1 and Tn, they use
∑n−1

i=1 Ci time units, with
∑n−1

i=1 Ci ≤ Tn − T1 < T1).

Now, if C1 = T2 − T1 −∆ (∆ > 0), from the previous observation the task set
τ ′′1 , . . . , τ ′′n with D′′

i = T ′′
i = Ti ∀i and C ′′

1 = C ′
1+∆′, C ′′

n = C ′
n−2∆′, C ′′

i = C ′
i for

i = 2, 4, . . . , n−1, also fully utilizes the processor, and U ′−U ′′ = − ∆
T1

+ 2∆
Tn

> 0
since 2T1 > Tn, contradicting our hypothesis. We can apply the same argument
for C2, . . . , Cn−1 and we get our property.

Let gi = Tn−Ti
Ti

(i = 1, . . . , n− 1); we get

U =
n

∑

i=1

Ci

Ti
= 1 + g1(

g1 − 1
g1 + 1

) +
n−1
∑

i=2

gi(
gi − gi−1

gi + 1
)

This expression must be minimal, hence ∂U
∂gj

=
g2

j +2gj−gj1
gj+12 − gj+1

gj+1+1 = 0, for j =
1, . . . , n− 1.

The general solution can be shown to be gj = 2
n−j

n − 1 (j = 1, . . . , n− 1).

It follows that bn = n(n
√

2− 1). ■

It may be noticed that bn < bn−1 and that limn→∞ bn = ln 2 (by the l’Hospital
rule). Except for the trivial case n = 1, the bound bn is never reached, since it
is irrational, while from our assumption U is always rational.

The restriction that the ratio between task periods is less than 2 can now be
relaxed.

Theorem 2.21 ([LL73]) For a set of n periodic synchronous tasks with late
deadlines, bn = n(n

√
2− 1), for the rate monotonic scheduler.

2.2. THE RATE MONOTONIC SCHEDULER 33

Proof. Let τ1, τ2, . . . , τn be a set of n periodic tasks that fully utilize the
processor. Let U denote the utilization factor of the task set. Suppose that for
some i,

⌊

Tn
Ti

⌋

> 1. To be specific, let Tn = q · Ti + r, q > 1 and r ≥ 0. Let us
replace the task τi by a task τ ′i such that T ′

i = q · Ti and C ′
i = Ci, and increase

Cn by the amount needed to again fully utilize the processor. This increase is
at most Ci(q − 1), the time within the execution of τn occupied by τi but not
by τ ′i (it may be less than Ci if some slots left by τ ′i are used by some τj with
i < j < n). Let U ′ denote the utilization factor of such a set of tasks. We have

U ′ ≤ U − Ci

Ti
+

Ci

T ′
i

+ [(q − 1)
Ci

Tn
]

or

U ′ ≤ U + Ci(q − 1)[
1

q · Ti + r
− 1

q · Ti
].

Since q − 1 > 0 and 1
q·Ti+r −

1
q·Ti

≤ 0, U ′ ≤ U . Therefore we conclude that in
determining the least upper bound of the processor utilization factor, we need
only consider task sets in which the ratio between any two task periods is less
than 2. The Theorem follows from Lemma 2.20. ■

Liu and Layland [LL73] have formulated a sufficient condition for the schedu-
lability of a task set based on the bound bn, without a proof. The authors,
from Theorem 2.21, stated that if a set of n tasks has an utilization factor less
than the upper bound bn it follows that the set is schedulable. This property
does not immediately follow from Theorem 2.21, however, since the least upper
bound bn concerns the utilization factor of schedulable task sets only. There
is no a priori reason to think that there are no unschedulable task set with
utilization factor less than bn. This problem is not obvious at all. We have
investigated a lot of arguments before being able to show that, indeed, there
are no unschedulable sets of n tasks with a utilization factor less than bn. Our
proof is based on the fact that bn is strictly decreasing in n.

Theorem 2.22 Let τ1, . . . , τn be a task set. If U =
∑n

i=1
Ci
Ti

< bn, then the
task set is schedulable.

Proof. By induction on n. The property is trivially true for n = 1: τ1

is schedulable iff C1
T1
≤ 1 = b1. Let us assume that the property is true up

to n − 1, and consider a set of n tasks τ1, . . . , τn with Un =
∑n

i=1
Ci
Ti

< bn.

34 CHAPTER 2. STATIC SCHEDULERS

Since bn < bn−1, we have that Un < bn−1. Consider the n− 1 highest priority
tasks τ1, . . . , τn−1 with Un−1 =

∑n−1
i=1

Ci
Ti

= Un − Cn
Tn

< Un, hence Un−1 <
bn−1 and by induction hypothesis the task sub-set τ1, . . . , τn−1 is schedulable.
Suppose now that τ1, . . . , τn is not schedulable, in this case we have, since the
first n − 1 tasks are schedulable: ∃x : 0 ≤ x < Cn : with C ′

1 = C1, C ′
2 =

C2, . . . , C ′
n−1 = Cn−1, and C ′

n = x so that the task set is schedulable, while
with C ′

1 = C1, C ′
2 = C2, . . . , C ′

n−1 = Cn−1, and C ′
n = x + 1 the task set is

not schedulable; by Lemma 2.16 the task set with C ′
n = x fully utilizes the

processor and U ′
n =

∑n−1
i=1

C′i
Ti

+ x
Tn

< Un < bn. By definition of Un and U ′
n this

leads to a contradiction and proves the theorem. ■

This theorem gives us a sufficient condition. The series bn converges to ln 2.
Hence, we are always sure that any task set (for any n) with a utilization factor
less than 0.69 is schedulable, since 0.69 < ln 2 < bn < bn−1 < · · · < b1.

2.3 The deadline monotonic scheduler

The deadline monotonic scheduler is an extension of the rate monotonic sched-
uler. It relaxes one of its precondition; namely it allows the deadline of a task
to be less than the period (Di ≤ Ti). Hence, the deadline monotonic rule is
defined for a larger sub-class of periodic task sets.

❑ The deadline monotonic scheduler is defined for synchronous systems,
where all tasks are started at the same time (O1 = O2 = · · · = On = 0),
and

❑ for general deadline systems, where the deadline of each task is less than
or equal to the period (Di ≤ Ti, i = 1, . . . , n).

Leung and Whitehead [LW82] have defined the deadline monotonic priority
assignment (also termed the inverse-deadline priority assignment): priorities
assigned to tasks are inversely proportional to the deadline. It may be noticed
that in the special case where Di = Ti (1 ≤ i ≤ n), the deadline monotonic
assignment is equivalent to the rate monotonic priority assignment.

2.3.1 Optimality

Again we can distinguish between two kinds of optimality:

2.3. THE DEADLINE MONOTONIC SCHEDULER 35

Definition 2.23 A static priority assignment rule is strongly optimal for syn-
chronous and general deadline systems if, when a feasible static priority as-
signment exists for a synchronous and general deadline task set, any priority
assignment given by the rule is also feasible for that task set, whatever the way
in which the ambiguities are resolved. ■

Definition 2.24 A static priority assignment rule is weakly optimal for syn-
chronous and general deadline systems if, when a feasible static priority as-
signment exists for a synchronous and general deadline task set, some priority
assignment given by the rule is also feasible for that task set (for a particular
way to resolve the ambiguities). ■

The deadline monotonic priority assignment is strongly optimal for synchronous
systems with general deadlines.

The optimality proof of Leung and Whitehead [LW82] is not fully convincing
however, for similar reasons than those invoked for the optimality of the rate
monotonic scheduler; we complete here the proof, and we show the strong
optimality.

Theorem 2.25 The deadline monotonic priority assignment is strongly opti-
mal for synchronous systems with general deadlines.

Proof. We must prove that if a feasible static priority assignment exists for a
task set with general deadlines, any deadline monotonic priority assignment is
also feasible for that task set. Let τ1, τ2, . . . , τn be a synchronous and general
deadline task set. Suppose there exists a feasible priority assignment (τ1 > τ2 >
· · · > τn). Let τi and τj be two tasks of adjacent priorities (τi > τj, j = i + 1)
with Di ≥ Dj. Let us exchange the priorities of τi and τj: if the task set is still
schedulable, since any deadline monotonic priority assignment can be obtained
from any priority ordering by a sequence of such priority exchanges, we may
deduce that any deadline monotonic priority assignment is also feasible. The
priority exchange does not modify the schedulability of the tasks with a higher
priority than τi (τk, ∀k < i). The task τj remains of course schedulable after
the priority exchange, since it may use all the free slots left by {τ1, τ2, . . . , τi−1}
instead of only those left by {τ1, τ2, . . . , τi−1, τi}. Assuming that the requests
of τi remain schedulable, from Lemma 2.11 the scheduling of each task τk, for
k = i+2, i+3, . . . , n is not altered since the idle periods left by higher priority
tasks are the same. Consequently we must only verify that τi also remains
schedulable. From Conjecture 2.9 we can restrict this question to the first
request of task τi. Let rj be the response time of the first request of τj before
the priority exchange: the feasibility implies rj ≤ Dj; it is not difficult to see

36 CHAPTER 2. STATIC SCHEDULERS

that during the interval [0, rj) the cpu (when left free by higher priority tasks)
is assigned first to the (first) request of τi then to the (first) request of τj (the
latter is not interrupted by subsequent requests of τi since Ti ≥ Di ≥ Dj ≥ rj).
Hence, after the priority exchange, the cpu allocation is exchanged between
τi and τj, and it follows that τi ends its computation at time rj and meets its
deadline since rj ≤ Dj ≤ Di. ■

It may be noticed that the previous proof assumes the Conjecture 2.9, in
the same way than the Conjecture 2.7 was used for the optimality of the rate
monotonic scheduler. Again, we suggest to the reader to consider this property
as a conjecture till the presentation of our proof (which will not rely on those
optimality results).

2.3.2 Feasibility tests

From Conjecture 2.9 it follows again that we only have to check if all the tasks
meet their first deadline.

Corollary 2.26 Let τ1, τ2, . . . , τn be a periodic synchronous and general dead-
line task set. The set is feasible iff the first request of each task meets its
deadline with the priority given by the deadline monotonic rule.

Proof. Immediately follows from Theorem 2.25 and Conjecture 2.9. ■

We shall see in Chapter 3 formulas and algorithms for the computation of the
response time of the first request of task τi in the synchronous case, hence the
interest of Corollary 2.26.

It is not difficult to see that when deadlines are allowed to be less than the
periods (Di ≤ Ti), a schedulability test cannot have the form

∑n
j=1

Cj
Tj

< k,
where k is a constant; the boundary k should at least be a function of the
task deadlines. Such a sufficient condition based on the utilization factor for
the deadline monotonic priority assignment would be relevant however, and
remains open for future works.

2.4 Synchronous arbitrary deadline systems

We consider here a larger sub-class of periodic task sets:

❑ Synchronous systems, i.e., all tasks are started at the same time (O1 =
O2 = · · · = On = 0), and

2.4. SYNCHRONOUS ARBITRARY DEADLINE SYSTEMS 37

τ1

? ?

0 51

52

100 151

52

τ2

? ?

52 99

48

152

1

6

Figure 2.8: With the priority assignment τ1 > τ2, the system is unschedulable:
the first request of τ2 misses its deadline.

τ1

? ? ? ?

52 103

52

104 139

36

192

16

208 259

52

τ2

? ? ?

0 51

52

140 191

52

Figure 2.9: With the priority assignment τ2 > τ1, the system is schedulable
(after the first idle time unit, at time 260, the situation is more favorable).

❑ Arbitrary deadline: the deadline of each task τi is finite but may be less
(Di ≤ Ti) or greater (Di > Ti) than the period.

For this sub-class of periodic task sets the rate/deadline monotonic rule is no
longer strongly optimal. This result follows from the following example given
by Lehoczky [Leh90].

Example 2.27 Let S = {τ1 = {C1 = 52, T1 = 100, D1 = 110, O1 = 0}, τ2 =
{C2 = 52, T2 = 140, D2 = 154, O2 = 0}}. Both rate/deadline priority assign-
ments give the highest priority to task τ1. With this priority assignment, the
set is unschedulable: the first request of τ2 misses its deadline at time 154, as
illustrated in Figure 2.8. With the priority assignment τ2 > τ1 the system is
schedulable (see Figure 2.9), and fully utilizes the processor; we shall see that
for this kind of system we may have to look further than the first request of
each task to check feasibility, but we have only to consider the schedule until
the first idle time unit. ■

Remark that this example shows more precisely that the deadline monotonic
scheduler is not even weakly optimal for arbitrary deadline systems since all
deadline monotonic priority assignments (here there is a single one) leave the
system unschedulable.

38 CHAPTER 2. STATIC SCHEDULERS

Let us also notice that with this kind of systems, several requests of the same
task can be active at the same time, while the system is schedulable. This is
the case in our previous example: in the feasible schedule (i.e., the one given
by the priority assignment τ2 > τ1, illustrated in Figure 2.9), at time t = 100
the second request of task τ1 occurs while the first one is still active. Hence,
in this situation several requests may have the same priority, and we did not
define what is the scheduling rule nor what is our graphical conventions in this
case. Hence, let us refine the scheduling rule: the system gives the cpu to the
active request with the highest priority, the tie being broken by applying the
first-in-first-out (fifo) rule; in other words, the cpu is given in this case to the
oldest active request with the highest priority, i.e., the request which arrived
at the smallest time instant. In our example, the second request of τ1 starts
its execution after the end of the first request of τ1, at time t = 104. Our
graphical conventions follow: all the requests of the same task are represented
at the same level, and the completion of each request is represented with a
vertical bar, as exhibited in Figure 2.9 at time t = 104, where the first request
of τ1 completes its execution and the second request of τ1 starts its execution.

Although we consider here synchronous systems, the response time of the first
request of τi is no longer always the largest one: in our feasible schedule (see
Figure 2.9) the response times of the first requests of τ1 are 104, 108 and
60, respectively. From a schedulability point of view, the second request of
task τ1 is in a worse situation since the first request of task τ1 delays the
execution of the second one. As a consequence, Conjecture 2.9 may not be
extended to arbitrary deadline systems under our assumptions. Remark that
Conjecture 2.9 could be extended by breaking the tie with the last-in-first-
out (lifo) rule, but this choice is not relevant regarding the feasibility of
synchronous and arbitrary systems; for instance, the system introduced in the
example 2.27 is certainly not schedulable with this new scheduling rule, even
with the priority assignment: τ2 > τ1.

We have seen that, in some circumstances, it is possible to devise simple nec-
essary and/or sufficient conditions for the schedulability of a given task set.
For instance, for late deadline synchronous systems with the rate monotonic
scheduling, Theorem 2.22 devises the rule that a task set is schedulable if (but
not iff)

∑n
i=1

Ci
Ti
≤ n(n

√
2 − 1). In all generality, we also have that a task set

is certainly not schedulable if
∑n

i=1
Ci
Ti

> 1. If no such conditions are known,
or if they do not give a definite answer for a given task set, of course it is not
possible to simulate the evolution of the system till the end of ages in order to
check if something goes wrong. However, it is generally possible to determine
an interval such that if nothing goes wrong in it then nothing will ever go
wrong.

2.4. SYNCHRONOUS ARBITRARY DEADLINE SYSTEMS 39

Definition 2.28 For a given scheduling algorithm and a task set, a feasibility
interval is a finite interval such that it is sure that no deadline will ever be
missed iff, when we only keep the requests made in this interval, all deadlines
for them in this interval are met. ■

For instance, we have:

Theorem 2.29 For a synchronous general deadline system with a static pri-
ority scheduler, [0, Dmax] is a feasibility interval, where Dmax = max{Di|i =
1, . . . , n}.

Proof. Immediately follows from Conjecture 2.9. ■

For synchronous and arbitrary systems Lehoczky has exhibited such a feasi-
bility interval, based on the fact that the largest response time for a request
of τi occurs necessarily during the first level-i busy period (see Definition 2.34)
of the synchronous system. His arguments were not fully developed however,
and we shall here fill the gaps.

Up to now, we always assumed that either the considered system was feasi-
ble, or it stopped at its first deadline failure. However, once a static priority
assignment has been chosen, together with a rule to break the ties if sever-
al requests are simultaneously active at the highest level, we may pursue the
schedule after deadline failures (this amounts to considering them as soft), and
get interesting properties and notions. It may be observed that even in the
case of late or general deadline systems, after a deadline failure, we may have
several active requests of a same task, hence we may need the fifo rule to
break the ties, like we did for arbitrary deadline systems. In the following, we
shall consider such “extended” schedules.

Definition 2.30 x ∈ N is an idle processor point of the schedule of a system
if all requests occurring strictly before x have completed their execution before
or at time x. ■

This definition may be extended by considering that t = ∞ is also an idle
point. Notice however that, if deadlines are missed, it may happen that some
requests are not completed at t = ∞, i.e., their response time may be infinite
and they are never completed, as in the example {τ1 = {O1 = 0, D1 = C1 =
T1 = 1}, τ2 = {O2 = 0, D2 = C2 = T2 = 2}} where no request of τ2 will never
receive the processor.

If the system is idle in an interval [a, b), all (integer) instants between a and
b (included) are idle points. More interesting, of course, are idle points where

40 CHAPTER 2. STATIC SCHEDULERS

τ2

? ?

2 4

3

τ1

? ? ?

0 1

2

5 6

2

• • • • • •

Figure 2.10: Various idle points.

either a request starts (0 is always an idle point of this kind), or gets completed,
or both.

Example 2.31 Consider the following system {τ1 = {O1 = 0, C1 = 2, T1 =
5}, τ2 = {O2 = 0, C2 = 3, T2 = 10}}, as exhibited in Figure 2.10 (idle points
are represented with the symbol •): the system is idle in the interval [7, 10)
and 7, 8, 9, 10 are idle points; 10 is an idle point which coincides with two task
requests; 7 is an idle point which coincides with the completion of the second
request of τ1 and 5 is an idle point which coincides with the completion of the
first request of τ2 and the second request of τ1. ■

Definition 2.32 An elementary busy period is a time interval [a, b) such that
a and b are idle points, the processor is busy in it and there is no intermediate
idle point (i.e., there is no idle point at time c with a < c < b). ■

Lemma 2.33 The set of time instants where there is an active request may
be partitioned into elementary busy periods.

Proof. Immediately follows from the Definition 2.32. ■

Definition 2.34 A level-i busy period is an elementary busy period in the
schedule of the task sub-set {τ1, . . . , τi} where at least one request of τi occurs.

■

Lemma 2.35 If [a, b) is a level-i busy period and b is finite, b is the completion
time of the last request of τi in this interval.

Proof. From Definitions 2.34, 2.32 and 2.30, there is at least one request of τi

in [a, b), and since b is a finite idle point all these requests have been completed
before or at time b; if the last of these requests is completed at time c < b, c
must be an idle point since all the other requests started before have a higher
priority; but this contradicts the fact that [a, b) is an elementary busy period.

■

2.4. SYNCHRONOUS ARBITRARY DEADLINE SYSTEMS 41

Lemma 2.36 In a busy level-i period, each request of τi but the first one starts
strictly before the previous one is finished.

Proof. If a request of τi in the interval finishes at time c and the next request
starts at c or later in the interval, c is an idle point, which contradicts the fact
that this interval is an elementary busy period. ■

Theorem 2.37 The largest response time for a request of task τi in all asyn-
chronous systems built from the same tasks occurs during the first level-i busy
period [0, λi) in the synchronous case, λi being the first idle point (after 0)
in the synchronous schedule of the task subset {τ1, . . . , τi}, and [0, λi) is the
largest level-i busy period.

Proof inspired from [Leh90]. Let [a, b) be a level-i busy period in some
synchronous or asynchronous system built from {τ1, . . . , τi}, and let us denote
a+∆j the starting time of the first request of τj after a (∆j ≥ 0 and 1 ≤ j ≤ i);
from definitions above we have that ∆i < b − a and ∆k = 0 for at least one
k. Suppose first that ∆i > 0. Only tasks having a higher priority than τi are
processed during [a, a + ∆i); hence, if ∆i were changed to any value in [0, ∆i),
each request of task τi in [a, b) would finish at the same time as before (each
request of τi occurs strictly before than in the original situation and uses the
same free slots left by the task subset {τ1, . . . , τi−1} since there was no idle time
unit left by τi), increasing each of their response time: the maximum response
time occurs when ∆i = 0. Moreover, no idle point occurs before b since it
is still true that each request of τi in the interval, but the first one, starts
strictly before the previous one is completed (see Lemma 2.36); it could even
happen that b is no longer an idle point, if the first request of τi which occurred
after or at b now starts strictly before b: the level-i busy period is lengthened.
If ∆j > 0 (j < i), then reducing ∆j leads to increase (or leave unchanged)
the processing requirement rj(t) of τj during [0, t) for every t ∈ (0, b], where
rj(t) = k · Cj, k being the number of requests of τj occurring after or at a
and strictly before t. Now it may be seen that the first request of τi after a
finishes (if ever) at the first time instant t such that (t− a) = Ci +

∑i−1
j=1 rj(t),

and more generally the kth request of τi in the interval [a, b) finishes at the
first instant t such that (t − a) = kCi +

∑i−1
j=1 rj(t): if rj(t) increases, this

will delay accordingly each request of τi; this may also enlarge the level-i busy
period, and possibly blend it with the next one(s). Hence, the largest response
times, and the largest level-i busy period, are achieved by setting each ∆j to
its smallest value: ∆1 = ∆2 = · · · = ∆i = 0. This configuration corresponds
to the first level-i busy period in the synchronous case. ■

The proof above uses a rather qualitative argument on the response time of the
requests of τi; we shall make it fully quantitative in Chapter 3 (section 3.8.1).

42 CHAPTER 2. STATIC SCHEDULERS

Lemma 2.38 If a level-i busy period [a, b) is longer than Pi = lcm{T1, . . . , Ti},
then

∑i
j=1

Cj

Tj
> 1. Moreover, in the synchronous case, a = 0 and b = ∞.

Proof. If a level-i busy period [a, b) is such that b − a > Pi, since from
Theorem 2.37 the first level-i busy period in the synchronous case is the longest,
we have λi > Pi, i.e., there is no idle point till Pi;

∑i
j=1

Pi
Tj

Cj > Pi since

the demand occurring in [0, Pi) cannot be satisfied, hence
∑i

j=1
Cj

Tj
> 1, λi =

∞ since otherwise λi =
∑i

j=1

⌈

λi
Tj

⌉

Cj ≥
∑i

j=1
λiCj

Tj
so that

∑i
j=1

Cj

Tj
≤ 1, a

contradiction. As a consequence, [0,∞) is the only level-i busy period in the
synchronous case. ■

Theorem 2.39 For a synchronous arbitrary deadline system with a static pri-
ority scheduler, [0, λn) is a feasibility interval.

Proof. The property follows from the fact that λ1 < λ2 < · · · < λn and the
fact that if the largest response time of a request of τi is less than or equal to
its deadline then all requests of task τi meet their deadline. ■

λn is the smallest positive solution (λn > 0) to the equation:

λn =
n

∑

i=1

⌈

λn

Ti

⌉

Ci, (2.1)

(
⌈

λn
Ti

⌉

is the number of the requests of τi which occur strictly before time λn)
and can be computed by the iteration:

w0 =
n

∑

i=1

Ci,

wk+1 =
n

∑

i=1

⌈

wk

Ti

⌉

Ci.

The computation stops when two consecutive values are found equal or wk

exceeds P . We shall show that the iteration converges to the minimal solution
(if any).

Theorem 2.40 If
∑n

i=1
Ci
Ti
≤ 1, the iteration converges to the minimal solu-

tion.

2.5. ASYNCHRONOUS GENERAL DEADLINE SYSTEMS 43

Proof. If
∑n

i=1
Ci
Ti
≤ 1, then from Lemma 2.38 λn ≤ P .

The successive approximations wk of λn are monotonically increasing. Indeed,
by induction, we have that:

wk ≥ wk−1 ⇒ wk+1 ≥ wk;

since, if wk ≥ wk−1 then wk+1 =
∑n

i=1

⌈

wk
Ti

⌉

Ci ≥
∑n

i=1

⌈

wk−1
Ti

⌉

Ci = wk;

and w0 =
∑n

i=1 Ci ≥ n, so that w1 =
∑n

i=1

⌈

w0
Ti

⌉

Ci ≥ w0.

Moreover, the iteration converges to the minimal solution. We shall show by
induction that:

w0 < w1 < · · · ≤ wk ⇒ λn ≥ wk.

By induction on k. The property is true initially: w0 =
∑n

i=1 Ci while λn ≥
∑n

i=1 Ci. Suppose that the property is true up to k and we have w0 < w1 <
· · · < wk ≤ wk+1; by induction hypothesis λn ≥ wk. As a consequence, [0, λn)
contains at least the computation of all requests which occur in [0, wk) : λn ≥
∑n

i=1

⌈

wk
Ti

⌉

Ci = wk+1. ■

If U ≤ 1 there is necessarily a solution less than or equal to P ; consequently if
wk exceeds P the iteration may stop since U > 1, the schedule is not feasible
and λn = ∞ from Lemma 2.38.

The length of the feasibility interval (i.e., λn) depends on the utilization factor,
and in the worst feasible case λn = P . Hence, the situation is less attractive
than the one considered for the general deadline case, since P may grow expo-
nentially with the number n of tasks.

Lehoczky has defined a feasibility criterion which consists in verifying the task
requests in the interval [0, λn); we shall not give details here. For convenience
and uniformity of this work, we shall present another criterion based on our
general response time computation in Chapter 3.

2.5 Asynchronous general deadline systems

Up to now, we have only considered synchronous systems. We shall now con-
sider a more general class of periodic task sets:

❑ Asynchronous systems: the offsets are fixed by the constraints of the
system and may be different (the tasks are not necessarily started at the
same time).

44 CHAPTER 2. STATIC SCHEDULERS

τ3
?
0 2

3 ?
8 10

3 ?
16 18

3 ?
24 26

3 ?
32 34

3 ?

τ2
? ? ? ?

3 7

5

11

1

15

4

19

2

27 31

5

35

1

τ1
? ? ?

21

1 1

Figure 2.11: The task set is schedulable with τ3 > τ2 > τ1: at t = 24 the
situation is the same as at t = 0 and the schedule repeats.

τ3
?
0 2

3 ?
8 10

3

τ1
?

11

1

τ2
?

3 7

5

6

Figure 2.12: The task set is not schedulable with τ3 > τ1 > τ2: the first request
of τ2 fails.

❑ general deadline systems, where the deadline of each task is less than or
equal to the period (Di ≤ Ti, i = 1, . . . , n).

For this more general class of periodic task sets, neither the rate monotonic
nor the deadline monotonic schedulers are optimal priority assignments. Leung
and Whitehead have shown that the rate monotonic scheduler is not (strongly)
optimal for late deadline and asynchronous systems.

Lemma 2.41 ([LW82]) The rate monotonic priority assignment is not strong-
ly optimal for late asynchronous systems.

Proof. This can be seen with the following system (introduced by Leung and
Whitehead):

τ1 = {C1 = 1, T1 = D1 = 12, O1 = 10}, τ2 = {C2 = 6, T2 = D2 = 12, O2 = 0},
τ3 = {C3 = 3, T3 = D3 = 8, O3 = 0}. This system can be scheduled with the
priority assignment (τ3 > τ2 > τ1) (see Figure 2.11), while the rate monotonic
priority assignment (τ3 > τ1 > τ2) is not feasible (see Figure 2.12). ■

Corollary 2.42 The deadline monotonic priority assignment is not strongly
optimal for asynchronous systems.

2.5. ASYNCHRONOUS GENERAL DEADLINE SYSTEMS 45

Proof. This results immediately from the previous example since, when
Di = Ti ∀i, deadline monotonicity coincides with rate monotonicity. ■

This example, largely used in the literature [LW82, Aud91] to illustrate the
non-optimality of the monotonic priority assignments for asynchronous systems
raises one point. Both priority assignments (τ3 > τ2 > τ1) and (τ3 > τ1 > τ2)
are in fact rate monotonic priority assignments. In this case, the non-optimality
of the rate monotonic priority assignment is due to the choice made to resolve
the tie between τ1 and τ2. Hence, the example shows the non-strong optimality
of monotonic priority assignments; but nothing can be inferred at that point
for the weak optimality. We shall see in Chapter 5 (section 5.4.3) that the
rate/deadline monotonic priority assignment is not even weakly optimal, by
considering non-ambiguous situations where all periods are distinct. Hence the
rate/deadline monotonic priority assignments are definitively non optimal for
asynchronous systems.

Since the monotonic priority assignments are not optimal for asynchronous
systems (late and general deadline situations), we shall assume here to have a
static priority assignment (τ1 > τ2 > · · · > τn) but not necessarily the priority
assignment given by the rate/deadline priority rule.

We come back to the feasibility problem of asynchronous systems. We shall
present a feasibility interval for this kind of system. We may first observe that,
in any case, the schedule produced by a static priority rule is periodic. Let us
consider first some preliminary definitions.

Definition 2.43 We define εi(t) as the amount of processor time used by the
last request of τi in the interval [0, t), if t ≥ Oi and no deadline was missed
before or at t. εi(t) = 0 if t < Oi and no deadline was missed before or at t.
εi(t) is undefined otherwise, i.e., if a deadline was missed before. ■

Definition 2.44 We define γi(t) as the time elapsed since the last request of
τi, if t ≥ Oi and no deadline was missed before. γi(t) = t − Oi if t < Oi and
no deadline was missed before or at t. γi(t) is undefined otherwise, i.e., if a
deadline was missed before or at t. ■

Definition 2.45 We define the configuration of the schedule S at time t for
the system R as
CS(R, t) = ((γ1(t), ε1(t)), (γ2(t), ε2(t)), . . . , (γn(t), εn(t))). ■

Lemma 2.46 The configuration of the schedule S at time t + 1 is univocally
determined by the configuration at time t ≥ 0.

46 CHAPTER 2. STATIC SCHEDULERS

Proof. Consider first the case of the quantities γi(t + 1):
if γi(t) is undefined, then γi(t + 1) is undefined since a deadline was missed
before or at t (notice that at time t = 0, all γi(t)’s are defined).

Else-if ∃j : γj(t)+1 = Dj (i.e., t+1 coincides with the next deadline of τj) and
(εj(t) < Cj − 1 or (εj(t) = Cj − 1 and (∃k < j : εk(t) < Ck with γk(t) ≥ 0))),
i.e., the deadline of τj cannot be met, either because the last time unit is not
enough to satisfy τj’s request or because the last time unit is used by someone
else, with a higher priority, then γi(t + 1) is undefined. It may be noticed that
this condition does not depend on i; consequently if the condition is satisfied
all γi(t+1)’s are undefined.

Else-if γi(t) < 0, then γi(t + 1) = γi(t) + 1
otherwise γi(t + 1) = (γi(t) + 1) mod Ti.

Consider now the quantities εi(t + 1):

If γi(t + 1) is undefined then εi(t + 1) is also undefined since a deadline was
missed before (notice that at time t = 0, all εi(t)’s are defined).

Else-if γi(t + 1) = 0, then εi(t + 1) = 0 (i.e., a new request arrives).

Else-if εi(t) < Ci and γi(t) ≥ 0 (i.e., the last request of τi is active) and @j < i
such that εj(t) < Cj with γj(t) ≥ 0 (i.e., there is no higher priority active task
than τi), εi(t + 1) = εi(t) + 1 (i.e., the request of τi runs at time t).

Otherwise εi(t+1) = εi(t) (if τi is not executing at time t, εi(t+1) is unchanged).

■

Theorem 2.47 Any feasible schedule of an asynchronous general deadline sys-
tem is finally periodic, i.e., periodic from some point.

Proof. For any natural instant time t, we consider the configuration of a
feasible schedule CS(R, t). Since the configuration of the schedule S at time t+1
is univocally determined by the configuration at time t ≥ 0 (from Lemma 2.46)
and ∀i ∈ [1, n] : 0 ≤ εi(t) ≤ Ci, −Oi ≤ γi(t) < Ti and εi(t), γi(t) are integer
numbers (unless εi(t) or γi(t) is undefined, but then they are all undefined and
the schedule is unfeasible), there are finitely many possible configurations and
we may find two instants t1, t2 (t1 < t2) with the same configuration. Hence,
from t1, the schedule will repeat periodically (with a period dividing t2 − t1).

■

Notice that if the schedule is unfeasible, it is also periodic in some sense, since
from some point the configuration is constant (all components are undefined).

It may be noticed that this proof is valid not only for any static priority
schedule, but more generally for any schedule where the priorities only depend

2.5. ASYNCHRONOUS GENERAL DEADLINE SYSTEMS 47

on the configuration CS(R, t). For instance, this is also true for the (dynamic)
deadline driven scheduler (dynamic schedulers are studied in Chapter 4).

For static priority schedules, the Theorem 2.47 may even be refined:

Theorem 2.48 For any asynchronous general deadline system ordered by de-
creasing priorities, let Si be inductively defined by S1 = O1,
Si = Oi + d (Si−1−Oi)+

Ti
eTi (i = 2, 3, . . . , n); then, if the schedule is feasible up to

Sn + P , with P = lcm{Ti|i = 1, . . . , n} and x+ = max{x, 0}, it is feasible and
periodic from Sn with the period P .

Proof. This immediately results by induction on n. The property is true in
the trivial case where n = 1: the schedule for τ1 is periodic of period T1 from
the first release of τ1 (S1 = O1), if C1 ≤ D1; otherwise the first deadline in
O1 + D1 ≤ S1 + T1 is missed. Let us now assume that the property is true
up to i− 1 and the schedule of the first i tasks is feasible up to Si + Pi, with
Pi = lcm{Tj|j = 1, . . . , i}. Si is the first release of task τi after (or at) Si−1;
hence Si ≥ Si−1, Pi ≥ Pi−1, Si +Pi ≥ Si−1 +Pi−1 and by induction hypothesis,
the schedule for the task subset {τ1, . . . , τi−1} is feasible and periodic from Si−1

of period Pi−1. Since the tasks are ordered by priority, the periodicity of the
first ones is unchanged by the requests of task τi and the schedule repeats at
time Si + lcm{Pi−1, Ti}. Hence, for the task set {τ1, . . . , τi} the schedule is
feasible and repeats from Si with period Pi. ■

It may be noticed that, while P is indeed the true period of the periodic part of
the schedule (it is also the period for the relative phasing of successive requests
of the various tasks), it is not said that Sn is the earliest point from which the
periodicity occurs: even for the first level, i.e., task τ1 alone, we could have
started from S′1 = O1−(T1−C1), since the idle phase from S ′1 to S1 corresponds
to the one from S1 + C1 to S1 + T1; and similarly, if the schedule for τ2 leaves
an idle period of length δ′2 before the instant S2 +lcm{T1, T2}, we could replace
S2 by S′2 = max{S1, S2 − δ′2}, etc.

For synchronous systems Theorem 2.48 can be simplified as follows.

Corollary 2.49 For any feasible schedule of a synchronous general deadline
system, the schedule is periodic from time t = 0 with period P = lcm{Ti|i =
1, . . . , n}.

Proof. Immediately follows from Theorem 2.48 and the fact that we consider
synchronous systems, where O1 = O2 = · · · = On = 0 so that S1 = S2 = · · · =
Sn = 0. ■

48 CHAPTER 2. STATIC SCHEDULERS

From a schedulability point of view, the first part of a schedule constructed
by a given priority assignment may be neglected: we may only consider the
schedule from its periodic part (in other words, in “steady state” situation).
Indeed, from a schedulability point of view, the steady state situation is worse
than the initial situation.

Lemma 2.50 ([LW82]) Consider an asynchronous system with general dead-
lines. If the schedule is feasible, we have that ∀i ∈ {1, . . . , n}, at any instant
t ≥ Oi, ∀k ∈ N : t− k · P ≥ Oi =⇒ εi(t− k · P) ≥ εi(t).

Proof. We prove the lemma by contradiction: suppose there is some task τj

and instant t1 ≥ Oj such that εj(t1) < εj(t2) where t2 = t1 + k · P (notice that
t1 6≡ Oj (mod Tj), since otherwise εj(t1) = 0 = εj(t2). In this case, there must
exist some time t′1 < t1 such that τj is active at both t′1 and t′2 = t′1 + k · P
(i.e., εj(t′1) < Cj and εj(t′2) < Cj), and τj is executing at t′2 but not at t′1. This
can only occur if there is another task τi (τi > τj) which is active at t′1 but not
at t′2 (i.e. εi(t′1) < Ci and εi(t′2) = Ci). But this means that εi(t′1) < εi(t′2) and
repeating the above argument, we have: εi1(t

′
1) < εi1(t

′
2), εi2(t

′′
1) < εi2(t

′′
2),...

(τi1 < τi2 < · · ·), contradicting the fact that we have a finite number of tasks
in the system. ■

As a consequence, the response time of requests during the periodic part of the
schedule is worse than the corresponding ones in the initial phase, and if no
deadline is missed during a period, the same is true in general. As a result of
Theorem 2.48, we may limit a simulation to the interval [0, Sn + P]. In other
words, [0, Sn + P] is a feasibility interval. But the lower bound of this interval
can be improved. First, we may show that the periodic part of the schedule
does not depend on the totality of the first part, which leads the system to
its periodic behavior. In other words, we have to show that the periodic part
remains unchanged if we add or drop several requests of τi.

Definition 2.51 We define the partial schedule σt of a system as the schedule
obtained by only considering, in the schedule of the system, instants greater
than t. ■

Lemma 2.52 Let S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n} be a feasible asyn-
chronous general deadline system with the priority assignment τ1 > τ2 >
· · · > τn, and t be a time instant. Let Xj inductively defined by Xn+1 = t,

Xi = Oi +
⌊

Xi+1−Oi
Ti

⌋

Ti, for i = n, n− 1, . . . , 1. If Xi+1 ≥ Oi (1 ≤ i ≤ n), then
the partial schedule σt only depends on the requests of τj (1 ≤ j ≤ n) occurring
after (or at) the time Xj.

2.5. ASYNCHRONOUS GENERAL DEADLINE SYSTEMS 49

Proof. We shall prove the property by (descending) induction on j. The
property is true in the initial case, where j = n: in the schedule σt we have
only to consider the requests of τn from time Xn = On +

⌊

t−On
Tn

⌋

Tn (the time
of the last request of τn which occurs before or at t; this request exists since
t = Xn+1 ≥ On). Indeed, the requests of τn which occur strictly before time
Xn are terminated at time Xn (the schedule is feasible) and do not have any
impact on σt (in particular, they have no impact on higher priority tasks).
Let us assume now that the property is true for the tasks τn, τn−1, . . . , τj+1

and let us consider the requests of task τj. The requests which occur before

time Xj = Oj +
⌊

Xj+1−Oj

Tj

⌋

Tj (the time of the last request of τj which occurs
before or at Xj+1; this request exists since Xj+1 ≥ Oj) are terminated before
Xj (the schedule is feasible) and do not impact on the requests of τk after time
Xk (k = j + 1, . . . , n), since Xj ≤ Xj+1 ≤ · · · ≤ Xn+1, nor of course on the
schedule of higher priority tasks. The property that Xj ≤ Xj+1 follows from
the definition of Xj, the properties of the function b c and from Xj+1 ≥ Oj.
Hence, dropping some or all of those useless requests (from σt’s point of view)
may not render the schedule unfeasible, and the schedule σt only depends on
the requests of τj which occur after (or at) time Xj. ■

Corollary 2.53 Let S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n} be a feasible
asynchronous general deadline system with the priority assignment τ1 > τ2 >
· · · > τn, and t be a time instant. Let Xj be inductively defined by Xn+1 = t,

Xi = Oi +
⌊

Xi+1−Oi
Ti

⌋

Ti, for i = n, n − 1, . . . , 1. If t ≥ Omax +
∑n

j=2(Tj − 1),
then the partial schedule σt, only depends on the requests of τj (1 ≤ j ≤ n)
from time Xj.

Proof. The following property holds:
t ≥ Omax +

∑n
k=2(Tk − 1) ⇒ Xj+1 ≥ Omax +

∑j
k=2(Tk − 1) ≥ Oj. Let us

proceed by descending induction on j. The property is true if j = n: Xn+1 =
t ≥ Omax+

∑n
k=2(Tk−1) ≥ On. Assume that the property is true down to j+1:

Xj+1 ≥ Omax +
∑j

k=2(Tk − 1) ≥ Oj. The property that 0 ≤ (Xj+1 −Xj) < Tj

follows from the definition of Xj, the properties of the function b c and from
Xj ≥ Oj. Hence Xj ≥ Omax +

∑j−1
k=2(Tk − 1) ≥ Omax ≥ Oj−1 and the corollary

follows from Lemma 2.52. ■

Corollary 2.54 Let S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n} be a feasible
asynchronous general deadline system with the priority assignment τ1 > τ2 >
· · · > τn, and t be a time instant. Let Xj be inductively defined by Xn+1 = t,

Xi = Oi +
⌊

Xi+1−Oi
Ti

⌋

Ti, for i = n, n− 1, . . . , 1. If Xi+1 ≥ Oi (1 ≤ i ≤ n) then

50 CHAPTER 2. STATIC SCHEDULERS

∀t′ ≥ t the partial schedule σt′, only depends on the requests of τj (1 ≤ j ≤ n)

from time X ′
j, inductively defined by X ′

n+1 = t′, X ′
i = Oi +

⌊

X′
i+1−Oi

Ti

⌋

Ti, for
i = n, n− 1, · · · , 1.

Proof. The following property holds: X ′
j ≥ Xj, by descending induction. The

property is true in the trivial case: t′ = X ′
n+1 ≥ Xn+1 = t. Assume that the

property is true until j +1: X ′
j+1 ≥ Xj+1. It is easy to see that the last request

of τj which occurs before or at time Xj+1 occurs before or at the last request
of τj before or at X ′

j+1, so that Xj ≤ X ′
j. Therefore X ′

j+1 ≥ Oj(1 ≤ j ≤ n)
and the corollary follows from Lemma 2.52. ■

Corollary 2.55 Let S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n} be a feasible
asynchronous general deadline system with the priority assignment τ1 > τ2 >
· · · > τn, and t be a time instant. Let Xj be inductively defined by Xn+1 = t,

Xi = Oi +
⌊

Xi+1−Oi
Ti

⌋

Ti, for i = n, n− 1, . . . , 1. Let Si be inductively defined by

S1 = O1, Si = max{Oi, Oi + dSi−1−Oi
Ti

eTi} (i = 2, 3, . . . , n). If t ≥ Sn then the
partial schedule σt, only depends on the requests of τj (1 ≤ j ≤ n) from time
Xj.

Proof. The following property holds: Xj+1 ≥ Sj ≥ Oj(1 ≤ j ≤ n). By
descending induction: the property is true in the initial case, where j = n:
t = Xn+1 ≥ Sn by hypothesis and Sn ≥ On according to the properties of the
values Si (see Theorem 2.48). Assume that the property is true until j + 1:
Xj+1 ≥ Sj ≥ Oj. Sj is the first request of τj after or at Sj−1; hence Xj, the
last request of τj before or at Xj+1, is certainly after or at Sj−1, which is itself
after or at Oj−1. Therefore, Xj+1 ≥ Oj(1 ≤ j ≤ n) and the corollary follows
from Lemma 2.52. ■

We shall now consider a property similar to Lemma 2.52, but the fact that the
instants X1, X2, . . . , Xn (called Y1, Y2, . . . , Yn here) are not necessarily growing.

Lemma 2.56 Let S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n} be a feasible asyn-
chronous general deadline system with the priority assignment τ1 > τ2 >
· · · > τn, and t be a time instant. Let Yj inductively defined by Yn+1 = t,

Yi = Oi +
⌊

(minn+1
k=i+1 Yk−Oi)+

Ti

⌋

Ti, for i = n, n−1, . . . , 1 (where x+ = max{x, 0}).
Then the partial schedule σt only depends on the requests of τj (1 ≤ j ≤ n)
occurring after (or at) time Yj.

Proof. We shall prove the property by descending induction on j. The
property is true in the initial case, where j = n: in the schedule σt we have

2.5. ASYNCHRONOUS GENERAL DEADLINE SYSTEMS 51

only to consider the requests of τn from time Yn = On +
⌊

t−On
Tn

⌋

Tn if t ≥ On,
otherwise we consider the requests from the first one (Yn = On). Indeed,
the requests of τn which occur strictly before time Yn (if any) are terminated
at time Yn (the schedule is feasible) and do not have any impact on σt (in
particular, they have no impact on higher priority tasks). Assume that the
property is true for the tasks τn, τn−1, . . . , τj+1 and let us consider the requests
of task τj. We have to distinguish between two cases: (a) Oj > minn+1

k=j+1 Yk or
(b) Oj ≤ minn+1

k=j+1 Yk.

a) This is the trivial case: the schedule and consequently the partial schedule
σt only depends on the request of τj from time Oj = Yj.

b) Let p : Yp = minn+1
k=j+1 Yk, the requests of τj which occur strictly before (if

any) time Yj = Oj +
⌊

minn+1
k=j+1 Yk−Oj

Tj

⌋

Tj (the time of the last request of

τj which occurs before or at Yp) are terminated before Yj (the schedule is
feasible), hence before Yp, and do not impact on the requests of τk after
time Yk (k = j + 1, . . . , n), since Yp ≤ Yk (k = j + 1, . . . , n), nor of course
on the schedule of higher priority tasks. Hence, dropping some or all of
those useless requests (from σt’s point of view) may not render the schedule
unfeasible, and the schedule σt only depends on the requests of τj which
occur after (or at) time Yj.

■

Theorem 2.57 Let Xi be inductively defined by Xn = Sn,
Xi = Oi + bXi+1−Oi

Ti
cTi (i = n−1, n−2, . . . , 1) and let Si be inductively defined

by S1 = O1, Si = max{Oi, Oi + dSi−1−Oi
Ti

eTi}(i = 2, 3, n); then [X1, Sn + P] is a
feasibility interval. Moreover, for each τi one only has to check the deadlines
in the interval [Si, Si + lcm{Tj|j ≤ i}].

Proof. Lemma 2.50 means that the load before Sn is certainly less than
or equal to the one during the period [Sn, Sn + P]; hence, if no deadline is
missed between Sn and Sn + P , this will also be the case before Sn, since the
requests are fulfilled earlier there. As a consequence, the load before Sn is
only necessary to lead the system to its periodic behavior from Sn (or earlier).
By Corollary 2.55 we have that the periodic behavior of the system (σSn),
only depends on the requests of τj from time Xj. Hence the first part of the
property. The second part immediately follows from Theorem 2.48. ■

It is important to note that the various feasibility intervals given in this section
in general present a major improvement in comparison with feasibility intervals

52 CHAPTER 2. STATIC SCHEDULERS

issued from the literature, and in particular with the interval [Omax, Omax+2P)
given by Leung and Whitehead [LW82]; indeed our feasibility interval has a
maximal length of P +

∑n−1
i=1 (Ti − 1) and the second term is generally by far

lower than the first one.

2.6 Feasibility interval for asynchronous arbi-
trary deadline systems

We consider here a larger sub-class of periodic task sets:

❑ Asynchronous systems: the offsets are fixed by the constraints of the
system and may be different (the tasks are not necessarily started at the
same time).

❑ Arbitrary deadline systems: the deadline of each task τi may be less
(Di ≤ Ti) or greater (Di > Ti) than the period.

For this sub-class of periodic task sets the rate/deadline monotonic scheduler
is certainly not weakly optimal: Example 2.27 considered in section 2.4 shows
also the non-optimality of the rate/deadline monotonic priority assignment in
the present case, since synchronous systems are special cases of asynchronous
systems.

We suppose to have a fixed priority assignment (τ1 > τ2 > · · · > τn) and
we study the feasibility problem; in particular we are concerned by feasibility
intervals.

Lehoczky has only considered arbitrary deadline in the synchronous case; in
particular he has indicated that the synchronous case is the worst case and
he has studied feasibility intervals for it. It is interesting however to consider
more general and optimistic cases than the worst case. We shall here extend
the theory to handle arbitrary deadlines in asynchronous systems.

We define gi as the maximal number of active requests of τi at the same time.
It is not difficult to see that, if the system is feasible, gi ≤ dDi

Ti
e (otherwise the

oldest active request already missed its deadline). Let δk
i be the kth request

(k = 1, 2, . . .) of task τi, which occurs at time Rk
i = Oi + (k − 1)Ti. The

number hi of requests of task τi which occur during a hyper-period P (after
Oi) is given by: hi = P

Ti
(∈ N). We first extend the definition of the function

εi(t) in this context (there may be many active requests of task τi at time t).

2.6. ASYNCHRONOUS ARBITRARY DEADLINE SYSTEMS 53

Definition 2.58 We define εk
i (t) as the amount of processor time used by

the request δk
i in the interval [Rk

i , t), if no deadline has been missed before,
otherwise it is left undefined. In particular, εk

i (t) = 0 if t ≤ Rk
i unless a

deadline has been missed before. ■

Remark that, at any time t there is a maximum of gi active requests of τi say:
δk
i , δ

k+1
i , . . . , δk+qi

i (qi < gi). Since the various requests of the same task are
served in a fifo basis, we have εk

i (t) < Ci and εk+p
i (t) = 0 for p = 1, . . . , qi. For

this reason we shall only consider the value εk
i (t) in the extended configuration

of the system in arbitrary deadline situation.

Definition 2.59 We define the configuration of the schedule at time t as

CS(R, t) = ((γ1(t), α1(t), β1(t)), (γ2(t), α2(t), β2(t)), . . . , (γn(t), αn(t), βn(t))).

where

❑ γi(t) is the time elapsed since the last request of τi, if t ≥ Oi and no
deadline was missed before. γi(t) = t−Oi if t < Oi and no deadline was
missed before. (In particular, γi(0) = −Oi.)

❑ αi(t) is the number of active requests of τi at time t, if no deadline was
missed before. (In particular, αi(0) = 1 if Oi = 0, 0 otherwise.)

❑ βi(t) is the amount of processor time used at time t by the oldest active
request of τi, if any, and if no deadline was missed before. If αi(t) = 0,
βi(t) = 0. (In particular, βi(0) = 0.)

If a request was missed before time t, γi(t), βi(t) as well as αi(t) are undefined.
■

With the definition of Cs(R, t), Theorem 2.47 may be generalized as follows.

Theorem 2.60 Any feasible schedule of an asynchronous arbitrary deadline
system is finally periodic, i.e., periodic from some point.

Proof. For any integer instant time t, we consider the configuration of the
schedule

CS(R, t) = ((γ1(t), α1(t), β1(t)), (γ2(t), α2(t), β2(t)), . . . , (γn(t), αn(t), βn(t))).

For static priority preemptive schedulers, the configuration at time t + 1 is
univocally determined by the configuration at time t. This can be shown by

54 CHAPTER 2. STATIC SCHEDULERS

considering the following algorithm which computes CS(R, t+1) from CS(R, t)
and the task characteristics (i.e., Oi, Di, Ci, Ti).

If ∀i ∈ [1, n] αi(t), γi(t) as well as βi(t) are undefined Then
∀i ∈ [1, n] αi(t + 1), γi(t + 1) as well as βi(t + 1) are undefined;
{a deadline was missed before time t}

Else
∀i ∈ [1, n] Do

If γi(t) < 0 Then γi(t + 1) := γi(t) + 1; {one progresses to Oi}
Else γi(t + 1) := (γi(t) + 1) mod Ti;

{from Oi, γi(t) progresses cyclically}
EndIf
αi(t + 1) := αi(t);
βi(t + 1) := βi(t); {in general αi and βi are unchanged }
If (γi(t + 1) = 0) Then {a new request occurs at time t + 1}

αi(t + 1) := αi(t) + 1; {if αi(t) = 0, βi(t) = βi(t + 1) = 0 too}
EndIf

Od
j := 1;
While (j ≤ n and αj(t) = 0) Do

j := j+1;
Od {τj is the highest priority active task at t, if any; otherwise, j = n + 1}
If (j ≤ n) Then

βj(t + 1) := βj(t) + 1;
{execution of the request of τj during one time unit}
If (∃k : αk(t + 1) > 0 and (αk(t + 1)− 1)Tk + γk(t + 1) = Dk and

βk(t + 1) < Ck) Then {τk misses its deadline}
∀i ∈ [1, n] : αi(t + 1), γi(t + 1) as well βi(t + 1) are undefined;

Else
If (βj(t + 1) = Cj) Then

αj(t + 1) := αj(t)− 1; {the request becomes inactive}
βj(t + 1) := 0;

EndIf
EndIf

EndIf
EndIf.

Since ∀i ∈ [1, n], 0 ≤ αi(t) ≤ gi, 0 ≤ βi(t) < Ci and −Oi ≤ γi(t) < Ti,
there are finitely many possible configurations and we may find two instants
t1, t2 (t1 < t2) with the same configuration. From t1, the schedule will repeat
periodically (with a period dividing t2 − t1). ■

2.6. ASYNCHRONOUS ARBITRARY DEADLINE SYSTEMS 55

Ti Di Ci Oi

τ1 4 4 2 0
τ2 6 7 3 2

Table 2.2: Characteristics of a periodic task set.

τ1

? ? ? ? ? ? ? ?

0

2

4

2

8

2

12

2

16

2

20

2

24

2

28

2

τ2

? ? ? ? ?

2

2

6

1

10

2

14

1 1

18

2

22

2

26

1 1

Figure 2.13: Response time of τ2, t2 − t1 = 2.

Again, if the schedule is unfeasible the system is also finally periodic, since
from the first deadline failure the configuration is constantly undefined.

Theorem 2.48 (defining an instant Sn where the schedule repeats) does not re-
main valid for arbitrary deadlines, this can be seen with the following example.

Example 2.61 Consider the scheduling of the system given by Table 2.2,
with the static priority assignment τ1 > τ2. We get S1 = 0 and S2 = 2,
but the schedule (see Figure 2.13) is not periodic from time S2, since at time
t = S2 + P = 14, when the third request of τ2 occurs, the schedule differs
(in comparison with time S2), due to the fact that at time S2 + P the second
request of τ2 is still active. ■

In this arbitrary deadline situation, the scheduling of a request of τi (say δk
i)

may also depend on several preceding requests of task τi (δk−1
i , δk−2

i , . . .). Each
preceding request of task τi (say δk−j

i) may also depend on several preceding
requests of τi (δk−j−1

i , δk−j−2
i , . . .), and so on. For this reason, an extension of

the Lemma 2.52 in this situation does not seem easy. We shall however define
a feasibility test for the arbitrary deadline and asynchronous systems based on
another approach.

First, we show that again, from a schedulability point of view, the first part of
the schedule is more favorable.

Lemma 2.62 Let S = {τi = {Oi, Ci, Di, Ti}|i = 1, · · · , n} be an asynchronous
arbitrary deadline system with the priority assignment τ1 > τ2 > · · · > τn. For
each task τi, for any instant t ≥ Oi and any k such that Rk

i ≤ t < Rk
i + Di, if

56 CHAPTER 2. STATIC SCHEDULERS

the schedule is feasible up to time t + P (or if the first deadline failure occurs
exactly at t + P) we have εk

i (t) ≥ εk+hi
i (t + P), with hi = P

Ti
.

Proof. We prove the lemma by contradiction and assume that some first
instant (the time is discrete in our model of computation) t exists such that
there is some j, k with Rk

j ≤ t ≤ Rk
j + Dj and εk

j (t) < εk+hj
j (t + P). From

the definition of εk
i (t), it follows that εk

i (t) is a non-decreasing discrete step
function with 0 ≤ εk

i (t) ≤ Ci. The function increases at time instants where
the corresponding request of τi is executing, otherwise the function is constant.
Moreover, εk

i (R
k
i) = 0 = εk+hi

i (Rk
i + P). Then there must be some time Rk

j ≤
t′ < t such that δk+hj

j is executing at t′ + P while δk
j is not executing at time

t′. This can only occur if there is a task (say task τi, 1 ≤ i ≤ j) executing a
higher priority request δk′

i (i.e., i < j or (i = j and k′ < k)) at time t′ while
the request δk′+hi

i is not executing at t′+P , nor any previous request of τi, nor
any request of τh with h < i. But this means that εk′

i (t′) < εk′+hi
i (t′ + P) = Ci

(otherwise δk′+hi
i is active at time t′ + P and δk+hj

j cannot execute at time
t′ + P), contradicting the fact that t is the first instant with this property. ■

Corollary 2.63 Let S = {τi = {Oi, Ci, Di, Ti}|i = 1, · · · , n} be an asyn-
chronous arbitrary deadline system with the priority assignment τ1 > τ2 >
· · · > τn. For each task τi, for any instant t ≥ Oi, if the schedule is feasible up
to time t + P (or if the first deadline failure occurs exactly at t + P) we have
(αi(t) < αi(t + P)) or [(αi(t) = αi(t + P)) and (βi(t) ≥ βi(t + P))].

Proof. If αi(t) = 0, then either αi(t + P) > 0 or αi(t + P) = 0 = βi(t +
P) = βi(t). Otherwise, αi(t) = ni(t) − mi(t) where ni(t) = #{k|Rk

i ≤ t} =
max{k|Rk

i ≤ t} is the number of requests of τi started till time t and mi(t) =
#{k|εk

i (t) = Ci} = max{k|εk
i (t) = Ci} is the number of completed requests

of τi till time t; ni(t + P) = ni(t) + hi and from Lemma 2.62 it occurs that
mi(t + P) ≤ mi(t) + hi, hence αi(t + P) ≥ αi(t); and if αi(t) = αi(t + P) then
mi(t+P) = mi(t)+hi and, βi(t) = εmi(t)+1

i (t) ≥ εmi(t)+1+hi
i (t+P) = βi(t+P).

■

The periodic part of the schedule can now be made more explicit.

Lemma 2.64 Let S be a feasible schedule of an asynchronous and arbitrary
deadline periodic task set R for a fixed priority assignment and let CS(R, t)
be the configuration of the schedule at time t (t ≥ Omax), then CS(R, t1) =
CS(R, t1 + P) with t1 = Omax + P .

Proof. Assume CS(R, t1) 6= CS(R, t1 + P). First remark that ∀i, γi(t1) =
γi(t1 + P). From Corollary 2.63 it follows that there is a number j such that

2.6. ASYNCHRONOUS ARBITRARY DEADLINE SYSTEMS 57

either (αj(t1) < αj(t1+P)) or [(αj(t1) = αj(t1+P)) and (βj(t1) > βj(t1+P))].
In both case there must be a natural k such that: εk

j (t1) > εk+hj
j (t1 + P) and

εr
i (t) ≥ εr+hi

i (t + P) ∀i = 1, . . . , n,∀r : Rr
i ≤ t < Rr

i + Di. We first show that
the schedule has no idle time slots in [t1, t1 + P) (i.e., the cpu remains busy
in [t1, t1 + P)). Suppose there is some idle slot at time t1 + δ, 0 ≤ δ < P . This
implies that no task request is active at that time; that is, for all i ∈ {1, . . . , n},
and for all k such that Rk

i ≤ t1 + δ ≤ Rk
i + Di we have: εk

i (t1 + δ) = Ci. By
Lemma 2.62, this implies CS(R,Omax + δ) = CS(R, t1 + δ). Since the task
requests in the intervals [Omax + δ, t1 + δ) and [t1 + δ, t1 + P + δ) are the
same (t1 + δ = Omax + δ + P) and, at time Omax + δ, we have that for all
i ∈ {1, . . . , n} and for all k : Rk

i ≤ t1 + δ ≤ Rk
i + Di ⇒ εk

i (O
max + δ) = Ci,

i.e., all the previous requests are terminated, the schedules in these intervals
are identical. This means that CS(R, t1) = CS(R, t1 + P), a contradiction.
Therefore, S has no idle time slot in [t1, t1 + P). At time t1 there may be
remaining demands to satisfy, amounting to

∑n
q=1 αq(t1)Cq − βq(t1); at time

t1 + P the total remaining demand is larger:
∑n

q=1 αq(t1 + P)Cq − βq(t1 + P).
But the additional demand in [t1, t1 + P), i.e., the total demand which occurs
in the interval [t1, t1 + P), is equal to P · U and the cpu availability is P , it
follows that the additional demand is larger than P which implies that U > 1,
contradicting the feasibility of the schedule. ■

Lemma 2.65 Let S be some schedule constructed with a fixed priority assign-
ment applied to an asynchronous and arbitrary deadline periodic task set R.
S is feasible iff (1) all deadlines in the interval [0, Omax + 2P) are met in the
schedule S, and (2) CS(R,Omax + P) = CS(R,Omax + 2P).

Proof.
(only if part). If S is feasible, all deadlines in the interval [0, Omax + 2P) are
met in S and, by Lemma 2.64, we have CS(R,Omax +P) = CS(R, Omax +2P).

(if part). Let t1 = Omax + P ; since CS(R, t1) = CS(R, t1 + P), from the proof
of Lemma 2.60 where we showed that CS(R, t+1) is univocally determined by
CS(R, t), the schedule S repeats every P units of time, starting from t1. Since
all deadlines in the interval [0, t1 + P) are met in S (in particular, CS(R, t1) is
not undefined), the deadlines of all task computations must also be met in S.
Hence the property. ■

Both conditions of Lemma 2.65 are clearly necessary for the feasibility of the
system. The following example shows that condition (1) does not imply con-
dition (2).

Example 2.66 Consider the following system:

58 CHAPTER 2. STATIC SCHEDULERS

τ1

? ? ? ? ?

0 1

2

4 5

2

8 9

2

12 13

2

τ2

? ? ? ?

2 3

2

6

1

7

1

10 11

2

14 15

2

6

Figure 2.14: In arbitrary deadline situation the (first) deadline failure may
occur at time t2.

T D C O
τ1 4 4 2 0
τ2 4 6 3 2

We have P = 4, Omax = 2 and t1 = 6; moreover, as illustrated in Figure 2.14,
all deadlines in the interval [0, 10) are met, but CS(R, 6) 6= CS(R, 10), since
β2(6) = ε1

2(6) = 2 and β2(10) = ε2
2(10) = 1. And τ2 misses its deadline at time

16. This example also shows that the interval [0, Omax +2P) is not a feasibility
interval in the arbitrary deadline case. ■

Instead of trying to find a longer feasibility interval (depending on the various
Di’s), we shall take advantage that we already know that a system may only
be feasible if U ≤ 1 (notice that this is not the case in the Example 2.66). In
that case we have:

Theorem 2.67 The interval [0, Omax + 2P) is a feasibility interval for asyn-
chronous arbitrary deadline periodic task sets for a fixed priority assignment if
U ≤ 1.

Proof. The property is trivial if a deadline failure occurs in the interval
[0, Omax + 2P). Hence, we suppose that no deadline failure occurs in the
interval [0, Omax + 2P). Assume CS(R, t) 6= CS(R, t + P), with t = Omax + P .
As in the proof of Lemma 2.64, there must be a task j and a natural k:
εk
j (t) > εk+hj

j (t + P) and εr
i (t) ≥ εr+hi

i (t + P) for 1 ≤ i ≤ n and Rr
i ≤ t

(this also holds if a deadline failure occurs at t + P). We first show that
the schedule has no idle time slot in [t, t + P) (i.e., the cpu remains busy in
[t, t + P)). Suppose there is some idle time slot at time t + δ, 0 ≤ δ < P . This
implies that no task request is active at that time; consequently ∀i, k : t + δ ≥
Rk

i ⇒ εk
i (t + δ) = Ci. By Lemma 2.62, this implies ∀i, k : Omax + δ ≥ Rk

i ⇒
εk
i (O

max + δ) = Ci and CS(R, Omax + δ) = CS(R, t + δ) and CS(R, t + δ) =
((γ1(t + δ), 0, 0), . . . , (γn(t + δ), 0, 0)). From the proof of Lemma 2.60, which

2.7. STABILITY 59

shows that CS(R, t+1) is univocally determined by CS(R, t), it follows that in
the intervals [Omax + δ, t + δ) and [t + δ, t + P + δ) the schedules are identical.
This means that CS(R, t) = CS(R, t+P), a contradiction. Therefore, S has no
idle time slot in [t, t+P). At time t there may be remaining demands to satisfy,
amounting to

∑n
q=1 Cq − εrq

q (t1); at time t + P , from Lemma 2.62 and the fact

that εk
j (t) > εk+hj

j (t + P) the remaining demand:
∑n

q=1 Cq − εrq+hq
q (t + P) is

larger. But the additional demand in the interval [t, t + P) is equal to P · U .
In the interval [t, t+P) the cpu availability is P , it follows that the additional
demand is larger than P which implies that U > 1, a contradiction with the
hypothesis. Hence CS(R, t) = CS(R, t + P), and the property follows from
Lemma 2.65. ■

2.7 Stability

We shall consider in this section the scheduling of a system composed of two
periodic task sets (say S1 and S2), the task set S1, called the critical task set, is
composed of a schedulable periodic task set with hard deadlines (as considered
in the previous sections), the task set S2 is composed of non-critical periodic
tasks with soft deadlines. Moreover, we shall relax a constraint concerning the
characteristics of the non-critical tasks (i.e., in S2): the computation time of
the requests of non-critical tasks may vary and is unbounded. For instance,
the computation time may be stochastic and the given characteristic Ci only
specifies the average execution time (or some percentile) of a request of τi in
our computation model. Then, some requests of non-critical tasks (say τj) may
have a larger execution time than Cj and cause a deadline failure. In this case,
when a request of task τj misses its deadline, we assume that the scheduler
continues the execution of the various requests according to the priority rule.
In this kind of systems, we can require to preserve the schedulability the task
set S1, in other words: have a stable scheduler.

Definition 2.68 A scheduler A is said to be stable if all requests of tasks in
the set S1 meet their deadlines in the system composed by S1

⋃

S2, even if the
actual execution times of requests of tasks in S2 (the non-critical requests) are
unbounded. ■

Theorem 2.69 A static priority scheduler is stable iff the critical tasks are
the highest priority tasks.

Proof. (if part). If the critical tasks are the highest priority tasks it is not
difficult to see that whatever the execution times of the non-critical requests,

60 CHAPTER 2. STATIC SCHEDULERS

all critical requests meet their deadlines, since the schedulability of the highest
priority tasks is not altered by the requests with lower priority.

(only if part). Suppose that the condition does not hold: ∃k, r : τk ∈ S2, τr ∈ S1

and τk > τr. Since the execution times of the requests of τk are unbounded
and can be arbitrarily large, it may exist a time instant such that both tasks
are active and such that the remaining processing time of τk is larger than the
time needed by τr to reach its deadline: consequently τr misses its deadline. ■

2.7.1 Stability of the rate monotonic rule

From Theorem 2.69, the rate monotonic scheduler is stable iff the critical
tasks have the smallest periods. If a critical task has a longer period than
a non-critical one, a period transformation may be useful to artificially de-
crease or increase the priority of a task. A systematic procedure for period
transformation can be found in [SLR86]; this method is based on the fol-
lowing period transformation: consider the critical task τi with the following
attributes: τi = {Ci = 4, Ti = Di = 24, Oi = 0}, we can replace task τi by
task: τ ′i = {C ′

i = 2, T ′
i = D′

i = 12, O′
i = 0}. In general with this transfor-

mation the deadline constraints are more demanding since the first request
of τi must complete half of its computation before or at half of its deadline.
Remark that this transformation preserves the utilization factor; hence, if the
utilization factor is less than 69 %, according to Theorem 2.22 the critical task
set remains schedulable.

We shall see in Chapter 4 that contrary to what happens for static priority
rules, the stability cannot be guaranteed for popular dynamic scheduling rules.

2.8 Conclusion

In this chapter we have presented static priority schedulers. We have first s-
tudied the rate monotonic scheduler; we have reviewed the literature and we
have completed/corrected the theory, in particular concerning the optimality
result and the feasibility test based on the utilization factor. Then we have
examined the deadline monotonic scheduler defined for synchronous and gen-
eral deadline systems. We have also considered arbitrary deadlines systems
in the synchronous case with the results of Lehoczky. We have studied then
asynchronous and general deadline systems, we have extended the theory by
considering feasibility intervals for this kind of systems. We have also extended
the theory to asynchronous and arbitrary deadlines systems, particularly con-
cerning the periodicity and the feasibility intervals. We have shown alongside

2.8. CONCLUSION 61

our study that we must be very careful, that (our) intuition may lead to incor-
rect reasonings, for the kind of systems we consider in this work: even in very
“simple” cases (e.g., synchronous and late deadline systems with 2 periodic
tasks), it is difficult to anticipate their behavior.

Interesting questions for further research issued from this chapter include: the
study of a sufficient condition based on the utilization factor for general dead-
line systems and the deadline monotonic scheduler; the study of optimal (or
pseudo-optimal, i.e., heuristic) static priority assignments for asynchronous
systems or synchronous arbitrary deadline systems.

62 CHAPTER 2. STATIC SCHEDULERS

Bibliography

[ABD+95] N. C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and
Andy J. Wellings. Fixed priority pre-emptive scheduling: An his-
torical perpective. The Journal of Real-Time Systems, 8, 1995.

[ABRT93] N. C. Audsley, A. Burns, M. Richardson, and K. Tindell. Applying
new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, pages 284–292, 1993.

[ABRW92] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Welling.
Deadline monotonic scheduling theory. In Boullard and Puente,
editors, Proc. IFAC/IFIP WRTP’92, pages 55–60, Bruges, Bel-
gium, 1992.

[Aud91] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical report, Univer-
sity of York, England, 1991.

[BF97] A. A. Bertossi and A. Fusiello. Rate-monotonic scheduling for
hard-real-time systems. European Journal of Operational Research,
pages 429–443, 1997.

[BW95] Alan Burns and Andy Wellings. A computational model for fixed
priority scheduling. M.S. in parallel computer and computation,
Warwick University, March 1995.

[HaL94] Michael Gonzalez Hÿarbour and Mark H. Klein andJohn Lehoczky.
Timing analysis for fixed-priority scheduling of hard real-time sys-
tems. ieee Transaction on Software Engineering, 20(1), January
1994.

[Leh90] J. P. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In ieee Computer Society Press, editor,
Proceedings of the Real-Time Systems Symposium - 1990, pages
201–213, Lake Buena Vista, Florida, USA, December 1990.

63

64 BIBLIOGRAPHY

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the
Association for Computing Machinery, 20(1):46–61, January 1973.

[LM80] Joseph Y.-T. Leung and M. L. Merrill. A note on preemptive
scheduling of periodic, real-time tasks. Information Processing Let-
ters, 11(3):115–118, November 1980.

[LSD89] John Lehoczky, Liu Sha, and Ye Ding. The rate monotonic schedul-
ing algorithm: Exact characterization and average case behavior.
In ieee Computer Society Press, editor, Proceedings of the Real-
Time Systems Symposium, pages 166–171, 1989.

[LW82] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2:237–250, 1982.

[Ser72] Omri Serlin. Scheduling of time critical processes. In the 1972
Spring Joint Computer Conference, volume 40 of afips Conference
Proceedings, 1972.

[SLR86] Liu Sha, John P. Lehoczky, and Ragunathan Rajkumar. Solution
for some pratical problems in prioritized preemptive scheduling. In
ieee Computer Society Press, editor, Proceedings of the Real-Time
Systems Symposium, 1986.

[Tin94a] K. W. Tindell. An extensible approach for analysing fixed priority
hard real-time tasks. The Journal of Real-Time Systems, 1994.

[Tin94b] Kenneth William Tindell. Fixed Priority Scheduling of Hard Real-
Time Systems. PhD thesis, University of York, England, 1994.

Chapter 3

Response times for static
schedulers

Trouver d’abord. Chercher après
— Jean Cocteau, Journal d’un inconnu (Grasset).

Contents

3.1 Introduction . 64

3.2 1st request for synchronous general deadlines . . . 65

3.3 kth request for asynchronous general deadlines . . 67

3.3.1 Computation of ρk
i 72

3.4 The worst case response time 83

3.5 The best case response time 88

3.6 Feasibility tests for general deadline systems . . . 94

3.6.1 Synchronous case . 94

3.6.2 Asynchronous case 95

3.7 kth request with arbitrary deadlines 97

3.7.1 Computation of ρk
i 101

3.8 Schedulability tests 103

3.8.1 The worst case response time for arbitrary systems . 103

3.8.2 Synchronous systems 104

65

66 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

3.8.3 Asynchronous systems 104

3.9 Comparison on the various feasibility tests 105

3.10 Conclusion . 106

Bibliography . 106

3.1 Introduction

In this chapter we shall study the response time notion. For each request of
τi (1 ≤ i ≤ n) we define the response time as the time between the arrival
of the request and the completion of its processing. The computation of the
response time can be useful to determine if a request of τi (1 ≤ i ≤ n) meets
its deadline; indeed, a request of τi meets its deadline iff its response time (say
ri) respects the deadline (i.e., iff ri ≤ Di). It follows from the definition of the
feasibility interval (see Definition 2.28) that the feasibility problem (defined in
the previous chapter) can be resolved by checking the response time of each
request in the feasibility interval.

In the literature a single special case of response time was considered, i.e., the
response time for the first request of τi in the synchronous and general deadline
systems. We shall see the interest to consider this special case with respect to
the feasibility of periodic task sets. However, we shall exhibit the interest to
consider also more general and optimistic cases (e.g., asynchronous systems,
arbitrary deadlines, etc.). We shall study the response time notion for the
various sub-classes of periodic task sets presented in the previous chapter. For
each sub-class we shall give a feasibility test based on our response time compu-
tation. Moreover, the study of the response time computation in asynchronous
situations with general deadlines will be used to prove the Conjecture 2.9, i.e.,
the fact that the largest response time occurs for the first request of τi in the
synchronous situation.

The remainder of the chapter is as follows: in section 3.2 we consider the
simplified case of the response time computation for the 1st request in the syn-
chronous and general deadline case; in section 3.3 we extend the computation
to asynchronous situations (and general deadlines); in section 3.4 we use this
generalized notion to show the fact that the synchronous case is the worst case;
in section 3.5 we study the dual property of the worst case response time, i.e.,
the best case response time notion; in section 3.6, from the response time no-
tion we define feasibility tests for general deadline systems (synchronous and
asynchronous); in section 3.7 we extend the computation of the response time
for systems with arbitrary deadlines, and in section 3.8 we define schedulability

3.2. 1ST REQUEST FOR SYNCHRONOUS GENERAL DEADLINES 67

tests for this kind of systems and we give a more quantitative approach for the
proof of Lehoczky concerning the worst case response time in the first busy
period.

3.2 The response time of the first request in
the synchronous case

We have seen in the previous chapter that for synchronous systems (with late
or general deadlines) the feasibility of the system depends only on the first
request for the priority assignment given by the deadline/rate monotonic rule.
Hence the interest of this response time computation. We shall consider here
a synchronous and general deadline system with a static priority assignment
(τ1 > · · · > τn), not necessarily the deadline/rate monotonic priority assign-
ment (even if they are optimal in this case): the formulas are given whatever
the static priority rule.

Audsley and Tindell [Aud91, Tin93b] have determined this response time.
In this special case, the response time is the smallest value r1

i such that r1
i

is exactly equal to the total interference from higher priority tasks, plus the
computation due to τi:

r1
i = Ci +

i−1
∑

j=1

⌈

r1
i

Tj

⌉

Cj. (3.1)

Indeed, the computation time of τi is Ci and in the interval [0, r1
i) there are

d r1
i

Tj
e requests of τj (j < i) with a higher priority. Each of these requests of τj

delays the request of τi during Cj time units.

If r1
i = Ci +

∑i−1
j=1

⌈

r1
i

Tj

⌉

Cj that means that in the interval [0, r1
i) all requests

of task τ1, . . . , τi−1 and the first request of τi are satisfied without leaving idle
times.

Equation (3.1) may have several solutions; for example (see Figure 3.1), if we
consider a synchronous system S = {τ1 = {T1 = 2, C1 = 1, O1 = 0}, τ2 =
{T2 ≥ 2, C2 = 1, O2 = 0}}, Equation (3.1) has 2 solutions: r1

2 = 2 and r1
2 = 3.

The response time of τi is the first instant such that all requests with a higher
priority than τi and the first request of τi are satisfied (unless a deadline failure
is encountered previously).

Notice that r1
i occurs on both sides of Equation (3.1). The minimal value for

r1
i can be found by iteration:

68 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

τ1

? ? ?

0

1

2

1

4

1

τ2

?

1

1

Figure 3.1: Multiplicity of the solution for Equation 3.1.

{

w0 = Ci, (initialization)

wk+1 = Ci +
∑i−1

j=1

⌈

wk
Tj

⌉

Cj (iteration).

The iteration proceeds until wk+1 = wk = r1
i , or wk exceeds Di; in the latter

case, the iteration may be stopped because the first request of τi misses its
deadline and the system is then deemed unschedulable.

Theorem 3.1 ([Tin93b]) The iteration stops.

Proof. We only need to show that the successive approximations wk to ri are
monotonically increasing. By induction, we have that:

wk ≥ wk−1 ⇒ wk+1 ≥ wk

since, if wk ≥ wk−1 then wk+1 = Ci +
∑i−1

j=1

⌈

wk
Tj

⌉

Cj ≥ Ci +
∑i−1

j=1

⌈

wk−1
Tj

⌉

Cj =

wk and Ci = w0 ≤ w1 = Ci +
∑i−1

j=1

⌈

Ci
Tj

⌉

Cj. Hence, after finitely many
iterations either the series wk stabilizes or exceeds Di. ■

Tindell has shown that the iteration stops; we refine this property by showing
that the iteration converges to the minimal solution, if any.

Theorem 3.2 w0 < w1 < · · · < wk =⇒ r1
i ≥ wk.

3.3. kth REQUEST FOR ASYNCHRONOUS GENERAL DEADLINES 69

Proof. By induction on k. The property is true initially: Ci = w0 while
r1
i ≥ Ci. Suppose that the property is true up to k and we have w0 < w1 <
· · · < wk < wk+1; by induction hypothesis r1

i ≥ wk. As a consequence, r1
i is at

least equal to Ci plus the interference of higher priority tasks in the interval
[0, wk). In other words, we have that r1

i ≥ Ci +
∑i−1

j=1

⌈

wk
Tj

⌉

Cj = wk+1. ■

Tindell has considered the case of general deadlines; it may be noticed that
his formulas remain valid for arbitrary deadlines, since we consider the re-
sponse time of the first request of τi, so that there are no previous requests of
τk (k = 1, . . . , n) to be considered, even for arbitrary deadline systems. Remark
however that for synchronous and arbitrary deadlines, r1

i is not necessarily the
largest response time of τi and other response times must be considered (see
Conjecture 2.37); we shall consider this point in more details in section 3.8.

3.3 Response time of the kth request in asyn-
chronous and general deadline systems

Tindell and Audsley have only considered the synchronous case and the first
request of a task τi. We shall now consider a more general case, i.e., the
response time ρk

i for the kth request of task τi (which occurs at time Rk
i =

Oi + (k − 1)Ti) for asynchronous and general deadline systems. Remark that
the extension concerns not only the rank of the request but also the fact that
the situation is asynchronous; consequently, ρ1

i is more general than r1
i , and

for this reason we use a new notation.

The generalization to the asynchronous case for the kth request of task τi is
not direct since we have to consider the requests which occur before time Rk

i
and which impact on the response time of ρk

i .

Again, the response time for the kth request of τi is the smallest value ρk
i such

that ρk
i is equal to the total interference from higher priority tasks, plus the

computation due to τi.

Theorem 3.3 Let τ1, τ2, . . . , τn be a periodic asynchronous task set with gen-
eral deadlines and a static priority assignment: τ1 > τ2 > · · · > τn. If no
deadline was missed before, the response time of the kth request of task τi, ρk

i ,
is the smallest solution of the equation:

ρk
i = Ci + πz +

i−1
∑

j=1

⌈

(Rk
i + ρk

i −R emj
j)+

Tj

⌉

Cj

70 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

τj

? ?
� πj -

R
mj
j

ρ
mj
j

R
mj+1
j

ρ
mj+1
j

τi

?

Rk
i

ρk
i

Figure 3.2: Interference of requests which occur strictly before time Rk
i .

where

Rp
j = Oj + (p− 1)Tj

mj =

{
⌈

Rk
i−Oj

Tj

⌉

if Oj < Rk
i

1 otherwise

πj =

{

0 if j = 0 or Oj ≥ Rk
i or Rmj

j + Dj ≤ Rk
i

(Rmj
j + ρmj

j −Rk
i)

+ otherwise

z =

{

0 if πj = 0 ∀ 1 ≤ j < i
max{j|1 ≤ j < i and πj > 0} otherwise

m̃j =

⌈

(Rk
i−Oj)+

Tj

⌉

+ 1 if j > z
⌈

(Rk
i +πz−Oj)+

Tj

⌉

+ 1 otherwise

x+ = max{x, 0}

Proof. We suppose that the task subset {τ1, . . . , τi−1} is schedulable and that
the first (k − 1) requests of τi met their deadline. Rp

j denotes the arrival time
of the pth request for τj. The interference from higher priority tasks can be
computed from the response time of some requests of higher priority tasks (so
that the formula may be recursive). For a higher priority task τj (with j < i),
we only have to consider the requests from the mth

j , the last one that precedes
strictly Rk

i (see Figure 3.2), if any (i.e., if Oj < Rk
i), otherwise we take mj = 1

and consider the requests from the first one. Indeed, if the subset {τ1, . . . , τi−1}
is schedulable, the requests of τj that occur before the mth

j , if any, are completed
(we assume that the schedulability of previous higher priority requests has
already been verified) and have no direct interference with the response time

3.3. kth REQUEST FOR ASYNCHRONOUS GENERAL DEADLINES 71

ρk
i (but they may have an indirect interference, through their impact on some

ρmk
k with i > k > j). It is easy to see that mj =

⌈

Rk
i−Oj

Tj

⌉

if Oj < Rk
i ; otherwise

mj = 1, hence the formula above. The kth request of τi may be directly delayed
by a part (or all) of the mth

j request of τj if Oj < Rk
i , Rmj

j +Dj > Rk
i (otherwise

the request of τj is certainly completed before or at time Rk
i since we assumed

that the task set {τ1, . . . , τi−1} is schedulable) and the corresponding response
time ρmj

j is greater than Rk
i − Rmj

j (and in this case the interference is equal
to πj = Rmj

j + ρmj
j − Rk

i). Suppose that two such requests of higher priority
tasks (say τa > τb) have an interference in the response time of the kth request
of τi; in that case the interference of the higher priority one is included in the
interference of the lower one: since at time Rk

i both tasks (τa and τb) are active,
the request of τb ends its execution after the request of τa and its response time
includes the impact of the request of τa. Hence, πb > πa > 0 and the total
interference of all requests which precede strictly the kth request of τi is equal
to πz with z = max{j|1 ≤ j < i and πj > 0} (z = 0 = πz if no request
occurring strictly before time Rk

i delays the kth request of τi).

Let us consider now the interference of requests which occur after or at time
Rk

i . For each task τj (j = 1, . . . , i− 1) we shall consider the requests from the
m̃th

j , i.e., the first one which is not included in the term πz.

We have to distinguish between two kinds of tasks: (i) the tasks up to τz

(τ1, τ2, . . . , τz), with z > 0 , and (ii) the tasks with a priority between τz and
τi (τz+1, . . . , τi−1), with z ≥ 0.

(i) The interference of requests of τq (1 ≤ q ≤ z) which occur strictly before
the end of the mth

z request of τz are included in ρmz
z (it is the case of the

(mq + 1)th request of τq in Figure 3.3). We then only have to consider
the requests of τq which occur after or at time Rmz

z + ρmz
z = Rk

i + πz; the

first request which satisfies this condition has the rank
⌈

(Rk
i +πz−Oq)+

Tq

⌉

+1.
Notice that, since all requests of τz are schedulable, there is no request
of τz occurring in [Rk

i , R
k
i + πz).

(ii) For τl with z < l < i, we have to consider the interference of all the
requests from Rk

i , i.e., from the one with the rank m̃l =
⌈

(Rk
i−Ol)+

Tl

⌉

+ 1
(see Figure 3.3). It may be noticed that we may have at most one such
request (the m̃th

l) of τl which occurs between Rk
i and Rk

i +πz. Indeed, this
request cannot be terminated before the mth

z request of τz since l > z.

Hence, we have shown that the interference of higher priority tasks than τi in

72 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

τq
? ? ?ρ

mq
q

· · ·
ρ
fmq−1
q ρ

fmq
q

· · ·

τz
?

Rmz
z

ρmz
z

· · ·

τl

? ?ρ
ml
l ρ

fml
l

· · ·

τi

?

Rk
i

ρk
i

Figure 3.3: Interference of requests which occur after (or at) time Rk
i .

the interval [Rk
i , R

k
i + ω) plus the computation of τi is

I(ω) = Ci + πz +
i−1
∑

j=1

⌈

(Rk
i + ω −R emj

j)+

Tj

⌉

Cj.

The kth request of τi ends its computation at the first instant Rk
i +ω such that

the equality ω = I(ω) is satisfied. ■

It may be noticed that Equation (3.1) (the response time for the first request
of τi in the synchronous case, as defined by Audsley et al) is a special case of
the formula in Theorem 3.3, if we choose k = 1 and O1 = O2 = · · · = Oi = 0,
since then ∀ j : mj = m̃j = 1, πj = 0, R1

j = Oj = 0 and z = 0 = πz.

Other interesting cases may be derived as special cases of Theorem 3.3.

Corollary 3.4 Let S be a synchronous system (∀j : Oj = 0). In this special
case, ρk

i is the smallest solution of the equation:

ρk
i = Ci

+πz

+
i−1
∑

j=1

⌈

(Rk
i + ρk

i −R emj
j)+

Tj

⌉

Cj

3.3. kth REQUEST FOR ASYNCHRONOUS GENERAL DEADLINES 73

where

Rp
j = (p− 1)Tj

mj =

{
⌈

Rk
i

Tj

⌉

if k > 1

1 otherwise

πj =

{

0 if j = 0 or k = 1 or Rmj
j + Dj ≤ Rk

i

(Rmj
j + ρmj

j −Rk
i)

+ otherwise

z =

{

0 if πj = 0 ∀ 1 ≤ j < i
max{j|1 ≤ j < i and πj > 0} otherwise

m̃j =

⌈

Rk
i

Tj

⌉

+ 1 if j > z

⌈

Rk
i +πz

Tj

⌉

+ 1 otherwise

x+ = max{x, 0}

Proof. From Theorem 3.3, since Oj = 0 for each j and x+ = x when x ≥ 0.
■

Corollary 3.5 Let S be a system satisfying the condition: ∀j : Oj ≤ Oj+1.
In this special case of a growing offsets system, ρk

i is the smallest solution of
the equation:

ρk
i = Ci

+πz

+
i−1
∑

j=1

⌈

(Rk
i + ρk

i −R emj
j)+

Tj

⌉

Cj

where

Rp
j = Oj + (p− 1)Tj

mj =

{
⌈

Rk
i−Oj

Tj

⌉

if Oj < Rk
i

1 otherwise, i.e., if k = 1 and Oj = Oi

πj =

0 if j = 0 or Rmj
j + Dj ≤ Rk

i

or (k = 1 and Oj = Oi)
(Rmj

j + ρmj
j −Rk

i)
+ otherwise

74 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

z =

{

0 if πj = 0 ∀ 1 ≤ j < i
max{j|1 ≤ j < i and πj > 0} otherwise

m̃j =

⌈

Rk
i−Oj

Tj

⌉

+ 1 if j > z

⌈

Rk
i +πz−Oj

Tj

⌉

+ 1 otherwise

x+ = max{x, 0}

Proof. From Theorem 3.3, since Rk
i ≥ R1

i = Oi ≥ Oj (∀j ≤ i), and x+ = x
when x ≥ 0. ■

We shall see in section 5.3 that we can restrict offset free systems to growing
offset systems, hence the interest of this special case.

3.3.1 Computation of ρk
i

We shall divide the computation in two parts: the computation of the term
πz (and the related numbers: ρmj

j , z, m̃j) and the computation of the lowest
positive solution of the equation:

ρk
i = Ci + πz +

i−1
∑

j=1

⌈

(Rk
i + ρk

i −R emj
j)+

Tj

⌉

Cj.

We consider first the second part of the computation; based on the term πz,
the lowest solution can be computed by iteration, in the same way than for r1

i .

w0 = Ci + πz (initialization), (3.2)

wk+1 = Ci + πz +
i−1
∑

j=1

⌈

(Rk
i + wk −R emj

j)+

Tj

⌉

Cj (iteration). (3.3)

The iteration proceeds until wk+1 = wk = ρk
i or wk exceeds Di; in the latter

case, the iteration may be stopped because the request of τi misses its deadline
and the system is then deemed unschedulable.

Theorem 3.6 The number of iterations of the iterative process for the com-
putation of ρk

i is bounded by
⌊

(Di−Ci−πz)+

minj<i Cj

⌋

+ 1.

3.3. kth REQUEST FOR ASYNCHRONOUS GENERAL DEADLINES 75

Proof. The property follows from the facts that w0 = Ci + πz, the process
stops in the worst case when wk−1 ≤ Di and wk > Di, and at each iteration
wk is increased by at least Cj time units for at least one request of some τj,
unless the solution has been reached. ■

Remark that this maximal number of iterations is very pessimistic; in practice
the number of iterations is by far lower since the iterative process can stop
with wk < Di and wk can be increased by several Cj’s (and not necessarily the
minimal one). It is difficult to estimate the actual number of iterations in all
generality, since it depends in a non obvious way on the many parameters of
the real-time system, in particular on the (distribution of the) system charac-
teristics, i.e., the number of tasks, the period values, the load of the system,
etc. It is not possible of course to consider all distributions of hard real-time
periodic task sets. Moreover, it is hard to determine which distributions are
(possibly) realistic. Such information is uncommon in the literature, and gen-
erally confidential. Notice however that it seems (from some informal sources)
that one hundred is a realistic upper bound for the number n of tasks. We
shall in this work limit our study by considering uniform variables (say in an
interval [a, b]), the variation domain (i.e., a and b) being chosen in order to
model realistic systems with a reasonable amount of computations, in order to
simulate a large number of systems and perform statistical analyses. Of course
these two requirements are antagonistic since in general the simulation of more
realistic systems (e.g., larger variation domains) induces larger computations.
As a consequence we shall restrict our study on limited hard real-time periodic
task sets: our goal here is simply to have an indication on their behavior. More
sophisticated statistical analyses, including other random variables, confidence
intervals, etc., remain for further researches. These remarks concern not on-
ly the simulation results we shall give next, but more generally the various
simulation results considered in this work.

We have implemented the iterative process above and we have compared the
actual numbers of iterations with the bound given by Theorem 3.6 on a large
set of simulations. We have applied this experimentation on randomly chosen
task sets; n was chosen randomly in the interval [20, 100], the periods Ti in
the interval [50, 1000], the deadlines Di in the interval [Ti

2 , Ti] and the compu-
tation times Ci in order to have a large utilization factor (i.e, near 1). Before
comparing the average number of iterations needed by the iterative process to
compute the minimal solution and the average number of iterations given by
the bound, we shall justify that such a comparison has a sense. For this pur-
pose we shall first consider the distributions of these variables for n ∈ [50, 60].
Figures 3.4 and 3.5 show the frequency of the actual number of iterations and
those given by the bound, respectively. In these histograms (and the follow-
ings) a box represents the number of individuals (say y) with a number of

76 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50

individuals

iterations

Figure 3.4: Frequency of the actual number of iterations.

0

20

40

60

80

100

120

0 200 400 600 800 1000

individuals

iterations

Figure 3.5: Frequency of the number of iterations given by the bound.

3.3. kth REQUEST FOR ASYNCHRONOUS GENERAL DEADLINES 77

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

individuals

iterations

Figure 3.6: Frequency of the number of iterations given by the bound (zoom
in the interval [0, 100]).

iterations in (x−h, x] where x is the abscissa of the center of the box, y is the
ordinate of the top of the box and h the width of the box. Figure 3.4 shows
that the main part of the probability mass is situated in [0, 10], the maximal
number of actual iterations is 49 (for a single individual among a population of
more than 1000). Figure 3.5 shows that the number of iterations given by the
bound is significantly larger: the main part of the probability mass is situated
in [30, 800]. Figure 3.6 shows more precisely the distribution for the number
of iterations in [0, 100] (with a finer precision) and shows that the minimal
number of iterations given by the bound is 38. Since both distributions have
the shape of a (skew) bell curve with a rather clean decrease and more particu-
larly since the right queues of the distributions are short, it seems judicious to
compare the average of both distributions. Figure 3.7 shows the distribution of
the ratio b�

Dn−Cn−πz
minj<n Cj

� where b is the actual number of iterations of the iterative

process for the computation of ρk
n and shows that the main part of the proba-

bility mass is less than 0.01; there are very few individuals for which the ratio
is greater than 0.02 and the maximum is less than 0.08. Considering the shape
of this histogram, it then seems judicious to consider only the average ratio.
Remark that we have observed the same kind of behavior (such as illustrated
by Figures 3.4 to 3.7) for the other variation domains of n in our simulations.

78 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1

individuals

ratio

Figure 3.7: Frequency of the ratio.

0

0.002

0.004

0.006

0.008

0.01

20 30 40 50 60 70 80 90 100

mean ratio

n

Figure 3.8: Mean ratio b�
Dn−Cn−πz
minj<n Cj

� in function of the number n of tasks.

3.3. kth REQUEST FOR ASYNCHRONOUS GENERAL DEADLINES 79

For each simulated system we have computed the ratio b�
Dn−Cn−πz
minj<n Cj

� where b is

the actual number of iterations of the iterative process for the computation of
ρk

n. We have then computed the average ratio: this one does not vary much
with the number n of tasks, and is around 0.5 % (as exhibited in Figure 3.8).
It appears therefore that the bound given by Theorem 3.6 is very pessimistic.

We consider now the computation of the term πz, together with the associated
values ρmj

j , z and m̃j; we can distinguish between 3 different methods:

❑ Method 1: recursively;

❑ Method 2: by computing all response times (say ρm
j) in the interval

[0, Rk
i) by increasing value of Rm

j , and then by computing ρk
i ;

❑ Method 3: by computing only the response times which have an impact
on the term πz.

Method 1 consists to define a function (say f(i, k)) which computes the re-
sponse time ρk

i , this function needs for its computations the value of the re-
sponse times ρmj

j (j < i and Rmj
j < Rk

i) so that f(i, k) is recursive and before
applying the iterative process for the computation of ρk

i , the function f() re-
calls itself in order to determine some ρmj

j ’s. It is not difficult to see that the
recursive calls stop in the worst case with the computation of ρp

1 (for some
p) which does not depend on other response times, consequently the maximal
number of nested recursive calls is i− 1. Notice that in the recursive process,
it may happen that f() is re-evaluated many times with the same parameters.

Theorem 3.7 The maximal time complexity of the computation of ρk
i using

method 1 is βi+
∑i−1

j=1 βj ·2i−1−j, where β1 = O(1) and βj = O(Dj−Cj

min{Cp|p=1,...,j−1}×
(j − 1)) (j > 1).

Proof. Let Gi be the maximal time complexity of the function f(i, k); it can
be defined recursively: G1 = β1 = O(1), Gi = βi +

∑i−1
j=1 Gj since we may need

to call f(1,m1), . . . , f(i− 1,mi−1) before applying the iterative process for the
kth request of τi. βi is the maximal time complexity of the iterative process
for the kth request of τi (see Theorem 3.6, each iteration being proportional
to the number of terms in the sum (3.3)). We shall show by induction on
i, that Gi = βi +

∑i−1
j=1 βj · 2i−1−j. The property is true in the trivial case

G1 = β1. Suppose the property true till index i − 1 and consider the case
of Gi. By definition Gi = βi +

∑i−1
j=1 Gj, and by induction hypothesis Gi =

βi +
∑i−1

j=1(βj +
∑j−1

r=1 βr · 2j−1−r) = βi +
∑i−1

j=1 βj · 2i−1−j. ■

80 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

Corollary 3.8 The maximal number of recursive calls necessary to compute
ρk

i is 2i−1.

Proof. Immediately follows from Theorem 3.7, by taking βj = 1 ∀j, since
1 +

∑i−1
j=1 2i−1−j = 2i−1. ■

Remark that the time complexity analysis of the method 1 assumes to have a
mono-processor system, while the processing can be parallelized which speeds
up the processing; a time complexity analysis of the parallelization of method 1
remains for further researches.

It may be noticed that for k sufficiently large, the actual time complexity is
close to the maximal one, since the number of direct recursive calls in the
function f(i, k) is near (and less than or equal to) i − 1, unless Rmj

j = Rk
i

for most j < i, which is not very common. The maximal space complexity of
the computation of ρk

i is O(i), the maximal number of nested recursive calls
(the depth of the stack). Method 1 is not well suited to handle “real size”
problems (especially for large i’s) due to its huge time complexity; the interest
of method 1 (and its implementation) lies mainly in the “verification” of our
formulas.

Method 2 is based on the observation that the computation of ρk
i will generally

be done in the framework of a feasibility check (see section 3.6, where all the
response times in a feasibility interval like [0, Omax+2P) are needed); it consists
in computing all response times of requests occurring in the feasibility interval,
by increasing values of their arrival time. In this way, whenever the method
computes a response time (say ρr

p) each needed ρmj
j is already computed (since

we need ρmj
j iff Rmj

j < Rr
p); for this reason we have at each instant only to

know the response time of the last request of τj (j = 1, . . . , i − 1), if any.
The maximal space complexity of this method 2 for the computation of ρk

i

is O(i). The maximal time complexity is
∑i−1

j=1

⌈

Rk
i

Tj

⌉

· βj, or simply O(1) if
we consider that the previous response time computations were due anyway.
Method 2 can be improved in some situations: for Rk

i sufficiently large (i.e.,
from Rk

i > Si + Pi), according to Theorem 2.48, the schedule (and then the
response times) repeats from time Si; hence, in the worst case we have to
compute

∑i−1
j=1

Sj−Oj

Tj
response times to reach the periodic part of the schedule

(according to Theorem 2.48) and
∑i−1

j=1
Pj

Tj
to compute the response times ρkj

j

corresponding to ρmj
j (i.e., kj = min{k|k = mj mod Pj

Tj
and Rk

j ≥ Sj). The

maximal time complexity of the computation of ρk
i is

∑i−1
j=1

Pj+Sj−Oj
Tj

· βj. The
actual complexity is close to the worst case, for the same reason as before.

Method 3 consists in computing only the response times which have an impact
on the term πz in the computation of (a single) ρk

i . Let Yj be inductively

3.3. kth REQUEST FOR ASYNCHRONOUS GENERAL DEADLINES 81

0

100

200

300

400

500

600

700

200 400 600 800 1000 1200 1400

individuals

response times

Figure 3.9: Actual number of response times considered by method 3; the
average is 671 and the standard deviation is 249.

defined by Yi = Rk
i , Yj = Oj +

⌊

(mini
k=j+1 Yk−Oj)+

Tj

⌋

Tj, for j = i− 1, i− 2, . . . , 1.

By Lemma 2.56, ρk
i only depends on the requests of τj from time Yj. Method 3

consists in computing first the values Yi, Yi−1, . . . , Y1, and then the response
times for the requests occurring from Yp for τp (p = 1, . . . , i−1) (before applying
the iterative process for ρk

i) by increasing values of their arrival time. In this
way, whenever method 3 computes a response time (say ρr

p) all needed ρmj
j ’s

are already computed (since we need ρmj
j iff Rmj

j < Rr
p); moreover, like before,

we only have at each instant to know the response time of the last request
of τj (j = 1, . . . , i − 1), if any. Hence, the maximal space complexity of the
method 3 of the computation of ρk

i is again O(i). From the definition of the

value Yj it follows that method 3 computes at most
∑i−1

r=1

⌈Pi−1
j=r Tj

Tr

⌉

different

response times; hence the maximal time complexity of the computation of ρk
i

using method 3 is bounded by
∑i−1

r=1

⌈Pi−1
j=r Tj

Tr

⌉

· βr.

Table 3.1, summarizes the complexity of the 3 methods. The superiority of
the method 3 is obvious for a single ρk

i computation, since the maximal num-
ber of different response times computed by the method is pseudo-polynomial3

3We use here the terminology of Garey and Johnson [GJ79]: an algorithm is called a
pseudo-polynomial time algorithm if its complexity function is bounded above by a polyno-

82 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000

individuals

response times

Figure 3.10: Number of response times given by the bound; the average is 1353
and the standard deviation is 493.

Method Space # Response times Actual # of response times
Method 1 i 2i−1 ≈ 2i−1

Method 2 i
∑i−1

j=1

⌈

Rk
i

Tj

⌉

or 1 ≈
∑i−1

j=1

⌈

Rk
i

Tj

⌉

or 1

Method 3 i
∑i−1

r=1

⌈Pi−1
j=r Tj

Tr

⌉

1
2

∑i−1
r=1

⌈Pi−1
j=r Tj

Tr

⌉

Table 3.1: Space and time complexities of method 1, method 2 and method 3

3.3. kth REQUEST FOR ASYNCHRONOUS GENERAL DEADLINES 83

in terms of the system characteristics (i.e., n, Ti, Di, Ci), while this number
grows exponentially for method 1 and method 2; moreover their actual num-
ber of response times computed are close to the maximal one. We have al-
ready shown that the maximal time complexity of the iterative process is
very pessimistic; we shall now show that the maximal number of differen-
t response times considered by method 3 is also pessimistic. Indeed, while
min{Yp|p = j, . . . , i− 1}− Yj−1 < Tj−1, in the average we may expect that the
actual difference is about half that value (if Oj−1 ≤ min{Yp|p = j, . . . , i− 1}).
In order to check that, we have applied method 3 on randomly chosen task set-
s; n was chosen randomly in the interval [20, 100], the periods in the interval
[50, 1000]. We consider first the distribution of the actual number of response
times considered by the method 3 and of the number given by the bound for
n ∈ [30, 50]. Figures 3.9 and 3.10 show the frequency of the actual number of
response times and those given by the bound, respectively. Figure 3.11 shows
the frequency of the ratio bPi−1

r=1

&Pi−1
j=r Tj
Tr

' where b =
∑i−1

r=1d
(Rk

i−Yr)+

Tr
e is the ac-

tual number of response times considered by method 3. For similar reasons
than those introduced for the estimation of the actual number of iterations
of the iterative process which compute the response time, it seems again ju-
dicious to compare the average of both distributions and the average ratio.
Again, we have observed the same behavior for the other variation domains
of n in our simulations. For each simulated system we have computed the
ratio bPi−1

r=1

&Pi−1
j=r Tj
Tr

' . We have then computed the average ratio: this one does

not vary much with the number n (n ≥ 20) of tasks and is around 50 % (see

Figure 3.12), as expected. Hence, the bound
∑i−1

r=1

⌈Pi−1
j=r Tj

Tr

⌉

is pessimistic by

a factor 2.

mial function of Length[Input] or Max[Input]. The Input is in this case the characteristics
of the system (i.e., n, Ti, Di, Ci).

84 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

0

100

200

300

400

500

600

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

individuals

ratio

Figure 3.11: Frequency of the ratio; the average is 0.5 and the standard devi-
ation is 0.06.

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

20 30 40 50 60 70 80 90 100

mean ratio

n

Figure 3.12: Mean ratio bPi−1
r=1

&Pi−1
j=r Tj
Tr

' in function of n.

3.4. THE WORST CASE RESPONSE TIME 85

0 x

.

R
cpu utilization

Figure 3.13: Definition of ρ̃1
i .

3.4 The worst case response time for general
deadline system

We consider now a simplified case of asynchronous response time computation,
instrumental to prove that the synchronous case leads to the worst response
time (we consider here general deadline systems): the response time for the
first request of τi in the special asynchronous case where Oi = minj≤i{Oj} = 0,
is the smallest value of ρ̃1

i such that.

ρ̃1
i = Ci +

i−1
∑

j=1

⌈

(ρ̃1
i −Oj)+

Tj

⌉

Cj. (3.4)

Equation (3.4) follows from Theorem 3.3 when k = 1 and Oj ≥ Oi (j =
1, . . . , i), since R1

i = 0, z = 0, πz = 0.

Another preliminary result states that, if there exists an interval [0,R) larger
than the demand occurring during this interval, it follows that ρ̃1

i is less than
R. More formally we have:

Lemma 3.9 R ≥ Ci +
∑i−1

j=1

⌈

(R−Oj)+

Tj

⌉

Cj ⇒ ρ̃1
i ≤ R

Proof. We can assume that R > Ci +
∑i−1

j=1

⌈

(R−Oj)+

Tj

⌉

Cj, otherwise the

property is immediate. R > Ci +
∑i−1

j=1

⌈

(R−Oj)+

Tj

⌉

Cj means that the interval
[0,R) has idle time unit(s). Let x be the time that precedes the first idle time
unit (see Figure 3.13). By construction, in the interval [0, x) all requests of
τ1, . . . , τi−1 and the first request of τi are exactly satisfied (we consider only
the first request of τi, e.g., Ti = ∞), so that x = Ci +

∑i−1
j=1

⌈

(x−Oj)+

Tj

⌉

Cj and

ρ̃1
i ≤ x < R. ■

86 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

Lemma 3.10 Let S = {τ1, . . . , τn} be an asynchronous and arbitrary deadline
system feasible for some scheduling algorithm such that the schedule is periodic
from time t with a period of P . Then there is necessarily an idle point (in the
periodic part of the schedule) each P time units.

Proof. If the utilization factor is strictly less than 1 the property is obvious
since there is necessarily and idle time unit (and consequently an idle point) in
the interval [t, t+P). If U =

∑n
i=1

Ci
Ti

= 1, we define r as the first time instant
such that from time r the cpu remains busy; since U = 1 such a time instant
exists and 0 ≤ r ≤ t. The requests occurring strictly before time r do not
impact the schedule4 after or at time r. For this reason, we shall only consider
the requests from time r. Let xi be the time instant of the first request of τi

after or at time r: xi = min{Oi + a · Ti|Oi + a · Ti ≥ r}. We shall also change
the time origin: x′i = xi − r. The schedule is periodic from time t − r; let
k = min{j|j · P ≥ t− r}. We shall show that time k · P is an idle point. The
cpu is permanently utilized in the interval [0, kP); it follows that time instant
k · P is an idle point iff

n
∑

i=1

⌈

k · P − x′i
Ti

⌉

Ci = k · P (3.5)

Since U = 1, it follows that

n
∑

i=1

⌈

k · P − x′i
Ti

⌉

Ci ≤
n

∑

i=1

⌈

k · P
Ti

⌉

Ci = k · P
n

∑

i=1

Ci

Ti
= k · P.

and since the cpu is permanently utilized in this period we have:

n
∑

i=1

⌈

k · P − x′i
Ti

⌉

Ci ≥ k · P

Hence, the relation (3.5) is satisfied, k ·P is an idle point, and since k ·P ≥ t−r
this idle point repeats every P time units. ■

Note that the previous Lemma is valid for a large class of scheduling algorithms,
including static priority schedulers (considered in this chapter), and dynamic
ones considered in Chapter 4.

4Here we assume that the decision of the scheduling algorithm at each time instant (say
time q) only depends on the active requests at time q.

3.4. THE WORST CASE RESPONSE TIME 87

We have seen in Chapter 2 that major properties concerning the rate/deadline
priority assignment are based on the fact that the synchronous case is the
worst case. We have also exhibited the fact that the classical proof (in the
literature) of this main property is not convincing; for this reason we have
considered this property as a conjecture. We shall here show this property
using our response time computation. It may be noticed that we shall show a
more general property than Conjecture 2.9, since we shall show that if the first
request of task τi meets its deadline in the synchronous case then all requests
of τi for all general asynchronous situations (i.e., whatever the Oi’s) meet their
deadline.

We shall first show this property for asynchronous situations where the task
sub-set τ1, . . . , τi−1 is schedulable (Lemma 3.11) and then we shall relax this
assumption (Theorem 3.13).

Lemma 3.11 If the first request of τi meets its deadline in the general syn-
chronous case (which implies that the first requests of the tasks τ1, . . . , τi−1

have also met their deadlines) then for all asynchronous situations (i.e., what-
ever the Oi’s) such that τ1, . . . , τi−1 is a schedulable task set, we have that any
request of τi meets its deadline if the previous requests of τi met their deadlines.

Proof. The first request of τi meets its deadline in the synchronous case,
hence:

∃r1
i : r1

i = Ci +
i−1
∑

j=1

⌈

r1
i

Tj

⌉

Cj and r1
i ≤ Di. (3.6)

Consider now an asynchronous situation and a request of τi which occurs at
time v. We have only to consider higher priority tasks and from an argumen-
t similar to the one used in the proof of Lemma 5.7, among all requests of
τ1, . . . , τi−1 we can ignore the first ones, which do not impact on the compu-
tation of the response time of τi. Indeed, let ti be the last instant before v
(0 ≤ ti ≤ v) where all requests of τj (j < i) occurring strictly before ti (if any)
are terminated before or at time ti: the requests of τj (j < i) strictly before ti
do not have any impact on the response time of τi (see Figure 3.14; ti is the
last idle point before or at v for the task sub-set {τ1, . . . , τi−1}).
Ignoring the request(s) of τj before ti is equivalent to refine the offsets:

O′
j = min

k≥0
{Oj + k · Tj| Oj + k · Tj ≥ ti} (∀j : 1 . . . i− 1).

We may also refine the last offset: O′
i = v, since we assumed that the previous

(general) deadlines were met, so that the requests of τi which occur before time
v have no impact of the request on τi at time v.

88 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

?
O1

.

ti

?
v

xi

cpu utilization

Figure 3.14: Definition of ti.

We can also change the time origin:

O′′
j = O′

j −min{O′
1, . . . , O

′
i} (∀j : 1 . . . i).

By construction of the new task set, in the interval [0, O′′
i) the cpu is perma-

nently utilized by the task set {τ1, . . . , τi−1}. In this case, we can compute the
response time of the first request of τi (say xi) by assuming that the request
of τi arrives at time 0, since in this case we have that xi = ρ̃1

i − O′′
i , ρ̃1

i being
the response time for the new request. In this special asynchronous case, from
Equation 3.4, ρ̃1

i is the smallest solution of:

ρ̃1
i = Ci +

i−1
∑

j=1

⌈

(ρ̃1
i −O′′

j)
+

Tj

⌉

Cj. (3.7)

From Equation (3.6) we have that r1
i ≥ Ci +

∑i−1
j=1

⌈

(r1
i−O′′j)+

Tj

⌉

Cj and by Lem-

ma 3.9 we have that the Equation (3.7) has a solution ρ̃1
i with 0 < ρ̃1

i ≤ r1
i .

By construction, we have that ρ̃1
i > O′′

i , and the response time xi of τi in the
original asynchronous case satisfies the relations 0 ≤ xi = ρ̃1

i − O′′
i ≤ r1

i ≤ Di,
where r1

i is the response time in the synchronous case. ■

It may be noticed that this proof also shows that the worst case response time
of task τi occurs when all higher priority tasks are released at the same time
than τi.

Corollary 3.12 If the first request of τi meets its deadline in the general syn-
chronous case (which implies that the first requests of the tasks τ1, . . . , τi−1

have also met their deadlines) then for all asynchronous situations (i.e., what-
ever the Oi’s) such that τ1, . . . , τi−1 is a schedulable task set, we have that any
request of τi meets its deadline.

Proof. From Lemma 3.11 the property is true for the first (asynchronous)
request of τi, then for the second one,... ■

r1
i ≤ Di =⇒ r1

i = max
O1,O2,...,On ∈N

k∈N

ρk
i . (3.8)

3.4. THE WORST CASE RESPONSE TIME 89

Theorem 3.13 Let τ1, τ2, . . . , τn be a general deadline task set. If this task set
is schedulable in the synchronous case, then this task set is schedulable in all
asynchronous cases.

Proof. By induction on n. The property is true in the trivial case, where n =
1. Suppose that the property is true up to n, and consider {τ1, τ2, . . . , τn, τn+1}:
if it is a schedulable task set in the synchronous case, by induction hypothesis,
the task set {τ1, τ2, . . . , τn} is schedulable in all asynchronous cases and we are
able to apply Corollary 3.12: any request of τn+1 meets its deadline, so that
the task set τ1, τ2, . . . , τn, τn+1 is schedulable in all asynchronous cases. ■

Corollary 3.14 Let τ1, τ2, . . . , τn be a general deadline task set. If r1
i ≤ Di

(i = 1, . . . , n), then this task set is schedulable in all asynchronous cases.

Proof. Immediately follows from Theorem 3.13 and Lemma 3.11. ■

From Corollary 3.12 another interesting property may be derived.

Theorem 3.15 Let S = {τ1, . . . , τn} be a feasible and general deadline syn-
chronous system (Oi = 0, i = 1, . . . , n) with the priority assignment τ1 > τ2 >
· · · > τn and t be any time instant. Then, the interval [0, t) maximizes the cpu
usage by tasks τ1, . . . , τn among all intervals of length t in all schedules (i.e.,
among all offset combinations).

Proof. We can assume that in the interval [0, t) there is at least one idle time
unit, otherwise the property is immediate. The cpu usage in the interval [0, t)
is t − x, where x the number of idle time units left by tasks τ1, . . . , τn in the
interval [0, t); it may also be viewed as the interference of tasks τ1, . . . , τn on an
additional task τn+1 with the lowest priority, with Tn+1 = Dn+1 = ∞, Cn+1 = x
and On+1 = 0. Hence, τn+1 is running at time y ∈ [0, t) iff the original system
was idle at time y. Let r1

n+1 be the response time of the first (and only) request
of τn+1: by construction we have that r1

n+1 ≤ t and there is no idle time units in
[r1

n+1, t). Consider now the schedule of an asynchronous system in the interval
[δ, δ + r1

n+1) with Tn+1 = Dn+1 = ∞, Cn+1 = x and On+1 = δ; let ρ1
n+1 be the

response time of the first (and only) request of τn+1. From Equation (3.8) we
have that r1

n+1 ≥ ρ1
n+1, which implies that the number of idle time units in

[δ, δ + r1
n+1), and a fortiori in [δ, δ + T), in the original asynchronous schedule

is greater than or equal to the number x of idle time units in [0, r1
n+1) in the

synchronous schedule. ■

We shall see the interest of this property in the next section, where we consider
the notion of best response time.

90 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

3.5 The best case response time for general
deadline systems

In the previous sections we have studied the response time of the kth request of
task τi (ρk

i), and we have seen that the response time of the first request of τi in
the synchronous case (r1

i) is the worst response time among all asynchronous
situations. We shall here present the dual property of the worst case response
time (Theorem 3.3): the best case response time ρ∗i . We shall see in Chapter 5
the interest to determine the best case response time for the feasibility of offset
free systems; we shall not give details here; we are concerned in this section only
with the value of this best case response time and the configuration regarding
the task requests which leads to this response time.

The best case response time notion can be understood as the dual notion with
respect to the worst case response time r1

i , which occurs when all other higher
priority tasks are synchronized with the request of τi. We suppose that the
task sub-set {τ1, τ2, . . . , τi−1} is schedulable in the synchronous case and we
shall exhibit the configuration of the task requests which leads to the minimal
response time for a request of τi (assuming that the previous requests of τi meet
their deadline). In the same way that r1

i can be larger than Di so that the
system is not schedulable in the synchronous case, the best case response time
can be larger than Di (it may even be infinite, if

∑i−1
j=1

Cj

Tj
= 1) and consequently

the system is then unschedulable in all asynchronous situations. Remark that
if the best case response time is less than Di nothing can be inferred regarding
the feasibility of the system; we shall see however in Chapter 5 the interest of
this notion.

It is not difficult to see that the best case response time for a task τi is Ci

(the computation time of task τi), if we choose for example Oi = 0 and Oj =
Ci (∀j < i). However it is more relevant from a schedulability point of view to
determine the situation where the response time is minimum in the periodic
part of the schedule (assuming that the previous requests of τi meet their
deadline) or more precisely during a period of this periodic part (e.g., in the
interval [Si, Si + Pi) with Pi = lcm{Tj|j ≤ i}, Si being inductively defined by
S1 = O1, Si = Oi+d (Si−1−Oi)+

Ti
eTi (i = 2, 3, . . . , n) according to Theorem 2.48).

Example 3.16 Consider the system Γ = {τ1 = {T1 = D1 = 5, C1 = 3, O1 =
0}, τ2 = {T2 = D2 = 9, C2 = 3, O2 = 0}}; in this case, the periodic behavior
starts at time t = 0 and its period is lcm{5, 9} = 45. The interval [0, 45)
contains 5 requests of τ2 with the following response times: ρ1

2 = 9, ρ2
2 =

6, ρ3
2 = 6, ρ4

2 = 7 and ρ5
2 = 8 (see Figure 3.15). We have that the best response

time of requests of task τ2 occurs during the second and the third request of τ2

3.5. THE BEST CASE RESPONSE TIME 91

τ1
? ? ? ? ? ? ? ? ? ?
0

ρ1
1 = 3

5

ρ2
1 = 3

10

ρ3
1 = 3

15

ρ4
1 = 3

20

ρ5
1 = 3

25

ρ6
1 = 3

30

ρ7
1 = 3

35

ρ8
1 = 3

40

ρ9
1 = 3

τ2
? ? ? ? ? ?
0

ρ1
2 = 9

9

ρ2
2 = 6

18

ρ3
2 = 6

27

ρ4
2 = 7

36

ρ5
2 = 8

Figure 3.15: Response times in the periodic part of the schedule.

with ρ∗i = ρ2
2 = ρ3

2 = 6; moreover, in this schedule, all relative phasings between
τ1 and τ2 occur, due to the fact that T1 and T2 are relatively prime. Hence
for this task set all offset assignments define equivalent asynchronous systems:
they define the same periodic behavior. In Chapter 5 we shall rigorously study
this notion of equivalence and its implications. We shall not give more details
here. As a consequence the best periodic response time of τ2 is 6 for all choices
of offsets, and not only for the one exhibited here. ■

Remark the duality of the worst/best response time:

❑ If the worst case response time of task τi is less or equal than Di, the
system is schedulable in the synchronous case (and consequently in all
asynchronous situations).

❑ If the best case response time of task τi is greater than Di, the system is
unschedulable in all asynchronous situations, i.e., whatever the Oi’s.

We shall characterize which situation, regarding the relative phasings between
task requests, is the more favorable for a request of τi (there are possibly several
such situations, like in Example 3.16). We are looking for a systematic method
which determines this situation, without considering all requests of τi during
a period of the schedule for all (non equivalent) offset assignments.

We shall show with Theorem 3.19 that the best case in terms of response time
in the periodic behavior occurs when all requests of higher priority tasks than
τi are synchronized with the completion of the corresponding request of τi,
i.e., each task τj (1 ≤ j < i) makes a new request at time t, where t is the
completion time of the request of τi. This may be checked in the previous
example, where the second request of τ2 arrives at time t = 9 and completes
its execution at time t = 15, when τ1 makes a new request (but there may be
other “accidental” solutions, like the third request of τ2).

In order to prove this property, we introduce a preliminary result.

Lemma 3.17 Let Γ = {τ1, . . . , τn} be a feasible asynchronous and general
deadline periodic task set. Let Si be inductively defined by S1 = O1, Si =

92 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

? ?

Sn Sn + d Sn + P Sn + d + P

Figure 3.16: Periodic behavior of the schedule.

Sn ∼= Sn + P

Sn + d ∼= Sn + P + d

Figure 3.17: Cyclical interpretation on the periodic behavior of the schedule.

Oi + d (Si−1−Oi)+

Ti
eTi (i = 2, 3, . . . , n). The cpu usage of tasks {τ1, . . . , τn} in

the interval [Sn, Sn + P) is exactly equal to
∑n

i=1
P
Ti

Ci.

Proof. Consider a task τj (1 ≤ j ≤ n); we shall show that in the interval
[Sn, Sn + P) the cpu usage of τj is exactly equal to P

Tj
Cj. If a request of τj

occurs at time Sn the property is trivial. In the opposite case, we can define
the instant Sn + d to be the instant of the first request of τj after time Sn (by
definition of Sn we have that d < Tj). The interference of τj in the interval
[Sn+d, Sn+P +d) is exactly equal to P

Tj
Cj (Tj divides P , hence P

Tj
= d P

Tj
e). The

schedule is periodic from Sn, with a period of P , hence the intervals [Sn, Sn+P)
and [Sn + d, Sn + d + P) are identical if we consider the cpu usage during one
period of the periodic behavior of the system (see Figure 3.16): in this case
we can represent this part of the schedule by a “circle” (see Figure 3.17) and
consider the cpu usage on it. ■

We have shown that the cpu usage of tasks {τ1, . . . , τn} on the circle is ex-
actly equal to

∑n
i=1

P
Ti

Ci. More generally, for a feasible schedule σ (of the
task set {τ1, . . . , τn}), we define ϕ(σ, a, b) as the schedule (still of the task
set {τ1, . . . , τn}) constructed by repeating the slice [a, b) of the schedule σ for
t ∈ (−∞, a) and t ∈ [b, +∞). It may be noticed that the Figure 3.17 is a
finite representation of ϕ(σ, Sn, Sn + P); σ and ϕ(σ, Sn, Sn + P) have thus the
same periodic behavior (the second one is infinitely periodic to the left as to
the right) and are both feasible (assuming that σ is feasible).

3.5. THE BEST CASE RESPONSE TIME 93

Lemma 3.18 Let Γ = {τ1, . . . , τn} be a feasible synchronous general deadline
task set and l ∈ N. The interval [P − l, P) minimizes the cpu usage by tasks
τ1, . . . , τn among all intervals of length l in all periodic parts of all asynchronous
schedules (i.e., among all offset combinations).

Proof. This property is in a way the dual property of the worst case re-
sponse time (the synchronous case), according to the Lemma 3.17. During a
period of the periodic behavior of schedule the interference is exactly equals
to

∑n
i=1

P
Ti

Ci. We can divide the interval in two parts: I1 = [0, P − l) and
I2 = [P − l, P); Theorem 3.15 shows that I1 in the synchronous case maxi-
mizes the cpu usage by task τ1, . . . , τn among all intervals of length P − l in
the periodic part of all asynchronous schedules; by Lemma 3.17 it follows that
I2 in the synchronous case minimizes this cpu usage among all intervals of
length l in the periodic part of all asynchronous schedules. ■

Theorem 3.19 Let Γ = {τ1, . . . , τi−1} be a general deadline task set schedu-
lable in the synchronous case. The best case in terms of response time for a
request of τi (assuming that the previous requests of τi meet their deadline) in-
cluded in the periodic behavior of the system occurs when the requests of tasks
τ1, . . . , τi−1 are synchronized with the completion of the corresponding request
of τi (i.e., each task τj (1 ≤ j < i) makes a new request at time t, where t is
the completion time of the request of τi).

Proof. Determining the best case in terms of response time for a request of
τi, during the periodic behavior, is equivalent to find the smaller interval [t1, t2)
which contains exactly Ci free time units, in the periodic part of all schedules
(i.e., for all offset combinations). From Lemma 3.18, we have that the upper
bound of this interval t2 corresponds to the synchronization with the arrivals
of requests of τ1, . . . , τi−1. ■

In order to determine this best response time, without loss of generality, we
can choose t2 = Pi−1 in the schedule ϕ(σ, 0, Pi−1) where σ is the schedule
of the synchronous task sub-set {τ1, . . . , τi−1}. Then the lower bound is the
largest t1 such that the interval [t1, Pi−1) contains exactly Ci idle time units
(see Figure 3.18). In this case the response time of the request of τi which
occurs at time t1 is ρ∗i = Pi−1 − t1. If ρ∗i = Pi−1 − t1 > Di, the best response
time of τi is larger than the deadline Di and consequently all requests of τi fail
in all asynchronous situations. Notice that τi is executing at time t1, otherwise
t1 could be chosen further, Ui−1 =

∑i−1
j=1

Cj
Tj

< 1, otherwise there is no idle
time unit in ϕ(σ, 0, Pi−1) and ρ∗i = ∞ > Di, and ρ∗i ≤ d Ci

ki−1
e · Pi−1 with

ki−1 = (1−Ui−1) ·Pi−1, since there are ki−1 idle time units in each hyperperiod

94 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

τ1
????

.

.

.

.

.

.

τi−1
???

τi
?�
t1 Pi−1 − 1

ρ∗i = Pi−1 − t1

�� �

Figure 3.18: Phasing configuration which leads to the best response time (the
Ci last idle time units are marked �).

τ1
? ? ?

0 1

2

4 5

2

τ2
?

2 3

2

6 7

2

Figure 3.19: Phasing configuration for w = 4.

Pi−1. Remark also that the time unit Pi−1 − 1 is an idle time unit since from
Lemma 3.18 the interval [Pi−1 − 1, Pi−1) minimizes the cpu usage among all
interval of length 1 and the task set {τ1, . . . , τi−1} leaves at least one idle time
unit in the interval [0, Pi−1). Consequently τi executes at times t1 and Pi−1−1
as exhibited in Figure 3.18.

Having identified the configuration which leads to the minimal response time,
we are now interested by the computation of this value. According to The-
orem 3.19 and the remarks above, ρ∗i is the smallest value w such that if a
request of τi occurs at time d Ci

ki−1
e · Pi−1 − w, or d w

Pi−1
e · Pi − w, the response

time of the corresponding request is equal to w; the possible values of w are in
the interval [Ci, min{d Ci

ki−1
ePi−1, Di}]. The computation of this response time

is equivalent to compute ρ1
i by choosing O1 = O2 = · · · = Oi−1 = 0 and

Oi = d w
Pi−1

ePi−1 − w, by an iterative computation issued from Equation (3.2)
and (3.3), until ρ1

i = w and this does not hold for a smaller w; then ρ1
i = ρ∗i .

We have investigated the possibility to define an iterative process for the com-
putation of ρ∗i , similar to the one used for the computation of ρk

i ; such an
iterative process seems difficult to define: the problem is illustrated with the
next example.

3.5. THE BEST CASE RESPONSE TIME 95

τ1
? ? ?

0 1

2

4 5

2

8 9

2

τ2
?

2 3

2

6 7

2

Figure 3.20: Best response time configuration of τ2.

Example 3.20 An iterative process for the computation of ρ∗i could be the
following:

w0 =Ci,

wk =ρ1
i with O1 = · · · = Oi−1 = 0 and Oi = dwk−1

Pi−1
ePi−1 − wk−1

But this iterative process (besides the fact that it is not necessarily monotonic)
does not always converge to ρ∗i . Consider the task set {τ1 = {T1 = D1 =
4, C1 = 2}, τ2 = {T2 = D2 = 6, C2 = 4}}; it occurs that w0 = C2 = 4,
w1 = 8 = w2 (see Figure 3.19), while ρ∗2 = 6 < w2 as exhibited in Figure 3.20.

■

We suggest to compute ρ∗i by dichotomy:

LowerBound = Ci;
UpperBound = min{d Ci

ki−1
ePi−1, Di};

Continue = true;
While (LowerBound ≤ UpperBound and Continue) Do

w =
⌊LowerBound+UpperBound

2

⌋

;
Compute ρ = ρ1

i , with all the intermediate values as specified in Theorem 3.3,
when O1 = · · · = Oi−1 = 0 and Oi = d w

Pi−1
ePi−1 − w;

If (ρ = w) Then
If πz = 0 and j < i ⇒ R emj

j > Oi Then
Continue = false;
{w is the smallest solution}

Else {w is a solution, but not the smallest}
UpperBound = w − πz −

∑

1≤j≤i−1,R
emj
j ≤Oi+πz

Cj;

{since in the interval [Oi, Oi + πz +
∑

1≤j≤i−1,R
emj
j ≤Oi+πz

Cj the

cpu is permanently used by higher priority requests than δ1
i }

Endif

96 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

Else-If (ρ < w) Then
UpperBound = w - max{1, πz +

∑

1≤j≤i−1,R
emj
j ≤Oi+πz

Cj};
{for the same reason as above}

Else
LowerBound = w + 1 + max({0}

⋃

{Oi −Rmj
j |1 ≤ j ≤ i− 1,

Rmj
j < Oi, R

mj
j + ρmj

j ≥ Oi});
{since in the interval [Rmj

j , Oj) (j < i) the cpu is permanently used
by higher priority requests than δk

i if Rmj
j < Oi and Rmj

j + ρmj
j ≥ Oi }

EndIf
Od.
{If Continue then ρ∗i > Di and the system is always unschedulable}
The maximal number of attempts is close to log(min{d Ci

ki−1
ePi−1, Di}−Ci) and

consequently the maximal time complexity of the computation of ρ∗i is close to

log(min{d Ci
ki−1

ePi−1, Di} − Ci) ·
∑i−1

r=1

⌈Pi−1
j=r Tj

Tr

⌉

· βr (we consider here general

deadline systems, hence method 3 can be applied).

3.6 Feasibility tests for general deadline sys-
tems

We shall present feasibility tests based on our response time computation.
Indeed, we can check the feasibility of a system by considering the response
time of all requests which occur in the feasibility interval.

3.6.1 Synchronous case

For synchronous systems with general deadlines we have seen that we have
only to check the first request with the optimal rule of deadline monotonic
assignment (see Corollary 2.14 and 2.26).

Theorem 3.21 Let {τ1, τ2, . . . , τn} be a periodic synchronous task set with
general deadlines. The system S is feasible with a static scheduler iff r1

i ≤ Di

(∀i = 1, . . . , n) for the deadline monotonic priority assignment.

Proof. Immediately follows from Theorem 3.13 and the fact that the dead-
line monotonic is optimal for synchronous and general deadline systems (see
Theorem 2.25). ■

3.6. FEASIBILITY TESTS FOR GENERAL DEADLINE SYSTEMS 97

τ1
?
0 1

2 ?
6 7

2

τ2
? ?

2 5

4

6

Figure 3.21: τ1 and τ2 are started at the same time: τ2 misses its first deadline.

The feasibility test consists in computing n response times r1
i (i = 1, . . . , n)

hence the maximal time complexity of the feasibility test is
∑n

i=1 βi if we com-
pute each response time independently. Based on the fact that r1

j ≥ r1
j−1 +Cj,

the computation can be improved however; indeed if we compute these response
times in sequence (r1

1, r
1
2, . . . , r

n
1) the iterative process for the computation of

r1
j (j > 1) can be speeded up by the initialization w0 = r1

j−1 + Cj.

3.6.2 Asynchronous case

For asynchronous systems, the computation of r1
i gives only a sufficient condi-

tion.

Corollary 3.22 Let {τ1, τ2, . . . , τn} be a periodic asynchronous task set with
general deadlines and a static priority assignment: τ1 > τ2 > · · · > τn. The
system S is feasible if r1

i ≤ Di ∀i = 1, . . . , n.

Proof. Immediately follows from Theorem 3.13. ■

The reciprocal is false since from a schedulability point of view the synchronous
case is worst than any asynchronous cases. A task set can be unschedulable
in the synchronous case while being schedulable if we consider different task
start times for each task.

Example 3.23 Consider two tasks τ1 and τ2 with T1 = D1 = 6, C1 = 2 and
T2 = D2 = 8, C2 = 5. The priorities of tasks τ1 and τ2 are given by the
rate monotonic scheduler, hence τ1 has a higher priority than τ2 (τ1 > τ2).
If all tasks are started at the same time, this task set is not schedulable (see
Figure 3.21). But, the task set is schedulable with O1 = 1 and O2 = 0 (see
Figure 3.22). ■

We have shown that [X1, Sn + P) is a feasibility interval for asynchronous and
general deadline systems, and for the task sub-set {τ1, . . . , τi} the schedule

98 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

τ1
?
1 2

2 ?
7 8

2 ?
13

2 ?
19

2 ?
25

2

τ2
? ? ? ?
0

1

3 6

4

9 12

4

15

1

18

3

21

2 ?
24

1

Figure 3.22: The task set is schedulable with O1 = 1 and O2 = 0; from t = 24,
the schedule repeats.

repeats from Si with a period of Pi. Hence, a feasibility test can be formulated
as follows:

Theorem 3.24 Let {τ1, τ2, . . . , τn} be a periodic asynchronous task set with
general deadlines and a static priority assignment: τ1 > τ2 > · · · > τn. The
system is schedulable iff ρk

i ≤ Di ∀i = 1, . . . , n and for all k such that Si ≤
Rk

i < Si + Pi.

Proof. Immediately follows from Theorem 2.48. ■

Note the difference between Theorem 3.21, Corollary 3.22 and Theorem 3.24;
in Theorem 3.21 we have a necessary and sufficient condition for the feasibility
of a synchronous system, while with Corollary 3.22 and Theorem 3.24 we have
conditions for the schedulability of asynchronous systems and for a particular
priority assignment. This is due to the fact that, for asynchronous systems,
the monotonic priority assignment is not optimal.

The maximal time complexity increases considerably in this case (in compar-
ison with the synchronous case), since we have to consider at most

∑n
i=1

Pi
Ti

response times. This number may grow exponentially with the number of
tasks (see [Mac98] for experimental results). Note that in this case the in-
terest of the sufficient condition, i.e., to consider the synchronous case (and
then the sufficient condition given by Corollary 3.22) first, since this condi-
tion requires to compute the utilization factor and only n response times, if
1 ≥

∑n
i=1

Ci
Ti

> n(n
√

2− 1). If the sufficient condition is not satisfied, we have
to check the response times given by Theorem 3.24. Remark however that the
feasibility of the system is checked previously (off-line), possibly on a more
powerful (and parallel) system than the one used for the task set; for this rea-
son the computations may be acceptable. Remark also that if the system is
not schedulable it could be interesting to consider other priority assignments,
since in this case monotonic priority assignments are not optimal.

3.7. kth REQUEST WITH ARBITRARY DEADLINES 99

3.7 Response time of the kth request in asyn-
chronous and arbitrary deadline systems

We shall here extend the computation of the response time to arbitrary dead-
line and asynchronous systems. Recall that the formulas of Tindell et al.
(introduced in section 3.2) remain valid for the 1st request of task τi in the
synchronous case with arbitrary deadlines. But the formulas given in sec-
tion 3.3 have to be modified. In this case at time Rk

i , we have to consider
several requests of τj (j ≤ i), since several requests of the same task may be
active at time Rk

i , including previous requests of τi. Hence, the generalization
is far from obvious, and the formulas have to be adapted to handle this more
general case.

Theorem 3.25 Let {τ1, τ2, . . . , τn} be a periodic asynchronous task set with
arbitrary deadlines and a static priority assignment: τ1 > τ2 > · · · > τn. The
response time of the kth request of task τi, ρk

i , is the smallest solution of the
equation:

ρk
i = Ci + πz +

i−1
∑

j=1

⌈

(Rk
i + ρk

i −R emj
j)+

Tj

⌉

Cj

where

Rp
j = Oj + (p− 1)Tj

mj =

{ ⌈

Rk
i−Oj

Tj

⌉

if Oj < Rk
i

1 otherwise

πj =

0 if j = 0 or Oj ≥ Rk
i (or Rmj

j + Dj ≤ Rk
i ,

if we assume that all higher priority
requests met their deadlines)

(Rmj
j + ρmj

j −Rk
i)

+ otherwise

z =
{

0 if πj = 0 ∀ j ≤ i
p : πp = max{πj|πj > 0 and j ≤ i} otherwise

m̃j =

⌈

(Rk
i−Oj)+

Tj

⌉

+ 1 if j > z

mz + 1 if j = z
⌈

(Rk
i +πz−Oj)+

Tj

⌉

+ 1 otherwise

x+ = max{x, 0}

100 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

τj

?
� πj -

R
mj
j

ρ
mj
j

τi

?

Rk
i Dk

i

ρk
i

Figure 3.23: Interference of requests which occur strictly before time Rk
i .

Proof. We may assume that all higher priority requests (than the kth of τi)
which occur before time Rk

i + ρk
i meet their deadlines, but this is not essential

here: we may consider the extended schedules with soft deadlines introduced
in section 2.4. Rp

j denotes the arrival time of the pth request for τj. The
interference from higher priority requests can be computed from the response
time of some higher priority requests (so that the formula may be recursive).
For a task τj (with 1 ≤ j ≤ i), we only have to consider the requests from
the mth

j , the last one that precedes strictly Rk
i (see Figure 3.23) if any, (i.e., if

Oj < Rk
i), otherwise we take mj = 1 and consider the requests from the first

one.

Indeed, the interference of ρr
j (r < mj, j ≤ i), if any, is included in ρmj

j since
Rr

j < Rmj
j < Rk

i and we use the fifo discipline between requests of a same

task. It is easy to see that mj =
⌈

Rk
i−Oj

Tj

⌉

if Oj < Rk
i ; otherwise mj = 1,

hence the formula above. The kth request of τi is delayed by a part (or all)
of the mth

j request of τj if Oj < Rk
i (then we also have Rmj

j < Rk
i) and the

response time ρmj
j is greater than Rk

i − Rmj
j ; if we assume that all higher

priority requests which occur before time Rk
i meet their deadlines, we may

save the computation of ρmj
j if Rmj

j + Dj ≤ Rk
i , since if ρmj

j > Rk
i − Rmj

j that
would mean that the corresponding deadline was missed. The interference
is equal to πj = Rmj

j + ρmj
j − Rk

i . Remark that, in the arbitrary deadline
situation, the previous request of task τi (if any, i.e., if k ≥ 2) may also have
an interference on ρk

i ; it follows that the term πi must be considered (in this
case, we have mi = k − 1). Suppose that two such requests of higher priority
(say τa > τb) have an interference in the response time of the kth request of
τi; in that case the interference of the higher priority one is included in the
interference of the lower one: since at time Rk

i both requests are active, the
request of τb ends its execution after the request of τa. Hence, πb > πa > 0 and
the total interference of all requests which precede strictly the kth request of τi

is equal to πz = max{πj|πj > 0 and j ≤ i} (z = 0 = πz if no request occurring
strictly before time Rk

i delays the kth request of τi).

3.7. kth REQUEST WITH ARBITRARY DEADLINES 101

τj
? ? ?ρ

mj
j ρ

fmj−1
j ρ

fmj
j

τz
?

Rmz
z Rk

i + πz

ρmz
z

τl

? ?ρ
ml
l ρy

l

τr
?ρx

r ?ρfmr
r

τi

?

Rk
i

ρk
i

Figure 3.24: Interference of requests which occur after (or at) time Rk
i .

Let us consider now the interference of requests which occur after or at time
Rk

i . For each task τj (j = 1, . . . , i − 1, since next requests of τi have a lower
priority than the kth) we shall consider the requests from the m̃th

j , i.e., the first
one which is not included in the term πz. We have to distinguish three kinds of
tasks: (i) the tasks up to τz−1 (τ1, τ2, . . . , τz−1), (ii) task τz and (iii) the tasks
with a priority between τz+1 and τi−1 (τz+1, . . . , τi−1).

(i) In this case, all the requests of τj which occurred strictly before time
Rk

i + πz = Rmz
z + ρmz

z were already considered in the term πz; hence
we have to consider the requests from the number

⌈

(Rk
i +πz−Oj)+

Tj

⌉

+ 1
(this is the case of the request number m̃j in Figure 3.24); notice that if
Oj ≥ Rk

i + πz, we consider the requests from the first one.

(ii) The first request of τz which is not in the term πz has the rank m̃j =
mz + 1.

(iii) In this case we have necessarily that πj = 0 (otherwise z would not
be the maximal index such that πz > 0) and we have to consider the
requests from the first request of τj which occurs after or at time Rk

i :

m̃j = min{r|Rr
j ≥ Rk

i } =
⌈

(Rk
i−Oj)+

Tj

⌉

+ 1.

The term
∑i−1

j=1

⌈

(Rk
i +ρk

i−R
emj
j)+

Tj

⌉

Cj denotes the interference of requests of τj (j <

i) from the one of rank m̃j in the interval [R emj
j , Rk

i + ρk
i).

102 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

Hence, we have shown that the interference of higher priority tasks than τi in
the interval [Rk

i , R
k
i + ρk

i), plus the previous requests of τi, is

I(ρk
i) = Ci + πz +

i−1
∑

j=1

⌈

(Rk
i + ρk

i −R emj
j)+

Tj

⌉

Cj.

The kth request of τi ends its computation at the first instant Rk
i + ρk

i such
that the equality is satisfied: ρk

i = I(ρk
i). ■

It may be noticed that the synchronous case is a (rather interesting) special
case of Theorem 3.25.

Corollary 3.26 Let τ1, τ2, . . . , τn be a synchronous periodic task set with ar-
bitrary deadlines and a static priority assignment: τ1 > τ2 > · · · > τn. In this
special case, ρk

i is the smallest solution of the equation:

ρk
i = Ci + πz +

i−1
∑

j=1

⌈

(Rk
i + ρk

i −R emj
j)+

Tj

⌉

Cj

where

Rp
j = (p− 1)Tj

mj =

{ ⌈

Rk
i

Tj

⌉

if k > 1
1 otherwise

πj =

0 if j = 0 or k = 1 (or Rmj
j + Dj ≤ Rk

i
if we assume that all higher priority
requests met their deadlines)

(Rmj
j + ρmj

j −Rk
i)

+ otherwise

z =
{

0 if πj = 0 ∀ j ≤ i
p : πp = max{πj|πj > 0 and j ≤ i} otherwise

m̃j =

⌈

Rk
i

Tj

⌉

+ 1 if j > z

mz + 1 if j = z
⌈

Rk
i +πz

Tj

⌉

+ 1 otherwise

x+ = max{x, 0}

Proof. From Theorem 3.25, since Oj = 0, Rp
j = (p− 1)Tj, and x+ = x when

x ≥ 0. ■

3.7. kth REQUEST WITH ARBITRARY DEADLINES 103

3.7.1 Computation of ρk
i

In the same way than in section 3.3.1, we shall present several methods for
the computation of ρk

i . Again, the computation can be divided in two parts:
the computation of the term πz (and the related numbers: ρmj

j , z, m̃j) and the
computation of the lowest solution of the equation:

ρk
i = Ci + πz +

i−1
∑

j=1

⌈

(Rk
i + ρk

i −R emj
j)+

Tj

⌉

Cj.

The second part of the computation can be resolved by an iterative process
similar to the one exhibited in section 3.3.1.

w0 = Ci + πz,

wk+1 = Ci + πz +
i−1
∑

j=1

⌈

(Rk
i + wk −R emj

j)+

Tj

⌉

Cj.

Theorem 3.6 remains valid in this case and the maximal number of iterations is
bounded by Di−Ci−πz

minj<i Cj
. For similar reasons than those considered in section 3.3.1

this bound is very pessimistic. It may also be noticed that, in comparison with
general deadline systems:

❑ the term πz may represent the interference of several previous requests
of τj, including τi; as a consequence, πz will generally be larger here than
in the general deadline situation, which speeds up the iterative process;

❑ the value Di−Ci, in general, is larger in this case, which slows down the
iterative process.

Experimental results (similar to the ones exhibited in section 3.3.1) show that
the actual number of iterations represents 1 % of the bound given by Theo-
rem 3.6; hence again, the bound is very pessimistic and the iterative process
converges much more quickly.

We consider now the computation of the term πz. Method 1 defined for general
deadline systems can be adapted here, but the maximal time complexity and
in particular the total number of calls is (significantly) larger. We shall not
estimate this number as exactly as exhibited in Theorem 3.7, since the time
complexity of f(i, k) depends more deeply on the parameter k and the T ′

is. Let

104 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

Hi(k) be the maximal time complexity of the function f(i, k) for the compu-
tation of ρk

i in arbitrary deadline situation. Hi(k) is approximatively equal to
βi +Hi(k− 1) +

∑

j<i(βj +Hj(k·Ti
Tj

)). It follows that Hi(k) ≥ Gi since we have
also to consider the previous request of τi. In conclusion the total number of
calls is (significantly) larger. The maximal depth of recursive calls (and con-
sequently the maximal space complexity of the method) is also larger in this
situation. In the recursion we shall distinguish between two kinds of calls: for
the same task, i.e., f(j, k) calls the function f(j, k− 1) (type 1) and for higher
priority tasks, i.e., f(j, k) calls the function f(r, k′) with r < j and Rk′

r < Rk
j

(type 2). The recursion stops with the computation of ρ1
j with Oj = mink≤i Ok.

In this case the depth of recursive calls is bounded by
⌈

Rk
i−Oj

min{Tk|k≤i}

⌉

+ i− j; the

first term (i.e.,
⌈

Rk
i−Oj

min{Tk|k≤i}

⌉

) represents the maximal number of type 1 calls
and the second term (i.e., i−j) represents the maximal number of type 2 calls.
The worst case is O1 = 0 and T1 = min{Tk|k ≤ i}: in this case the maximal
depth of recursive calls is bounded by

⌈

Rk
i

T1

⌉

+ i− 1.

Method 1 is not suited to handle “real size” problems; the interest of this
method (and its implementation) lies (mainly) in the “verification” of our
formulas.

Method 2 can easily be adapted in this case, the only difference in comparison
with the general deadline situation is that we need also to compute all the
response times of τi till time Rk

i ; at each instant we have only to know the
response time of the last request of τi, if any. Hence the maximal time com-
plexity is

∑i
j=1

⌈

Rk
i

Tj

⌉

·βj, or simply βi if we consider that the previous response
time computations were due anyway for a feasibility test. The maximal space
complexity is O(i). If the schedule is feasible, for Rk

i sufficiently large (i.e.,
from Rk

i > Omax + 2Pi), according to Lemma 2.64, the schedule (and then the
response times) repeats from time Omax + Pi; hence in the worst case we have
to compute

∑i
j=1d

Omax−Oj+Pj

Tj
e response times to reach the periodic part of the

schedule and
∑i

j=1
Pj

Tj
to compute the response times ρkj

j which are equal to the
ρmj

j ’s but occur in the first period of the periodic behavior of the schedule (i.e.,
kj = min{k|k = mj mod Pj

Tj
and Rk

j ≥ Sj). As a consequence, the maximal

time complexity of the computation of ρk
i is

∑i−1
j=1d

Omax−Oj+2Pj

Tj
e · βj.

Method 3 cannot be applied with efficiency here; the computation of the term
πz needs the value of the response times of δm1

1 , · · · , δmi
i . It is possible however

that such a request (say δmj
j) does not have an explicit impact on ρk

i , but
answering this question requires the value of πj, in other words the value of
ρmj

j , unless Rmj
j ≥ Rk

i . In arbitrary deadline situation, method 3 essentially

3.8. SCHEDULABILITY TESTS 105

amounts to method 2. Note that if we use the response time computation to
check the schedulability of a system, we have anyway (in the “worst” case, i.e.,
if the system is schedulable) to compute all the response times in the feasibility
interval, as developed in the section 3.8.3.

3.8 Schedulability tests for arbitrary deadline
systems

Based on our response time computation we shall present schedulability tests
for arbitrary and asynchronous systems. Again we can check the feasibility of
a system by considering the response time of all requests which occur in the
feasibility interval.

3.8.1 The worst case response time for arbitrary sys-
tems

We shall in this section give a “quantitative approach” of Theorem 2.37.

Another proof of Theorem 2.37 Let [a, b) be a level-i busy period in
some synchronous or asynchronous system built from {τ1, . . . , τi}, and let us
denote a + ∆j the starting time of the first request of τj after a (∆j ≥ 0 and
1 ≤ j ≤ i); from definitions above we have that ∆i < b − a and ∆k = 0 for
at least one k. Suppose first that ∆i > 0. Only tasks having a higher priority
than τi are processed during [a, a + ∆i); consequently, if ∆i were changed to
any value in [0, ∆i), each request of task τi in [a, b) would finish at the same
time as before (each request of τi occurs strictly before than in the original
situation and uses the same free slots left by the task subset {τ1, . . . , τi−1}
since there was no idle time unit left by τi), hence increasing each of their
response time: the maximum response time occurs when ∆i = 0. Moreover,
no idle point occurs before b since it is still true that each request of τi in the
interval, but the first one, starts strictly before the previous one is completed
(see Lemma 2.36); it could even happen that b is no longer an idle point, if
the first request of τi which occurred after or at b now starts strictly before
b: the level-i busy period is lengthened. If ∆j > 0 (j < i), then reducing
∆j leads to increase (or is left unchanged) the processing requirement rj(t)

of τj during [0, t) for every t ∈ (0, b], where rj(t) =
⌈

(t−∆j−a)+

Tj

⌉

Cj. Notice
that if ∆j is decreased it follows that rj(t) increases (or is left unchanged).
Now it may be seen that the first request of τi after a finishes (if ever) at the
first time instant t such that (t − a) = Ci +

∑i−1
j=1

⌈

(t−∆j−a)+

Tj

⌉

Cj, and more

106 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

generally the kth request of τi in the interval [a, b) finishes at the first instant
t such that (t − a) = kCi +

∑i−1
j=1

⌈

(t−∆j−a)+

Tj

⌉

Cj: if rj(t) increases, this will
delay accordingly each request of τi; this may also enlarge the level-i busy
period, and possibly blend it with the next one(s). Hence, the largest response
times, and the largest level-i busy period, are achieved by setting each ∆j to
its smallest value: ∆1 = ∆2 = · · · = ∆i = 0. This configuration corresponds
to the first level-i busy period in the synchronous case. ■

3.8.2 Synchronous systems

For synchronous systems with arbitrary deadlines, we have seen that [0, λn) is
a feasibility interval (see Theorem 2.37).

Theorem 3.27 Let {τ1, τ2, . . . , τn} be a periodic synchronous task set with
arbitrary deadlines. The system is schedulable for the static priority assignment
τ1 > τ2 > · · · > τn iff ρk

i ≤ Di ∀i = 1, . . . , n and for all k such that Rk
i < λn.

Proof. Immediately follows from Theorem 2.37. ■

The maximal time complexity increases considerably in this case, in compari-
son with synchronous and general deadline systems, since we have to consider
a number of response times proportional to P (λn is bounded by P but may
reach it if

∑n
i=1

Ci
Ti

= 1).

For asynchronous systems, the computation of the response time in the interval
[0, λn) gives only a sufficient condition.

Corollary 3.28 Let τ1, τ2, . . . , τn a periodic asynchronous task set with arbi-
trary deadlines and a static priority assignment: τ1 > τ2 > · · · > τn. The
system is schedulable if the corresponding synchronous system is schedulable,
i.e., if ρk

i ≤ Di <;∀i = 1, . . . , n and for all k such that Rk
i < λn (ρk

i and λn

are computed in the synchronous case).

Proof. Immediately follows from Theorem 2.37. ■

Remark that this is only a sufficient condition: a system can be unschedulable
in the synchronous case while being schedulable if we consider different task
start times for each task.

3.8.3 Asynchronous systems

We have shown that [0, Omax + 2P) (see Theorem 2.67) is a feasibility interval
for asynchronous and arbitrary deadline systems if U ≤ 1. Hence, a feasibility

3.9. COMPARISON ON THE VARIOUS FEASIBILITY TESTS 107

test can be formulated as follows.

Theorem 3.29 Let {τ1, τ2, . . . , τn} be a periodic asynchronous task set with
arbitrary deadlines and a static priority assignment: τ1 > τ2 > · · · > τn.
The system is schedulable iff ρk

i ≤ Di ∀i = 1, . . . , n and for all k such that
Rk

i < Omax + 2P and U ≤ 1.

Proof. Immediately follows from Theorem 2.67. ■

The maximal time complexity of the test is comparable to the one for general
deadline asynchronous systems. The situation is different with respect to the
synchronous case where for general deadline systems the maximal time com-
plexity is pseudo-polynomial and increases considerably for arbitrary deadline
case, since we have to consider the interval [0, λn), the maximum value of λn

being P (if
∑n

i=1
Ci
Ti
≤ 1).

3.9 Comparison on the various feasibility tests

During our study we have given a comparison of the time complexity of the
various sub-classes of periodic task sets. We shall in this section summarize
these comparisons.

First let us consider the sufficient conditions, where according Theorem 3.13 for
late/general deadlines and Theorem 3.13 for arbitrary deadlines, synchronous
and asynchronous systems can be amalgamated.

late deadline general deadline arbitrary deadline
∑n

i=1
Ci
Ti

< n(n
√

2− 1) r1
i ≤ Di ρk

i ≤ Di, Rk
i < λn

We consider now sufficient and necessary conditions; here, synchronous and
asynchronous cases must be distinguished.

Let us consider first synchronous systems.

late deadline general deadline arbitrary deadline
r1
i ≤ Di r1

i ≤ Di ρk
i ≤ Di,

Rk
i < λn

Then we consider asynchronous systems.

108 CHAPTER 3. RESPONSE TIMES FOR STATIC SCHEDULERS

late deadline general deadline arbitrary deadline
ρk

i ≤ Di, ρk
i ≤ Di, ρk

i ≤ Di,
Rk

i ∈ [X1, Sn + P) Rk
i ∈ [X1, Sn + P) Rk

i ∈ [0, Omax + 2P)

3.10 Conclusion

In this chapter we have studied the response time notion for static schedulers.
We have extended the computation (and consequently the theory) to handle
more general and optimistic cases than those considered in the literature, in-
cluding asynchronous systems with arbitrary deadlines. We have shown the
interest of considering these response time computations regarding the feasi-
bility problems of these more general systems. We have also considered the
problem of the computation of these response times. For the various kinds
of task sets considered in this work, we have proposed several methods for
these computations. We have studied the analytical and experimental (time
and space) complexity of our algorithms. In particular for asynchronous and
general deadline we propose a method which computes the response time of
the kth request of τi with a (pseudo-)polynomial time complexity and a linear
space complexity in terms of the system characteristics. For arbitrary deadline
system we have shown that the situation is less attractive and the computation
grows exponentially with the system characteristics. The study of the response
time computation in asynchronous situation has also provided the material to
prove the property “stated” by Liu and Layland concerning the worst case
response time and to refine the proof of Lehoczky concerning the first busy
period. Hence, we feel to have justified the interest of our general response
time computation.

Interesting questions for further research related to response time computation
include: statistical analysis of the actual performance of the various methods
and algorithms proposed in this chapter with other random variables or with
“real” systems; analysis of the parallelization of method 1 and the study of its
time/space complexity; the computation of the best case response time would
be improved by considering an iterative process rather than a dichotomy.

Bibliography

[ABRW92] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Welling.
Deadline monotonic scheduling theory. In Boullard and Puente,
editors, Proc. IFAC/IFIP WRTP’92, pages 55–60, Bruges, Bel-
gium, 1992.

[Aud91] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical report, Univer-
sity of York, England, 1991.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability, a guide to the Theory of NP-Completeness. W. H.
Freeman, San Francisco, 1979.

[JP86] M. Joseph and P. Pandya. Finding response times in a real-time
system. The Computer Journal, 29(5):390–395, October 1986.

[Mac98] Christophe Macq. Etude pratique des principaux algorithmes
d’ordonnancement de tâches apériodiques en présence de tâches
périodiques dans un système temps réel. Master’s thesis, Univer-
sité Libre de Bruxelles, Belgique, 1998.

[Tin93] K. W. Tindell. Using offset information to analysis static priority
pre-emptively scheduled task sets. Technical report, University of
York, England, 1993.

109

110 BIBLIOGRAPHY

Chapter 4

Dynamic Schedulers

Une accumulation de faits n’est pas plus une science
qu’un tas de pierres n’est une maison.

— Henri Poincaré, La Science et l’hypothèse (Flammarion).

Contents

4.1 Introduction . 110

4.2 Simplified model of computation 111

4.3 The deadline driven scheduler 111

4.4 Optimality . 114

4.5 Feasibility intervals 124

4.5.1 Synchronous systems 138

4.6 Response times . 139

4.6.1 Introduction . 139

4.6.2 1st request for synchronous systems 140

4.6.3 kth request for asynchronous general deadlines . . . 146

4.6.4 Computation of ρk
i 150

4.6.5 kth request for asynchronous arbitrary deadlines . . 153

4.6.6 Computation of ρk
i 156

4.7 Feasibility tests for asynchronous systems 161

4.8 Feasibility tests for synchronous systems 164

111

112 CHAPTER 4. DYNAMIC SCHEDULERS

4.8.1 Feasibility of bounded general deadline synchronous
task sets . 164

4.8.2 Worst case response time computation 170

4.9 The Least Laxity First scheduling algorithm . . . 184

4.10 The (non-)stability of dynamic priority rules . . . 190

4.11 Conclusion . 190

Bibliography . 192

4.1 Introduction

We shall consider in this chapter the second family of scheduling algorithms,
i.e., the dynamic schedulers. In this case, the scheduling algorithm computes
the priorities during the execution of the system. The priority of each active
request depends on the system state (e.g., the current time), and on the request
characteristics (e.g., the remaining processing time, the time before reaching
the deadline, etc.). Unlike static schedulers, the priority of a task or request
may change with time. We consider again the scheduling of periodic and
independent task sets for preemptive and mono-processor systems.

In this chapter we shall mainly study the most popular optimal dynamic
scheduling algorithm: the deadline driven scheduler. We shall first present
basic properties, in particular the optimality of this priority rule. We shall
then extend our previous results to the dynamic case (e.g., feasibility inter-
vals, response time computation, etc.). We shall outline in this study the
differences between static and dynamic scheduling algorithms regarding the
feasibility problem and the response time computation.

The remainder of the chapter is as follows: in section 4.3 we present the dead-
line driven scheduler; in section 4.4 we show the optimality of this scheduling
rule and we complete the results given by Liu and Layland; in section 4.5 we
study feasibility intervals, and we extend the results to the arbitrary dead-
line case; in section 4.6 we extend the notion of the response time to the
dynamic deadline driven scheduler and we exploit these computations in sec-
tions 4.7 and 4.8 for the feasibility test of the various kinds of periodic task
sets considered in this work; in section 4.9 we consider another optimal dy-
namic scheduling rule and we extend major properties to it; in section 4.10 we
consider the stability of dynamic priority rules. But first, we shall refine our
model of computation.

4.2. SIMPLIFIED MODEL OF COMPUTATION 113

4.2 Simplified model of computation

For this family of scheduling algorithms, we can restrict the schedule, i.e.,
the function σ(t), to value changes at natural time instants: σ : N → N.
Consequently, σ(t) is an integer function and σ(t) = j, with j > 0, means that
a request of task τj is executing at time t during one time unit, while σ(t) = 0
means that the cpu is idle at time t (during one time unit). Notice that,
in the static case, the same property holds from the very definition of static
schedulers (changes may only occur at natural time instants –see page 20).
Here we could allow to change priorities, hence the executing request, at any
time; however, it may be shown that this would not add true benefits to the
framework considered here. We shall not give the proof of this property now:
we need more material on dynamic scheduling algorithms. For this reason, we
shall assume the property here (and use its consequence) and we shall show
it later, in section 4.4. In the arbitrary deadline case (or in the late/general
deadline case with soft deadlines), where many requests of the same task may
be active simultaneously, we shall assume that the oldest active request of
τj receives the cpu; if another policy is desired, we shall then extend the
notation to σ(t) = (j, k) to represent the fact that at time t the kth request of
τj is executing.

4.3 The deadline driven scheduler

We shall present here the more popular dynamic (and optimal) scheduler: the
deadline driven scheduler. The names earliest deadline scheduler (eds) and
earliest deadline first (edf) also occur in the recent literature to denote this
dynamic priority algorithm based on the nearest deadline. This algorithm was
basically defined by Liu and Layland [LL73] and termed the deadline driven
scheduling algorithm; it is a dynamic scheduling algorithm which gives (at any
instant) the highest priority (and then the cpu) to the active request with the
nearest deadline. The tie, if any, may be broken in an arbitrary way. We shall
use in this work the original term (i.e., deadline driven scheduler) to denote
this scheduler.

Example 4.1 Consider the following system composed of two tasks τ1 and
τ2 with τ1 = {C1 = 1, D1 = 3, T1 = 4, O1 = 0} and τ2 = {C2 = 2, D2 =
3, T2 = 5, O2 = 0}. Figure 4.1 corresponds to the schedule of this set using the
deadline driven scheduler. From this schedule several remarks can be done.

❑ At time t = 0 two requests are active and their deadlines coincide (at

114 CHAPTER 4. DYNAMIC SCHEDULERS

τ1

? ? ? ? ? ?

0

1

4

1

8

1

12

1

17

1

τ2

? ? ? ? ?

1

2

5

2

10

2

15

2

Figure 4.1: Schedule with the deadline driven scheduler.

time t = 3): the tie is broken here by giving a higher priority (and then
the cpu) to the request of τ1.

❑ The priority of the various requests of the same task changes with time:
for instance at time t = 0 the first request of τ1 has a higher priority
than the first request of τ2, while at time t = 16, the fifth request of τ1

has a lower priority than the (end of the) fourth request of task τ2.

❑ At time t = 20 the schedule repeats.

■

We shall first exhibit a very general property instrumental to prove that with
the deadline driven scheduler the tie (if any) can be broken arbitrarily; first
we consider the following notations (inspired from [BHR93]): ηi(t, t′) denotes,
for t ≤ t′, the number of values k ∈ N such that

1. t ≤ Oi + k · Ti, and

2. Oi + k · Ti + Di ≤ t′.

That is, ηi(t, t′) is the number of requests of task τi which occur in the interval
[t, t′) with a deadline less than or equal to t′. Any feasible scheduling algorithm
must give at least ηi(t, t′) · Ci cpu time units to τi in this interval; this is a
necessary condition for the schedulability of the system in this interval.

Lemma 4.2 An asynchronous and arbitrary deadline system R is feasible up
to time t with a deadline driven scheduler iff

∑n
i=1 ηi(t′, t′′) ·Ci ≤ t′′− t′ for all

0 ≤ t′ < t′′ ≤ t.

Inspired from [BHR93] The condition is clearly necessary. Suppose the
condition holds, and R is not feasible up to time t using a deadline driven
scheduler. Let t′′ (≤ t) be the time of the (first) deadline failure. Let t′ be the

4.3. THE DEADLINE DRIVEN SCHEDULER 115

last time before t′′ such that at time t′−1 either the system is idle or a request
with a deadline strictly greater than t′′ is scheduled. Since t′′ corresponds to
a deadline, t′′ > 0; so t′ is well-defined (it may be 0). Furthermore, since the
deadline at t′′ is not met, there is an active task (with deadline t′′) scheduled
at t′′ − 1 and t′ < t′′. It follows that there is a task scheduled at every time in
[t′, t′′) with its deadline not later than time t′′. Since no task having a deadline
less than or equal to t′′ is scheduled at t′−1, every task scheduled in [t′, t′′) must
have been released not earlier than t′. Since there is a task scheduled at every
time in [t′, t′′) and the deadline at t′′ is not met,

∑n
i=1 ηi(t′, t′′) ·Ci > t′′ − t′: a

contradiction. ■

Corollary 4.3 An asynchronous and arbitrary deadline system R is feasible
iff

∑n
i=1 ηi(t, t′) · Ci ≤ t′ − t for all 0 ≤ t < t′. ■

The way to resolve the ties has an impact on the response time of some requests,
and we shall fix a strategy when we come to this point (in section 4.6), but
as far as schedulability is concerned, we have a very general property which
shows that the way chosen to resolve ties has no impact on the feasibility.

Corollary 4.4 Let S be an asynchronous and arbitrary deadlines system. If
S is not schedulable with the deadline driven scheduler for a particular way of
resolving the ties, and a deadline failure occurs at time t, this is also the case
for all other ways of resolving ambiguities.

Proof. Immediately follows from Lemma 4.2. ■

Corollary 4.5 Let S be an asynchronous and arbitrary deadlines system. If S
is schedulable with the deadline driven scheduler for a particular way to resolve
the ambiguities, i.e., the ties, this is also the case for all other ways of resolving
ambiguities.

Proof. Immediately follows from Lemma 4.2, or from Corollary 4.4. ■

Remark that this property does not hold for the rate/deadline monotonic pri-
ority assignment as exhibited with Example 2.27, and the example used in the
proof of Lemma 2.41.

When there is no tie (i.e., when all requests have different deadlines, or when
requests with a same deadline are never active simultaneously), the deadline
driven scheduler amounts to assigning different priorities to task requests (in-
stead of tasks, like in the static case): a request δk

i has a higher priority than
δr
j if its deadline occurs earlier. If there is a tie, in principle, the choice of

116 CHAPTER 4. DYNAMIC SCHEDULERS

the running request may be changed at any (integer) instant; however, from
Corollary 4.5, from a schedulability point of view, we may decide to choose
a simpler way of proceeding: in particular we may, for the uniformity of the
procedure, assign (more or less) arbitrarily different priorities to requests with
the same deadline (the relative priority of a request with respect to other ones
with the same deadline will not change with time). In the following we shall
adopt this way of applying the deadline driven scheduler.

Notice also that, even in the arbitrary deadline situation, there will never be a
tie between requests of a same task (contrary to what happened in the static
case, where we had to introduce an extra fifo rule to lift ambiguities): they
always have different priorities.

4.4 Optimality

Liu and Layland have exhibited several major properties concerning this schedul-
ing algorithm; their main result concerns the optimality of this scheduler. The
results given by Liu and Layland are based on the fact that the synchronous
case is the worst case from a schedulability point of view. But this property
is not fully proved in their paper; more precisely the authors use an incorrect
argument to justify a preliminary property.

Liu and Layland have only considered in their work [LL73] the optimality of
the deadline driven scheduler in the late deadline case for synchronous systems.
First, let us define what we mean by optimality. As usual we have to distinguish
between two kinds of optimality:

Definition 4.6 A dynamic priority rule is strongly optimal for a family of task
sets if, when a feasible dynamic priority assignment exists for some task set
of the family, any schedule given by the rule is also feasible for that task set,
whatever the way in which the ambiguities are resolved. ■

Definition 4.7 A dynamic priority rule is weakly optimal for a family of task
sets if, when a feasible dynamic priority assignment exists for some task set of
the family, some schedule given by the rule is also feasible for that task set,
for a particular way of resolving the ambiguities. ■

From Corollary 4.5, it occurs that strong and weak optimality collapse for the
deadline driven scheduler: if it is weakly optimal (and it is, see Theorem 4.16)
it is also strongly optimal.

Liu and Layland have shown that a task set is schedulable iff U =
∑n

i=1
Ci
Ti
≤ 1

in the late deadline (and synchronous) case. They first state a property of

4.4. OPTIMALITY 117

the schedules produced by the deadline driven scheduler prior to an overflow,
i.e., just before a deadline failure. We have use the term “state” because the
property is true (see Theorem 4.8 and our proof) but Liu and Layland have
used an incorrect reasoning to show this property.

Theorem 4.8 ([LL73]) When the deadline driven scheduler is used to sched-
ule a synchronous set of tasks with late deadlines on a processor, there is no
processor idle time prior to an overflow.

Proof from Liu and Layland [LL73]. Consider some schedule given by
the deadline driven scheduler when starting all tasks at the same instant t = 0.
We suppose there is an overflow at time t3, a processor idle time in the interval
[t1, t2) and no processor idle time in the interval [t2, t3) with5 0 ≤ t1 < t2 ≤ t3
(see Figure 4.2). Let us consider in this schedule only the requests which occur
after the idle period (i.e., from time t2): we have in this case an asynchronous6

system where all tasks are started after or at time t2. From this asynchronous
system, we shall construct a synchronous system (where all tasks are started
at time t2) with an overflow and no processor idle time prior to it. In this
asynchronous system, O1 = t2 + δ1 is the instant of the first request of task
τ1; since there is no processor idle time in the interval [t2, t3), this will also be
the case in the asynchronous system based on the previous one but where τ1

starts at time t2. Indeed, in the interval [t2, t3) :::
the

:::::::::
number

:::
of

:::::
the

::::
τ1’s::::::::::

requests
::::::::::
increases

:::::
and

:::::
the

::::::::::
overflow

::::::::
occurs

:::::::
either

::::
at

:::
or

::::::::
before

::::::
time

:::
t3. Repeating the

same argument for all tasks, we construct a schedule for the deadline driven
scheduler where all tasks are started at time t2 without processor idle time
prior the overflow. This leads to a contradiction, since from7 Corollary 4.4 the
schedule from t2 should be equivalent to the one from 0, with an overflow at
or before t3 − t2. ■

With the following example we show that the argument of Liu and Layland
is incorrect. They state that, from an asynchronous situation with a deadline
failure in t3 and no idle time before, if τ1 starts at time t2 instead of time t2+δ1

an overflow occurs at or before time t3. This is not the case in the following
system:

5It is easy to see that t1 > 0 (initially the first request of each task is active) and t2 < t3,
since in t3− 1 there was an active request (the one missing its deadline, or each one if there
are many of them).

6If the situation were to be synchronous, from Corollary 4.4, the schedule from t2 would
be equivalent to the one from 0, and the overflow in the latter would occur at least in t3− t2.

7To tell the truth, Liu and Layland did not explicitly used this property but implicitly
assumed it.

118 CHAPTER 4. DYNAMIC SCHEDULERS

0 t1

.

6t2 t3 − 1

Figure 4.2: cpu utilization before the overflow at time t3.

τ1

?

1 5

5 ?

τ2

?

0

1

τ3

? ?

66

4

Figure 4.3: Overflow at time 10.

Example 4.9 Consider the following system:

Ci Ti = Di Oi

τ1 5 8 1
τ2 1 100 0
τ3 5 9 1

At time t = 10, τ3 misses its deadline and an overflow occurs (see Figure 4.3).
If we start τ1 at time t = 0 (i.e., if O1 = 0), there is no overflow before time
t = 19 (see Figure 4.4). This example contradicts the main argument in the
proof of Liu and Layland. ■

Again, we see that we must be very careful: incorrect reasonings can be con-
structed from a wrong intuition, and even in very “simple” cases (e.g., regard-
ing the number of tasks) it is not obvious at all to have a good idea on the
exact behavior of our systems.

Here we complete and correct the proof.

4.4. OPTIMALITY 119

τ1

?

0 4

5 ?

10 14

5

τ2

?

τ3

?

5 9

5

15 18

4?

6

Figure 4.4: No overflow before time 19.

Proof of Theorem 4.8. We show the theorem by contradiction and we
consider some schedule given by the deadline driven scheduler when starting
all tasks at the same time t = 0. We suppose there is an overflow at time
t3, a processor idle interval [t1, t2) and no processor idle time in the interval
[t2, t3) with5 0 < t1 < t2 < t3. At time t3 (and not before) a request (at least
one) misses its deadline, hence a deadline corresponds with time t3, and at
time t3 − 1 the cpu was busy for a request with deadline at time t3. Consider
now time t4 defined as follows: t4 is the smallest instant less than t3 such
that in the interval [t4, t3) the cpu remains busy for requests with deadline
less than or equal to t3. From the previous remark, it is not difficult to see
that such an instant exists and since during the interval [t1, t2) the cpu is idle:
t2 ≤ t4 < t3. At t4 − 1, either all tasks are inactive, or all active requests
have a deadline after (strictly) t3, so that they have no impact on the requests
occurring between t4 and t3. Let us consider in this schedule only the requests
which occur after or at time t4: we have an asynchronous system where all
tasks are started after or at time t4. From this asynchronous system, we shall
construct a synchronous system (where all tasks are started at time t4) with
an overflow and no processor idle time prior it. In this asynchronous system,
O1 = t4 + δ1 is the instant of the first request of task τ1; since in the interval
[t4, t3) the processor remains busy for requests whose deadlines occur before or
at time t3, this is also the case if we start τ1 at time t4 and the number of such
requests is greater than or equal to the one in the previous situation. More
precisely,

∑n
i=1 ki · Ci > t3 − t4 (where ki represents the number of requests

of τi occurring in the interval [t4, t3) with a deadline less than or equal to t3)
if O1 = t1 + δ1 and hence also if O1 = t1: for this reason an overflow occurs
before or at time t3 in both situations. From a schedulability point of view,
the situation is worst and in this new asynchronous system an overflow occurs
before or at time t3. Repeating the same argument for all tasks, we have a
system where all tasks are started at time t4 without processor idle time before
the overflow which occurs at time t3 (whatever the way chosen to resolve the

120 CHAPTER 4. DYNAMIC SCHEDULERS

ties since
∑n

i=1 ki ·Ci > t3− t4). This leads to a contradiction, since there is a
way to resolve the ties such that the new schedule from t4 should be the same
as the old one from 0. ■

Remark that Liu and Layland have only considered the case of late deadline
systems, but the proof of Theorem 4.8 does not rely on this assumption and
holds for arbitrary deadline systems. Moreover, the property can be extended
by considering idle points (cf Definition 2.30) instead of idle intervals.

It may be also noticed that Example 4.9 does not contradict our argument
since in this case t4 = 1, δ1 = 0, δ2 = 100, δ3 = 0, and an overflow still occurs
at time t3 = 10, even if τ2 starts at time t4 = 1 (i.e., the synchronous system
is constructed by shifting requests left to time 1, instead of time 0 like in
Example 4.9).

We shall see in section 4.5.1 the interest of considering this more general prop-
erty based on idle points instead of idle intervals.

Theorem 4.10 When the deadline driven scheduler is used to schedule a syn-
chronous set of tasks with arbitrary deadlines on a processor, there is no pro-
cessor idle point prior to an overflow but the origin.

Proof. We show the theorem by contradiction and we consider some schedule
given by the deadline driven scheduler when starting all tasks at the same time
t = 0. We suppose there is an overflow at time t3, and a processor idle point in
the interval (0, t3]. Let t2 be the last idle point before time t3, with8 0 < t2 < t3.
We may drop all requests occurring before t2 without modifying the schedule
from time t2. At time t3 (and not before) a request (at least one) misses its
deadline, hence a deadline corresponds with time t3, and at time t3−1 the cpu
was busy for a request with deadline at time t3. Consider now time t4 defined as
follows: t4 is the smallest instant less than t3 such that in the interval [t4, t3) the
cpu remains busy for requests with deadline less than or equal to t3. From the
previous remark, it is not difficult to see that such an instant exists and since
time t2 is an idle point: t2 ≤ t4 < t3. At t4−1, either all tasks are inactive, or all
active requests (which have not been dropped) have a deadline after (strictly)
t3, so that they have no impact on the requests occurring between t4 and t3.
Let us consider in this schedule only requests which occur after or at time t4:
we have an asynchronous system where all tasks are started after or at time
t4. From this asynchronous system, we shall construct a synchronous system
(where all tasks are started at time t4) with an overflow and no processor idle
point before it. Hence, we consider an asynchronous system where each task τi

8t2 < t3, since in t3 there is an active request (the one missing its deadline) which is not
terminated.

4.4. OPTIMALITY 121

starts its execution at time Oi = t4 + δi. The first request of τ1 occurs at time
O1 + δ1; since in the interval [t4, t3) the processor remains busy for requests
whose deadline occurs before or at time t3, this is also the case if we start τ1 at
time t4 and the number of such requests is greater than or equal to the one in
the previous situation. More precisely,

∑n
i=1 ki·Ci > t3−t4 (where ki represents

the number of request of τi occurring in the interval [t4, t3) with a deadline less
than or equal to t3) if O1 = t1 + δ1 as well as if O1 = t1 and for this reason an
overflow occurs before or at time t3 in both situations. From a schedulability
point of view, the situation is worst and in this new asynchronous system an
overflow occurs before or at time t3. We have also to show that if O1 = t4 + δ1

as well as O1 = t4 there are no processor idle point in [t4, t3). We know that
if O1 = t4 + δ1, the interval [t4, t3) has no processor idle point; it follows
that: t ∈ [t4, t3) ⇒

∑n
i=1

⌈

(t−t4−δi)+

Ti

⌉

Ci > t − t4. Since
⌈

t−t4
T1

⌉

≥
⌈

(t−t4−δ1)+

T1

⌉

,
it follows that if we start τ1 at time t4 the interval [t4, t3) does not contain
any processor idle point either. Repeating the same argument for all tasks,
we construct a schedule for the deadline driven scheduler where all tasks are
started at time t4 without processor idle point before the overflow before or at
t3 (whatever the way chosen to resolve the ties since

∑n
i=1 ki · Ci > t3 − t4).

This leads to a contradiction, since there is a way to resolve the ties such that
the new schedule from t4 should be the same as the old one from 0. ■

Liu and Layland have not explicitly proved that the synchronous case is the
worst case from a schedulability point of view for late deadline systems. They
have assumed that this property follows from Theorem 4.8. This main property
can be proved in a similar way than for Theorem 4.8: we shall give this proof
for completeness, and we shall also by the way handle the more general case
of arbitrary deadline systems.

Theorem 4.11 Let S = {τi = {Ci, Di, Ti}|i = 1, . . . , n} with arbitrary dead-
lines. If S is schedulable in the synchronous case using the deadline driven
scheduler this is also the case in all asynchronous situations.

Proof. Let us first recall that from Corollary 4.5 the way ties are resolved has
no impact on the schedulability of a task set by the deadline driven scheduler.
We show the theorem by contradiction and we assume that the system S is
unschedulable with the offset assignment O1, . . . , On (min{Oi|i = 1, . . . , n} =
0) and schedulable in the synchronous case. Since the asynchronous system is
not schedulable, it follows that a request misses its deadline (say at time t1).
Hence a deadline corresponds with time t1, and at time t1−1 the cpu was used
by a request with its deadline in t1. Consider now time t2 defined as follow: t2 is
the smallest instant less than t1 such that in the interval [t2, t1) the cpu remains
busy for requests with deadline less than or equal to t1. From the previous

122 CHAPTER 4. DYNAMIC SCHEDULERS

τ1

?

0 1

2 ?

5 6

2 ?

8 9

2 ?

12 13

2 ?

16 17

2 ?

20 21

2 ?

24 25

2 ?

τ2

?

2 4

3 ?

7

1

10 11

2 ?

14 15

2

18

1 ?

22 23

2

26

1 ?

Figure 4.5: The system is schedulable, from time t = 28 the schedule repeats.

remark, it is not difficult to see that such an instant exists: 0 ≤ t2 < t1. Let us
consider in this schedule only requests which occur after or at time t2: we have
an asynchronous system where all tasks are started after or at time t2 with the
same schedule from t2 to t1 as before. From this asynchronous system, we shall
construct a synchronous system (where all tasks are started at time t2) with
an overflow. In this asynchronous system O1 = t2 + δ1 is the instant of the
first request of task τ1; since in the interval [t2, t1) the processor remains busy
for requests whose deadlines occur before or at time t1, this is also the case
if we start τ1 at time t2 and the numbers of such requests is greater than or
equal to the one in the previous situation. More precisely,

∑n
i=1 ki ·Ci > t1− t2

(where ki represents the number of request of τi occurring in the interval [t2, t1)
with a deadline less than or equal to t1) if O1 = δ1 as well if O1 = 0 and for
this reason an overflow occurs before or at time t1 in both situations. From a
schedulability point of view the situation is worst and in this new asynchronous
system an overflow occurs before or at time t1. Repeating the same argument
for all tasks, we construct a schedule for the deadline driven scheduler where
all tasks are started at time t2, without processor idle time, with an overflow.
This leads to a contradiction, since the new schedule from 0 is a deadline driven
schedule, for which there is no overflow. ■

Notice that Theorem 4.11 expresses only the fact that for the dynamic deadline
driven scheduler and from a schedulability point of view the synchronous case
is the worst case. But for the dynamic deadline driven scheduler the response
time of the first request of τi is not necessarily the worse, even for late deadline
systems as illustrated in the following example.

Example 4.12 Consider the system S = {τ1 = {C1 = 2, D1 = T1 = 4}, {C2 =
3, D2 = T2 = 7}}, the response time of the first requests of τ2 in the syn-
chronous case are respectively: 5, 5, 5, 6 (see Figure 4.5). ■

Theorem 4.8 is instrumental in proving the optimality of the deadline driven
scheduler in the late deadline case; the following proof is based on Liu and
Layland’s one; we have however lifted some lacks of precision.

4.4. OPTIMALITY 123

τi

? ? ?
ai

?

.

.

.

τj

? ?
bj

?

0 T

Figure 4.6: Overflow at time T .

Theorem 4.13 For a given set of n synchronous tasks with late deadlines, the
deadline driven scheduling algorithm is feasible (whatever the way to resolve
the ties) iff

∑n
i=1

Ci
Ti
≤ 1.

Proof inspired from [LL73] The necessity is trivial: a task set is certainly
not schedulable if the (long term) demand exceeds the available processor time
(i.e., if

∑n
i=1

Ci
Ti

> 1). To show the sufficiency, we assume that
∑n

i=1
Ci
Ti
≤ 1

and yet the scheduling is not feasible: there is an overflow at time T ; by
Theorem 4.8 there is no idle time in (0, T]. For each task τi, let us consider the
last request occurring strictly before time T ; among them, we may distinguish
two kinds of requests (see Figure 4.6): those with a deadline at T (occurring
at ai, i ∈ I1) and those with a deadline beyond T (occurring at bj, j ∈ I2).
Notice that I1 ∩ I2 = φ, I1 ∪ I2 = {1, . . . , n}, and I1 6= φ since the request(s)
missing its deadline at T belongs to I1. We shall consider two cases:

Case 1. None of the requests at bj for τj (j ∈ I2) has received any cpu unit

before T . In this case the scheduler had to serve
∑n

i=1

⌊

T
Ti

⌋

Ci cpu time units in

the interval [0, T) since
⌊

T
Ti

⌋

is the number of periods of τi completely included
in [0, T], the tasks in I1 have an exact number of periods in this interval, and
the ones in I2 did not use the cpu for their last incomplete period; since there
is no processor idle time before the overflow at T , we have

∑n
i=1

⌊

T
Ti

⌋

Ci > T ,

hence
∑n

i=1
Ci
Ti
≥

∑n
i=1

⌊

T
Ti

⌋

Ci
T > 1.

Case 2. Some of the computations requested at bj for τj (j ∈ I2) have received

124 CHAPTER 4. DYNAMIC SCHEDULERS

cpu units before T . We define T ′ as the time instant terminating the last time
unit in the interval [0, T) used by a request at bj for τj (j ∈ I2): T ′ < T since
at T − 1 the processor was used by a request with deadline T . In the interval
[T ′, T) the scheduler served only requests of task τi with i ∈ I1, and the requests
of τi (i ∈ I1) occurring strictly before T ′ are completed at T ′, since they have a
higher priority than the requests of τj at bj (j ∈ I2). Since an overflow occurs

at T , this demand exceeds the available cpu:
∑

i∈I1

⌊

T−T ′
Ti

⌋

Ci > T − T ′ (the
formula follows from the fact that for each task τi ∈ I1 a request corresponds
with T and we only have to consider periods entirely in the interval). Since
∑

i=1,...,n

⌊

T−T ′
Ti

⌋

Ci >
∑

i∈I1

⌊

T−T ′
Ti

⌋

Ci, we have that
∑n

i=1
Ci
Ti

> 1 for the same
reason as before. ■

Corollary 4.14 For a given set of n asynchronous tasks with late deadline,
the deadline driven scheduler algorithm is feasible (whatever the way to resolve
the ties) iff

∑n
i=1

Ci
Ti
≤ 1.

Proof. By Theorem 4.13 we have that if
∑n

i=1
Ci
Ti
≤ 1 the system is schedu-

lable in the synchronous case and by Theorem 4.11 this is also the case for all
asynchronous systems. ■

It may be noticed that in the case of the deadline driven scheduler, the con-
dition

∑n
i=1

Ci
Ti
≤ 1 is necessary and sufficient for the schedulability (of late

deadline systems), while for the static case it is only a necessary condition. It
follows immediately from Theorem 4.13 that the deadline driven scheduler is
strongly optimal in the late deadline case.

Corollary 4.15 The deadline driven scheduler is strongly optimal for asyn-
chronous and late deadline systems.

Proof. Immediately follows from Corollary 4.14. ■

We see that the strong optimality of the dynamic deadline driven scheduler
remains for asynchronous and late deadline systems. We shall also see in this
chapter that the strong optimality of the dynamic deadline driven scheduler
persists for asynchronous and general or arbitrary deadline systems, contrary
to what happened with the static deadline monotonic scheduler.

Liu and Layland have not considered the optimality in more general cases,
where the deadlines may be less or greater than the periods, nor the asyn-
chronous case. On the other hand Labetoulle has considered the case of
asynchronous and general deadline systems for the relative urgency algorithm
(ru) [Lab74a, Lab74b]. The ru algorithm is a scheduling algorithm defined for

4.4. OPTIMALITY 125

systems where the task characteristics are real numbers (i.e., Ti, Di, Ci, Oi ∈ R)
and the cpu allocation for the time instant t (t ∈ R) is a set of functions
{µi(t) ∈ R| 1 ≤ i ≤ n} which associate a real number µi(t) at time t for each
task τi, with the constraint 0 ≤

∑n
i=1 µi(t) ≤ 1, ∀t, where µi(t) is the fraction

of cpu instantaneously allocated to the task τi at the instant t. The relative
urgency algorithm is defined as follows: at each instant of time (t ∈ R) the
processor is allocated to the (one of) active task whose deadline is closest. We
shall not give more details here since the results of Labetoulle concern only
asynchronous and general deadline systems in a different computational model
than ours.

Dertouzos [Der74] has considered the optimality of the deadline driven sched-
uler in our computational model for asynchronous and general deadline sys-
tems; we shall extend this result to handle asynchronous arbitrary deadline
systems and to show the strong optimality of this rule. It may be noticed that
the strong optimality of the deadline driven scheduler for asynchronous and
arbitrary deadline systems follows from Lemma 4.2, we shall however present
an explicit proof which is instrumental to justify our simplified model of com-
putation.

Theorem 4.16 The deadline driven scheduler is strongly optimal for asyn-
chronous and arbitrary deadline systems.

Proof. Let us assume the existence of a scheduling algorithm A so that
the system is schedulable with it. Let σ be the feasible schedule produced by
the scheduler A on the system. We shall show that any schedule σ′ produced
by the deadline driven scheduler is also feasible. We shall show the following
property by induction on t: we can always transform the schedule σ in such
a way that in the interval [0, t) the resulting schedule σt is the same as σ′,
and σt remains feasible for the same task set. This is trivially true for t = 0.
Suppose the hypothesis holds for t. If σt(t) = σ′(t), we may take σt+1 = σt. If
σt(t) = 0 6= σ′(t) = (i, k), let e be the first instant after t such that σt(e) = (i, k)
(this instant exists since δk

i is started but not completed at time t in σt as in
σ′): we may take σt+1(t) = (i, k), σt+1(e) = 0 and σt+1 = σt elsewhere; σt+1

fulfills the requested condition. It is not possible to have σt(t) 6= 0 = σ′(t)
since σ′(t) = 0 means then there is no active request at t in σ′ as in σt (the
deadline driven scheduler is expedient). Suppose that a request of task τi (say
δk
i) is executing at time t in σt (i.e., σt(t) = (i, k)) while there is another

active request of task τj (say the request9 δk′
j) with a nearest (or the same)

deadline, executing in σ′ (i.e., σ′(t) = (j, k′)). Let di and dj be the deadlines
9Remark that for arbitrary deadline systems we can have j = i, but then k′ < k).

126 CHAPTER 4. DYNAMIC SCHEDULERS

of the requests δk
i and δk′

j , respectively; by definition we have: dj ≤ di. Notice
that the request δk′

j must be executing at least one time unit before time unit
dj, and consequently before time unit di, in σt. We can execute the request
δk′
j at time t (i.e., σt+1(t) = (j, k′)) and the request of δk

i at time ej (i.e.,
σt+1(ej) = (i, k)), where ej is the first time unit after time t in σt assigned
to the request δk′

j (this is a valid definition, since δk′
j is still active at time

t in σt+1, and ej < dj ≤ di). The resulting schedule (σt+1 = σt elsewhere)
remains feasible and in the interval [0, t + 1) the schedule is the one produced
by σ′. Consequently, the feasible schedule σ can be transformed into σ′, while
remaining feasible, and σ′ itself is feasible. ■

Notice that the optimality of the deadline driven scheduler holds even if we
consider schedules defined at time instants with a finer granularity than the
task characteristics (e.g., if the schedule changes occur at instants multiple of
1
m): in the proof of Theorem 4.16 we can replace the induction step of 1 by
an induction step of 1

m . Since the schedule produced by the deadline driven
scheduler changes at natural instants multiple of gcd{Oi, Ti, Ci} and since it
remains optimal even if we consider schedules with finer granularities, it follows
that (possibly through a time scaling) we can restrict our study to schedules
with value changes at natural time instants, with gcd{Oi, Ti, Ci} = 1. This
justifies the assumptions made in section 4.2 concerning our simplified model
of computation.

Theorem 4.13 and Theorem 4.16 show the (strong) optimality of the deadline
driven priority assignment, in the late deadline case for synchronous systems
and in the arbitrary deadline case for asynchronous systems, respectively. It
may be noticed that the optimality of the deadline driven scheduler holds for
asynchronous systems, contrary to the static priority assignment case where
the optimality of the rate/deadline monotonic priority assignment is only valid
in the synchronous case (see Chapter 2).

Notice however that it is not said that the deadline driven scheduler is the only
optimal dynamic priority rule: we shall see in section 4.9 that the least laxity
first algorithm is another strongly optimal priority rule.

4.5 Feasibility intervals

We shall now consider the feasibility problem, i.e., how to decide if a system
is feasible (or not). Since the deadline driven priority rule is optimal for the
various classes of periodic task sets considered in this work, we can restrict
this question by considering the schedulability of the system using the deadline
driven priority rule. Leung and Merrill [LM80] have “shown” that the schedule

4.5. FEASIBILITY INTERVALS 127

τ1

? ? ?? ? ? ?

0

1

3

1

5

1

6

1

9

1

10

1

. . .

τ2

? ? ?? ? ? ?

1

1

2

1

4

1

7

1

8

1

11

1

Figure 4.7: Non-periodic schedule using the deadline driven scheduler.

produced by the deadline driven scheduler is periodic and they have defined
a feasibility interval based on this property. However, this property is only
valid with an additional assumption concerning the way chosen to resolve the
ambiguities, which is not considered in their work and which is illustrated by
the following example.

Example 4.17 Consider the synchronous system τ1 = {T1 = D1 = 2, C1 =
1, O1 = 0}, τ2 = {T2 = D2 = 2, C2 = 1, O2 = 0}}: if we make no assumption
on the way chosen to resolve the ambiguities, it is possible to construct a non-
periodic (feasible) schedule using the deadline driven scheduler, as exhibited
in Figure 4.7; indeed, for any k, the kth request of τ1 and the kth request of τ2

have the same deadline, and the priority may be given to δk
2 only when k is

prime. ■

The problem arises from the fact that the way chosen here to resolve the ties
is not periodic. We shall then correct the results of Leung and Merrill, and in
particular the property which states that the schedule given by the deadline
driven scheduler is periodic with a period of P . For this reason we shall add
the (not too strong constraint) that the way chosen to resolve the ties is itself
periodic with a period of P ; we could be a bit more general however, and
assume that this period is a multiple of P (say k ·P) but this implies that the
period of the schedule would also be k ·P , while under our assumption we shall
show that the schedule has a period of P , as claimed by Leung and Merrill.
This is the case for instance if the way chosen to resolve the tie at any time
(say time t) depends only on the configuration of the requests at time t (i.e.,
on the quantities: (t− O1) mod T1, . . . , (t− On) mod Tn. More formally we
shall assume to have request-dependent scheduling rules.

First let us introduce the following notation: δk
i (t) � δh

j (t) which means that
the request δk

i has a higher priority than the request δk
j at time t. Of course,

a higher priority will only be effective if the two requests indeed compete, i.e.,
if there exists a time instant such that both requests are active.

128 CHAPTER 4. DYNAMIC SCHEDULERS

Definition 4.18 A scheduling rule is said to be request-dependent if ∀i, j, k, h:

δk+hi
i (t + P) � δh+hj

j (t + P) ⇔ δk
i (t) � δh

j (t)

with hi = P
Ti

and hj = P
Tj

. ■

For instance the deadline driven scheduler is request-dependent if we break the
tie (i.e., when Rk

i +Di = Rh
j +Dj) by giving a higher priority to the request with

the smaller index (i.e., min{i, j}). Remark that the previous definition consider
also situations where the relative priority between two requests changes with
time: δk

i (t) � δh
j (t) ; δk

i (t + 1) � δh
j (t + 1). This would occur for instance if

we break the ties by giving the highest priority to the oldest active request of
the first active task in the sequence τ(t mod n)+1, . . . , τ((t+n−1) mod n)+1. Remark
that the period of the schedule of this deadline driven scheduler is lcm{P, n}.
The results of Leung and Merrill concern the general deadline case and do not
remain valid for arbitrary deadlines, however. For this reason we shall first
consider their original (but corrected) results and we shall then consider the
extension to the arbitrary deadline case.

Some concepts were already defined for static scheduling algorithms; we shall
however replicate some of them for convenience and uniformity of the presenta-
tion. Notice also that some definitions have to be refined in the dynamic case,
in particular the functions σ(t) and εi(t). Indeed, some of the results from the
literature which we shall use and extend consider the evolution of the system
after deadline failures. This means that we must define rigorously the behavior
of the system whenever a request misses its deadline; remark that this is not
always done in the literature, even when results on these extended schedules
are presented (e.g., in [LM80, BRH90]). There are various ways to do so; we
shall consider a first kind of behavior for general deadline systems, and later
another one for arbitrary deadline ones (which may also be applied to general
and late deadlines as a special case). We first redefine the scheduling rule (and
consequently the function σ(t)) whenever a request (say δk

i) misses its deadline
at time (Rk

i + Di) thus: the execution of the system continues with the rule
given by deadline driven scheduler up to the next request, i.e., a request can
miss its deadline and remains active till its completion or till the next request
of it occurs (i.e., δk+1

i) at time Rk+1
i : at this instant the request δk

i is dropped
and the request δk+1

i becomes active. For convenience, let us call this kind of
schedule: partially extended schedule. From this new system behavior it follows
that the function εi(t), which gives the amount of processor time used by the
last request of τi in the interval [0, t), is defined ∀ t ≥ Oi, even if a request of τi

misses its deadline. Indeed, if the request δk
i misses its deadline, the function

εi(t) remains defined for t > Rk
i + Di, and εi(t) is growing till the next request

4.5. FEASIBILITY INTERVALS 129

of τi occurs (at time Rk+1
i): at this instant εi(Rk+1

i) = 0. Notice also that if a
schedule is feasible, it is identical to its partial extension.

Leung and Merrill have “shown” that in the dynamic case the first part of a
schedule may be neglected: we may consider only the schedule from its periodic
part, i.e., in steady state situation. This result is the dynamic version of a
result of Leung and Whitehead [LW82] for static schedulers (see Lemma 2.50).
However the property has to be completed, by assuming a request-dependent
scheduler.

Lemma 4.19 For any request-dependent deadline driven partially extended
scheduler applied to general deadline asynchronous periodic task sets, for each
task τi and instant t ≥ Oi, we have εi(t) ≥ εi(t + P) with P = lcm{Ti|i =
1, . . . , n}.

Proof inspired from [LM80] We prove the lemma by contradiction and
assume that there is some task τj and some time instant t1 ≥ Oj such that
εj(t1) < εj(t1 + P). Then there must be some time t′1 ∈ [Rh

j , t1), with h =
b t1−Oj

Tj
c+1, such that τj is active at both t′1 and t′2 = t′1+P , and τj is executing

at t′2 but not at t′1. This can only occur if there is another task τi (say the kth

request of τi), which is active at t′1 but not at t′2, such that δk
i (t′1) � δh

j (t′1).
But this means that εi(t′2) < εi(t′2) = Ci since δk+hi

i (t′2) � δh+hj
j (t′2) from the

request-dependency assumption, and repeating the above argument, we have
an infinite descending chain of time instants (t1 > t′1 > t′′1 > · · ·) contradicting
the fact that every task τi in the system has an initial request time Oi and the
time is discrete in our model of computation. ■

Definition 4.20 We define the configuration of the partially extended sched-
ule S at time t for the system R as

CS(R, t) = ((γ1(t), ε1(t)), . . . , (γn(t), εn(t)))

where

❑ γi(t) = (t − Oi) mod Ti is the time elapsed since the last request of τi,
if t ≥ Oi; γi(t) = t−Oi if t < Oi.

❑ εi(t) gives the amount of processor time used by the last request of τi in
the interval [0, t), if t ≥ Oi; εi(t) = 0 if t < Oi.

■

In particular, γi(0) = −Oi and εi(0) = εi(Oi) = 0.

130 CHAPTER 4. DYNAMIC SCHEDULERS

Lemma 4.21 The configuration of the partially extended schedule S at time
t+1 is univocally determined by the configuration at time t ≥ 0 for any request-
dependent scheduler.

Proof. Consider first the case of the quantities γi(t + 1):
If γi(t) < 0, then γi(t + 1) = γi(t) + 1
otherwise γi(t + 1) = (γi(t) + 1) mod Ti.

Before considering εi(t), let us first define, if t ≥ Oi (i.e., if γi(t) ≥ 0), Ωi(t) =
b t−Oi

Ti
c mod hi + 1; Ωi(t) is the rank (modulo hi = P

Ti
) of the last request of

τi before or at t; from the request-dependency assumption, the actual rank of
the request is not necessary to determine its priority: only the rank Ωi(t) is
needed; this quantity Ωi(t) is univocally determined by the configuration of
the partially extended schedule S at time t: if ∃γj(t) < 0, the current time
and consequently Ωi(t) can be determined (i.e, t = Oj + γj(t)); if γj(t) > 0 ∀j,
the current time can be determined (modulo P) from the Generalized Chinese
Remainder Theorem (and more particularly from its constructive proof, see
Yih-hing [Dic19, Mat81] and Knuth [Knu69], pp. 513, for details) and the
knowledge of the various γj(t)’s.

Consider now the quantities εi(t):
If γi(t + 1) = 0, then εi(t + 1) = 0 (i.e., a new request arrives).

Else-if εi(t) < Ci and γi(t) ≥ 0 (i.e., the last request of τi is active) and @j 6= i
such that εj(t) < Cj, γj(t) ≥ 0 and δΩj(t)

j (t) � δΩi(t)
i (t) (i.e., there is no higher

priority active request than δΩi(t)
i), εi(t + 1) = εi(t) + 1 (i.e., the request of τi

runs at time t).

Otherwise εi(t+1) = εi(t) (if τi is not executing at time t, εi(t+1) is unchanged).
■

Remark the improvement of the proof in comparison with the static situation
(see Lemma 2.46): here we consider partially extended schedules which lead
to some simplifications. It may also be noticed that deadline failures may be
detected while observing the successive configurations, but this may be a bit
complicated due to the partial extension: τi misses a deadline at time t if
εi(t) < Ci and γi(t) ≥ Di, or if γi(t) = 0, Di = Ti and εi(t − 1) < Ci − 1
or if γi(t) = 0, Di = Ti, εi(t − 1) = Ci − 1 and ∃j 6= i with εj(t − 1) < Cj,
γj(t− 1) ≥ 0 and δΩj(t−1)

j � δΩi(t−1)
i .

Lemma 4.22 Let S be a feasible schedule constructed by some request-dependent
deadline driven scheduler applied to a general deadline asynchronous peri-
odic task set R. Then CS(R, t1) = CS(R, t2), where t1 = Omax + P and
t2 = Omax + 2P .

4.5. FEASIBILITY INTERVALS 131

Proof inspired from [LM80] Suppose CS(R, t1) 6= CS(R, t2). First remark
that ∀i, γi(t1) = γi(t1 + P). From Lemma 4.19, there must be a task τj for
which εj(t1) > εj(t2) and εi(t1) ≥ εi(t2) for i = 1, . . . , n. We first show that the
schedule has no idle time slot in [t1, t2). Suppose there is an idle slot at time
t = t1 + δ, 0 ≤ δ < P . This implies that no task is active at that time: ∀i ∈
{1, . . . , n}, εi(t1 + δ) = Ci, its maximum value. By Lemma 4.19, we have that
CS(R, Omax+δ) = CS(R, t1+δ = Omax+δ+P) = ((γ1(t), C1), . . . , (γn(t), Cn)).
From Lemma 4.21 its follows that the schedules in the intervals [Omax+δ, t1+δ)
and [t1 + δ, t2 + δ) are identical. This means that CS(R, t1) = CS(R, t2), a
contradiction. Therefore, S has no empty time slot in [t1, t1 + P). At time t1,
there may be remaining demands to satisfy, amounting to

∑n
q=1(Cq−εq(t1)); at

time t1 + P , from Lemma 4.19 and the fact that εj(t1) > εj(t2), the remaining
demand:

∑n
q=1(Cq − εq(t1 + P)) is strictly larger. But the additional demand

in the interval (t1, t1 + P] is P · U , since in the interval (t1, t1 + P] there are
P
Tj

new requests of τj. In the interval (t1, t1 + P] the cpu availability is P ; it
follows that the additional demand is larger than P which implies that U > 1,
a contradiction with the feasibility of the schedule. ■

Theorem 4.23 (inspired from [LM80]) Let S be the schedule constructed
by some request-dependent deadline driven and partially extended scheduler
applied to a general deadline asynchronous periodic task set R. R is feasible iff
(1) all deadlines in the interval [0, Omax + 2P) are met and (2) CS(R, Omax +
P) = CS(R,Omax + 2P).

Proof.
(only if part). If R is feasible on a single processor, then any schedule S
constructed by the deadline driven scheduler must be a valid schedule. Hence,
all deadlines in the interval [0, t2) are met in S, and by Lemma 4.22 we have
CS(R, Omax + P) = CS(R,Omax + 2P).

(if part). For each nonnegative integer j, let us define tj as the time instant
Omax + j · P . For each j ≥ 2, the requests made by all tasks in R in the
interval [tj, tj+1] must be identical to those made in the interval [t1, t2]. Since
CS(R, t1) = CS(R, t2), from Lemma 4.21, the schedule S repeats every P time
units, starting from t1. Since all deadlines in the interval [0, t2) are met in S,
the deadlines of all task computations must also be met in S. Hence, R is
feasible on a single processor. ■

Theorem 4.23 uses two conditions; both of them are clearly necessary for the
feasibility of the system. The following example shows that condition (1) does
not imply condition (2).

Example 4.24 Consider the following system:

132 CHAPTER 4. DYNAMIC SCHEDULERS

τ1

? ? ?

60 2

3

5 7

3

10 11

2

τ2

? ? ?

3 4

2

8 9

2

Figure 4.8: Both conditions of Theorem 4.23 are necessary.

T D C O
τ1 4 4 3 0
τ2 4 4 2 2

We have P = 4, Omax = 2, t1 = 6 and t2 = 10; moreover, as illustrated in
Figure 4.8, all deadlines in interval [0, 10) are met; but CS(R, 6) 6= CS(R, 10),
since ε1(6) = 1 and ε1(10) = 0, and the system is not feasible. ■

Baruah, Howell and Rosier [BRH90] have shown that, if
∑n

i=1
Ci
Ti
≤ 1, the first

condition only needs to be considered; this can be shown with a reasoning simi-
lar to the one used in the proof of Lemma 4.22 (according to the new definitions
of the functions σ(t) and εi(t), i.e., for a partially extended schedule).

Lemma 4.25 Let S be a partially extended schedule of a general deadline pe-
riodic task system R constructed by a request-dependent deadline driven sched-
uler. If

∑n
i=1

Ci
Ti
≤ 1, then CS(R, t1) = CS(R, t2), where t1 = Omax + P and

t2 = t1 + P .

Proof inspired from [BRH90] Suppose CS(R, t1) 6= CS(R, t2). First
remark that ∀i, γi(t1) = γ(t1 + P). From Lemma 4.19, there must be a task τj

for which εj(t1) > εj(t2) and εi(t1) ≥ εi(t2) for i = 1, . . . , n. We first show that
the schedule has no idle time slot in [t1, t2). Suppose there is an idle slot at time
t = t1 + δ, 0 ≤ δ < P . This implies that no task is active at that time: ∀i ∈
{1, . . . , n}, εi(t1 + δ) = Ci, its maximum value. By Lemma 4.19, we have that
CS(R, Omax+δ) = CS(R, t1+δ = Omax+δ+P) = ((γ1(t), C1), . . . , (γn(t), Cn)).
From Lemma 4.21 its follows that the schedules are identical in the intervals
[Omax + δ, t1 + δ) and [t1 + δ, t2 + δ). This means that CS(R, t1) = CS(R, t2), a
contradiction. Therefore, S has no empty time slot in [t1, t1 + P). At time t1
there may be remaining demands to satisfy, amounting to

∑n
q=1(Cq−εq(t1)); at

time t1 +P the remaining demand is strictly larger:
∑n

q=1 Cq− εq(t1 +P). But
the additional demand in the interval (t1, t1 +P] is less than or equal to P ·U ,
since in the interval (t1, t1 + P] there are P

Tj
new requests of τj. In the interval

4.5. FEASIBILITY INTERVALS 133

τ1
? ?

0 1 4 5

τ2
? ?

2 3 6

Figure 4.9: If D2 < 6, or D2 = 6 and the tie is broken by giving a higher
priority to the request of τ1, the system is unschedulable.

(t1, t1 + P] the cpu availability is P , it follows that the additional demand is
larger than P which implies that U > 1, contradicting the hypothesis. ■

Notice that Lemma 4.25 holds whether or not the system is feasible, but we
use partially extended schedules.

It follows from Lemmata 4.25 and 4.23 that [0, Omax + 2P) is a feasibility
interval only if

∑n
i=1

Ci
Ti
≤ 1.

Corollary 4.26 For the deadline driven scheduler applied to general deadline
asynchronous periodic task sets, the system is feasible iff U ≤ 1 and all dead-
lines in the interval [0, Omax + 2P) are met.

Proof. Immediate from Lemmata 4.25, 4.23, 4.21 and Corollary 4.5. ■

We shall now extend the results of Leung and Merrill [LM80] and those of
Baruah, Howell and Rosier [BRH90] on the feasibility interval to asynchronous
systems with arbitrary deadlines. We consider systems where the deadline may
be larger than the period; in such systems several requests of the same task
may be active simultaneously.

We shall first examine the interest of the arbitrary deadline systems in com-
parison with general deadline systems; i.e., is it possible to obtain schedulable
sets by increasing the deadlines of unschedulable task sets?

There is no “interest” to modify the deadlines of a late deadline system, since if
such a system is not schedulable it follows from Theorem 4.13 that

∑n
i=1

Ci
Ti

> 1
and increasing/decreasing deadlines leaves the system unschedulable. Howev-
er arbitrary deadlines may have an interest in comparison with the general
deadline case.

Example 4.27 Consider the following synchronous general deadline system:
{τ1 = {T1 = 4, D1 = 2, C1 = 2, O1 = 0}, τ2 = {T2 = 6, D2 ≤ 6, C2 = 3, O2 =
0}}. We suppose that the value of D1 is fixed by the constraints of the system
(D1 = 2), but not D2. If we consider general deadlines (D2 ≤ 6), the system is
not schedulable (notice that a tie occurs if D2 = 6) as illustrated in Figures 4.9

134 CHAPTER 4. DYNAMIC SCHEDULERS

τ1
? ?

0 1

2

55 6

τ2
? ?

4 6

3

Figure 4.10: If D2 = 6 and the tie is broken by giving a higher priority to the
request of τ2, the system is also unschedulable (as predicted by Corollary 4.5).

and 4.10. This is not the case if we allow D2 to be larger than T2: for instance
if we choose D2 = 7, the system becomes schedulable (see Figure 4.11). ■

We now come back to the extension of the results on the feasibility intervals
for arbitrary deadline systems. In this framework we shall use another kind of
extension of the schedule in case of deadline failure. We redefine the scheduling
rule (and consequently the functions σ(t) and εk

i (t)) thus: whenever a request
(say δk

i) misses its deadline, the execution of the system continues and the
request δk

i remains active till its completion, whether or not new requests of
the same task occur; this is not tedious here, since we consider systems where
there may be several active requests of the same task at the same time. For
convenience, let us call this kind of schedule: extended schedules. Extended
schedules may also be applied to late or general deadline systems, but in case of
deadline failure(s) is may happen that many requests of a same task are active
simultaneously, contrary to what happened with partially extended schedules.
Remark that, if the system is feasible, the extended schedule is the same as
the normal one and the relation gi ≤

⌈

Di
Ti

⌉

still holds10, but for unfeasible
systems with U > 1, some gi are unbounded. It follows from this new system
behavior that the function εk

i (t) differs from its previous definition: εk
i (t) is the

amount of processor time used by the request δk
i in the interval [Rk

i , R
k
i + t),

whatever the period and the deadline; εk
i (t) is defined for any t (contrary to

the corresponding definition for static schedulers).

Lemma 4.19 may be generalized as follows.

Lemma 4.28 For any request-dependent deadline driven extended scheduler
applied to arbitrary deadline asynchronous periodic task sets, for each task τi,
for any instant t ≥ Oi and any k such that Rk

i ≤ t, we have εk
i (t) ≥ εk+hi

i (t+P),
with hi = P

Ti
.

Proof. We prove the lemma by contradiction and assume that there is some
first instant (the time is discrete in our model of computation) such that there

10gi is the maximal number of simultaneous active requests of τi in a feasible schedule.

4.5. FEASIBILITY INTERVALS 135

τ1
? ? ? ?

0 1 4 5 8 9 12 13

τ2
? ? ?

2 3 6 7 10 11

Figure 4.11: With arbitrary deadlines the system may be schedulable (from
time t = 12 the schedule repeats).

is some j, k, t ≥ Rk
j , with εk

j (t) < εk+hj
j (t + P). From the definition of εk

i (t) it
follows that εk

i (t) is a non-decreasing discrete step function with 0 ≤ εk
i (t) ≤ Ci.

The function increases at time instants where the corresponding request of
τi is executing, otherwise the function is constant. We have εk

i (R
k
i) = 0 =

εk+hi
i (Rk+hi

i). Then there must be some time Rk
j < t′ < t such that δk+hj

j is
executing at t′ + P while δk

j is not executing at time t′. This can only occur
if there is a task (say task τi, 1 ≤ i ≤ n, i = j is possible) with a request δk′

i

which is executing at time t′ while the request δk′+hi
i is not executing at t′+P ,

implying that the request δk′
i has a higher priority than δk

j (and δk′+hi
i has a

higher priority than δk+hj
j). But this means that εk′

i (t′) < εk′+hi
i (t′ + P) = Ci,

contradicting the fact that t is the first instant with this property. ■

We extend the definition of CS(R, t):,

Definition 4.29 We define the configuration of the extended schedule S at
time t for the system R as:

CS(R, t) = ((γ1(t), α1(t), β1(t)), . . . , (γn(t), αn(t), βn(t))).

where

❑ γi(t) is the time elapsed since the last request of τi, if t ≥ Oi; γi(t) = t−Oi

if t < Oi.

❑ αi(t) is the number of active requests of τi at time t.

❑ βi(t) is the amount of processor time used at time t by the oldest active
request of τi (if any). If αi(t) = 0, we define βi(t) = 0.

■

136 CHAPTER 4. DYNAMIC SCHEDULERS

In particular, γi(0) = −Oi; γi(Rk
i) = 0∀k; αi(0) = 1 if Oi = 0, 0 otherwise;

γi(t) < 0 ⇒ αi(t) = 0; αi(Oi) = 1; βi(0) = 0 = βi(Oi).

We present here a result very similar to Corollary 2.63 considered for static
schedulers; remark that in the present case the property holds even if the
system is unfeasible.

Lemma 4.30 Let S = {τi = {Oi, Ci, Di, Ti}|i = 1, · · · , n} be an asynchronous
arbitrary deadline system with the deadline driven scheduler. For each task τi,
for any instant t ≥ Oi, we have either (αi(t) < αi(t+P)) or [(αi(t) = αi(t+P))
and (βi(t) ≥ βi(t + P))].

Proof. If αi(t) = 0, then either αi(t + P) > 0 or αi(t + P) = 0 = βi(t +
P) = βi(t). Otherwise, αi(t) = ni(t) − mi(t) where ni(t) = #{k|Rk

i ≤ t} =
max{k|Rk

i ≤ t} is the number of requests of τi started till time t and mi(t) =
#{k|εk

i (t) = Ci} = max{k|εk
i (t) = Ci} is the number of completed requests

of τi till time t; ni(t + P) = ni(t) + hi and from Lemma 4.28 it occurs that
mi(t + P) ≤ mi(t) + hi, hence αi(t + P) ≥ αi(t); and if αi(t) = αi(t + P) then
mi(t+P) = mi(t)+hi and, βi(t) = εmi(t)+1

i (t) ≥ εmi(t)+1+hi
i (t+P) = βi(t+P).

■

Lemma 4.31 The configuration of the extended schedule S at time t+1 is uni-
vocally determined by the configuration at time t ≥ 0 for any request-dependent
scheduler.

Proof. This can be shown by considering the following algorithm which
computes CS(R, t+1) from CS(R, t), the task characteristics (i.e., Oi, Di, Ci, Ti)
and the rule used to break the ties.

∀i ∈ [1, n] Do
If γi(t) < 0 Then γi(t + 1) := γi(t) + 1; {one progresses to Oi}
Else γi(t + 1) := (γi(t) + 1) mod Ti;

{from Oi, γi(t) progresses cyclically}
EndIf
αi(t + 1) := αi(t);
βi(t + 1) := βi(t); {in general αi and βi are unchanged }
If (γi(t + 1) = 0) Then {a new request occurs at time t + 1}

αi(t + 1) := αi(t) + 1; {if αi(t) = 0, βi(t) = βi(t + 1) = 0 too}

4.5. FEASIBILITY INTERVALS 137

EndIf
Od
j := n + 1;
{in this algorithm the Ωi(t) = (b t−Oi

Ti
c − (αi(t) − 1)) mod hi + 1 is the rank

(modulo hi) of the oldest active request of τi (if any); it is univocally determined
by the configuration of the extended schedule S at time t.}
For p := 1 To n Do

If αp(t) > 0 and (j = n + 1 or δΩp(t)
p (t) � δΩj(t)

j (t)) Then
{from the request-dependency assumption the actual rank of the
requests is not necessary, only the rank Ωi(t) is sufficient }
j := p

EndIf
Od
If (j ≤ n) Then

βj(t + 1) := βj(t) + 1;
{execution of the request of τj during one time unit}
If (βj(t + 1) = Cj) Then

αj(t + 1) := αj(t)− 1; {the request becomes inactive}
βj(t + 1) := 0;

EndIf
EndIf ■

Remark the improvement of the proof in comparison with the static situation
(see Theorem 2.60): here we consider extended schedules, which lead to some
simplifications. Moreover, deadline failures may be easily detected from the
configuration: τi misses a deadline at time t (or before) if αi(t) > 0 and
(αi(t)−1)Ti+γi(t) ≥ Di. (Compare this with the partially extended schedule).

Now we have the material to extend Lemma 4.22.

Lemma 4.32 Let S be the feasible schedule constructed by a request-dependent
deadline driven scheduler applied to an arbitrary deadline asynchronous pe-
riodic task set R. Then CS(R, t1) = CS(R, t2), where t1 = Omax + P and
t2 = t1 + P .

Proof. Assume CS(R, t1) 6= CS(R, t1 + P). First remark that ∀i, γi(t1) =
γi(t1 + P). From Lemma 4.30 it follows that there is a number j such that
either (αj(t1) < αj(t1+P)) or [(αj(t1) = αj(t1+P)) and (βj(t1) > βj(t1+P))].
In both cases there must be a natural k such that: εk

j (t1) > εk+hj
j (t1 + P) and

εr
i (t) ≥ εr+hi

i (t + P) ∀i = 1, . . . , n,∀r : Rr
i ≤ t < Rr

i + Di. We first show that
the schedule has no idle time slot in [t1, t1 + P) (i.e., the cpu remains busy in
[t1, t1 + P)).

138 CHAPTER 4. DYNAMIC SCHEDULERS

Suppose there is some idle time slot at time t1 + δ, 0 ≤ δ < P . This implies
that no task request is active at that time; that is, for all i ∈ {1, . . . , n}, and
for all k such that Rk

i ≤ t1 + δ ≤ Rk
i + Di we have: εk

i (t1 + δ) = Ci. By
Lemma 4.28, the fact that γi(t) = γi(t + P)∀t ≥ Omax and αi(Omax + δ) =
αi(t1 + δ) = 0∀i, this implies CS(R, Omax + δ) = CS(R, t1 + δ). Hence, from
Lemma 4.31, the schedules in the intervals [Omax+δ, t1+δ) and [t1+δ, t1+P +δ)
are identical. This means that CS(R, t1) = CS(R, t1 + P), a contradiction.
Therefore, S has no idle time slot in [t1, t1 + P). At time t1 there may be
remaining demands to satisfy, amounting to

∑n
q=1(αq(t1) ·Cq−βq(t1)); at time

t1 + P , from Lemma 4.30 and the relations above, the remaining demand:
∑n

q=1(αq(t1 + P) · Cq − βq(t1 + P)) is larger. But the additional demand in
the interval [t1, t1 + P) is equal to P · U . In the interval [t1, t1 + P) the cpu
availability is P ; it follows that the additional demand is larger than P which
implies that U > 1, a contradiction with the feasibility of the schedule. ■

In the same way, the Theorem 4.23 can be extended to arbitrary deadline
systems.

Theorem 4.33 Let S be the extended schedule of a task system R constructed
by a request-dependent deadline driven scheduler applied to an asynchronous
and arbitrary deadline periodic task set. R is feasible iff (1) all deadlines in the
interval [0, Omax + 2P) are met in the schedule S, and (2) Cs(R, Omax + P) =
Cs(R,Omax + 2P).

Proof.
(only if part). If R is feasible on a single processor, then the schedule S
constructed by any deadline driven scheduler must be a valid schedule. Con-
sequently, all deadlines in the interval [0, Omax + 2P) are met in S, and, by
Lemma 4.32, we have Cs(R, Omax + P) = Cs(R,Omax + 2P).

(if part). Since Cs(R, t1) = Cs(R, t2), from Lemma 4.31, the schedule S repeats
every P units of time, starting from t1. Since all deadlines in the interval [0, t2)
are met in S, the deadlines of all task computations must also be met in S,
since deadline failures may be read from CS. Hence, R is feasible on a single
processor. ■

Both conditions of Theorem 4.33 are clearly necessary for the feasibility of
the system, The following example shows that condition (1) does not imply
condition (2).

Example 4.34 Consider the following system:

T D C O
τ1 4 4 2 0
τ2 4 7 3 2

4.5. FEASIBILITY INTERVALS 139

τ1

? ? ? ? ?

0 1

2

4 5

2

8 9

2

12 13

2

17 18

2

τ2

? ? ? ? ?

2 3

2

6

1

7

1

10 11

2

14 16

3

19 20

2

6

Figure 4.12: Both conditions of Theorem 4.33 are necessary for the feasibility
of the system.

We have P = 4, Omax = 2, t1 = 6 and t2 = 10; moreover as illustrated in
Figure 4.12, all deadlines in interval [0, 10) are met, but CS(R, 6) 6= CS(R, 10),
since ε1

2(6) = 2 and ε2
2(10) = 1. And τ2 misses its deadline at time 21. ■

Again, if
∑n

i=1
Ci
Ti
≤ 1, only the first condition needs to be considered; Lem-

ma 4.25 can be adapted for arbitrary deadline systems.

Lemma 4.35 Let S be the extended schedule constructed by a request-dependent
deadline driven scheduler applied to an arbitrary deadline asynchronous period-
ic task set R. If

∑n
i=1

Ci
Ti
≤ 1, then Cs(R, t) = Cs(R, t+P) when t = Omax+P .

Proof. Assume CS(R, t) 6= CS(R, t+P). As in the proof of Lemma 4.32, there
must be a task j and a natural k: εk

j (t) > εk+hj
j (t+P) and εr

i (t) ≥ εr+hi
i (t+P)

for 1 ≤ i ≤ n and Rr
i ≤ t. We first show that the schedule has no idle time slot

in [t, t+P) (i.e., the cpu remains busy in [t, t+P)). Suppose there is some idle
time slot at time t + δ, 0 ≤ δ < P . This implies that no task request is active
at that time; consequently CS(R, t+δ) = ((γ1(t+δ), 0, 0), . . . , (γn(t+δ), 0, 0)).
By Lemma 4.28, this implies CS(R,Omax + δ) = CS(R, t + δ). Hence, from
Lemma 4.31, it follows that in the intervals [Omax + δ, t + δ) and [t + δ, t +
P + δ) the schedules are identical. This means that CS(R, t) = CS(R, t+P), a
contradiction. Therefore, S has no idle time slot in [t, t + P). At time t1 there
may be remaining demands to satisfy, amounting to

∑n
q=1(αq(t1) ·Cq−βq(t1));

at time t1 + P , from Lemma 4.30 and the relations above, the remaining
demand:

∑n
q=1(αq(t1 + P) · Cq − βq(t1 + P)) is larger. But the additional

demand in the interval [t1, t1 + P) is equal to P ·U . In the interval [t1, t1 + P)
the cpu availability is P , it follows that the additional demand is larger than
P which implies that U > 1, a contradiction with the hypothesis. ■

It follows from Lemma 4.35 and Theorem 4.33 that [0, Omax+2P) is a feasibility
interval for asynchronous and arbitrary deadline systems only if U ≤ 1:

140 CHAPTER 4. DYNAMIC SCHEDULERS

Corollary 4.36 For the deadline driven scheduler applied to arbitrary dead-
line asynchronous periodic task sets, the system is feasible iff U ≤ 1 and all
deadlines in the interval [0, Omax + 2P) are met.

Proof. Immediately follows from Lemmata 4.35, and 4.31 and Corollary 4.5.
■

4.5.1 Synchronous systems

For synchronous and arbitrary deadline systems, feasibility intervals can be
improved: from Theorem 4.10, we know that we only need to check the feasi-
bility of the system from time t = 0 till the first idle processor point, i.e., in
the first busy period. This concept has already been exploited in the literature
for static priority schedulers [LL73, ABRT93, Leh90]. In section 2.4 we have
used a similar notion of level-i busy period for the feasibility of arbitrary dead-
line and static systems. Spuri [Spu96] has considered this notion for dynamic
priority schedulers and we shall consider this point in details in section 4.8.2.
Hence, we consider the schedule from time t = 0 to the first instant L > 0 such
that all requests started strictly before L have completed their processing be-
fore or at time L, which amounts to consider the static level-n busy period (see
Definition 2.34); consequently we have that L = λn (defined in section 2.4),
which can be computed by iteration from Theorem 2.40.

Theorem 4.37 The interval [0, L) is a feasibility interval for synchronous and
arbitrary deadline systems with the deadline driven scheduler.

Proof. Immediately follows from the fact that L is the first idle point in the
schedule of the system. Consequently, from Theorem 4.10 if no deadline was
missed before L the system is feasible. ■

We see here the interest of the Theorem 4.10 with respect to Theorem 4.8
(which consider idle points and idle time units, respectively) since the first
idle point occurs before (or at) the first idle time unit (if any), which gives a
better (i.e., smaller) feasibility interval. Moreover, Theorem 4.10 is applicable
if U = 1 while Theorem 4.8 is not applicable in this case. Remark that if
U > 1 Theorem 4.37 is correct but useless since in this case L = λn = ∞. On
the other hand, if U ≤ 1 we have from Lemma 2.38 that L = λn ≤ P .

4.6. RESPONSE TIMES 141

4.6 Response times

4.6.1 Introduction

We shall now extend the notion of the response time, and its computation, to
the deadline driven scheduler. We shall exploit it in section 4.7 for the feasibil-
ity problem; we shall show that, for synchronous and asynchronous systems,
the maximal time complexity of our computation based on the response time
notion (while remaining exponential for asynchronous systems), exhibits an
exponential improvement in comparison with previous results issued from the
literature.

For static priority assignments, the response time computation consists mainly
to determine the interference of higher priority tasks during the execution of a
request. With dynamic priority rules, it is meaningless to compare the priority
of tasks, since it changes with time. However, for the (dynamic priority) dead-
line driven scheduler, it is judicious to compare the priority of requests, which
only depends on the corresponding deadline and does not change11 with the
time. As usual, δk

i is the kth request (k = 1, 2, . . .) of task τi, which occurs at
time Rk

i = Oi +(k−1)Ti. The request δk
i has a higher priority than the request

δr
j if the deadline of δk

i occurs before the one of δr
j . When the deadlines are

equal, we break the tie by giving a higher priority to the request with the small-
er index (i.e., τh : h = min{i, j}). Remark that in this manner the scheduling
rule is request-dependent. Remark also that the relative priority between two
requests does not change with time: δk

i (t) � δh
j (t) ⇔ δk

i (t+1) � δh
j (t+1). For

this reason we shall omit t in our notation and consider the following definition:

Definition 4.38 The request δk
i has a higher priority than the request δr

j
(δk

i � δr
j) iff

{

Oi + (k − 1)Ti + Di ≤ Oj + (r − 1)Tj + Dj if i < j
Oi + (k − 1)Ti + Di < Oj + (r − 1)Tj + Dj otherwise

■

Of course, a higher priority will only be effective if the two requests indeed
compete, i.e., if there exists a time instant such that both requests are active.

Remark that if we choose another way to resolve the tie but the relative priority
between two requests does not change with time, it is always possible to re-
index the various tasks in order that the previous definition is valid, but this

11recall that this is a property of the deadline driven scheduler when there is no tie, and
a choice we made when there are ties.

142 CHAPTER 4. DYNAMIC SCHEDULERS

re-indexing may depend on the time. If we want to allow to change the priority
of a request δk

i with time, it will be possible to obtain a lower bound and an
upper bound for its response time by re-indexing the tasks in order to place τi

in the first (i = 1)) then in the last (i = n) position.

4.6.2 The response time of the first request in the syn-
chronous case

We shall first consider the simplified case of the response time of the first
request of a task in the synchronous case. As usual, this response time is the
smallest value r1

i such that r1
i is exactly equal to the total interference from

higher priority requests, plus the computation due to τi:

Theorem 4.39 Let γ = {τ1, . . . , τn} be a synchronous task set with arbitrary
deadlines; for our deadline driven scheduler, r1

i is the smallest solution (if it
is not greater than Di and the higher priority requests meet their deadline too,
or if we adopt the extended schedule) of the equation:

r1
i = Ci +

∑

j<i

W i
j (r

1
i)Cj +

∑

j>i

wi
j(r

1
i)Cj (4.1)

where

W i
j (ω) = min

(⌊

(Di + Tj −Dj)+

Tj

⌋

,
⌈

ω
Tj

⌉)

,

wi
j(ω) = min

(⌈

(Di −Dj)+

Tj

⌉

,
⌈

ω
Tj

⌉)

,

x+ = max{x, 0}.

Proof. We assume that either all requests of higher priority than δ1
i meet their

deadline and r1
i ≤ Di, or the extended schedule is considered. We compute the

interference of all higher priority requests in the interval [0, r1
i). We distinguish

between the requests with a lesser index (j < i, case (a)) and those with a
greater index (j > i, case (b)). It may be noticed that the other requests of τi,
(i.e., δk

i with k > 1) have a lower priority than δ1
i and do not interfere.

(a) W i
j (ω) is the number of requests of τj with a higher priority than the

first request of τi (j < i) which occur in the interval [0, ω). This number
is equal to the number of requests of τj which occur in the interval [0, ω)

4.6. RESPONSE TIMES 143

with a deadline less than or equal to Di. d ω
Tj
e denotes the number of

requests of τj in the interval [0, ω) and k =
⌊

(Di+Tj−Dj)+

Tj

⌋

denotes the
number of all requests of τj in the interval [0, Di) with a deadline less
than or equal to Di. Indeed k is the largest natural integer such that
(k − 1)Tj + Dj ≤ Di if Dj ≤ Di, k = 0 otherwise. The formula follows.

(b) wi
j(ω) is the number of requests of τj with a higher priority than the first

request of τi (j > i) which occur in the interval [0, ω). This number is
equal to the number of requests of τj which occur in the interval [0, ω)
with a deadline strictly less than Di. d ω

Tj
e denotes the number of requests

of τj in the interval [0, ω) and k =
⌈

(Di−Dj)+

Tj

⌉

denotes the number of all
requests of τj in the interval [0, Di) with a deadline strictly less than Di.
Indeed k is the largest natural integer such that k < Di−Dj+Tj

Tj
= 1+Di−Dj

Tj

if (Dj < Di), k = 0 otherwise. The formula follows.

If the interval r1
i is equal to the interference of higher requests than δ1

i plus the
computation time of τi (Ci) that means that the interval [0, r1

i) is fully utilized
and that δ1

i can complete its execution. The response time of δ1
i is the first

such instant. ■

Notice that, even if the system is not feasible (e.g., if U > 1) and we con-
sider the extended scheduling, r1

i is upper bounded12 since so are W i
j and wi

j;
consequently

r1
i ≤ Bi = Ci +

∑

j<i

⌊

(Di + Tj −Dj)+

Tj

⌋

Cj +
∑

j>i

⌈

(Di −Dj)+

Tj

⌉

Cj.

Remark that Theorem 4.39 is valid for synchronous systems with arbitrary
deadlines, and not only for late or general deadlines, since there is no previous
(active) request.

Equation (4.1) may have several solutions; for example, if we consider the fol-
lowing synchronous system:

C T D
τ1 1 2 2
τ2 1 4 4

12Recall that this is not the true for static priority schedulers: if C1 ≥ T1, r1
2 = ∞.

144 CHAPTER 4. DYNAMIC SCHEDULERS

τ1

? ? ?

0

1

2

1

4

1

τ2

? ?

1

1

Figure 4.13: Multiplicity of the solutions for Equation (4.1).

Equation (4.1) has 2 solutions: r1
2 = 2 and r1

2 = 3 (see Figure 4.13); only the
first one is relevant.

Notice that r1
i occurs on both sides of the Equation (4.1). The minimal value

for r1
i can be found by iteration:

{

z0 = Ci

zk+1 = Ci +
∑

j<i W
i
j (zk)Cj +

∑

j>i w
i
j(zk)Cj

The iteration is growing and proceeds until zk+1 = zk = r1
i . If we do not

consider the extended scheduling, the iteration may be stopped if zk exceeds
Di because τi is then deemed unschedulable. Hence the maximal number of
iterations is b Di−Ci

minj 6=i Cj
c+1. Like in the static case, it is not difficult to see that

this maximal number of iterations is very pessimistic, in practice the number
of iterations is by far lower since the iterative process can stop with wk < Di

and wk can be increased by several Cj’s (and not necessarily the minimal one).
We shall see experimental results concerning the exact number of iterations in
sections 4.6.4 and 4.6.6, for more general cases of response time computations.

But the iteration also converges if we do not stop the system on the first
deadline failure, i.e., with extended schedules, since W i

j and wi
j are upper

bounded: with the same remark as above on the pessimistic nature of this
bound, the maximal number of iterations is b Bi−Ci

minj 6=i Cj
c+ 1.

Theorem 4.40 The iteration converges.

4.6. RESPONSE TIMES 145

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350 400 450 500 550

individuals

L

Figure 4.14: Frequency of the value L

Proof. We only need to show that the successive approximations zk to ri are
monotonically increasing. By induction, we have that:

zk > zk−1 ⇒ zk+1 > zk

if zk > zk−1 then

zk+1 = Ci +
∑

j<i

W i
j (zk)Cj +

∑

j>i

wi
j(zk)Cj

> Ci +
∑

j<i

W i
j (zk−1)Cj +

∑

j>i

wi
j(zk−1)Cj = zk,

since in an interval of length zk the number of requests which occur in this
interval with deadline less than (or equal to) Di increases monotonically with
the length of the interval. The property then results from the fact that z0 =
Ci ≤ z1. ■

Theorem 4.41 The iteration converges to the minimal solution

Proof. We shall show by induction on k that z0 < z1 < · · · < zk =⇒
r1
i ≥ zk. The property is true initially: Ci = z0 < Ci +

∑

j<i W
i
j (Ci)Cj +

∑

j>i w
i
j(Ci)Cj = z1 =⇒ r1

i ≥ z1. Suppose that the property is true up to k
and we have z0 < z1 < · · · < zk < zk+1; by induction hypothesis r1

i ≥ zk.

146 CHAPTER 4. DYNAMIC SCHEDULERS

0

50

100

150

200

250

300

350

400

450

500

550

0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

individuals

P

Figure 4.15: Frequency of the value P .

As a consequence, r1
i is at least equal to Ci plus the interference of higher

priority requests in the interval [0, zk). In other words, we have that r1
i ≥

Ci +
∑

j<i W
i
j (zk)Cj +

∑

j>i w
i
j(zk)Cj. ■

It may be noticed that, from a schedulability point of view, the response time
of the first request of τi in the synchronous case is less instructive than the one
for static schedulers. We have shown in Chapter 3 that this response time is the
worst case for static schedulers with general deadlines. From a schedulability
point of view this property is important since the system is then schedulable
iff r1

i ≤ Di for i = 1, . . . , n. We have shown in Example 4.12 that this property
does not hold for the deadline driven scheduler.

We have considered first this case for its potential simplifications and for di-
dactic purposes, not for its practical interest.

In the current state of our knowledge there is no polynomial time algorithm for
the feasibility of synchronous and general (or arbitrary) deadline systems with
the deadline driven scheduler. We propose to consider all response times in
the interval [0, L), according to Theorem 4.10, i.e., by considering the system
from time 0 until the first idle point (beside 0). But in the “worst case”
(i.e., if the utilization factor is 1 and the system is schedulable) we have to
consider an interval of length L = P = lcm{Ti|i = 1, . . . , n}, which may grow
exponentially with the number n of tasks. Remark that in practical cases
(even if the utilization factor is near 1) the bound P is very pessimistic and

4.6. RESPONSE TIMES 147

0

500

1000

1500

2000

2500

3000

3500

0 2e-06 4e-06 6e-06 8e-06 1e-05

individuals

ratio

Figure 4.16: Frequency of the ratio L
P .

0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

7e-06

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
P

U

Figure 4.17: The average ratio L
P in function of U .

148 CHAPTER 4. DYNAMIC SCHEDULERS

L is significantly smaller. In order to illustrate the fact that the bound P is
very pessimistic for L, we shall consider these values on randomly chosen late
deadline task sets for n = 20, the periods are randomly chosen in [50, 100],
and the computation times are chosen in order to have utilization factors in
the interval [0.3, 1); the systems are not necessarily feasible but the extended
schedules are considered. As usual we shall first consider the distributions of
these variables; Figures 4.14 and 4.15 show the distributions of the values L
and P , respectively, for systems where the utilization factor U ∈ [0.85, 0.95].
Figure 4.16 shows the distribution of the ratio L

P (it may be noticed that the
minimal value for P in our simulations is near 106). It seems again judicious
to consider the average of the distributions; remark that we have observed
the same behavior for other variation domains of U . Figure 4.17 shows the
average ratio L

P in function of the utilization factor: it increases with U and
but remains less than 7·10−6 (for U ≤ 0.95), exhibiting the fact that the bound
P is very pessimistic for L, even if U is near 1. It could be also interesting
to study the ratio L

P in the neighborhood of 1, but this question remains for
further research.

The situation is less attractive in comparison with static priority schedulers,
however. In the next section we shall extend the formulas for the computation
of the kth request of a task. We shall show that the maximal time complexity
of our feasibility check based on the response time notion, while remaining
exponential, exhibits an exponential improvement in comparison with previous
results issued from the literature.

4.6.3 Response time of the kth request in asynchronous
and general deadline systems

We have seen in section 4.5 that the feasibility interval for general deadline
systems (synchronous and asynchronous cases) contains many requests of the
task set, more precisely the length of the interval is proportional to L and to P
for synchronous and asynchronous system, respectively. Hence the interest of
the general response time computation, i.e., the response time ρk

i for the kth re-
quest of task τi for synchronous or asynchronous systems. Again, the response
time for the kth request of τi is the smallest value ρk

i such that ρk
i is equal to

the total interference from higher priority requests, plus the computation due
to τi:

Theorem 4.42 Let γ = {τ1, . . . , τn} be an asynchronous task set with general
deadlines; for our deadline driven scheduler, ρk

i is the smallest solution of the
equation:

4.6. RESPONSE TIMES 149

ρk
i = Ci + πz +

∑

j 6=i

nj · Cj

where

Rp
j = Oj + (p− 1)Tj

mj =

{ ⌈

Rk
i−Oj

Tj

⌉

if Oj < Rk
i

1 otherwise

πj =

(Rmj
j + ρmj

j −Rk
i)

+ if j > 0 and Rmj
j < Rk

i < Rmj
j + Dj

and δmj
j � δk

i
0 otherwise

z =
{

0 if πj = 0 ∀ j
p : πp = max{πj|πj > 0} otherwise

m̂j =
⌈

(Rk
i + πz −Oj)+

Tj

⌉

m̃j =

m̂j if m̂j > 0 and z 6= 0 and δ bmj
j ≺ δmz

z and R bmj
j ≥ Rk

i

m̂j + 1 otherwise

nj =

min
(⌈

(Rk
i +ρk

i−R
emj
j)+

Tj

⌉

,
⌊

(Rk
i +Di−R

emj
j +Tj−Dj)+

Tj

⌋)

if j < i

min
(⌈

(Rk
i +ρk

i−R
emj
j)+

Tj

⌉

,
⌈

(Rk
i +Di−R

emj
j −Dj)+

Tj

⌉)

otherwise

x+ = max{x, 0}.

Proof. We assume that all higher priority requests than δk
i meet their dead-

line. We cannot consider here partially extended schedules, since they some-
times drop requests before satisfaction and this is not taken into account in the
present formulas. The case of extended schedules will be taken into account
in section 4.6.5 with arbitrary deadline systems since then we may have many
requests of a same task which are simultaneously active, even with general
deadlines.

Rp
j denotes the arrival time of the pth request for τj. The interference from

higher priority requests can be computed from the response time of some higher
priority requests (so that the formula may be recursive). For a task τj (with
j 6= i), we only have to consider the requests from the mth

j , the last one that

150 CHAPTER 4. DYNAMIC SCHEDULERS

τj

?
� πj -

R
mj
j

ρ
mj
j

τi

?

Rk
i

ρk
i

Figure 4.18: Interference of requests which occur strictly before time Rk
i .

precedes strictly Rk
i (see Figure 4.18) if any, i.e., if Oj < Rk

i , otherwise we take
mj = 1 and consider the requests from the first one.

Indeed the requests of τj that occur before the mth
j , if any, are completed before

time Rk
i and have no direct13 interference on the response time ρk

i . It is easy
to see that mj =

⌈

Rk
i−Oj

Tj

⌉

if Oj < Rk
i ; otherwise mj = 1, hence the formula

above. The kth request of τi may be directly delayed by a part (or all) of the
mth

j request of τj if Rmj
j < Rk

i , Rmj
j +Dj > Rk

i , the corresponding response time
ρmj

j is greater than Rk
i −Rmj

j and the request δmj
j has a higher priority than δk

i

(δmj
j � δk

i). The interference is then equal to πj = Rmj
j +ρmj

j −Rk
i . Suppose that

two such requests of higher priority (say δma
a � δmb

b � δk
i) have an interference

in the response time of the kth request of τi; in that case the interference of
the higher priority one is included in the interference of the lower one: since at
time Rk

i both requests are active, the request δmb
b ends its execution after the

request δma
a . Hence, πb > πa > 0 and the total interference of all requests which

precede strictly δk
i is equal to πz = max{πj|j 6= i and πj > 0} (z = 0 = π0 if

no request occurring strictly before time Rk
i delays the kth request of τi; notice

also that πi = 0).

Let us consider now the interference of requests which occur after or at time
Rk

i . For each task τj (j 6= i) we have to consider the requests from the m̃th
j ,

i.e., the first one which is not included in the term πz. Let m̂j denote the rank
of the last request of τj which occurs strictly before Rk

i + πz (m̂j = 0 if no

request occurs before this time); it can be seen that m̂j =
⌈

(Rk
i +πz−Oj)+

Tj

⌉

. We

have to distinguish four cases: (i) πz = 0, (ii) m̂j = 0, (iii) the request δ bmj
j

has a higher priority than δmz
z , or is δmz

z , and (iv) the request δ bmj
j has a lower

priority than δmz
z .

(i) If πz = 0, we have to consider the requests from the rank m̂j + 1, i.e.,
13They may have an indirect interference, by delaying a request with priority between it

and δk
i which is not finished at Rk

i .

4.6. RESPONSE TIMES 151

τj
? ? ?ρ

mj
j ρ

cmj
j ρ

fmj
j

τz
?

Rmz
z Rk

i + πz

ρmz
z

τl

? ?ρ
ml
l ρ

cml
l

τr
?ρcmr

r ?ρfmr
r

τi

?

Rk
i

ρk
i

Figure 4.19: Interference of requests which occur after (or at) time Rk
i .

from the first one which occurs after or at Rk
i .

(ii) If πz 6= 0 and m̂j = 0, we have to consider the requests from the first one
and consequently m̃j = m̂j + 1 = 1.

(iii) In this case, all requests of τj up to δ bmj
j have a higher priority than δmz

z ,
or is δmz

z , and were already considered in the term πz (or were terminated
so early that they have no direct impact on πz nor on ρk

i); hence we have
to consider the requests from the next one, i.e., m̃j = m̂j + 1 (this is the
case of the request δ bmj

j in Figure 4.19).

(iv) In this case, we have to distinguish two sub-cases: (iva) the request δ bmj
j

occurs strictly before time Rk
i or (ivb) after or at Rk

i .

(a) In this case we have necessarily that πj = 0 (otherwise πj > πz

and the latter would not be maximal) and we have to consider the
requests from the rank m̂j + 1 (this is the case of the request δ bmr

r in
Figure 4.19).

(b) The interference of this request is not included in the term πz, nothing
has been executed for it before Rk

i +πz (this is the case of the request
δ bml
l in Figure 4.19) and we must consider the request of τj from rank

m̃j = m̂j. This is the only case where m̃j 6= m̂j +1, hence the formula
above.

nj denotes the number of higher priority requests (than δk
i) of τj which occur

in the interval [R emj
j , Rk

i + ρk
i).

152 CHAPTER 4. DYNAMIC SCHEDULERS

If j < i we have to consider the number of requests of τj which occur in the in-

terval [R emj
j , Rk

i +ρk
i) with a deadline before or at time Rk

i +Di;
⌈

(Rk
i +ρk

i−R
emj
j)+

Tj

⌉

denotes the number of requests of τj in the interval [R emj
j , Rk

i + ρk
i) and x =

⌊

(Rk
i +Di−R

emj
j +Tj−Dj)+

Tj

⌋

denotes the number of requests of τj from R emj
j with a

deadline less than or equal to Rk
i + Di. Indeed x is the largest natural integer

such that R emj
j +(x− 1)Tj +Dj ≤ Rk

i +Di if R emj
j +Dj ≤ Rk

i +Di, 0 otherwise;
hence the formula.

If j > i we have to consider the number of requests of τj which occur in
the interval [R emj

j , Rk
i + ρk

i) with a deadline strictly before time Rk
i + Di;

⌈

(Rk
i +ρk

i−R
emj
j)+

Tj

⌉

denotes the number of requests of τj in the interval [R emj
j , Rk

i +

ρk
i) and x =

⌈

(Rk
i +Di−R

emj
j −Dj)+

Tj

⌉

denotes the number of requests of τj from

R emj
j with a deadline strictly less than Rk

i +Di. Indeed, x is the largest natural
integer such that R emj

j + (x− 1)Tj + Dj < Rk
i + Di if R emj

j + Dj < Rk
i + Di, 0

otherwise; hence the formula.

We have shown that the interference of higher priority tasks than τi in the
interval [Rk

i , R
k
i + ρk

i) plus the computation of τi is

I(ρk
i) = Ci + πz +

∑

j 6=i

nj · Cj.

The kth request of τi ends its computation at the first instant Rk
i + ρk

i such
that the equality is satisfied: ρk

i = I(ρk
i). ■

4.6.4 Computation of ρk
i

In the same way than in sections 3.3.1 and 3.7.1 we shall here present several
methods for the computation of ρk

i . Again the computation can be divided
into two parts: the computation of the term πz (and the related numbers:
ρmj

j , z, m̃j) and the computation of the lowest solution of the equation:

ρk
i = Ci + πz +

∑

j 6=i

nj · Cj.

The second part of the computation can be resolved by an iterative process.

4.6. RESPONSE TIMES 153

w0 = Ci + πz,

wk+1 = Ci + πz +
∑

j 6=i

nj · Cj.

Theorem 4.43 The number of iterations of the iterative process for the com-
putation of ρk

i is bounded by b (Di−Ci−πz)+

minj 6=i Cj
c+ 1.

Proof. The property follows from the fact that w0 = Ci + πz, the process
stops in the worst case when wk−1 ≤ Di and wk > Di, and at each iteration
wk is increased by at least Cj time units for at least one request of τj, unless
the solution has been reached. ■

Experimental results (similar to the one exhibited in sections 3.3.1 and 3.7.1,
including the analysis of distributions) show that the actual number of itera-
tions represents 4 % of the bound given by Theorem 4.43; again the bound is
very pessimistic and the iterative process converges much more quickly. We
have not distinguished in this study feasible and unfeasible systems; it could
be interesting however to consider feasible and unfeasible systems separately,
but this question remains open for further research, together with the reason
why the acceleration ratio seems so stable (it does not depend much on n in
our experiments).

We consider now the computation of the term πz. Method 1, already defined
for static priority schedulers, which computes recursively ρk

i (the recursive
function f(i, k) can be adapted here). The time complexity and in particular
the total number of calls is quite different, however, since each response time
depends on n − 1 other response times in the general case, and the recursion
stops in the worst case with the computation of the response time of the first
request of the system, i.e., ρ1

j such that Oj = 0.

We shall now estimate the maximal time complexity of the computation of
ρk

i using method 1; the following theorem gives an upper bound for this time
complexity.

Theorem 4.44 The maximal time complexity of the computation of ρk
i using

method 1 is O((n−1)Rk
i +1

n · γ), where γ = (max{Dj−Cj |j=1,...,n}
min{Cj |j=1,...,n} × n).

Proof. We shall count the maximal number of calls of the function f() induced
by the function f(i, k). This number of calls (sayQ()) can be defined recursive-
ly: Q(0) = 0 (no request occurs before time 0), Q(u = Rk

i) =
∑

j 6=i(1 +Q(u−

154 CHAPTER 4. DYNAMIC SCHEDULERS

1)) = (n−1)(1+Q(u−1)) when (u ≥ 1); the first term corresponds to the direct
calls of the functions f(1,m1), . . . , f(i − 1,mi−1), f(i + 1,mi+1), . . . , f(n,mn)
and the second term corresponds to the numbers of recursive calls induced by
the latter, which in the worst case occur at time Rk

i − 1 (this is rather pes-
simistic, of course, and this scenario cannot repeat at each step, but we are only
interested here by an upper bound for the number of calls of the function f()).
We shall show by induction on u, that Q(u) =

∑u
r=1(n − 1)r ≈ (n−1)r+1

n . The
property is true in the trivial case Q(0) = 0. Suppose the property true till in-
dex u and considerQ(u+1). By definitionQ(u+1) = (n−1)(1+Q(u)) and from
the induction hypothesis Q(u+1) = (n−1)(1+

∑u
r=0(n−1)r) =

∑u+1
r=1(n−1)r.

Consequently, the maximal time complexity of the computation of ρk
i using

method 1 is Q(Rk
i) ·γ, where γ is the maximal time complexity of the iterative

process. ■

It may be noticed that the actual number of recursive calls is by far less than
∑Rk

i
r=1(n − 1)r since in the average case the previous request of τj occurs Tj

2
time units before (and, more marginally, some of the f(j, mj)’s do not have
to be computed, if it is sure that they have no impact when the deadlines are
fulfilled). Nevertheless, the total number of recursive calls remains unreason-
able to handle “real size” problems. The maximal space complexity of the
computation of ρk

i using method 1 is O(Rk
i) = O(k), since the recursion stops

in the worst case with the computation of ρ1
j such that Oj = 0. Method 1 is

not suited to handle “real size” problems: the interest of this method (and its
implementation) lies in the “verification” of our formulas.

Method 2 consists to compute all response times of requests occurring in the
interval [0, Rk

i) (before applying the iterative process) by increasing values of
their arrival time. In this way, whenever the method computes a response
time (say ρr

p) all ρmj
j needed are already computed (since we need ρmj

j if Rmj
j <

Rr
p < Rmj

j + Dj and δmj
j � δk

p), for this reason we have at each instant only
to know the response time of the last request of τj (j 6= i), if any, so that
the recursive aspect of the formulas is not a drawback (but we need to store
n previously computed response times). Consequently, the maximal space
complexity of the method 2 for the computation of ρk

i is O(n). The maximal
time complexity is

∑n
j=1

⌈

Rk
i

Tj

⌉

· γ, or simply γ if we consider that this method
will be used in the analysis of a feasibility interval [0, X], so that the previous
response time computations were due anyway (and that the corresponding
requests met their deadline). Method 2 can be improved in some situations:
for Rk

i sufficiently large (i.e., from Rk
i > Omax +2P), the schedule and then the

response times repeat from time Omax + P ; hence in the worst case we have
to compute

∑n
j=1b

Omax+P
Tj

c response times to reach the periodic part of the

4.6. RESPONSE TIMES 155

schedule and
∑n

j=1
P
Tj

to compute the response times ρkj
j corresponding to ρmj

j

(i.e., kj = min{k|k = mj mod P
Tj

and Rk
j ≥ Omax + P). The maximal time

complexity of the computation of ρk
i using method 2 is then

∑n
j=1b

Omax+2P
Tj

c·γ.

Method 3 cannot be applied efficiently here: the computation of the term πz

needs in general the value of n− 1 other response times. It is possible however
that such a request (say δmj

j) does not have an impact on ρk
i but, in general,

answering this question requires the value of πj, in other words the value of
ρmj

j . Again, in this case, method 3 amounts to method 2.

4.6.5 Response time of the kth request in asynchronous
and arbitrary deadline systems

We shall now consider the more general response time computation: the re-
sponse time of the kth request in asynchronous and arbitrary deadline systems
for our dynamic deadline driven scheduler. The Theorem 4.42 does not hold
in this more general case: for arbitrary deadline systems, we have to consider
several requests of τj since several requests of the same task may be active at
the same time, including previous requests of task τi. Remark that we may
perform the computations either while assuming that the previous requests
met their deadline, or with the extended schedules defined on page 133.

τj
? � πj -

R
mj
j

ρ
mj
j

D
mj
j

τj
?

R
mj+1
j

ρ
mj+1
j

D
mj+1
j

τi

?

Rk
i

ρk
i

Dk
i

Figure 4.20: Interference of requests which occur strictly before time Rk
i .

Theorem 4.45 Let γ = {τ1, . . . , τn} be an asynchronous task set with arbi-
trary deadlines, for our deadline driven scheduler, ρk

i is the smallest solution
of the equation:

ρk
i = Ci + πz +

∑

j 6=i

nj · Cj

156 CHAPTER 4. DYNAMIC SCHEDULERS

where

Rp
j = Oj + (p− 1)Tj

mj =

min
{⌈

Rk
i−Oj

Tj

⌉

,
⌊

Rk
i +Di+Tj−Oj−Dj

Tj

⌋}

if (j < i) ∧ (Oj < Rk
i)

∧(δ1
j � δk

i)

min
{⌈

Rk
i−Oj

Tj

⌉

,
⌈

Rk
i +Di−Oj−Dj

Tj

⌉}

if (j ≥ i) ∧ (Oj < Rk
i)

∧(δ1
j � δk

i)
0 otherwise

πj =

(Rmj
j + ρmj

j −Rk
i)

+ if j > 0 ∧mj > 0
(∧Rmj

j + Dj > Rk
i

if feasibility is assumed)
0 otherwise

z =
{

0 if πj = 0 ∀ j
p : πp = max{πj|πj > 0} otherwise

m̃j =

max
{⌊

(Rk
i−Oj)+

Tj

⌋

+ 1,

min
{⌊

(Rk
i +πz−Oj)+

Tj

⌋

+ 1,
⌊

Rmz
z +Dz−Oj−Dj+Tj

Tj

⌋

+ 1
}}

if j < i

max
{⌊

(Rk
i−Oj)+

Tj

⌋

+ 1,

min
{⌊

(Rk
i +πz−Oj)+

Tj

⌋

+ 1,
⌈

Rmz
z +Dz−Oj−Dj+Tj

Tj

⌉}}

otherwise

nj =

min
(⌈

(Rk
i +ρk

i−R
emj
j)+

Tj

⌉

,
⌊

(Rk
i +Di−R

emj
j +Tj−Dj)+

Tj

⌋)

if j < i

min
(⌈

(Rk
i +ρk

i−R
emj
j)+

Tj

⌉

,
⌈

(Rk
i +Di−R

emj
j −Dj)+

Tj

⌉)

otherwise

x+ = max{x, 0}.

Proof. We may assume that all higher priority requests than δk
i meet their

deadlines, but this is not essential here: we may consider instead the extended
schedules with soft deadlines introduced before. Rp

j denotes the arrival time
of the pth request for τj. The interference of higher priority requests can be
computed from the response time of some higher priority requests (so that the
formula may be recursive).

For a task τj (with 1 ≤ j ≤ n), we only have to consider the requests from the
mth

j , the last one occurring strictly before Rk
i (see Figure 4.20) with a higher

priority than δk
i , if any, (i.e., if Oj < Rk

i and δ1
j � δk

i), otherwise we take
mj = 0.

4.6. RESPONSE TIMES 157

Indeed, the interference of δr
j for r < mj, if any, is included in ρmj

j since
Rr

j < Rmj
j and δr

j � δmj
j . Let us assume that Oj < Rk

i and δ1
j � δk

i : in this case
mj = max{q|(Rq

j < Rk
i) and δq

j � δk
i)}. The rank (say x) of the last request of

τj which occurs strictly before time Rk
i is x =

⌈

Rk
i−Oj

Tj

⌉

. If j ≤ i, the rank (say

y) of the last request of τj with a higher priority than δk
i is the largest natural

integer such that (y − 1)Tj + Oj + Dj ≤ Rk
i + Di, i.e., y =

⌊

Rk
i +Di+Tj−Oj−Dj

Tj

⌋

.
If j > i, the rank (say y) of the last request of τj with a higher priority than
δk
i is the largest natural integer such that (y− 1)Tj + Oj + Dj < Rk

i + Di, i.e.,

y =
⌈

Rk
i +Di−Oj−Dj

Tj

⌉

. Hence the formulas above.

The interference of the request δmj
j (if mj > 0) is equal to πj = (Rmj

j + ρmj
j −

Rk
i)

+. We may save this computation if feasibility is assumed and Rmj
j +Dj ≤

Rk
i . Remark that, in arbitrary deadline systems, it is not relevant to consider

only the previous request of τj (with respect to δk
i) since this request may have

a lower priority than δk
i and consequently no impact on ρk

i while a previous
request of τj may be active at time Rk

i with a higher priority than δk
i (this is

the case in Figure 4.20, where Dp
r denotes the deadline of the pth request of τr:

ρmj
j has an impact on ρk

i while ρmj+1
j has no impact and Rmj

j < Rmj+1
j < Rk

i).
Remark also that mi = k−1 and, here, the mth

i request of task τi may have an
interference on ρk

i ; it follows that the term πi must be considered. Suppose that
two such requests of higher priority (say δma

a � δmb
b � δk

i) have an interference
in the response time of the kth request of τi; in that case the interference of
the higher priority one is included in the interference of the lower one: since
at time Rk

i both requests are active, the request δmb
b ends its execution after

the request δma
a . Hence, πb > πa > 0 and the total interference of all requests

which precede strictly the kth request of τi is equal to πz = max{πj|πj > 0}
(z = 0 = πz if no request occurring strictly before time Rk

i delays the kth

request of τi).

Let us now consider the requests of τj from the first one, say the m̃th
j , whose

impact is not included in the term πz. We have R emj
j ≥ Rk

i since a request
occurring strictly before Rk

i either is completed before Rk
i or is included in the

term πz, or has a lower priority than δk
i and has no impact. We may assume

j 6= i since the next request of τi from Rk
i is δk

i itself, and the following ones
have a lower priority. If πz = 0, there is no other constraint and m̃j = x1 =
⌊

(Rk
i−Oj)+

Tj

⌋

+1 is the rank of the first request of τj after or at Rk
i . If πz 6= 0 6= z,

m̃j ≤ x2 =
⌊

(Rk
i +πz−Oj)+

Tj

⌋

+ 1, the rank of the first request of τj after or at

Rk
i + πz. But if between δx1

j and δx2
j there are requests with a lower priority

than δmz
z , they are not included in πz and must also be considered. Let x3 be

158 CHAPTER 4. DYNAMIC SCHEDULERS

the rank of the first request of τj with a priority strictly lower than δmz
z : if

j < i, x3 is the least natural such that Oj + (x3 − 1)Tj + Dj > Rmz
z + Dz, so

that x3 =
⌊

Rmz
z +Dz−Oj−Dj+Tj

Tj

⌋

+ 1; if j > i, x3 is the least natural such that

Oj + (x3 − 1)Tj + Dj ≥ Rmz
z + Dz, so that x3 =

⌈

Rmz
z +Dz−Oj−Dj+Tj

Tj

⌉

. Hence,
m̃j = max{x1, min{x2, x3}}. Hence the formulas.

nj denotes the number of higher priority requests (with respect to δk
i) of

τj which occur in the interval [R emj
j , Rk

i + ρk
i).

⌈

(Rk
i +ρk

i−R
emj
j)+

Tj

⌉

denotes the

number of requests of τj in the interval [R emj
j , Rk

i + ρk
i). If j < i, x =

⌊

(Rk
i +Di−R

emj
j +Tj−Dj)+

Tj

⌋

denotes the number of requests of τj from R emj
j with

a deadline less than or equal to Rk
i +Di; indeed x is the largest natural integer

such that R emj
j +(x− 1)Tj +Dj ≤ Rk

i +Di if R emj
j +Dj ≤ Rk

i +Di, 0 otherwise.

If j > i, x =
⌈

(Rk
i +Di−R

emj
j −Dj)+

Tj

⌉

denotes the number of requests of τj from

R emj
j with a deadline strictly less than Rk

i + Di; indeed, x is the largest natural
integer such that R emj

j + (x− 1)Tj + Dj < Rk
i + Di if R emj

j + Dj < Rk
i + Di, 0

otherwise. Hence the formulas.

We have shown that the interference of higher priority tasks than τi in the
interval [Rk

i , R
k
i + ρk

i) plus the computation of τi is

I(ρk
i) = Ci + πz +

∑

j 6=i

nj · Cj

The kth request of τi ends its computation at the first instant Rk
i + ρk

i such
that the equality is satisfied: ρk

i = I(ρk
i). ■

Notice that, if the system is feasible, ρk
i ≤ Di, and we may save the computa-

tion of πj if Rmj
j + Dj ≤ Rk

i . Otherwise, with the extended behavior described

on page 133, nj is upper bounded by
⌊

(Rk
i +Di−R

emj
j +Tj−Dj)+

Tj

⌋

, but πz, while be-

ing finite, may indefinitely increase with k as exhibited, for instance, with the
system S = {τ1 = {T1 = 2, C1 = 3, O1 = 0}}: the terms πz in the computation
of ρk

1 (for increasing values of k) are: 0, 1, 2,

4.6.6 Computation of ρk
i

We shall here present several methods for the computation of ρk
i , and we shall

see that the computation of the response time for arbitrary deadline systems

4.6. RESPONSE TIMES 159

(or general deadline with extended behavior) is quite different, particularly
for method 2 which must be revisited here. As usual, the computation can
be divided into two parts: the computation of the term πz (and the related
numbers: ρmj

j , z, m̃j) and the computation of the least solution of equation:

ρk
i = Ci + πz +

∑

j 6=i

nj · Cj.

The second part of the computation can be resolved by an iterative process.

w0 = Ci + πz,

wk+1 = Ci + πz +
∑

j 6=i

nj · Cj.

Theorem 4.43 remains valid here: the number of iterations of the iterative
process for the computation of ρk

i is bounded by bDi−Ci−πz
minj 6=i Cj

c + 1, if we stop
the iteration when wk exceeds Di. But here, contrary to what happened with
static schedulers, if we consider the extended schedule, even if U > 1, ρk

i is
finite and the number of iteration is upper bounded since nj is upper bounded

by
⌊

(Rk
i +Di−R

emj
j +Tj−Dj)+

Tj

⌋

.

From this point, however, since those computations will essentially be used to
check the feasibility of the schedule, we shall only consider limited schedules,
i.e., the schedule is undefined from the first deadline failure (if any), and the
iterative process stops when wk exceeds Di.

Experimental results (similar to the ones exhibited in sections 3.3.1, 3.7.1
and 4.6.4, including the analysis of the distributions which have a very similar
behavior than the one described for static schedulers) show that the actual
number of iterations represents 0.5 % of the bound given by Theorem 4.43;
consequently again the bound is very pessimistic and the iterative process con-
verges much more quickly. We have not distinguished in this study feasible
and unfeasible systems, it could be however interesting to consider feasible
and unfeasible system separately, but this question remains open for further
research.

We consider now the computation of the term πz. Method 1 already defined
for static priority schedulers and dynamic general deadline systems, which
computes recursively ρk

i (with the recursive function f(i, k)) can be applied
here. In comparison with dynamic and general deadline systems, the maximal

160 CHAPTER 4. DYNAMIC SCHEDULERS

number of calls is quite similar here: each response time depends on n other
response times.

Theorem 4.46 The maximal time complexity of the computation of ρk
i using

method 1 is O(nRk
i · γ), where γ = max{Dj−Cj |j=1,...,n}

min{Cj |j=1,...,n} × n.

Proof. We shall count the maximal number of calls of the function f()
induced by the function f(i, k). This number of calls (say Q()) can be de-
fined recursively: Q(0) = 0 (no request occurs before time 0), Q(u = Rk

i) =
∑n

j=1(1 +Q(u − 1)) = n(1 +Q(u − 1)) if (u ≥ 1); the first term corresponds
to the direct calls of the function f(1,m1), . . . , f(n,mn) and the second term
corresponds to the numbers of recursive calls induced by the latter, which in
the worst case occurs at time Rk

i −1 (this is rather pessimistic, of course, since
this scenario cannot repeat at each step, but we are only interested here by
an upper bound for the maximal number of calls of the function f()). We
shall show by induction on u, that Q(u) =

∑u
r=1 nr ≡ nr+1−1

n−1 . The property is
true in the trivial case Q(0) = 0. Suppose the property true till index u and
consider the case of Q(u + 1). By definition Q(u + 1) = n + nQ(u) and from
induction hypothesis Q(u + 1) = n +

∑u
r=1 nr+1 =

∑u+1
r=1 nr. Consequently the

maximal time complexity of the computation of ρk
i using method 1 is Q(Rk

i) ·γ,
where γ is the maximal time complexity of the iterative process. ■

The maximal space complexity of the computation of ρk
i using method 1 is

O(Rk
i), since the recursion stops in the worst case with the computation of

ρ1
j such that Oj = 0. The actual space and time complexity of method 1

is of course by far lower, but our experimentation shows that method 1 is
not suited to handle “real size” problem (e.g., for n = 10, method 1 needs
in general several hours of cpu time14); the interest of this method (and its
implementation) lies in the “verification” of our formulas.

Method 2 consists in computing all response times of requests occurring in
the interval [0, Rk

i) (before applying the iterative process for ρk
i) by increasing

values of their arrival time. In this way, whenever the method computes a
response time (say ρr

p) all needed ρmj
j are already computed (since we need ρmj

j

if Rmj
j < Rr

p). However, in the arbitrary deadline case, the request ρmj
j is not

necessarily the previous request of τj; for this reason method 2 must know (or
“store”) more than a single (previous) response time for each task. We shall
however show that we have at most to know

⌈

Dmax−Dmin+T min

T min

⌉

response times
for each task.

14Simulation on a ultra-sparc (140 mhz) with 64 mbytes of ram.

4.6. RESPONSE TIMES 161

Theorem 4.47 The maximal space complexity of the computation of ρk
i using

method 2 is O(n ·
⌈

Dmax−Dmin+T min

T min

⌉

).

Proof.

For each task τj, mj is the rank of the last request of τj which occurs strictly
before Rk

i with a higher priority than δk
i (if any); suppose j > i (the worst case,

since then we have to consider the last request of τj with a deadline strictly
less than Rk

i +Di): mj is the rank of the last request of τj which occurs strictly
before Rk

i such that (mj − 1)Tj + Oj + Dj < Rk
i + Di; between time Rmj

j and

Rk
i , there are at most

⌈

(Dj−Di)++Tj

Tj

⌉

requests of τj. To show this, let us call x

this number of requests of τj; consider first the simplified case where δ1
j � δk

i ,
a request of τj occurs at time Rk

i and Dj > Di: x is in this case the smallest
integer such that Dj − x · Tj < Di. If Dj ≤ Di, the previous request of τj

has a higher priority than δk
i ; and if no request of τj corresponds to time Rk

i ,
we have to consider in the best case one request less than the simplified case;
the formula follows. Consequently for each task τj we have at most to know

the
⌈

(Dj−Di)++Tj

Tj

⌉

last response times. It follows that method 2 computes all

response times in the interval [0, Rk
i) and needs for each ρk

i at most the value
of the last

⌈

Dmax−Dmin+T min

T min

⌉

response times (for each task). ■

The space complexity of method 2 is larger in the arbitrary deadline case but
remains polynomial in terms of the system characteristics and the recursive
aspect of the formulas is not a drawback.

The maximal time complexity of method 2 is O(
∑n

j=1

⌈

Rk
i

Tj

⌉

· γ), or simply γ if
we consider that the previous response time computations were due anyway.
Method 2 can be again improved in some situations: for Rk

i sufficiently large
(i.e., from Rk

i > Omax + 2P), the schedule and then the response times re-
peat from time Omax + P if the system is feasible; in the worst case we have
to compute

∑n
j=1d

Omax+P
Tj

e response times to reach the periodic part of the

schedule and
∑n

j=1
P
Tj

response times to compute the ρkj
j corresponding to ρmj

j

(i.e., kj = min{k|k = mj mod P
Tj

and Rk
j ≥ Omax + P). Hence, the maximal

time complexity of the computation of ρk
i using method 2 is O(

∑n
j=1

P
Tj
· γ).

Method 3 cannot be applied efficiently here: the computation of the term πz

needs the value of n other response times. It is possible that such a request
(say δmj

j) does not have an impact on ρk
i , but answering this question requires

in general the value of πj, in other words the value of ρmj
j . Again in this case

method 3 amounts to method 2.

Table 4.1 summarizes the time and the space complexities of the three meth-

162 CHAPTER 4. DYNAMIC SCHEDULERS

Method Scheduler Deadline Space # Resp. times
M 1 static general i 2i−1

M 2 static general i
∑i−1

j=1
Pj

Tj

M 3 static general i
∑i−1

r=1

⌈Pi−1
j=1 Tj

Tr

⌉

M 1 static arbitrary
⌈

Rk
i−mink≤i Ok

min{Tk|k≤i}

⌉

+ i− 1 � 2i

M 2 static arbitrary i
∑i−1

j=1
Pj

Tj

M 3 static arbitrary n.a. n.a.

M 1 dds general k (n−1)Rk
i +1

n
M 2 dds general n

∑n
j=1

P
Tj

M 3 dds general n.a. n.a.
M 1 dds arbitrary k nRk

i

M 2 dds arbitrary n ·
⌈

Dmax−Dmin+T min

T min

⌉

∑n
j=1

P
Tj

M 3 dds arbitrary n.a. n.a.

Table 4.1: Space and time complexities of method 1, method 2 and method 3
for static priority assignments and for the deadline driven scheduler (dds),
expressed in terms of O(·).

ods considered in this work for the computation of ρk
i , the complexities are

classified according to: the scheduler (static priority assignments or the (dy-
namic) deadline driven scheduler), and the relation between the period and
the deadline (general and arbitrary deadline systems). From our study several
concluding remarks can be raised:

❑ Method 3 has only an interest for static priority schedulers and general
deadline systems. In comparison with other methods, schedulers or ar-
bitrary deadline systems, method 3 is significantly superior for its time
complexity as well as for its space complexity, for the computation of a
single response time. Otherwise method 2 can be used for the computa-
tion of all response times of requests which occur before a given time.

❑ The total number of calls (and consequently the total number of iterative
processes) induced by method 1 is in all cases unreasonable for “real-
size” systems. The interest of this method lies in the “verification” of
our formulas.

❑ Method 2 can be applied in all the cases with quite a similar space
and time complexity, i.e.,

∑n
j=1

P
Tj

iterative processes and O(n) space

4.7. FEASIBILITY TESTS FOR ASYNCHRONOUS SYSTEMS 163

complexity (for the dynamic and arbitrary deadline case where the space
complexity is bigger but remains pseudo-polynomial however). Method 2
is well suited to compute all response times of requests which occur be-
fore a given time, e.g., during a feasibility interval in order to check the
feasibility of the system.

4.7 Feasibility tests for asynchronous systems

We shall here consider the feasibility problem, i.e., deciding if a system is
feasible (or not), i.e., if there exists a priority rule which makes the system
schedulable. Since the deadline driven priority rule is optimal, we can restrict
this question by considering the schedulability of the system using the deadline
driven priority rule.

We shall exploit our general response time computation for the feasibility prob-
lem. We shall show that the maximal time complexity of our computation,
while remaining exponential, exhibits an exponential improvement in compar-
ison with previous results issued from the literature.

Baruah, Howell and Rosier have defined a feasibility test for asynchronous
systems, first for the general deadline case [BRH90], then for the arbitrary
deadline situation [BHR93]. As in section 4.3, we shall denote by ηi(t, t′) the
number of requests of task τi which occur in the interval [t, t′) with a deadline
less than or equal to t′. Any feasible scheduling algorithm must give at least
ηi(t, t′) · Ci cpu time units to τi in this interval; this is a necessary condition
for the schedulability of the system in this interval.

In [BRH90] for general deadlines and in [BHR93] for arbitrary deadlines the
authors give the following formula for ηi(t, t′):

ηi(t, t′) = max
{

0,
⌊

t′ −Oi −Di

Ti

⌋

−max
{

0,
⌈

t−Oi

Ti

⌉}

+ 1
}

. (4.2)

Baruah, Howell and Rosier [BRH90] have also shown that we can restrict the
analysis of the functions ηi(t, t′) to time instants included in the feasibility
interval defined by Leung and Merrill.

Theorem 4.48 ([BRH90]) An asynchronous general deadline system R is
feasible iff

1.
∑n

i=1
Ci
Ti
≤ 1,

164 CHAPTER 4. DYNAMIC SCHEDULERS

2.
∑n

i=1 ηi(t, t′) · Ci ≤ t′ − t for all 0 ≤ t < t′ ≤ Omax + 2P.

Proof. Both conditions are clearly necessary. Suppose both conditions hold,
and R is not feasible. Let S be a (partially extended) schedule of R constructed
by the deadline driven scheduler (the way ties are resolved is not specified, since
from Corollary 4.5, this has no impact on the schedulability, but we assume
request-dependency). From Lemma 4.25, CS(R,Omax + P) = CS(R, Omax +
2P). From Theorem 4.23, some deadline in (0, Omax + 2P] must be missed.
Let t′ be the time of this deadline. Let t be the last time before t′ such at time
t− 1 either the system is idle or a request with a deadline strictly greater than
t′ is scheduled. Since t′ corresponds to a deadline, t′ > 0; so t is well-defined (it
may be 0). Furthermore, since the deadline at t′ is not met, there is an active
task (with deadline t′) scheduled at t′ − 1 and t < t′. It follows that there is a
task scheduled at every time in [t, t′) with its deadline not later than time t′.
Since no task having a deadline less than or equal to t′ is scheduled at t − 1,
every task scheduled in [t, t′) must have been released not earlier than t. Since
there is a task scheduled at every time in [t, t′) and the deadline at t′ is not
met,

∑n
i=1 ηi(t, t′) · Ci > t′ − t: a contradiction. ■

For the arbitrary deadline case, this result can be immediately adapted, by
considering the feasibility interval given by Lemma 4.32 instead of Lemma 4.22.

Theorem 4.49 An asynchronous arbitrary deadline system R is feasible iff

1.
∑n

i=1
Ci
Ti
≤ 1,

2.
∑n

i=1 ηi(t, t′) · Ci ≤ t′ − t for all 0 ≤ t < t′ ≤ Omax + 2P.

■

From Theorem 4.48, Baruah, Howell and Rosier [BRH90] proposed a nonde-
terministic algorithm to verify if a task system (say R) is not feasible in the
general deadline case. The algorithm first determines whether

∑n
i=1

Ci
Ti
≤ 1. If

so, the algorithm guesses t and t′ subject to the constraints of Theorem 4.48,
and checks if

∑n
i=1 ηi(t, t′) > t′ − t. This nondeterministic algorithm is instru-

mental in the paper of Baruah, Howell and Rosier [BRH90] in order to prove
an important property concerning the complexity of the feasibility problem.
We shall give the result for completeness, although we are concerned here by
deterministic algorithms.

4.7. FEASIBILITY TESTS FOR ASYNCHRONOUS SYSTEMS 165

Baruah, Howell and Rosier have shown that the feasibility problem is co-NP-
complete15 in the strong sense16.

Theorem 4.50 ([BRH90, BHR93]) The feasibility problem for asynchro-
nous periodic task sets is co-NP-complete in the strong sense in the general
deadline case as well as in the arbitrary deadline case. ■

We now come back to the feasibility test of asynchronous systems in the arbi-
trary deadline case; from the result of Baruah, Howell and Rosier, we derive
the following deterministic algorithm:

Algorithm 4.51

If
∑n

i=1
Ci
Ti
≤ 1 Then

∀t ∈ N, 0 ≤ t < Omax + 2P Do
∀t′ ∈ N, t < t′ < Omax + 2P Do

If
∑n

i=1 ηi(t, t′) · Ci > t′ − t Then
Return(false);

Fi
Od

Od
Return(true)

Else
Return(false)

Fi. ■

It follows that the maximal time complexity of this algorithm is O(P 2 × n).

Another feasibility test for the general (or arbitrary) deadline case, based on
our response time computation, consists in the computation of all response
times in the feasibility interval defined by Corollary 4.26 (or 4.36 for arbitrary
deadline systems), i.e., by O(

∑n
i=1

P
Ti

) response times. We have already seen
in section 4.6.4 that with method 2 the maximal time complexity of these
computations is O(

∑n
i=1

P
Ti
× n× max{Di−Ci|i=1,...,n}

min{Ci|i=1,...,n}) and the space complexity

is n (or n · Dmax−Dmin+T max

T min in the arbitrary case); the time complexity of our
15The complementary problem (i.e., the problem with reversed answer) is NP (see [GJ79]

pp. 156 for details).
16The problem cannot be solved by a pseudo-polynomial algorithm in terms of the char-

acteristics of the system (i.e., n, Ti, Ci, Di, Oi) unless P = NP (see [GJ79], pp. 95 for
details).

166 CHAPTER 4. DYNAMIC SCHEDULERS

computations exhibits an exponential improvement in comparison with the
method derived from the results of Baruah, Howell and Rosier.

We have implemented the Algorithm 4.51 and we have applied it on randomly
chosen asynchronous systems: the actual time complexity of the algorithm is
very large in comparison with the response time computation approach, even
for very small size problems (i.e., regarding the number of tasks and the number
Tmax): the algorithm takes an unreasonable time to check the feasibility of the
system. For instance, for n = 4, each Ti being randomly chosen in [5, 20], Di

randomly chosen in [Ti
2 , Ti] and Ci (≤ Di) in order to have a large utilization

factor. Algorithm 4.51 needs in general several hours of cpu time14 while our
computations take a few minutes, and can also handle “real-size” problems
(e.g., n = 100) with a reasonable actual time complexity if P is not too high.

4.8 Feasibility tests for synchronous systems

We shall consider in this section synchronous systems. More exactly, we shall
allow that the offsets are fixed by the constraints of the system but lead to a
synchronization of all task requests, i.e., ∃t ∈ N such that ∀i : t = Oi + ki · Ti

for some ki ∈ N. Since the first requests of each task may be dropped (we shall
see this property in details in Chapter 5, see Theorem 5.8) without modifying
the feasibility of the task set, without loss of generality, we can assume that
the synchronization occurs at time 0, i.e., O1 = O2 = · · · = On = 0. It
may be noticed that in section 5.3 we shall study the problem of verifying if
a synchronization of all task requests occurs (or not); we shall not give details
here.

For this sub-class of periodic task sets (i.e., synchronous systems) some simpli-
fied feasibility tests can be defined. It is important to note that these simplified
tests are necessary and sufficient conditions for synchronous systems and are
only sufficient for asynchronous systems, according to Theorem 4.11.

Of course, the feasibility tests defined for asynchronous systems remain nec-
essary and sufficient for synchronous systems, since synchronous systems are
special cases of asynchronous systems. But, for an interesting sub-class of syn-
chronous systems (i.e., when

∑n
i=1

Ci
Ti

< 1), Theorem 4.48 can be simplified and
the feasibility test derived from Baruah, Howell and Rosier for asynchronous
systems can be improved. This is the purpose of the next section.

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 167

4.8.1 Feasibility of bounded general deadline synchronous
task sets

For the sub-class of general deadline synchronous task sets with bounded uti-
lization factor, in Theorem 4.48, we can choose t = 0 and decrease the upper
bound for t′:

Theorem 4.52 ([BRH90]) The feasibility problem for synchronous general
deadline systems is solvable in O(n · U

1−U ·max{Ti −Di|i = 1, . . . , n}) time if
∑n

i=1
Ci
Ti

< 1.

Proof.

Let R be a synchronous general deadline task system with U =
∑n

i=1
Ci
Ti

< 1.
From Theorem 4.48, R is feasible iff for all 0 ≤ t < t′ ≤ Omax + 2P =
2P,

∑n
i=1 ηi(t, t′) · Ci ≤ t′ − t. We will show that if there exist t and t′ such

that this inequality does not hold, then t may be chosen to be 0, and t′ may
be chosen to be less than

U
1− U

max{Ti −Di|i = 1, . . . , n}.

Remark that if Ti = Di ∀i, i.e., in the late deadline case, the theorem is
equivalent to Theorem 4.13: the condition U < 1 is sufficient.

For the family of systems such that U ≤ c < 1, the above value is linear in
max{Ti −Di|i = 1, . . . , n}.
We first show that t may be chosen to be 0. Suppose we have

∑n
i=1 ηi(t, t′)·Ci >

t′ − t. From the definition of ηi(t, t′), we have that for 1 ≤ i ≤ n,

ηi(0, t′ − t) = max
{

0,
⌊

t′ − t−Di

Ti

⌋

+ 1
}

≥ max
{

0,
⌊

t′ −Di

Ti

⌋

−
⌈

t
Ti

⌉

+ 1
}

= ηi(t, t′).

Consequently,
∑n

i=1 ηi(0, t′ − t) · Ci ≥
∑n

i=1 ηi(t, t′) · Ci > t′ − t.

168 CHAPTER 4. DYNAMIC SCHEDULERS

We will now show that if t = 0, then t′ cannot be too large. Suppose
∑n

i=1 ηi(0, t′) · Ci > t′ and t′ ≥ Di − Ti. We have

t′ <
n

∑

i=1

ηi(0, t′) · Ci

=
n

∑

i=1

(⌊

t′ −Di

Ti

⌋

+ 1
)

Ci

≤
n

∑

i=1

t′ + Ti −Di

Ti
Ci

=
n

∑

i=1

(

t′ · Ci

Ti
+

(Ti −Di)Ci

Ti

)

≤ U · t′ + U ·max{Ti −Di}.

Solving for t′, we get

t′ ≤ U
1− U

max{Ti −Di}.

■

From this property, the authors define an algorithm which consists in com-
puting

∑n
i=1 ηi(0, t) for increasing t’s while the condition is satisfied and t ≤

c
1−c max{Ti −Di|i = 1, . . . , n}. For the family of systems such that U ≤ c < 1
the maximal time complexity of this algorithm is pseudo-polynomial in terms
of the task characteristics. Remark that the ratio c

1−c is a constant, for this
reason only the term max{Ti−Di|i = 1, . . . , n} is considered in the analysis of
Baruah, Howell and Rosier, but this constant can be very large in comparison
with the term max{Ti −Di|i = 1, . . . , n}, and can even be larger than P .

We shall now compare the actual time complexity of the feasibility test of
Baruah et al and the one issued from Theorem 4.37 for synchronous systems.
We have implemented the computations of Baruah et al and ours, based on
the computation of the response time of all requests in the interval [0, L), and
we have compared their performances on randomly chosen systems (feasible
or unfeasible). n was chosen randomly in the interval [20, 100], the periods in
the interval [50, 1000], the deadlines (e.g., Di) in the interval [Ti

2 , 2 ·Ti] and the
computation times in order to have an utilization in [0.45, 0.97]. Figures 4.21
and 4.22 show the distribution of the actual time of the Baruah et al method
and ours respectively (we have observed similar behaviors for different varia-
tions domains for n and U). It may be also noticed that, in the Baruah et al
method the minimal value is greater than 200. Figures 4.23 and 4.24 show the

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 169

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

individuals

time units

Figure 4.21: Frequency of the time complexity of the Baruah et al method.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350 400 450 500

individuals

time units

Figure 4.22: Frequency of the actual time complexity of our method.

170 CHAPTER 4. DYNAMIC SCHEDULERS

0

100

200

300

400

500

600

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

individuals

ratio

Figure 4.23: Frequency of the ratio between our method and Baruah et al’s
for n ∈ [30, 60]; the standard deviation is 0.006.

0

100

200

300

400

500

600

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

individuals

ratio

Figure 4.24: Frequency of the ratio between our method and Baruah et al’s
for U ∈ [0.7, 0.9]; the standard deviation is 0.006.

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 171

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

20 30 40 50 60 70 80 90 100
n

Figure 4.25: Actual time complexity of our approach in comparison with Baru-
ah et al’s, in function of n.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
U

Figure 4.26: Actual time complexity of our approach in comparison with Baru-
ah et al’s, in function of U .

172 CHAPTER 4. DYNAMIC SCHEDULERS

distribution of the ratio between the actual time of the Baruah et al method
and our for n ∈ [50, 60] and U ∈ [0.7, 0.9] respectively. Figure 4.25 shows the
ratio between the actual cpu time complexity of our method and Baruah’s,
in function of the number of tasks. The ratio increases with n but remains in
all cases less than 0.06, which shows the benefit of our approach. The same
phenomenon is described with Figure 4.26, but in function of the utilization
factor: the ratio increases with U but remains in all cases less than 0.06.

In recent works [Spu96], another approach was adopted in order to check the
feasibility of synchronous systems, based on the worst response time compu-
tation; this is the aim of the next section.

4.8.2 Worst case response time computation

Recently, Spuri [Spu96] has extended the computation of the worst case
response time, already considered for static priority rules (see sections 3.2
and 3.4, see also Theorem 2.37), to the dynamic case (more exactly to the
deadline driven scheduler). It is important at this point to specify that the
work of Spuri concerns arbitrary asynchronous (or offset free) systems, but
its main result provides a necessary and sufficient condition for the feasibility
of arbitrary and synchronous systems. We shall also present here the main
results concerning the corresponding feasibility test. We shall meanwhile lift
some imprecisions in the work of Spuri. Let us recall that all results given by
Spuri concern the arbitrary deadline situation.

Spuri does not assume any particular way for breaking deadline ties and con-
siders the worst case, i.e., the request δk

i of the considered task τi has a higher
priority than δp

j iff Rk
i + Di < Rp

j + Dj. Remark that this is rather pessimistic
and leads to a difficulty if we want to consider the worst case for all the tasks
simultaneously.

Definition 4.53 For a task τi, we define the worst case response time (say
ri) as the largest response time of τi which occurs in the schedule of the syn-
chronous system. ■

The computation of the worst case response time is interesting from a schedu-
lability point of view, since the worst case response time is less than or equal
to the deadline (ri ≤ Di) iff the system is schedulable in the synchronous case.

Finding ri is not trivial with the deadline driven scheduler, since the worst case
response time does not always occur in the first busy period, while the latter
is a feasibility interval (see section 4.5.1 for details).

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 173

τ1

?

0 1

2 ?

5 6

2 ?

8 9

2 ?

12 13

2 ?

16 17

2 ?

20 21

2 ?

24 25

2 ?

τ2

?

2 4

3 ?

7

1

10 11

2 ?

14 15

2

18

1 ?

22 23

2

26

1 ?

Figure 4.27: The worst case response time does not always occur in the first
busy period.

Example 4.54 Consider for example the synchronous system S = {τ1 =
{C1 = 2, D1 = 3, T1 = 4}, {C2 = 3, D2 = 6, T2 = 7}}. The length L of
the first busy period is in this case 7, the response time of the first request of
τ2 is 5 while the response time of the 4th request of τ2, starting at time 21, is
6 (see Figure 4.27). ■

However the busy period concept still has an interest in this case: Spuri has
“stated” that the worst case response time occurs in the busy period of a
request δk

i (see Definition 4.55) so that all other tasks are released at the
beginning of the period. But this property was not really proved in his paper,
so that his argument is not fully satisfactory; we shall complete here the proof.

The results of Spuri are based on a adaptation of the first busy period: the busy
period for a request δk

i , but the author has not defined explicitly this concept.
We shall consider this point here for completeness. Our definition is based on
the concept of the elementary busy period, already defined in Chapter 2, but
instead of limiting the schedule to a task sub-set {τ1, . . . , τi} we shall limit the
schedule to higher priority requests:

Definition 4.55 We define the busy period of the request of δk
i as the elemen-

tary busy period [a, b) in the schedule of all the requests with a higher (or
equal) priority than δk

i , which includes the request δk
i (i.e., a ≤ Rk

i < b). ■

From this definition it follows that if [a, b) is the busy period of the request δk
i ,

b is the completion time Rk
i + ρk

i of the request δk
i and a is the arrival time of

a request δh
j � δk

i . Definition 4.55 can be understood as the extension to the
dynamic case of the level-i busy period considered in Chapter 2.

Theorem 4.56 The worst case response time of a request of τi occurs at the
end of the busy period of a request of τi in which all other tasks are released
asap, i.e., they are released synchronously at the beginning of the period.

174 CHAPTER 4. DYNAMIC SCHEDULERS

Proof. Consider an asynchronous system and a request of τi (say the kth)
with arrival time17 Rk

i and deadline d = Rk
i +Di. Let [t1, t2) be the busy period

of the request δk
i . Since [t1, t2) is the busy period of the kth request of τi, the

requests of τj (j = 1, . . . , n) which occur strictly before t1 either have a lower
priority than δk

i or are completed not later than t1; in both cases, they do not
impact on the request δk

i nor on higher priority ones occurring after or at time
t1. Hence, since we are only interested in the response time of δk

i , without loss
of generality we can only consider the system from time t1, change the time
origin (t′1 = 0, t′2 = t2− t1), assume that each task τj makes its first request at
time ∆j ≥ 0, consider the response time of the request δk′

i (k′ = k − q, where
q is the number of requests of task τi which occur in the interval [0, t1)) with a
deadline d′ = Rk′

i +Di. We shall now prove that if ∆j > 0 (for j 6= i), reducing
∆j, i.e., considering that the first request of τj occurs at time 0 ≤ ∆′

j < ∆j

does not decrease the response time of the request δk′
i . Since [t′1 = 0, t′2) is the

busy period of the request δk′
i , we have:

∀t ∈ (0, t′2) t <
n

∑

j=1

kj(∆j, t) · Cj

where kj(∆j, t) represents the number of requests of τj in [0, t) with a deadline
less than or equal to d′ (recall that, in case of a tie, δk′

i has the lower priority).
Consequently we have:

∀t ∈ (0, t′2) t <
n

∑

j=1

kj(∆′
j, t) · Cj (4.3)

since kj(∆′
j, t) ≥ kj(∆j, t).

Since [0, t′2) is the busy period of the request δk′
i , this one ends its computation

at time t′2, and t′2 is the smallest solution to the equation:

t =
n

∑

j=1

kj(∆j, t) · Cj.

We shall show that the request δk′
i completes its execution after or at time t′2

with the starting times ∆′
j (j 6= i). Suppose the property false, the request of

δk′
i ends its computation at time t′ < t′2 with
17Time a is not necessarily the time of the first request of τi, i.e., k ≥ 1.

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 175

t′ =
n

∑

j=1

kj(∆′
j, t

′) · Cj

which contradicts Equation (4.3).

Hence, since Rk′
1 is not modified by the decrease of ∆j, the largest response

time is achieved by setting ∆j to its smallest value: ∆1 = ∆2 = · · · = ∆i−1 =
∆i+1 = · · · = ∆n = 0, i.e., in an asap configuration. ■

This proof completes the original one, which did not formally prove that reduc-
ing ∆j leads to increase (or leave unchanged) the response time of the request
δk′
i .

Theorem 4.57 ([Spu96]) The length Lk
i of the busy period of any request

δk
i of τi in an asynchronous system is less than or equal to the length L of the

first busy period in the synchronous case.

Proof. Consider the busy period [a, b) for the request δk
i . We have:

∀t ∈ (a, b) t− a <
i

∑

j=1

kj(∆j) · Cj

<
n

∑

j=1

⌈

t− a
Tj

⌉

Cj.

where kj(∆j) represents the number of requests of τj in [a, t) with a deadline
less than or equal to Rk

i + Di, which is bounded by the maximum number of
requests of τj started in an interval of length t − a, i.e., d t−a

Tj
e. The length

of the first busy period in the corresponding synchronous case is the smallest
solution L to the Equation (2.1)

L =
n

∑

j=1

⌈

L
Tj

⌉

Cj

so that L ≥ (b− a). ■

We present here the computation of Spuri; however, we shall use a slightly
different notation for convenience and uniformity of this work.

The author suggests to compute the response time of all possible requests of
τi in the situation defined by Theorem 4.56, i.e., all tasks but τi are released

176 CHAPTER 4. DYNAMIC SCHEDULERS

at time t = 0, task τi makes a new request at time a (say the kth request of τi)
and [0, a + ρk

i) is the busy period of the request δk
i .

From Theorem 4.57 we can restrict the values of a as follows: 0 ≤ a ≤ L−Ci,
but a is not necessarily the time of the first request of τi; it may be preceded
by other requests of τi, the first one occurring at time

si(a) = a−
⌊

a
Ti

⌋

Ti = a mod Ti.

The computation of the response time ri(a) of the request δk
i of τi is based

on the computation of the length Li(a) of the first busy period of a limited
schedule: Li(a) is the first idle point (beside 0) from time t = 0 by considering
only requests with a deadline less than or equal to a + Di.

Hence, Li(a) is the smallest positive solution (Li(a) > 0) of the equation:

Li(a) =
n

∑

j=1

kj(Li(a))Cj

where kj(t) is the number of requests of τj which occur in the interval [0, t) with

a deadline less than or equal to a + Di; kj(t) = min
(⌊

(a+Di+Tj−Dj)+

Tj

⌋

,
⌈

t
Tj

⌉)

and ki(t) =
⌊

(t−si(a))+

Ti

⌋

.

The minimal solution can be found by iteration:

L(0)
i (a) =

∑

j 6=i,Dj≤a+Di

Cj +

{

Ci if si(a) = 0,
0 otherwise

(4.4)

L(k+1)
i (a) =

n
∑

j=1

kj(L
(k)
i)Cj. (4.5)

The iteration is growing and proceeds until L(k+1)
i (a) = L(k)

i (a) = Li(a) or
L(k)

i (a) exceeds a+Di; in the latter case, the iteration may be stopped because
τi is then deemed unschedulable (remark that the iterative process converges
anyway, i.e., even if we continue the iteration in this case).

If Li(a) ≤ a it follows that [0, a + ρk
i) is not the busy period of the request of

τi which occurs at time a, and from Theorem 4.56 we can take the convention
that ri(a) = Ci.

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 177

τ3

τ2

τ1

0

1?

?

?
1

1

2 3

2

4

1?
8

1

?

?
9 10

2

12

1

?

?

13

1

16

1

?

?
17 18

2

20

1?
24

1

?

?

?

Figure 4.28: The synchronous schedule (from time t = 24 it repeats).

τ3

τ2

τ1

0

1?

?
2 3

2

?

4

1?

5

1

8

1?

?
10 11

2

12

1?

15

1?

16

1?

?
18 19

2

20

1?
24

1?

Figure 4.29: An asynchronous schedule (from time t = 24 it repeats).

If a < Li(a) ≤ a + Di, the response time of the request of τi which occurs
at time a is Li(a) − a, otherwise the request of τi misses its deadline and we
take the convention that ri(a) = ∞. It follows that the worst response time
ri = maxL−Ci≥a≥0{ri(a)}.
We have presented the results concerning the worst case response time issued
from the work of Spuri [Spu96]. We shall now address two criticisms: the first
one concerns the computation of the worst case response time itself and the
second one concerns the complexity of this computation in comparison with
our general response time computation.

Exact computation of the worst case response time:

The value of the worst response time ri computed by the formulas of Spuri does
not necessarily occur in the schedule of the synchronous case, and consequently
does not match exactly with Definition 4.53.

Example 4.58 Consider the following system:

Ti Di Ci ri

τ1 4 3 1 1
τ2 8 7 2 4
τ3 12 6 1 3

178 CHAPTER 4. DYNAMIC SCHEDULERS

In the synchronous case, the largest response time of a request of τ3 is 2 (see
Figure 4.28) while the worst case response time of a request of τ3 (given by the
formulas of Spuri) is 3: the response time 3 only corresponds to asynchronous
situations (e.g., O1 = 0, O2 = 2, O3 = 3 – see Figure 4.29). It may be also
noticed that the worst case response time occurs in asap situations as well as
in other situations, as illustrated in Figure 4.29, for the first request of τ3, since
this one is not an asap situation. ■

Contrary to our intuition the worst case response time does not necessary occur
in the synchronous case, nor in the first busy period (see Example 4.54 while the
synchronous case is the worst case regarding the feasibility of the system and
[0, L) is a feasibility interval for synchronous systems. We shall see why this is
not contradictory. Regarding the feasibility of the system, from Corollary 4.3,
an asynchronous system is feasible iff

∑n
i=1 ηi(t, t′) · Ci ≤ t′ − t for all 0 ≤

t < t′, and it may be shown that the function
Pn

i=1 ηi(t,t′)
t′−t , which combines

characteristics of the various tasks, is maximum in the synchronous case (see
Theorem 4.11) and for some t ≤ t′ ≤ L (see Theorem 4.10). The response
time of a particular request depends on the relative priorities between the
various requests, which depend on the request/deadline configurations. Since
the synchronous case (or the interval [0, L) in the synchronous case) does not
necessary include all the configurations, it follows that the worst case response
time for a particular request does not necessarily occur in the synchronous
schedule (nor in the interval [0, L) in the synchronous case).

Spuri computes in fact the worst case response time among all requests of τi

and among all asynchronous situations.

On the other hand, all worst case response times r1, r2, . . . , rn do not necessarily
occur in the same schedule, i.e., in the same asynchronous situation.

Example 4.59 Consider the following system:

Ti Di Ci ri

τ1 4 5 2 4
τ2 6 4 2 3

We shall show that the worst case responses of τ1 and τ2 never occur in the same
asynchronous situation. A priori there is an infinite number of asynchronous
situations. We shall show in Chapter 5 that we can consider only

Qn
i=1 Ti

lcm{Ti|i=1,...,n}
non-equivalent asynchronous situations; in our case there are 2 non-equivalent
asynchronous situations given by (for instance): {O1 = 0, O2 = 0}, and
{O1 = 0, O2 = 1} (we shall not give more details here, this question is studied

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 179

τ2

τ1

? ? ?
2 1

2

6 7

2

? ? ? ?
2 3

2

4 5

2

8 9

2

Figure 4.30: First (a)synchronous situation, from time t = 12 the schedule
repeats.

τ2

τ1

? ? ?
2 3

2

7 8

2

? ? ? ?
0 1

2

4 5

2

9 10

2

Figure 4.31: Second synchronous situation, from time t = 12 the schedule
repeats.

extensively in Chapter 5). The largest response time for a request of τ1 occurs
in the first (a)synchronous situation (see Figure 4.30: ρ1

1 = 4 = D1 − 1) but
does not occur in the second one (see Figure 4.31); symmetrically the largest
response time of a request of τ2 occurs in the second asynchronous situation
(ρ1

2 = 3) but does not occur in the first one. Remark that we have consid-
ered here an arbitrary deadline system, but it is not difficult to see that the
phenomenon holds also for general deadline systems, since if in the previous
system we subtract 1 from each Di we get the same schedule since the relative
priority ordering is not modified and the response times remain less than or
equal to their deadline. ■

Although the value ri computed by Spuri does not match Definition 4.53, the
feasibility test based on the computations of Spuri is indeed necessary and
sufficient for the feasibility of arbitrary and synchronous systems.

Theorem 4.60 A synchronous system with arbitrary deadlines is feasible iff
the worst case response time (computed by Spuri) of each task (τi) is less than
or equal to the deadline: ri ≤ Di for i = 1, . . . , n.

Proof. (only if part). If the system is schedulable in the synchronous case,
it follows from Theorem 4.11 that this is also the case in all asynchronous
situations (i.e., for all offset assignments); consequently the response time of
any request of τi in any asynchronous situations respects the deadline and
ri ≤ Di.

180 CHAPTER 4. DYNAMIC SCHEDULERS

(if part). We show the contraposition. Suppose the system is not schedulable
in the synchronous case; there must exists i such that a request (say the kth)
of τi misses its deadline. It follows that its response time (say ρk

i) is greater
than its deadline (Di). Since ri is the largest response time of a request of τi

we have: ρk
i ≤ ri; it follows that ri > Di. ■

Corollary 4.61 An offset free and arbitrary deadline system is schedulable
in all asynchronous situations iff the worst case response time (computed by
Spuri) of each task (τi) is less than or equal to the deadline: ri ≤ Di for
i = 1, . . . , n.

Proof. Immediately follows from Theorems 4.60 and 4.11. ■

We have seen in section 4.5.1 that [0, L) is a feasibility interval for synchronous
and arbitrary deadline systems; hence our general response time computation
can be used in order to check the requests in the first busy period.

Theorem 4.62 A synchronous system with arbitrary deadlines is feasible us-
ing the deadline driven scheduler iff

∀i : max
k∈{1,...,d L

Ti
e}

ρk
i ≤ Di

with the deadline driven priority rule.

Proof. From Theorem 4.37 we have only to check the feasibility interval
[0, L). If the largest response time is less than or equal to the deadline this
is also the case for all response times and each request of task τi meets its
deadline in the feasibility interval. It follows that the system is schedulable. ■

Using our general response time computation we have defined a necessary and
sufficient feasibility test for synchronous systems. Moreover, even in cases
where Spuri computes the correct worst response times, the maximal time
complexity of our test is an improvement in comparison with Spuri’s. This is
the purpose of our next criticism concerning the result of Spuri.

Complexity of the feasibility test

In view of the pessimism of the situations considered by Spuri, his method
considers a too large number of situations: Theorem 4.62 shows that only the
response times in the synchronous case and in the first busy period need be
considered. It follows that the time complexity of the feasibility test of Spuri

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 181

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

individuals

Actual cpu time complexity of our approach

Figure 4.32: Frequency of the actual time complexity of our approach for
feasible systems.

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500

individuals

Actual cpu time complexity of Spuri’s computation

Figure 4.33: Frequency of the actual time complexity of Spuri’s computation
for feasible systems.

182 CHAPTER 4. DYNAMIC SCHEDULERS

is too large. We shall now compare the time complexity of the feasibility test
of Spuri, and the one issued from Theorem 4.62 for synchronous systems.

For a task τi (i = 1, . . . , n) the maximal time complexity of the computation of
ri given by Spuri’s formulas is18 O(L2), since the iterative process given by E-
quations (4.4) and (4.5) must be applied at most L times (a ∈ [0, L−Ci)) and
each iterative process converges after a maximum of L

minj=1,...,nCj
steps (this

bound is probably pessimistic for similar reasons than the ones utilized for
our iterative process which computes the response time). For the whole task
system, the maximal time complexity is thus O(n · L2). The maximal time
complexity of the computation of the response times of the requests which oc-
cur in the interval [0, L) using method 2 is O(

∑n
i=1

L
Ti
·n·max{Dj−Cj |j=1,...,n}

min{Cj |j=1,...,n}) (see
section 4.6.6 for details); this complexity exhibits an exponential improvement
in comparison with Spuri’s.

In order to check if the actual performances of these two algorithms follow the
same shape than the worst cases, we have implemented the computations of
Spuri and ours, based on the computation of the response time of all requests
in the interval [0, L), and we have compared their performances on randomly
chosen systems on a large set of simulations. We have applied this experimen-
tation on randomly chosen task sets; n was chosen randomly in the interval
[20, 100], the periods Ti in the interval [50, 1000], the deadlines Di in the inter-
val [Ti

2 , 4Ti
3] and the computation times Ci in order to have a large utilization

factor (i.e, near 1). We shall distinguish between feasible and unfeasible sys-
tems in the presentation of our simulation results, we shall see that indeed
the performance of both algorithms are very related to the feasibility of the
system.

We consider first feasible systems, and as usual we consider first the distribu-
tions: Figures 4.32 and 4.33 show the frequency of the actual time complexity
of our approach and the Spuri’s computation, respectively, for n ∈ [50, 60].
Figure 4.34 shows the distribution of the average ratio between the actual
time complexity of our approach and those of Spuri. From the latter, it seems
judicious to compare the average of both distributions, or to compute the av-
erage ratio. We have observed the same behavior for other variation domains
of n in our simulations. Figure 4.35 shows the average ratio between the actual
cpu time complexity of our method and Spuri’s, in function of the number of
tasks. The average ratio increases with n but remains in all cases below 0.095,
which shows the actual pessimism of the Spuri’s approach and the benefit of
our approach.

18Of course it is possible to improve the computation suggested by Spuri, e.g, by using
the computation of Li(a) in the one of Li(a + Ti), but we do not consider this point here,
since we propose a (by far) better and simpler method.

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 183

0

50

100

150

200

250

300

350

400

450

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

individuals

ratio

Figure 4.34: Frequency of the ratio for feasible systems.

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

20 30 40 50 60 70 80 90 100

ratio

n

Figure 4.35: Actual cpu time complexities of our approach in comparison with
Spuri’s.

184 CHAPTER 4. DYNAMIC SCHEDULERS

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12

individuals

Actual cpu time complexity of our approach

Figure 4.36: Frequency of the actual time complexity of our approach; for
unfeasible systems.

Consider now the case of unfeasible systems. Figures 4.36 and 4.37 show
the frequency of the actual time complexity of our approach and the Spuri’s
computation, respectively (for n ∈ [50, 60]). Figure 4.38 shows the distribution
of the ratio between the actual time complexity of our approach and the one
of Spuri. In this case both algorithms work much more quickly, and in a
large proportion of cases, the algorithms have a comparable time complexity.
Figure 4.39 shows the average ratio in function of n. The ratio depends less
clearly on n, but the average ratio is in the interval [0.2, 0.8], which shows
again the (slight) actual improvement of our approach.

For static and general deadline systems, we have exhibited the situation which
leads to the best case response time; for dynamic schedulers the problem seems
much more difficult: recall that the computation of the best response time is
based on the (dual) property which states that the worst case response time
occurs for the first request and in the synchronous case (for all tasks); this
property does not hold for dynamic schedulers since the worst response time
occurs in asynchronous situations and not necessarily for the first request for
each task. The determination of the situation which leads to the best response
time is a relevant problem, however, and remains for further research.

4.8. FEASIBILITY TESTS FOR SYNCHRONOUS SYSTEMS 185

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

individuals

Actual cpu time complexity of Spuri’s computation

Figure 4.37: Frequency of the actual time complexity of Spuri’s computation;
for unfeasible systems.

0

100

200

300

400

500

600

0 1 2 3 4 5 6

individuals

Frequency of the ratio

Figure 4.38: Frequency of the ratio; for unfeasible systems.

186 CHAPTER 4. DYNAMIC SCHEDULERS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 30 40 50 60 70 80 90 100

ratio

n

Figure 4.39: Actual cpu time complexities of our approach in comparison with
the Spuri’s computation; unfeasible systems.

4.9 The Least Laxity First scheduling algo-
rithm

We have considered in this chapter dynamic priority algorithms, particularly
the most popular dynamic scheduling algorithm: the deadline driven scheduler.
We shall now consider another optimal dynamic scheduler for asynchronous
and arbitrary deadline systems: the least laxity first (LLF) algorithm. This
dynamic priority rule was basically defined by Mok and Dertouzos [MD78] and
termed the least laxity first algorithm; in the recent literature [Mok83, Leu89]
the term slack-time algorithm denotes the same scheduler. We shall use in
this work the original term (i.e., the least laxity first) to denote this scheduler.
The laxity of a request is defined as the maximal amount of time that the
request can wait and still meets its deadline. More precisely, at time t ≥ Rk

i

we define e(t)
i,k as the remaining processing time of the request δk

i and Dk
i as its

deadline instant (Dk
i = Rk

i + Di and e(t)
i,k = Ci − εk

i (t)); the laxity at time t for

the request δk
i (say λ(t)

i,k) is Dk
i − t − e(t)

i,k. Hence, the laxity of a request is a
measure of its urgency. The least laxity first scheduler gives the cpu to the
active request with the smallest laxity. The tie may be broken arbitrarily (as
exhibited by Theorem 4.65). In this work we break the tie by giving a higher
priority to the task with the smaller index; if two requests of the same task are

4.9. THE LEAST LAXITY FIRST SCHEDULING ALGORITHM 187

δ1
1

δ2
1

?
0 1

2

?
3 4

2

Figure 4.40: Two requests of the same task with the same laxity.

active simultaneously and have the same (smallest) laxity, the tie is broken by
applying the first-in-first-out rule if the index is the smallest with this laxity.

Example 4.63 Consider the system composed by a single task τ1 = {T1 =
1, D1 = 3, C1 = 2, O1 = 0}; Figure 4.40 shows that, at time t = 1, two requests
of τ1 are active and have the same laxity, i.e, λ(1)

1,1 = λ(1)
1,2 = 1 and the cpu is

given to the first request of τ1 ■

However, this can only occur if Ci > Ti, which implies unfeasibility; otherwise,
the relative priorities between successive requests of a same task respects the
fifo rule:

Theorem 4.64 If the requests δk
i and δk+1

i are active at time t and Ci ≤ Ti,
then λ(t)

i,k < λ(t)
i,k+1.

Proof. We prove the property by contradiction and suppose that at time t
the requests δk

i and δk+1
i are active and

λ(t)
i,k ≥ λ(t)

i,k+1. (4.6)

λ(t)
i,k = (k − 1)Ti + Di − t − e(t)

i,k and λ(t)
i,k+1 = kTi + Di − t − e(t)

i,k+1. From
Equation (4.6) we get

Ti ≤ e(t)
i,k+1 − e(t)

i,k = εk
i (t)− εk+1

i (t)

which contradict the fact that Ci ≤ Ti since 0 ≤ εk
i (t) < Ci and 0 ≤ εk+1

i (t) <
Ci when both requests are active. ■

By definition, the laxity of an executing request is constant and the laxity
of a request waiting for cpu has a linearly decreasing laxity in function of
the waiting time. Remark also that, if at time t a request is active and its
laxity is negative, the deadline is missed before or at time t; if the laxity of
a request reaches 0, the latter gets an absolute priority (nothing else may be

188 CHAPTER 4. DYNAMIC SCHEDULERS

scheduled till the completion of the request), but another request with a null
laxity (which leads to a deadline failure).

The least laxity first rule is optimal for independent, periodic, asynchronous
and arbitrary deadline systems.

Theorem 4.65 The least laxity first algorithm is strongly optimal for asyn-
chronous systems with arbitrary deadlines.

Proof inspired from [Mok83] Let us assume the existence of a scheduling
algorithm A so that the system is schedulable with it. Let σ be the feasible
schedule σ′ produced by the scheduler A on the system. We shall show that
the schedule produced by the least laxity first algorithm is also feasible, for any
particular way to resolve ambiguities. We shall show the following property by
induction on t: we can always transform the schedule σ in such a way that in
the interval [0, t) the resulting schedule σt is same as σ′, and σt remains feasible
for the same task set. This is trivially true for t = 0. Suppose the hypothesis
holds for t. If σt(t) = σ(t), we may take σt+1 = σt. If at time t the cpu is idle
in σt and σ′(t) = (i, k) we can take σt+1(t) = (i, k), σt+1(e) = 0, where e is the
first instant after t such that σt(e) = (i, k), and σt+1 = σt elsewhere. Remark
that if at time t the cpu is not idle in σ′ this is also the case in σt since there
is no active request at time t in both schedules. Suppose that a request of task
τi (say δk

i) is executing at time t in σt (i.e., σt(t) = (i, k)) while σ′(t) = (j, p)
with λ(t)

j,p ≤ λ(t)
i,k.

Notice that the request δp
j must be executing during at least one time unit

before Dk
i , the current deadline of task τi in the feasible schedule σt. Otherwise,

τj misses its deadline since its laxity at time Dk
i is negative:

λ(Dk
i)

j,p = λ(t)
j,p − (Dk

i − t + 1)

≤ λ(t)
i,k − (Dk

i − t + 1)

≤ Dk
i − e(t)

i,k − t− (Dk
i − t + 1)

− e(t)
i,k − 1 < 0.

We can execute the request δp
j at time t (i.e., σt+1(t) = (j, p)) and the request

of δk
i at time ej (i.e., σt+1(ej) = (i, k)), where ej is the first time unit after

time t in σt assigned to the request δp
j (this is a valid definition, since δp

j is
still active at time t in σt). The resulting schedule remains feasible and in
the interval [0, t + 1) the schedule is the one produced σ′. Consequently, the
feasible schedule σ can be transformed into the schedule σ′, while remaining
feasible, and σ′ is feasible. ■

4.9. THE LEAST LAXITY FIRST SCHEDULING ALGORITHM 189

τ1

? ?

0 3

4

τ2

? ?

4 8

5

Figure 4.41: Schedule produced by the deadline driven scheduler (from time
t=10, the schedule repeats).

τ1

? ?

0

1

2

1

4

1

6

1

τ2

? ?

1

1

3

1

5

1

7 8

2

Figure 4.42: Schedule produced by the least laxity first (from time t=10, the
schedule repeats).

The least laxity first and the deadline driven scheduler are both optimal dy-
namic priority rules, but the schedules produced by these algorithms are quite
different, in particular if we focus our attention on the number of preemptions.

Example 4.66 Consider the following system:

C T D
τ1 4 10 8
τ2 5 10 9

The schedule produced by the deadline driven scheduler contains no preemp-
tion (see Figure 4.41). On the contrary, the schedule produced by the least
laxity first algorithm contains 6 preemptions every 10 time units (see Fig-
ure 4.42). ■

More generally suppose that at time t two active requests, say δk
i and δp

j

have the same minimum laxity (i.e., λ(t)
i,k = λ(t)

j,p and λ(t)
q,r > λ(t)

i,k ∀ (q, r) 6∈
{(i, k), (j, p)}; suppose that the tie is broken in favor of δk

i ; at time t + 1 we
have that λ(t+1)

i,k = λ(t+1)
j,p + 1, the scheduler preempts the request δk

i and gives
the cpu to request δp

j ; at time t + 2 the laxity of both requests is identical
again. Hence, we can reproduce this scenario while δk

i and δp
j are active and no

190 CHAPTER 4. DYNAMIC SCHEDULERS

other higher priority request interferes. This trashing situation is cumbersome
if we consider the switching times (up to now, we always considered them as
negligible, but we know this is not exactly true, especially if there are many
preemptions) and seems to be a drawback of this scheduling algorithm in com-
parison with the deadline driven scheduler. However, for the scheduling on
multiprocessor systems, Leung [Leu89] has shown the superiority of the least
laxity first rule in comparison with the deadline driven scheduler for a model
quite close to ours. This superiority concerns the number of processors needed
by the least laxity first rule in order to schedule the system. We shall not
give more details on the subject here, since this concerns the scheduling on
multiprocessor systems, which is not the purpose of this work.

Both priority rules are optimal, hence the following properties follow:

Lemma 4.67 Let S be an asynchronous system with arbitrary deadlines. S is
schedulable with the least laxity first rule iff S is schedulable with the deadline
driven scheduler.

Proof. Immediate according to the definition of the optimality (Defini-
tion 4.6) and the fact that these priority rules are both optimal. ■

Theorem 4.68 For a given set of n asynchronous tasks with late deadlines,
the least laxity first algorithm is feasible iff

∑n
i=1

Ci
Ti
≤ 1.

Proof. We prove the theorem by contradiction: suppose there is some late
deadline system S with

∑n
i=1

Ci
Ti
≤ 1 which is not schedulable with the least

laxity first rule. Since
∑n

i=1
Ci
Ti
≤ 1 the system is schedulable with the deadline

driven scheduler (see Theorem 4.11) and by Lemma 4.67 it follows that S is
schedulable with the least laxity first rule, this is a contradiction and proves
the theorem. ■

We have seen in section 4.6 the notion of response time and its interest. For
the least laxity first rule, the computation of the response time, even in the
synchronous case, seems difficult without a full simulation. This lack arises
from the fact that, contrary to what happens with our deadline driven scheduler
and with the static priority rules, the priority of a request changes with the
time. It follows that the interference of requests of a task τj on the response
time of a request of τi does not have a form of the kind: nj · Cj (nj ∈ N) even
if the system is synchronous. Indeed, τi may be delayed by a fraction of Cj

with a strange looking form.

Example 4.69 Let us consider for instance the following synchronous system:

4.9. THE LEAST LAXITY FIRST SCHEDULING ALGORITHM 191

τ3

? ?

τ2

? ?

τ1

? ? ?

Figure 4.43: least laxity first schedule.

C T D
τ1 2 4 3
τ2 1 9 7
τ3 2 11 7

the response time of the first request of τ2 is 4 and the interference of task τ3

is C3
2 (see Figure 4.43). ■

Hence, the problem of computing the response time for the least laxity first
rule seems tricky and remains open for future work. It may be noticed that the
schedulability of a system with the least laxity first rule can be resolved without
the knowledge of this response time. Indeed, from Lemma 4.67 it follows that
we may simply check if the system is schedulable with the deadline driven
scheduler, by checking the response time in the schedulability interval for the
latter.

For the least laxity first rule, the synchronous case is again the worst case from
a schedulability point of view.

Theorem 4.70 Let S be a task set. If this task set is schedulable in the syn-
chronous case with the least laxity first rule, then this task set is schedulable in
all asynchronous situations with the least laxity first rule.

Proof. We prove the theorem by contradiction: suppose there is some system
S which is schedulable in the synchronous case while being not schedulable in
an asynchronous situation with the least laxity first rule. Since the system
S is schedulable in the synchronous situation with the least laxity first rule,
by Lemma 4.67 again it follows that this is also the case with the deadline
driven scheduler. By Theorem 4.11 we have also that S is schedulable in all
asynchronous cases with the deadline driven scheduler. By Lemma 4.67 it
follows that S is schedulable in all asynchronous cases with the least laxity
first rule. This is a contradiction and proves the theorem. ■

192 CHAPTER 4. DYNAMIC SCHEDULERS

4.10 The (non-)stability of dynamic priority
rules

In this section we shall consider the (non-)stability of dynamic priority rules.
We shall show that neither the deadline driven scheduler nor the least laxity
first scheduler is stable.

First, we consider the case of the deadline driven scheduler.

Theorem 4.71 The deadline driven scheduler is not stable.

Proof. With the deadline driven scheduler there is necessarily a time instant t
such that a non-critical request is active and has the “nearest” deadline among
all active requests (say a deadline at time d; notice that this deadline can be less
than the current time instant since non-critical requests have a soft deadline).
With the rule given by the deadline driven scheduler this non-critical request
remains the highest priority one till the completion of its processing which is
not bounded; consequently the schedulability of the critical requests from time
t cannot be guaranteed. ■

In a similar way, we show that the least laxity first algorithm is not stable.

Theorem 4.72 The least laxity first scheduler is not stable.

Proof. With the least laxity first scheduler there is necessarily a time instant
t such that a non-critical request is active with a minimal and negative laxity
(e.g., if the computation time of this request exceeds its deadline); it can remain
active and the highest priority request as a long as desired; consequently, the
feasibility of active and critical requests cannot be guaranteed. ■

In all generality we cannot claim of course that dynamic priority schedulers are
not stable: consider for instance the case of the (dynamic19) rate monotonic
scheduler which is stable under some assumptions and/or period transforma-
tions (as exhibited in section 2.7). It could be interesting to investigate the
existence of an optimal stable and dynamic priority rule; however this question
remains open for future works.

4.11 Conclusion

In this chapter we have presented dynamic priority schedulers. We have first
studied the deadline driven scheduler, reviewed the literature, and we have

19Dynamic priority rules include static priority ones by definition.

4.11. CONCLUSION 193

completed/corrected the theory in particular concerning the optimality result.
We have considered the results with arbitrary deadlines in mind. We have
shown that several results remain for this more general class (than those gen-
erally considered in the literature). We have also extended the theory to this
class, in particular for the feasibility interval given by Leung and Merrill. Then
we have extended the computation of the response time to dynamic priority
rules (i.e., formulas, iterative process and implementation methods) and for
the various task sub-sets considered in this work, we have studied the interest
of our general response time computation in comparison with previous results
for synchronous and asynchronous systems (i.e., regarding the worst and the
actual complexity of the various approaches). For both cases, we have shown
the advantage of our approach.

First, for asynchronous systems we have shown that the maximal time com-
plexity of our computation exhibits an exponential improvement in compari-
son with the computation suggested by Baruah, Howell and Rosier. For syn-
chronous systems, we studied the worst case response time computation of
Spuri, we have shown the pessimism of this approach, i.e., the value of the
worst response time computed by Spuri does not necessarily occur in the sched-
ule of the synchronous case. Moreover, we have shown that all response times
computed by Spuri do not occur in the same schedule. Then we have shown the
interest of our general response time computation to compute the worst case
response time in a particular schedule, e.g., in the synchronous case. Lastly,
based on the general response time computation we have defined a feasibility
test for synchronous systems, which considers the system from time 0 till the
first idle point (beside 0). The maximal time complexity of this test exhibits
again an exponential improvement in comparison with the approach of Spuri.

Hence, we feel to have justified the interest of our general response time com-
putation concerning the feasibility test of synchronous/asynchronous systems
for arbitrary deadlines.

We have shown alongside our study that we must be very careful, that (our)
intuition may lead to incorrect reasonings (e.g., it was the case of the incorrect
argument used by Liu and Layland): for the kind of systems we consider in this
work, even in very “simple” cases (e.g., synchronous and late deadline systems
with 2 periodic tasks), it is difficult to anticipate their behavior.

Interesting questions for further research issued from this chapter include: s-
tatistical analysis of the actual performance of the various methods and al-
gorithms proposed in this chapter with other random variables or with “re-
al” systems; analysis of the parallelization of method 1 and the study of its
time/space complexity; the determination of the situation which leads to the
best response time; the computation of the response time using the least lax-

194 CHAPTER 4. DYNAMIC SCHEDULERS

ity first algorithm; investigating the existence of optimal stable and dynamic
priority rule,...

Bibliography

[ABRT93] N. C. Audsley, A. Burns, M. Richardson, and K. Tindell. Applying
new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, pages 284–292, 1993.

[BHR93] S. K. Baruah, R. R. Howell, and L. E. Rosier. Feasibility problems
for recurring tasks on one processor. Theoret. Comput. Sci., 118:3–
20, 1993.

[BHR93] Sanjoy K. Baruah, Rodney R. Howell, and Louis E. Rosier. Feasibil-
ity problems for recurring tasks on one processor. Theoret. Comput.
Sci., 1(118), 93.

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor. The Journal of Real-Time Systems,
2:301–324, 1990.

[Der74] M. Dertouzos. Control robotics: the procedural control of physical
processes. In Proceedings of the IFIP Congress, 1974.

[Dic19] Leonard Eugene Dickson. History of the Theory of Numbers, vol-
ume II. Chelsea Publishing Company, 1919.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability, a guide to the Theory of NP-Completeness. W. H.
Freeman, San Francisco, 1979.

[Knu69] Donald E. Knuth. The Art of Computer Programming, volume 2 of
Seminumerical Algorithms. Addison-Wesley, 1969.

[Lab74a] J. Labetoulle. Un algorithme optimal pour la gestion des processus
en temps réel. Revue Française d’Automatique, Informatique et
Recherche Opérationnelle, B-1:11–17, février 1974.

195

196 BIBLIOGRAPHY

[Lab74b] Jacques Labetoulle. Some theorems on real time scheduling. Com-
puter Architectures and Networks, 1974.

[Leh90] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In ieee Computer Society Press, editor, Pro-
ceedings of the Real-Time Systems Symposium - 1990, pages 201–
213, Lake Buena Vista, Florida, USA, December 1990.

[Leu89] Joseph Y.-T. Leung. An new algorithm for scheduling periodic,
real-time tasks. Algorithmica, 4:209–219, 1989.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the
Association for Computing Machinery, 20(1):46–61, January 1973.

[LM80] Joseph Y.-T. Leung and M. L. Merrill. A note on preemptive
scheduling of periodic, real-time tasks. Information Processing Let-
ters, 11(3):115–118, November 1980.

[LW82] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2:237–250, 1982.

[Mat81] L. Matthiessen. Le problème des restes dans l’ouvrage chinois
swang-king de sun-tsze et dans l’ouvrage ta-yen-lei-schu de yih-
hing. Comptes rendus de l’Académie de Paris, 92:291–294, 1881.

[MD78] A. Mok and M. Dertouzos. Multiprocessor scheduling in a hard real-
time environment. In Proceedings of the Seventh Texas Conference
on Computing Systems, 1978.

[Mok83] Aloysius Ka-Lau Mok. Fundamental Design Problems of Distributed
Systems for The Hard-Real-Time Environment. PhD thesis, Mas-
sachusetts Institute of Technology, 1983.

[Spu96] Marco Spuri. Analysis of deadline scheduled real-time systems.
Technical Report 2772, Institut National de Recherche en Informa-
tique et en Automatique, 1996.

Chapter 5

Offset free systems

Douter de tout ou tout croire, ce sont deux solutions également
commodes, qui l’une et l’autre nous dispensent de réfléchir.
— Henri Poincaré, La Science et l’hypothèse (Flammarion).

Contents

5.1 Introduction . 196

5.2 Offset granularity 199

5.3 Non-equivalent asynchronous systems 204

5.4 Non-optimality of monotonic schedulers 210

5.4.1 Definitions and properties 212

5.4.2 Optimality in special cases of offset free systems . . 213

5.4.3 Non-optimality of monotonic schedulers 217

5.5 Optimality of dynamic schedulers 221

5.6 Practical interest of offset free systems 221

5.7 Optimal offset assignment 224

5.7.1 Two tasks . 226

5.7.2 n tasks . 228

5.8 Dissimilar offset assignment 229

5.9 Conclusion . 237

Bibliography . 237

197

198 CHAPTER 5. OFFSET FREE SYSTEMS

τ3
?
0 2

3 ?
8 10

3

τ2
?

3 7

5

11

1

τ1
?

6

Figure 5.1: The task set is unschedulable in the synchronous case.

τ3
?
0 2

3 ?
8 10

3 ?
16 18

3 ?
24 26

3 ?
32 34

3 ?

τ2
? ? ? ?

3 7

5

11

1

15

4

19

2

27 31

5

35

1

τ1
? ? ?

21

1 1

Figure 5.2: The task set is schedulable; at t = 34 the situation is the same as
at t = 10 and the schedule repeats.

5.1 Introduction

In the previous chapters we have studied the feasibility problem of various
sub-classes of periodic task sets, using static and dynamic priority scheduling
algorithms. From this study a general remark can be raised:

From a schedulability point of view the synchronous case is the worst case, i.e.,
if the system is schedulable in the synchronous case it follows that this is also
the case in all asynchronous situations.

More precisely for (late and) general deadline systems with monotonic priority
assignments the largest response time occurs for the first request of τi in the
synchronous case (see Theorem 3.13); for arbitrary deadline with monotonic
priority assignments the largest response time occurs in the interval [0, λn) in
the synchronous case (see Theorem 2.37). Moreover, for dynamic priority rules
and especially for the deadline driven scheduler, the largest response time does
not necessarily occur in the first busy period, nor in the synchronous schedule,
but the synchronous case remains the worst case from a schedulability point of
view (see Theorem 4.11), whatever the sub-class of periodic task sets considered
in this work. We have finally noticed that, for the least laxity first scheduling
algorithm, the synchronous case is also the worst case (see Theorem 4.70).

5.1. INTRODUCTION 199

τ3
?

5 7

3 ?
8 10

3 ?
17 19

3 ?

τ2
? ? ?
0 4

5

12 16

5

τ1
? ?

11

1

22

1

Figure 5.3: The task set is schedulable; at t = 24 the situation is the same as
at t = 0 and the schedule repeats.

τ1
?
0 1

2 ?

τ2
? ?

2

4

6

Figure 5.4: The synchronous task set is unschedulable.

Consequently, for static as well as dynamic schedulers, it is pessimistic to
consider only the synchronous case, since a system can be unschedulable in
the synchronous case, while being schedulable in a particular asynchronous
situation. We present two such systems, first for the static case, then for the
dynamic one.

Example 5.1 Consider the task set composed of three tasks τ1, τ2 and τ3;
τ1 = {C1 = 1, T1 = D1 = 12, O1 = 10}, τ2 = {C2 = 6, T2 = D2 = 12, O2 = 0},
τ3 = {C3 = 3, T3 = D3 = 8, O3 = 0}. In the synchronous case the system is
statically unschedulable, even with the optimal priority assignments given by
the rate monotonic rule: τ3 > τ2 > τ1 (see Figure 5.1) or τ3 > τ1 > τ2: the first
request of task τ1 misses its deadline. But with the offset O3 = O2 = 0 and
O1 = 10, the system is schedulable with the priority assignment τ3 > τ2 > τ1

(see Figure 5.2) and with the priority assignment τ2 > τ3 > τ1 (see Figure 5.3).
■

Hence an interesting problem arises: if the offsets are not fixed by the con-
straints of the problem and the task set is unschedulable in the synchronous
case, is there an assignment of the offsets and priorities such that it becomes
schedulable?

Example 5.2 Let us consider the following system with the deadline driven
scheduler.

200 CHAPTER 5. OFFSET FREE SYSTEMS

τ1
? ? ? ? ? ?
0 1

2

7 8

2

14 15

2

22 23

2

24 25

2

τ2
? ? ? ?

2 6

5

9 14

5

17 21

5

26 31

5

Figure 5.5: The asynchronous task set is schedulable (from time t = 24, the
schedule repeats).

C T D
τ1 2 6 6
τ2 5 8 6

If we choose O1 = O2 = 0, the system is unschedulable: the first request of τ2

misses its deadline (see Figure 5.4). However, the system is schedulable with
O1 = 0 and O2 = 1 (see Figure 5.5). ■

As a consequence, if the real-time system for which the scheduling is comput-
ed does not have definite requirements about the task start times (offsets),
considering only the synchronous case is too pessimistic. We consider in this
chapter hard real-time systems which have no definite requirements about the
task start times. In such systems the offsets will be chosen beforehand by the
scheduling algorithm. We call this kind of system: offset free system.

We shall see in section 5.5 that the deadline driven scheduler and the least
laxity first scheduler remain optimal for offset free systems. For these reasons,
the practical interest of offset free systems for the deadline driven scheduler
(and the least laxity first rule) is even more important than in the static case,
since in the static case no optimal priority assignment is know, but of course
the problem of scheduling offset free systems with static priority assignment is
also relevant.

The remainder of this chapter is as follows: in section 5.2 we show that we can
restrict the offsets to have the same granularity than the task characteristics,
in section 5.3 we study the notion of non-equivalent asynchronous systems,
in particular we show that only

Qn
i=1 Ti

P different offset assignments need be
considered; in section 5.4 and 5.5 we study the optimality problem of popular
priority rules for offset free systems; we first consider the case of monotonic
priority assignments and then the case of the deadline driven scheduler; in
section 5.6 we show the interest to consider systems where the offsets can be
chosen by the scheduling algorithm; in section 5.7 we propose an optimal offset
assignment which considers only the non-equivalent asynchronous systems, and
in section 5.8 we present a pseudo-polynomial time and nearly optimal heuristic
offset assignment rule.

5.2. OFFSET GRANULARITY 201

5.2 Offset granularity

We have assumed in our model of computation that the fixed characteristics of
the various tasks (i.e., Ti, Di, Ci for offset free systems) are natural numbers. In
this chapter we consider real-time systems which have no requirement on the
offset values. In particular the offsets may have a different granularity than the
fixed characteristics. A priori it could be interesting to choose the offsets with a
finer granularity. If a system is unschedulable for all natural offset assignments
(i.e., Oi ∈ N for i = 1, . . . , n), it is not obvious that this will still be the case if
we allow, for example, the offsets to be multiples of 1

2 (i.e., Oi ∈ {p
2 |p ∈ N} for

i = 1, . . . , n). It may be noticed that allowing the offsets to be multiple of 1
2 for

an offset free system S = {τi = {Ti, Ci, Di}|i = 1, . . . , n} with Ti, Ci, Di ∈ N is
equivalent to allow the offsets to be natural numbers for the offset free system
S ′ = {τ ′i = {T ′

i = 2Ti, C ′
i = 2Ci, D′

i = 2Di}|i = 1, . . . , n} where the fixed
characteristics are multiplied by 2. We shall show that we may restrict the
offsets to have the same granularity than the fixed characteristics (i.e., natural
numbers in our model of computation, or still better: multiples of the greatest
common divisor of the fixed characteristics): from a schedulability point of
view, for offset free systems, it is not relevant to have a finer granularity for
the offsets.

Definition 5.3 Let S = {τi = {Ti, Ci, Di}|i = 1, . . . , n} with Ti, Ci, Di ∈ N
be an offset free system. An offset assignment is said to have a granularity of m
iff m is the smallest positive integer such that Oi ∈ { p

m |p ∈ N} (i = 1, . . . , n).
■

First, we consider the case of static scheduling algorithms.

Theorem 5.4 Let S = {τi = {Ti, Ci, Di}|i = 1, . . . , n} with Ti, Ci, Di ∈ N
be an offset free system with arbitrary deadlines. If S is not schedulable with
the static priority assignment τ1 > τ2 > · · · > τn for all natural offset assign-
ments (i.e., Oi ∈ N for i = 1, . . . , n), then this is also the case for all offset
assignments with a granularity of m, for all m (m ∈ N0 = N \ {0}).

Proof. Let O1, . . . , On be an offset assignment with a granularity of m.
We shall show that, under our assumptions, this asynchronous system is not
schedulable. Let O′

i = bOic (i = 1, . . . , n); we have: Oi = O′
i + εi with εi ∈

{ p
m |p ∈ N} and 0 ≤ εi < 1 (i = 1, . . . , n). Let S′ be the asynchronous system

with the same task characteristics than S and the natural offsets O′
1, . . . , O

′
n:

from our assumptions, we have that S ′ is unschedulable. We shall show that
‘shifting’ right the tasks by εj cannot make the system schedulable. The system

202 CHAPTER 5. OFFSET FREE SYSTEMS

S ′ is not schedulable, hence there is at least one task (say τi) which misses its
deadline at some time t = O′

i + (k − 1) · Ti + Di (k > 0); t is assumed to be
the first deadline failure instant. It may be noticed that the tasks τi+1, . . . , τn

do not impact on the schedulability of τ1, . . . , τi. Since a request of task τi

misses its deadline we have only to consider the task subset: τ1, . . . , τi. Let t′

be the smallest time instant such that the cpu remains busy for tasks in the
subset τ1, . . . , τi, in the interval [t′, t) (0 ≤ t′ < t since at time t task τi misses
its deadline and had an active request at time t− 1). The requests occurring
strictly before t′ do not impact on the schedule in the interval [t′, t). Ignoring
the requests before t′ is equivalent to refine the offsets and consider the system
S ′′ with the same task characteristics than S and the offsets:

O′′
j = min

k≥0
{O′

j + k · Tj|O′
j + k · Tj ≥ t′}

= O′
j +

⌈

(t′ −Oj)+

Tj

⌉

· Tj for j = 1, . . . , i

We can also change the time origin and consider the system S ′′′ with the same
task characteristics than S and the offsets:

∀j : O′′′
j = O′′

j −min{O′′
1 , . . . , O

′′
i } and t′′ = t−min{O′′

1 , . . . , O
′′
i }

By construction, the cpu is permanently busy in the interval [0, t′′) by tasks
in the set {τ1, . . . , τi}. Hence, if τi misses its deadline in t′′, it follows that
the demand of τ1, . . . , τi in the interval [0, t′′] is greater than the length of this
interval:

i
∑

j=1

⌈

(t′′ −O′′′
j)+

Tj

⌉

· Cj > t′′

At best the demand needs one extra unit of cpu:

i
∑

j=1

⌈

(t′′ −O′′′
j)+

Tj

⌉

· Cj ≥ t′′ + 1 > t′′

We shall now consider the system S̃ with the same task characteristics than S
and the offset Õ1, . . . , Õn with a granularity of m:

5.2. OFFSET GRANULARITY 203

Õj = O′′′
j + εj with 0 ≤ εj < 1 (j = 1, . . . , i)

Remark that, with the offset assignment O1, . . . , On the requests of τj (j =
1, . . . , i) occurring strictly before Õj +min{O′′

1 , . . . , O
′′
i } may have an impact20

on the schedule after them; we shall however neglect this impact, which anyway
reinforces our argument, since we shall prove that the demand in the schedule
from the offsets ˜Oj is already too large and induces a deadline failure.

Let t̃ = t′′ + εi; t̃ corresponds to the deadline of the request of τi which missed
its deadline at time t′′ in S′. It may be noticed that Õmin = minj=1,...,i{Õj} is
not necessarily 0, and in the interval [0, Õmin] the cpu remains idle. We shall
show that in the interval [Õmin, t̃) the demand of tasks τ1, . . . , τi is greater than
or equal to the one in the previous situation, hence greater than the length of
the interval and consequently the set remains unschedulable.

By construction of t̃, each task (say τj, 1 ≤ j ≤ i) in S̃ has a greater or equal
number of requests in the interval [Õmin, t̃) than in the interval [0, t′′) in S′′′.
To show this, let tj be the time of the last request of τj which occurs before or
at time t′′ (tj ≤ t′′) in S ′′′ (if O′′′

j ≥ t′′, tj is not defined but there is no request of
τj in [0, t′′) in S′′ and this may only increase). We have to distinguish between
two cases:

1. tj = t′′: in this case, if the first request of τj starts at time Õj instead of
O′′′

j the number of requests of τj in the interval [Õmin, t̃) is the same if
εi ≤ εj and is increased by one unit otherwise.

2. tj < t′′: in this case we have necessarily that t′′ − tj ≥ 1. If the first
request of τj starts at time Õj instead of O′′′

j the number of requests of
τj in the interval [Õmin, t̃) is the same since |εi − εj| < 1.

Hence the demand of tasks τ1, . . . , τi is greater or equal than t′′ + 1 but the
cpu availability is t′′ + εi − Õmin < t′′ + 1. It follows that the system remains
unschedulable: the deadline of τi in t′′ + εi is missed. ■

Now, we extend the result to the dynamic deadline driven scheduler.

Theorem 5.5 Let S = {τi = {Ti, Ci, Di}|i = 1, . . . , n} with Ti, Ci, Di ∈ N
be an offset free system with arbitrary deadline. If S is not schedulable with

20e.g., with the system S = {τ1 = {T1 = 2, C1 = 1 = D1}, τ2 = {T2 = 6, C2 = 3 = D2}},
O1 = 1

3 and O2 = 1; O′
1 = 0, O′

2 = 1, t′ = 1, t = 4; O′′
1 = 2 and O′′

2 = 1; O′′′
1 = 1 and O′′′

2 = 0;
Õ1 = 4

3 and Õ2 = 0 with min{O′′
1 , O′′

2} = 1, but the request of τ1 at 1
3 delays τ2 from 1 to 4

3 .

204 CHAPTER 5. OFFSET FREE SYSTEMS

the deadline driven scheduler for all natural offset assignments (i.e., Oi ∈ N
for i = 1, . . . , n), then this is also the case for all offset assignments with a
granularity of m, for all m (m ∈ N0).

Proof. Let O1, . . . , On be an offset assignment with a granularity of m.
We shall show that, under our assumptions, this asynchronous system is not
schedulable. Let O′

i = bOic (i = 1, . . . , n); we have: Oi = O′
i + εi with εi ∈

{ p
m |p ∈ N} and 0 ≤ εi < 1 (i = 1, . . . , n). Let S′ be the asynchronous system

with the same task characteristics than S and the natural offsets O′
1, . . . , O

′
n:

from our assumptions, we have that S ′ is unschedulable. We shall show that
‘shifting’ right the tasks with εj cannot make the system schedulable. The
system S′ is not schedulable, hence there is at least one request (say a request
of task τi) which misses its deadline at some time t (t > 0), t is assumed to
be the first deadline failure instant. Let t′ be the smallest time instant such
that in the interval [t′, t) the cpu remains busy for requests with deadline less
than or equal to t (t′ < t). The requests occurring strictly before t′ do not
impact on the schedule in the interval [t′, t). Ignoring the requests before t′ is
equivalent to refine the offsets and consider the system S ′′ with the same task
characteristics than S and the offsets:

O′′
j = min

k≥0
{O′

j + k · Tj|O′
j + k · Tj ≥ t′}

= O′
j +

⌈

(t′ −Oj)+

Tj

⌉

· Tj (j = 1, . . . , n)

We can also change the time origin and consider the system S′′′ with the same
task characteristics than S and the offsets:

O′′′
j = O′′

j −min{O′′
1 , . . . , O

′′
n} (j = 1, . . . , n)

t′′ = t−min{O′′
1 , . . . , O

′′
n}

The cpu is permanently busy by requests with deadline less than or equal to
t′′ and, at time t′′, at least one request misses its deadline. Hence, the demand
that the deadline driven scheduler had to consider in the interval [0, t′′) exceeds
the available cpu. This demand is

n
∑

j=1

⌊

(t′′ + Tj −O′′′
j −Dj)+

Tj

⌋

Cj.

5.2. OFFSET GRANULARITY 205

Indeed, the demand of task τj is nj ·Cj where nj denotes the number of requests
of τj with a deadline less than or equal to t′′; hence nj is the largest natural
integer such that (nj − 1)Tj + Dj + O′′′

j ≤ t′′: the formula follows.

Hence, this demand is strictly greater than the length t′′ of the interval; at
best the demand needs one extra unit of cpu:

n
∑

j=1

⌊

(t′′ + Tj −O′′′
j −Dj)+

Tj

⌋

Cj ≥ t′′ + 1 > t′′.

We shall now consider the system S̃ with the same task characteristics than S
and the offset Õ1, . . . , Õn with a granularity of m:

Õj = O′′′
j + εj with 0 ≤ εj < 1 (j = 1, . . . , n)

Remark that, with the offset assignment O1, . . . , On the requests of τj (j =
1, . . . , i) occurring strictly before Õj +min{O′′

1 , . . . , O
′′
n} may have an impact20

on the schedule after them; we shall however neglect this impact, which anyway
reinforces our argument, since we shall prove that the demand in the schedule
from the offsets ˜Oj is already too large and induces a deadline failure.

Let t̃ = t′′ + ε′′ with ε′′ = max{εi|τi has a deadline at time t}: t̃ corresponds
to the largest deadline of the requests with a deadline at t′′ in S ′′. It may
be noticed that Õmin = minj=1,...,n{Õj} is not necessarily 0: in the interval
[0, Õmin] the cpu remains idle. We shall show that in the interval [Õmin, t̃) the
demand that the deadline driven scheduler has to satisfy before t̃ is equal to
the one in the previous situation between [0, t′′), i.e., is greater than the length
of the interval and consequently the set remains unschedulable.

By construction of t̃, each task (say τj, 1 ≤ j ≤ i) has the same number of
requests in the interval [0, t̃) for S̃ with a deadline not later than t̃, than in the
interval [0, t′′) for S ′′′ with a deadline not later than t′′. To show this, consider
the first time dj strictly after than t′′ which corresponds to a deadline of task
τj in S′′′. It follows from our definitions that dj − t′′ ≥ 1 and consequently the
number of requests of τj with a deadline less than or equal to t̃ with the offset
Õ1, . . . , Õn is identical since |ε′′ − εj| < 1.

Hence the demand that the deadline driven scheduler has to satisfy before t̃ is
at least t′′ + 1 and the cpu availability is t′′ + ε′′ − Õmin < t′′ + 1. It follows
that the system remains unschedulable. ■

It may be noticed that Baruah, Howell and Rosier [BRH90] have shown a
similar result for general deadline systems. They have shown that if a feasi-
ble offset assignment exists where Oi ∈ R then there exists a feasible offset
assignment where Oi ∈ N. The proof uses an elaborate reasoning to assert

206 CHAPTER 5. OFFSET FREE SYSTEMS

this property. We have shown that we can restrict the schedule to be discrete
(see the discussion after Theorem 4.16); for this reason we have considered
Theorem 5.5 rather than the result of Baruah, Howell and Rosier. Moreover,
we have considered the case of arbitrary deadline systems: among all offsets
assignments, i.e., for all granularity, we may always restrict the offsets to be
natural numbers.

Corollary 5.6 Let S = {τi = {Ti, Ci, Di}|j = 1, . . . , n} with Ti, Ci, Di ∈ N be
an offset free system. If S is not schedulable with the least laxity first algorithm
for all natural offset assignments (i.e., Oi ∈ N, i = 1, . . . , n), then this is also
the case for all offset assignments with a granularity of m, for all m (m ∈ N0).

Proof. We prove the theorem by contradiction: suppose there is some offset
free system S schedulable with the least laxity first algorithm and an offset
assignment O1, . . . , On with a granularity of m (m > 1) while all natural
offset assignments make the system unschedulable. By Lemma 4.67, we have
that S is also schedulable with the deadline driven scheduler and the offsets
O1, . . . , On. From Theorem 5.5 there must exist a natural offset assignment
(say O′

1, . . . , O
′
n) for which the system S remains schedulable with the deadline

driven scheduler. If we apply Lemma 4.67 again we have a contradiction, since
S is schedulable with the least laxity first algorithm for the natural offset
assignment O′

1, . . . , O
′
n. ■

Consequently, in this chapter we shall restrict without loss of generality the
offsets to have the same granularity than other task characteristics, i.e., to be
integer numbers.

5.3 Non-equivalent asynchronous systems

We shall in this section introduce the notion of (non-)equivalent asynchronous
systems; this notion (and its interest) does not depend on the scheduling al-
gorithm, not even on the scheduling family (i.e., static or dynamic). For this
reason we shall present here results without considering a specific scheduling
algorithm, but in particular circumstances. We only suppose that the schedule
is periodic with a period of P time units, that only the periodic behavior is
significant regarding the feasibility of the system and that the periodic behav-
ior only depends on the relative phasing of task requests, which is true for all
the schedulings techniques we considered in this work.

Indeed, we have studied in Chapters 2 and 4 the feasibility problem of vari-
ous sub-classes of periodic task sets (e.g., synchronous late deadline system,

5.3. NON-EQUIVALENT ASYNCHRONOUS SYSTEMS 207

asynchronous general deadline system, etc.): in all the cases and particularly
in the more general ones, i.e., asynchronous and arbitrary deadline systems,
the feasibility of the system only depends on the periodic part of the schedule
(consequently the first part of the schedule may be neglected). It remains to
show that suppressing the request of τi at time Oi does not alter the peri-
odic behavior of the system; we shall first consider the case of static priority
assignments.

Lemma 5.7 Let S be feasible asynchronous and arbitrary deadline system with
U ≤ 1, the periodic part of the schedule using a static priority assignment is
not altered21 by suppressing the request of τi at time Oi.

Proof. From the proof of Theorem 2.67, we know that the schedule is finally
periodic when U ≤ 1. Let t ≥ Oi + Ti be a time instant in the periodic part of
the schedule; from Lemma 3.10 there must exist an idle point t′ ≥ t. It follows
that at time t′ all previous task requests have completed their execution, the
schedule from time t′ does not depend on requests before time t′ and the
schedule repeats from time t′. The property follows. ■

Now, we extend the result to the dynamic deadline driven scheduler.

Lemma 5.8 Let S be an asynchronous and arbitrary deadline system with
U ≤ 1, the periodic part of the schedule using a request-dependent deadline
driven scheduler is not altered21 by suppressing the request of τi at time Oi.

Proof. From Lemma 4.35, we know that the schedule is finally periodic when
U ≤ 1. Let t ≥ Oi + Ti be a time instant in the periodic part of the schedule;
from Lemma 3.10 there must exist an idle point t′ ≥ t. It follows that at time
t′ all previous task requests have completed their execution, the schedule from
time t′ does not depend on requests before time t′ and the schedule repeats
from time t′. The property follows. ■

Several asynchronous systems may lead to the same periodic behavior, and can
be considered as equivalent in terms of feasibility according to the previous
remark.

Definition 5.9 Let S and S ′ be two asynchronous arbitrary deadline systems:
S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n} and S′ = {τ ′i = {O′

i, C
′
i = Ci, D′

i =
Di, T ′

i = Ti}|i = 1, . . . , n}. Let σS and σS′ their schedule; S and S′ are
said to be equivalent (S ≡ S ′) if they have the same periodic behavior, i.e.,

21In this context, by “not altered” we mean: ∃t0, a ∈ N : ∀t ≥ t0 : CS(t) = CS′(t + a)
where S′ is the modified system.

208 CHAPTER 5. OFFSET FREE SYSTEMS

∃t1, a ∈ N ∀t ≥ t1 : σS(t) = (i, k) ⇔ σS′(t + a) = (i, k + ki) with ki ∈ Z for
i = 1, . . . , n. ■

Theorem 5.10 Let S and S′ be two asynchronous arbitrary deadline systems:
S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n} and S′ = {τ ′i = {O′

i, C
′
i = Ci, D′

i =
Di, T ′

i = Ti}|i = 1, . . . , n}; S and S′ are equivalent iff

∃k1, . . . , kn, A ∈ Z : Oi = O′
i + ki · Ti + A (1 ≤ i ≤ n).

Proof.
(Only if part.) From Definition 5.9, at time t ≥ t1 the schedules are identical,
including the relative phasing between task requests; it follows that there must
exist ki ∈ Z (1 ≤ i ≤ n), A ∈ Z : Oi = O′

i + ki · Ti + A (1 ≤ i ≤ n).

(If part.) The difference between system S and S ′ lies in the offsets. The
schedule of the system S can be obtained from the one of S ′ by adding or
subtracting requests of task τi at times Oi and by changing the time origin.
These transformations do not change the periodic behavior of the systems S ′

from our assumptions. ■

We have seen that the feasibility of the synchronous case is a simpler problem in
terms of time complexity, especially for static scheduling algorithms applied to
general deadline systems. Hence, it is interesting to use feasibility tests defined
for synchronous systems if the considered asynchronous system is equivalent
to the synchronous one. Definition 5.9 can be simplified in this case.

Definition 5.11 Let S be an asynchronous and arbitrary deadline systems:
S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n}; S is said to be equivalent to its
synchronous case if

∃t, k1, . . . , kn ∈ N such that ∀i : t = Oi + ki · Ti (5.1)

■

It is not necessarily obvious to check if an asynchronous system matches E-
quation (5.1); first, let us remark that Equation (5.1) may reformulated as
follows:

∃t ∈ N such that ∀i : t ≡ Oi (mod Ti).

If the values Ti are pairwise prime this problem is known as the Chinese Re-
mainder Theorem or the Chinese Lemma.

5.3. NON-EQUIVALENT ASYNCHRONOUS SYSTEMS 209

Theorem 5.12 (Chinese Remainder Theorem [CS47]) Let T1, T2, . . . , Tn

be positive integers which are relatively prime pairwise, i.e.,

gcd(Ti, Tk) = 1 when i 6= k.

Let P = T1 × T2 × · · · × Tn, then the congruence system:

t ≡ O1 (mod T1)
t ≡ O2 (mod T2)
...

t ≡ On (mod Tn)

has exactly one solution (modulo P). ■

Consequently, if the periods are relatively prime (pairwise), the asynchronous
system is always equivalent to the synchronous case. In the framework of this
work, we are only interested in the existence of a solution, but its construction
can be found in [Knu69], pp. 250. In order to verify if the periods are pairwise
relatively prime, we can apply the Euclid’s algorithm to each pair (Ti, Tj), j 6= i,

hence the time complexity of this procedure is O(
(

n
2

)

× log Tmax) = O(n2 ×

log Tmax). It may be noticed that there may exist other methods to check the
pairwise primality of the periods; we leave this question to the perspicacity of
the mathematicians.

We shall now consider the case where the periods are not relatively prime.
Knuth gave a generalization of Theorem 5.12 to this case (see exercise 3, section
4.3.2 of [Knu69]).

Theorem 5.13 (Generalized Chinese Remainder Theorem) Let
T1, T2, . . . , Tn be positive integers. Let P be the least common multiple of
T1, T2, . . . , Tn and let a,O1, O2, . . . , On be any integers. There is exactly one
integer t which satisfies the conditions

a ≤ t < a + P, t ≡ Oj (mod Tj) 1 ≤ j ≤ n,

provided that

Oi ≡ Oj (mod gcd(Ti, Tj)) 1 ≤ i < j ≤ n; (5.2)

and there is no such integer t when the latter condition fails. ■

210 CHAPTER 5. OFFSET FREE SYSTEMS

In the framework of this work, we are only interested in the existence of a solu-
tion, but its construction can be found in Yih-hing [Dic19, Mat81] and Knuth
[Knu69], pp. 513.

From Theorem 5.13 it follows that Oi ≡ Oj (mod gcd(Ti, Tj)) is a necessary
and sufficient condition for an asynchronous system to be equivalent to the
corresponding synchronous one. Checking if an asynchronous system matches
Equation (5.2) can be resolved by applying the Euclid’s algorithm to each pair
(i, j). The maximal time complexity of this procedure is again O(n2×log Tmax).
It may be noticed that there may exist other methods to check the n(n−1)

2
conditions simultaneously; we leave again this question to the perspicacity of
the mathematicians.

We shall now show that there are
Qn

i=1 Ti

P different classes of equivalent asyn-
chronous systems (for the same values of T1, T2, . . . , Tn), based on the relation-
ship given by Definition 5.9. If we fix the periods there is an infinite number
of asynchronous systems. However, we may first remark that without loss of
generality we can restrict the offsets as follows.

Theorem 5.14 We may restrict the offsets in such a way that
{

O1 = 0,
Oi ∈ [0, Ti) i = 2, . . . , n.

without emptying any equivalence class of asynchronous systems.

Proof. This results immediately from our assumptions, in particular from
the fact that the periodic part of the schedule is not altered21 by suppressing
the request of τi at time Oi. ■

Theorem 5.15 We may restrict the offsets in such a way that they fulfill the
limited growing offset property

{

O1 = 0,
Oi ∈ [Oi−1, Oi−1 + Ti) i = 2, . . . , n.

without emptying any equivalence class of asynchronous systems.

Proof. This results immediately from our assumptions, in particular from
the fact that the periodic part of the schedule is not altered by suppressing the
request of τi at time Oi. ■

It follows that the number of classes of equivalent asynchronous systems is
finite and not greater than

∏n
i=2 Ti. In order to identify this number exactly,

we shall base our study on the request separation time notion.

5.3. NON-EQUIVALENT ASYNCHRONOUS SYSTEMS 211

Definition 5.16 Let Γ = {τi = {Ci, Di, Ti}|i = 1, . . . , n} be an offset free
task set. For the offset assignment ~O =< O1, . . . , On > and for all k > 0 such
that Rk

1 is in the periodic part of the systems (e.g., Rk
1 ≥ Omax +P), we define

the request separation for the kth request of τ1 as
~∆(k, ~O) =< ∆2(k, ~O), . . . , ∆n(k, ~O) >, where ∆j(k, ~O) is the delay between Rk

1

and the first request of τj which immediately follows time Rk
1, i.e., ∆j(k, ~O) =

(Oj −Rk
1) mod Tj (notice that ∆1(k, ~O) = 0). ■

The request separation time is used here to compare asynchronous systems in
terms of their relative phasings and check their equivalence.

Theorem 5.17 Let S and S′ be two asynchronous arbitrary deadline systems:
S = {τi = {Oi, Ci, Di, Ti}|i = 1, . . . , n} and S′ = {τ ′i = {O′

i, Ci, Di, Ti}|i =
1, . . . , n}; S ≡ S ′ iff ∃k1, k2 ∈ N : ~∆(k1, ~O) = ~∆(k2, ~O′).

Proof.
(if part). If ~∆(k1, ~O) = ~∆(k2, ~O′), it follows that ∀j ≥ 1 we have (Oj − Rk1

1)
mod Tj = (O′

j −R′k2
1) mod Tj, hence ∃rj : Oj = O′

j + rjTj + (Rk1
1 −R′k2

1) and
S ≡ S′ from Theorem 5.10.

(only if part). If S ≡ S ′ it follows that the periodic behavior of S and S′ are
identical: there must exist t1 which corresponds with a new request of τ1 (say
the kth

1) in S and t2 which corresponds to a new request of τ1 (say the kth
2) in

S ′ such that (t1 − Oi) mod Ti = (t2 − O′
i) mod Ti (for all i = 1, . . . , n). It

follows that ~∆(k1, ~O) = ~∆(k2, ~O′). ■

Definition 5.18 Let ~O1 and ~O2 be two offset assignments. ~O1 and ~O2 are
equivalent (~O1 ≡ ~O2) iff ∃k1, k2 ∈ N : ~∆(k1, ~O1) = ~∆(k2, ~O2). ■

It follows from Definition 5.18 and Theorem 5.17 that equivalent offset assign-
ments define equivalent asynchronous systems (and inversely).

Lemma 5.19 Let Γ = {τi = {Ci, Di, Ti}|i = 1, . . . , n}. There are
∏n

i=2 Ti

different request separations for any request (say the kth) of τ1, when the task
periods are fixed and the offsets are free.

Proof. Since 0 ≤ ∆i(k, ~O) < Ti, we have that the number of different
request separations is the number of different tuples < x2, x3, . . . , xn > with
0 ≤ xi < Ti and xi ∈ N. ■

212 CHAPTER 5. OFFSET FREE SYSTEMS

Lemma 5.20 Let Γ = {τi = {Ci, Di, Ti}|i = 1, . . . , n}. The offset assignment
~O defines Pn

T1
equivalent and different request separations for any request of τ1,

where Pn = lcm{Tj|j = 1, . . . , n}.

Proof. The behavior of the system is periodic with a period of Pn (moreover,
Pn is the smallest such period). Hence, the successive request separations for
the requests of τ1

~∆(k, ~O), ~∆(k + 1, ~O), . . . are also periodic, with a period
Pn
T1

(since the requests of τ1 are separated by T1 time units) and the interval
[Rk

1 , R
k
1 + Pn) contains Pn

T1
request separations. We have also to prove that

in the interval [Rk
1 , R

k
1 + Pn) all the request separations for the requests of τ1

are different. Suppose that this is not true: there exists t1 = Rk
1 + p1T1 and

t2 = Rk
1 + p2T1 with Rk

1 ≤ t1 < t2 < Rk
1 + Pn such that

Oj − (Rk
1 + p1T1) ≡ Oj − (Rk

1 + p2T1) (mod Tj)

which implies that p1T1 and p2T1 are multiples of Tj (j = 1, . . . , n), hence of
lcm{Tj|j = 1, . . . , n}, but 0 < t2 − t1 < Pn, a contradiction with the fact that
Pn = lcm{Tj|j = 1, . . . , n}. ■

Theorem 5.21 Let Γ = {τi = {Ci, Di, Ti}|i = 1, . . . , n}. There are
Qn

i=1 Ti

Pn

different equivalence classes of offset assignments according to the equivalence
relation given by definition 5.18.

Proof. Let x be the number of such classes. By Lemma 5.19 and Lemma 5.20,
we have that x · Pn

T1
=

∏n
i=2 Ti. Hence, x =

Qn
i=1 Ti

Pn
. ■

5.4 Non-optimality of monotonic priority as-
signments

For offset free systems, it is not necessarily true that the rate/deadline mono-
tonic priority assignment still gives the optimal static priority assignment. We
have already considered the optimality of the rate/deadline monotonic sched-
uler for systems where the tasks are not started at the same times, but where
the offsets are fixed beforehand (contrary to our offset free systems where the
offsets can be chosen by the scheduling algorithm itself), i.e., for asynchronous
systems. The synchronous systems studied by Liu and Layland are special
cases of asynchronous systems (the case where Oi = 0 for all 1 ≤ i ≤ n), but
the asynchronous systems and the offset free systems are of different natures.

5.4. NON-OPTIMALITY OF MONOTONIC SCHEDULERS 213

τ3
?
0 2

3 ?
8 10

3 ?
16 18

3 ?
24 26

3 ?

τ1
? ? ?

11

1

22

1

τ2
? ?

3 7

5

6

Figure 5.6: The task set is not schedulable with τ3 > τ1 > τ2: the first request
of τ2 fails.

We have seen that for asynchronous systems (with general and arbitrary dead-
lines) the monotonic priority assignment is not weakly optimal. Leung and
Whitehead have shown the non (strong) optimality by considering the follow-
ing system (already considered in the introduction of this chapter).

Example 5.22 τ1 = {C1 = 1, T1 = D1 = 12, O1 = 10}, τ2 = {C2 = 6, T2 =
D2 = 12, O2 = 0}, τ3 = {C3 = 3, T3 = D3 = 8, O3 = 0}. This system can be
scheduled with priority assignment τ3 > τ2 > τ1 (see Figure 5.2) while the rate
monotonic priority assignment τ3 > τ1 > τ2 is not feasible (see Figure 5.6). ■

This example, largely used in the literature [LW82, Aud91] to illustrate the
non-optimality of the rate monotonic priority assignment for asynchronous
systems raises two points.

1. Both priority assignments τ3 > τ2 > τ1 and τ3 > τ1 > τ2 are rate mono-
tonic priority assignments. In this case, the non-optimality of the rate
monotonic priority assignment is due to the choice made to resolve the
tie between T1 and T2. Hence, the example shows more precisely the non
strong optimality for asynchronous systems; but nothing can be inferred
at that point for weak optimality. Subsequently, for this reason, we shall
only consider non-ambiguous situations, where all periods/deadline are
distinct.

2. We cannot conclude from it that the rate/deadline monotonic priority
assignment is not strongly optimal for the offset free systems: if we choose
in the previous example O1 = O2 = 2 and O3 = 0, with both rate
monotonic priority assignments τ3 > τ2 > τ1 and τ3 > τ1 > τ2 the
system becomes schedulable (see figure 5.7). The optimality analysis of
asynchronous systems cannot be transferred directly to the offset free
systems.

214 CHAPTER 5. OFFSET FREE SYSTEMS

τ3
? ? ? ?
0

3

8

3

16

3

24

3

τ2
τ1

?? ? ?
3 7

5

11

2

14

2

19

5

Figure 5.7: Since O1 = O2 and T1 = T2 = D1 = D2, the tasks τ1 and τ2 are
like a simple task τ ′ = {C ′ = C1 + C2 = 7, T ′ = D′ = T1 = T2 = 12, O′ = O1 =
O2 = 2}; at time t = 26 the situation is like at t = 2 and the schedule repeats.

Hence, the optimality problem for offset free systems is of a different nature in
comparison to asynchronous systems, due to the fact that the offsets can be
chosen in order to schedule these systems.

5.4.1 Definitions and properties

Definition 5.23 A priority assignment rule is strongly optimal for a family
of offset free systems if when a feasible priority assignment (µ) and offset
assignment (ρ) exist for some offset free task set of the family, any priority
assignment (µ′) given by the rule, whatever the way in which the ambiguities
are resolved, leads to a feasible schedule for some offset assignment (ρ′). ■

Definition 5.24 A priority assignment rule is weakly optimal for a family
of offset free systems if when a feasible priority assignment (µ) and offset
assignment (ρ) exist for some offset free task set of the family, there is a
priority assignment (µ′) given by the rule, for a particular way to resolve the
ambiguities, which leads to a feasible schedule for some offset assignment (ρ′).

■

The definitions of the optimality for offset free systems and for asynchronous
systems are close; in fact the optimality for offset free systems is less demand-
ing than the optimality for asynchronous systems. Indeed, if in the definition
of the optimality for offset free systems we required that both offset assign-
ments ρ and ρ′ must be the same, we get the definition of the optimality for
asynchronous systems and in this case the offsets given by the assignmen-
t ρ = ρ′ are the offsets of the corresponding asynchronous system. Hence,
the optimality for asynchronous systems implies the optimality for offset free
systems, in the general case; and conversely the non-optimality of a rule for
offset free systems implies it also for asynchronous systems. We have already
seen the non-(strong)-optimality of the rate/deadline monotonic assignments
for (ambiguous) asynchronous systems, but in some special cases we may get
optimality results, both for asynchronous and offset free systems.

5.4. NON-OPTIMALITY OF MONOTONIC SCHEDULERS 215

5.4.2 Optimality in special cases of offset free systems

First, remark that if a priority rule is optimal for a subclass of asynchronous
systems (e.g., systems composed by a single task) the same property holds for
offset free systems. More formally:

Lemma 5.25 If a priority assignment rule is optimal for a subclass of asyn-
chronous systems and the definition of the subclass does not rely on special
restrictions about the offsets, the same assignment rule is also optimal for the
corresponding subclass of offset free systems.

Proof. It follows from definition 5.23 that any counter-example for the op-
timality of a priority rule for offset free systems is also a counter-example for
the same priority rule for asynchronous systems. ■

Leung and Whitehead [LW82] have identified two special cases where the
deadline monotonic priority assignment is strongly optimal for asynchronous
systems:

1. systems with late deadlines having only two tasks,

2. systems with late deadlines satisfying the conditions that each Ti is an
exact multiple or sub-multiple of each Tj (Ti = mi,jTj, mi,j ∈ N when
Ti > Tj).

From Lemma 5.25 in these special cases, the deadline and the rate monotonic
priority assignment are optimal for offset free systems:

Corollary 5.26

1. The deadline monotonic priority assignment is strongly optimal for offset
free systems with late deadline having only two tasks.

2. The rate monotonic priority assignment is strongly optimal for offset free
systems with late deadlines having only two tasks.

3. The deadline monotonic priority assignment is strongly optimal for offset
free systems with late deadlines satisfying the conditions that each Ti is
an exact multiple or sub-multiple of each Tj (Ti = mi,jTj, mi,j ∈ N when
Ti > Tj).

216 CHAPTER 5. OFFSET FREE SYSTEMS

4. The rate monotonic priority assignment is strongly optimal for offset free
systems with late deadlines, satisfying the conditions that each Ti is an
exact multiple or sub-multiple of each Tj (Ti = mi,jTj, mi,j ∈ N when
Ti > Tj).

But we may also devise another special case.

Theorem 5.27 The rate monotonic priority assignment is strongly optimal
for asynchronous systems with late deadlines satisfying the condition that all
the periods are distinct and Ti

Tj
≥ 2 whenever Ti > Tj.

Proof. We must prove that if a feasible priority assignment exists for some
task set satisfying the given condition, the rate monotonic priority assignment
is also feasible for that task set. Let τ1, . . . , τn be a set of n such tasks with
a feasible priority assignment τ1 > τ2 > · · · > τi > τi+1 > · · · > τn. Let τi

and τj be two tasks of adjacent priorities (j = i + 1). Suppose that Ti > Tj.
Let us exchange the priorities of τi and τj: if the task set is still schedulable,
since the (unique) rate monotonic priority assignment can be obtained from
any priority ordering by a sequence of such priority exchanges, we may deduce
that the rate monotonic priority assignment is schedulable.

The priority exchange does not modify the schedulability of the tasks with
a higher priority than τi (i.e., τk ∀k < i). The task τj remains of course
schedulable after the priority exchange, since it may use all the free slots left
by {τ1, τ2, · · · , τi−1} instead of only those left by {τ1, τ2, · · · , τi−1, τi}. Assuming
that the requests of τi remain schedulable, from Lemma 2.12 the scheduling of
each task τk (k = i + 2, i+ 3, . . . , n) is not altered since the idle periods left by
higher priority tasks are identical. Consequently, we must only verify that τi

also remains schedulable. We shall show by induction on r that the rth request
of τi (at time x) remains schedulable after the priority exchange, assuming that
all the previous requests of τi remain schedulable after the priority exchange.
The property is true in the trivial case for r = 0. Let us consider the rth request
of τi (at time x) and the previous request of τj (at time y; we can assume that
this request exists since from Lemma 5.7, without loss of generality, we can
assume that: O1 ≥ O2 ≥ · · · ≥ On). Since Ti

Tj
≥ 2, we have necessarily at least

one τj’s request completely included in the τi’s request: y ≤ x ≤ y + Tj ≤
y + 2Tj ≤ x + Ti (see Figure 5.8). Before the priority exchange, either the
τj request at time y is not completed at time x (case 1) or this request is
completed at time x (case 2).

1. The τj request at time y is not completed at time x; let ˜Cj be the
remaining process time at time x for this request of τj. In this case in

5.4. NON-OPTIMALITY OF MONOTONIC SCHEDULERS 217

τi

x x + Ti

τj

y y + Tj y + 2Tj y + 3Tj

Figure 5.8: Relative task phasing between τi and τj if Ti
Tj
≥ 2.

the interval [x, y + Tj] the ˜Cj + Ci first free units of cpu left by the
higher priority tasks (if any) are consumed by τi (first) and (then) τj,
and since the schedule is feasible both requests are fulfilled at y + Tj.
In the interval [y + Tj, x + Ti] τj is not preempted by τi since the last
request of τi is completed. Remark that x− Ti ≤ y− Tj so that, if there
is a request of τi at x− Ti, since O2 ≤ O1 there is also a request of τj at
y−Tj, which must be completed at time y, and the request of τi at x− ti
must also be completed at that time. After the priority exchange, let ˜C ′

j
be the remaining process time at time x for the request of τj at time y:
˜C ′

j = ˜Cj since the request of τi at time x − Ti was completed at time y
so that the situation is the same in the interval [y, x) before and after
the priority exchange (τj utilizes all the free slots between y and x left
by higher priority tasks); as a consequence, between x and y + Tj, the
first ˜Cj free slots are used by τj, the next Ci ones are used by τi and the
latter is completed before y + Tj, at the completion time of τj before the
priority exchange. Notice that in the interval [y+Tj, x+Ti] the situation
is the same as before since τj was not preempted by τi there. Hence the
property.

2. The request of τj at time y is completed when reaching time x; this will
still be true after the priority exchange. Before the priority exchange
either the request of τi at time x is completed before or at time y + Tj

(case a) or not (case b).

a) In the interval [x, y + Tj) the Ci first free units of cpu are consumed
by τi. In the interval [y + Tj, y + 2Tj) the Cj first free units of cpu
are consumed by τj. After the priority exchange, since at time x the
request of τj at time y is terminated, the situation is the same in the
interval [x, y + Tj): the first Ci free units of cpu are consumed by τi

and the request of τi is terminated largely in due time (before y + Tj

instead of before x + Ti). Notice that in the interval [y + Tj, y + 2Tj)
the Cj first free units of cpu are consumed by τj. In the interval
[y + Tj, x + Ti] the situation is the same as before, since τj was not
preempted by τi there. Hence the property.

218 CHAPTER 5. OFFSET FREE SYSTEMS

b) In the interval [x, y + Tj), all the free units of cpu are consumed by
τi, the request of τj at y is completed before x and in the interval
[y + Tj, y + 2Tj) the first free units of cpu are consumed by τi (first)
and (then) by τj; both requests are fulfilled at time y + 2Tj. After
the priority exchange, the request of τj at y is terminated at x, in the
interval [x, y+Tj) the first units of cpu are consumed by τi and in the
interval [y + Tj, y + 2Tj) the first free units of cpu are consumed by
τj (first) and by τi; at time y + 2Tj both requests are again fulfilled.
Notice that in the interval [y + Tj, x + Ti] the situation is the same as
before, since τj was not preempted by τi there. Hence the property.

■

Corollary 5.28 The rate monotonic priority assignment is strongly optimal
for offset free systems with late deadlines satisfying the condition that all the
periods are distinct and Ti

Tj
≥ 2 whenever Ti > Tj.

Proof. Immediate from Theorem 5.27 and Lemma 5.25. ■

Remark that some asynchronous systems are equivalent to their synchronous
case; it follows that the deadline monotonic remains optimal for this kind of
system.

Theorem 5.29 The deadline monotonic priority rule is strongly optimal for
asynchronous systems which are equivalent to their synchronous case (i.e.,
matching Definition 5.11).

Proof. Immediately follows from Lemma 5.7 and Theorem 2.25.. ■

Corollary 5.30 The deadline monotonic priority rule is strongly optimal for
asynchronous and general deadline systems where the periods are relatively
prime pairwise, i.e., if gcd(Ti, Tj) = 1 ∀i 6= j.

Proof. From the Chinese Remainder Theorem 5.12 there is a synchronization
point, there is 1 class of offset assignments, all offset assignments are equivalent
to the synchronous case, and from Theorem 5.29 the property results. ■

Corollary 5.31 The deadline monotonic priority rule is strongly optimal for
asynchronous and general deadline systems satisfying the condition: Oi ≡ Oj

(mod gcd(Ti, Tj)) for any i 6= j.

Proof. Immediately follows from Theorem 5.29 and the Generalized Chinese
Remainder Theorem 5.13. ■

5.4. NON-OPTIMALITY OF MONOTONIC SCHEDULERS 219

τ1
? ? ? ? ?
0 4 8 12

τ2
? ? ? ?
0 6 12

Figure 5.9: Relative phasings between τ1 and τ2.

5.4.3 Non-optimality of monotonic priority assignments
in the general case of offset free systems

In order to prove our next result, we have to introduce the notion of the relative
phasing between two requests, a notion similar but somewhat different from the
request separation for the kth request of τ1 (Definition 5.16) since we consider
requests of τi and τj.

Definition 5.32 Let τi and τj be two tasks with τi > τj. For the kth request of
τj (which occurs at time Oj +(k−1)Tj), we define ∆i,j(k), the relative phasing
between τi and the kth request of τj, as the difference between Oj +(k−1)Tj and
the time of the last request of τi which occurs before or at time Oj + (k− 1)Tj

(assuming there is one, i.e., Oj + (k − 1)Tj ≥ Oi). ■

It may be checked that

∆i,j(k) = (Oj −Oi + (k − 1)Tj) mod Ti,
∆i,j(k + 1) = (∆i,j(k) + Tj) mod Ti.

Hence, the quantities ∆i,j(k), for successive values of k, form a cycle of length q:
< ∆i,j(k), ∆i,j(k+1), . . . , ∆i,j(k+q−1) >, with ∆i,j(k+d) = ∆i,j(k+d mod q)
and q = Ti

gcd(Ti,Tj)
.

Example 5.33 Consider the task set composed of two tasks S = {τ1 = {T1 =
4, O1 = 0}, τ2 = {T2 = 6, O2 = 0}}; the relative phasings between τ1 and τ2

form the cycle of length 2: < ∆1,2(1) = 0, ∆1,2(2) = 2 > (see Figure 5.9). ■

Now, we are able to solve the problem of the optimality of the rate monotonic
priority assignment for offset free systems.

Theorem 5.34 The rate monotonic priority assignment is not even weakly
optimal for the class of offset free systems with late deadlines.

220 CHAPTER 5. OFFSET FREE SYSTEMS

τ1
? ? ? ? ? ? ?
0

7

10

7

20

7

30

7

40

7

50

7

60

7. .

τ3
? ? ? ? ?. .1 1 1 1 1

τ2
? ? ? ? ?. .

8

2

18

1 1

27

2

38

2 1 1

57

2

68

2

τ1
? ? ? ? ? ? ?
70

7

80

7

90

7

100

7

110

7

120

7

130

7. .

τ3
? ? ? ?. .1 1 1 1

τ2
? ? ? ? ?. .1 1

88

2

98

2 1 1

118

2 1 1 1 1

τ1
? ? ? ? ? ? ?

140

7

150

7

160

7

170

7

180

7

190

7

200

7. .

τ3
? ? ? ? ?. .1 1 1 1 1

τ2
? ? ? ?. .

148

2

157

3 1

178

2

187

3 1 1 1

τ1
? ? ? ? ? ?

210

7

220

7

230

7

240

7

250

7.

τ3
? ?. .1 1

τ2
? ? ?. .

217

3

229

1

237

2

248

2

Figure 5.10: The system is schedulable in the interval [0, 244]; at time t = 244
the situation is like at time t = 4 and the schedule repeats.

Proof. To show this, we consider a task set with distinct periods which
is a counter-example for the definition of the weak optimality of a priority
assignment rule for offset free systems: S = {τ1, τ2, τ3} with τ1 = {T1 = D1 =
10, C1 = 7}, τ2 = {T2 = D2 = 15, C2 = 3}, τ3 = {T3 = D3 = 16, C3 = 1}.

1. With the priority assignment (τ1 > τ3 > τ2) and the offsets O1 = O3 = 0
and O2 = 4, the system is schedulable. To verify this, from Theorem 2.57,
we only have to check the interval [4, 244] in a simulation from 0 (see
Figure 5.10; X1 = 0, S3 = 4, P = 240).

2. For the unique rate monotonic priority assignment (τ1 > τ2 > τ3) and
for all offsets (according to Lemma 5.14, i.e., O1 = 0, 0 ≤ O2 < 15, 0 ≤
O3 < 16 – we shall later see that we can in fact only consider

Qn
i=1 Ti

P =
10 asynchronous situations) this system is unschedulable. This may be
checked by a small computer program, but may also be proved formally
as follows:

If we apply Theorem 2.57, we know that for τ3 we only have to check the
interval [S3, lcm{T1, T2, T3}+S3] = [S3, 240+S3], in a simulation from X1

(or from 0; notice that S3 and X1 depend on the choice of these offsets);

5.4. NON-OPTIMALITY OF MONOTONIC SCHEDULERS 221

τ1

? 7

.
?

t1

7

.
?

t1 + T1

7

τ2

? ? ? ? ? ?

t3 − 8 t3 − 2 t3 − 8 + T2

? ? ? ? ? ? ? ?

τ3

? ?

t3 t1 + 7 t1 + 10

Figure 5.11: ∆1,3(h) = 1.

this interval contains 15 releases of τ3. We shall show that, for all offsets,
there is a release of τ3 which misses its deadline in this interval. We can
see that the relative phasings between τ1 and τ3 (∆1,3(k)) are either in
the cycle < 0, 6, 2, 8, 4 > or in the cycle < 1, 7, 3, 9, 5 > and the relative
phasings between τ2 and τ3 (∆2,3(k)) are in the cycle < 0, 1, 2, . . . , 14 >.
Hence, after at most 4 releases of τ3 from S3, we have a relative phasing
between τ1 and τ3 equal to 0 or 1. Let r be the rank of the request of τ3

at time S3, t3 be the time of the request of τ3 with phasing 1 or 0, h be
the rank of this request of τ3 and t1 be the time of the last request of τ1

before or at t3.

(a) If the relative phasing between τ1 and τ3 is 1 (∆1,3(h) = 1, r ≤ h ≤
r + 4), i.e., t3 = t1 + 1, we see that τ3 is schedulable only if some
cpu unit is free in the interval [t1 + 7, t1 + 10]; this may only the
case if there is no request for τ2 arriving between t1 and t1 + 7, i.e.
∆2,3(h) ∈ {2, 3, 4, 5, 6, 7, 8} (otherwise, the 3 units before t1 +T1 are
used by τ2, see Figure 5.11).

If ∆2,3(h) ≥ 4 then 5 releases of τ3 later, the relative phasing be-
tween τ1 and τ3 is necessarily the same (∆1,3(h+5) = 1) and the rel-
ative phasing between τ2 and τ3 satisfies the condition: ∆2,3(h+5) =
(∆2,3(h) + 5 × 16) mod 15 ∈ {9, 10, 11, 12, 13}; hence τ3 misses it-
s deadline since in this configuration τ1 left 3 free cpu units for
lower priority requests in the interval [Rk

3 , R
k
3 + D3) (k is the rank

of the request of τ3 we consider) and a request of τ2 occurs after
time Rk

3 and before the availability of the 3 free cpu units which
are assigned to this request of τ2. If ∆2,3(h) < 4 then 10 releases
of τ3 later, the relative phasing between τ1 and τ3 is necessarily the
same (∆1,3(h + 10) = 1) and the relative phasing between τ2 and τ3

satisfies the condition: ∆2,3(h+10) = (∆2,3(h)+10× 16) mod 15 ∈
{12, 13}; hence τ3 still misses its deadline.

222 CHAPTER 5. OFFSET FREE SYSTEMS

(b) If the relative phasing between τ1 and τ3 is 0 (∆1,3(h) = 0, r ≤
h ≤ r + 4), for similar reasons τ3 is schedulable only if the rela-
tive phasing between τ2 and τ3 satisfies the condition: ∆2,3(h) ∈
{1, 2, 3, 4, 5, 6, 7}. If ∆2,3(h) ≥ 3 then 5 releases of τ3 later, the rela-
tive phasing between τ1 and τ3 is necessarily the same (∆1,3(h+5) =
0) and the relative phasing between τ2 and τ3 satisfies the condi-
tion: ∆2,3(h + 5) ∈ {8, 9, 10, 11, 12, 13}; hence τ3 misses its dead-
line. If ∆2,3(h) < 3 then 10 releases of τ3 later, the relative phas-
ing between τ1 and τ3 is necessarily the same (∆1,3(h + 10) = 0)
and the relative phasing between τ2 and τ3 satisfies the condition:
∆2,3(h + 10) ∈ {11, 12}; hence τ3 still misses its deadline.

We have shown that in any cases, before the (r+15)th release of τ3, the latter
misses a deadline. ■

Consequently we also have that:

Corollary 5.35 The deadline monotonic priority assignment is not weakly
optimal for the offset free systems with general deadlines.

Proof. This results immediately from Theorem 5.34 and the fact that when
Di = Ti ∀i, deadline monotonicity coincides with rate monotonicity. ■

Corollary 5.36 The deadline monotonic priority assignment is not weakly
optimal for the offset free systems with arbitrary deadlines.

Proof. Any example for the non-optimality for offset free systems for late
deadline, like in Theorem 5.34, may also serve for the non-optimality for offset
free systems and arbitrary deadlines. ■

The task set introduced in the proof of Theorem 5.34 shows that the non-
optimality of the rate monotonic scheduler for asynchronous and offset free
systems is not due an unfortunate choice to resolve the tie between tasks with
same period.

Corollary 5.37 The rate monotonic priority assignment is not optimal for
asynchronous systems with distinct periods.

Proof. If the periods are distinct, strong and weak optimality collapse.
The example in the proof of Theorem 5.34 shows the non-optimality for asyn-
chronous systems with distinct periods. ■

5.5. OPTIMALITY OF DYNAMIC SCHEDULERS 223

5.5 Optimality of dynamic schedulers for off-
set free systems

Theorem 4.16 shows the optimality of the deadline driven scheduler for the
more general class of periodic task sets considered in this work (i.e., asyn-
chronous and arbitrary deadline systems). If we compare this to the case of
static priority assignments and in particular to the deadline monotonic priority
assignment, the situation is completely different; we have seen that the latter
is not optimal for asynchronous systems (while it is for synchronous ones).
Hence, contrary to static priority schedulers, the optimality for dynamic pri-
ority schedulers is stronger: it does not depend on the offset values.

We shall show in this section that the deadline driven scheduler and the least
laxity first scheduler still give optimal dynamic priority assignments for offset
free systems.

Let us consider first the case of the deadline driven scheduler.

Theorem 5.38 The deadline driven scheduler is strongly optimal for offset
free and arbitrary deadline systems.

Proof. Immediate from Lemma 5.25 and Theorem 4.16. ■

We have already shown that the least laxity first is optimal whatever the offset
granularity. It follows that the least laxity first algorithm is optimal for offset
free and arbitrary deadline systems.

Theorem 5.39 The least laxity first scheduler is strongly optimal for offset
free systems.

Proof. Immediate according to the fact that the least laxity first algorithm
is optimal (Theorem 4.65) for asynchronous systems and Lemma 5.25. ■

Hence, the optimality of the deadline driven scheduler (and of the least laxity
first one) holds for offset free systems, contrary to what happened for static
monotonic priority assignments.

5.6 Practical interest of offset free systems

We have seen in the introduction of this chapter the interest to consider sys-
tems where the offsets can be computed by the scheduling algorithm, and we

224 CHAPTER 5. OFFSET FREE SYSTEMS

0

0.2

0.4

0.6

0.8

1

0.7 0.75 0.8 0.85 0.9 0.95

#b
#a+#b

U=
Pn

j=1
Cj
Tj

Figure 5.12: Ratio between the number of task sets in the case b and in the
case a in function of the utilization factor.

have presented systems which are only schedulable with a judicious choice of
the offsets (see Examples 5.1 and 5.2). In this section we are concerned with
the practical interest to compute the offsets. For this purpose, we shall con-
sider the ratio between systems which are schedulable in the synchronous case
and systems which are only schedulable in an asynchronous case, i.e., if we get
some (randomly chosen) system, what is the probability to be in the first or in
the second case? It is difficult to answer this question in all generality, since
it depends on the real-time system itself, in particular on the system charac-
teristics, i.e., the distribution of the number of tasks, the period values, the
load of the system, etc. It is not possible of course to consider all distributions
of hard real-time periodic task sets. Moreover, it is hard to determine which
distributions are (possibly) realistic.

However, the study of special cases of hard real-time periodic task sets can give
a good indication on the interest of offset free systems in practical cases. For
this reason we have studied a special case: we consider the late deadline case
and we suppose that the priority assignment is resolved with the rate mono-
tonic scheduler. In this special case of hard real-time periodic task sets, the
offset free systems have an interest only if the utilization factor (U =

∑n
i=1

Ci
Ti

)
is less than 1 but greater than n(n

√
2 − 1), since in the opposite case the sys-

tem is certainly schedulable in the synchronous case (Theorem 3.3). Hence,
we only consider heavily loaded systems, with n(n

√
2 − 1) < U ≤ 1. Each of

these systems can be either schedulable in the synchronous case (case a), only
in an asynchronous case (case b) or unschedulable in all asynchronous cases
(case c). This “classification” for a set of n tasks has a maximal time complex-

5.6. PRACTICAL INTEREST OF OFFSET FREE SYSTEMS 225

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

3 4 5 6 7 8 9 10

#b
#a+#b

n

Figure 5.13: Ratio between the number of task sets in the case b and in the
case a in function of the number of tasks.

ity of O(
Qn

i=1 Ti

P · R) where
Qn

i=1 Ti

P represents the number of (non-equivalent)
offset assignments to be considered (it is also the number of non-equivalent
asynchronous systems, see Theorem 5.21) and R is the time complexity of the
schedulability test (in section 5.7 we shall present a method to construct only
those

Qn
i=1 Ti

P non-equivalent asynchronous systems). We have seen that we can
restrict the schedulability test to a finite interval but the length of this interval
is proportional to P (P = lcm{Ti|i = 1, · · · , n}), which may grow exponen-
tially with n. Hence, the classification has an exponential complexity in n and
in the periods; consequently, we have limited these values in our study. We
present in this section simulation results of this classification applied to a large
number of task sets. The task sets are generated with a pseudo-random algo-
rithm; the number of tasks (n) is chosen with equal probability in an interval
[3, 10], the periods (Tj) in an interval [10, 25] then the computation times (Cj)
are chosen randomly in the interval [1, Tj] and we only consider systems where
the utilization factor is greater than n(n

√
2− 1) and less than 1. For each task

set (our simulation includes more than 2000 task sets) we have identified its
class (case a, case b or case c). Figures 5.12 and 5.13 only concern schedulable
systems (i.e., systems in the class a or in the class b), the graph of Figure 5.12
represents the ratio between the task sets in case b and in case a+b in function
of the utilization factor, and the graph of Figure 5.13 shows the same ratio in
function of the number of tasks.

From the simulation results, it can be noticed that the practical interest of
offset free systems is obvious, especially when the utilization factor is large or
the number of tasks is “large”. Indeed, the more the utilization factor is close
to 1, the more the corresponding systems are only schedulable with a judicious

226 CHAPTER 5. OFFSET FREE SYSTEMS

choice of the offsets. For example, for a utilization factor of 0.9 we have about
60% of schedulable systems which are schedulable only in an asynchronous
situation. From Figure 5.13, if we except marginal cases where the number of
tasks is very small (i.e., n < 5); it occurs that the interest of offset free systems
is still more obvious, and this should be also the case for “real-size” systems.

However, when the utilization factor grows, or when the number of tasks grows,
the proportion of schedulable systems diminishes. Figures 5.14 and 5.15 are
made of 3 graphs: each graph represents the ratio between the number of task
sets in a class (a, b or c) and the total number of task sets (e.g. #a

#(a∪b∪c))
in function of the utilization factor and the number of tasks for Figures 5.14
and 5.15, respectively. Figure 5.14 shows that when the utilization factor is
large the proportion of unschedulable task sets (case c) is large too, but the
interest to compute the offsets remains relevant in that case in order to schedule
a larger number of systems. Remark that from a load of 0.87 there is a larger
number of asynchronous schedulable systems than synchronous schedulable
ones. Notice also that the shape of Figure 5.14 is a bit chaotic and that
the maximum of the number of b coincides with the number of a. It seems
that a finer analysis could be interesting but this remains for further research.
Figure 5.15 shows other interesting phenomena.

❑ The proportion of unschedulable task sets is more influenced by the uti-
lization factor than by the number of tasks.

❑ The proportion of schedulable synchronous systems decreases significant-
ly with the number of tasks, and symmetrically the proportion of schedu-
lable offset free systems increases (significantly) with the number of tasks.
Again, beside marginal cases (where the number of tasks is very small,
i.e., n < 5) the interest of offset free systems is obvious.

We shall see in section 5.8 the practical interest of offset free systems for the
deadline driven scheduler, but first let us try to determine the optimal offsets
for an offset free system.

5.7 Optimal offset assignment

We propose in this section an optimal method to choose the offsets. Let us
first consider what optimality means in this case.

Definition 5.40 An offset assignment rule (say A) is Q-optimal for a task set
family if, when a feasible offset assignment exists for a scheduling rule (say Q)

5.7. OPTIMAL OFFSET ASSIGNMENT 227

0

0.2

0.4

0.6

0.8

1

0.7 0.75 0.8 0.85 0.9 0.95
U=
Pn

j=1
Cj
Tj

#a/#(a∪b∪c)
#c/#(a∪b∪c)
#b/#(a∪b∪c)

Figure 5.14: Ratio between the number of task sets in each (a or b or c) case
and the total number of task sets, in function of the utilization factor.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

3 4 5 6 7 8 9 10
n

#a/#(a∪b∪c)
#c/#(a∪b∪c)
#b/#(a∪b∪c)

Figure 5.15: Ratio between the number of task sets in each case (a or b or c)
and the total number of task sets, in function of the number of tasks.

228 CHAPTER 5. OFFSET FREE SYSTEMS

and a task set of the family, the offset assignment given by the rule A is also
feasible for that task set and the scheduling rule Q (we neglect here a possible
distinction between strong and weak optimality to simplify the presentation).

■

Remark that, in the previous definition the optimality of the offset assignment
is related to the scheduling algorithm Q. Another definition, not related to a
specific scheduling rule, could be:

Definition 5.41 An offset assignment rule (say A) is optimal for a task set
family if, when a feasible offset assignment exists for a scheduling rule (say Q)
and a task set of the family, the offsets given by the rule A is also feasible for
that task set and for some scheduling rule Q′. ■

Despite the fact that the second definition is in a way more general, we shall
only consider the Definition 5.40, i.e., the optimality of offset assignment for a
“fixed” scheduling rule, without fixing the scheduling rule however.

The method proposed here is not dedicated to a particular scheduling rule,
like in section 5.3; we shall present results without considering a scheduling
algorithm in particular, not even a specific family of scheduling algorithms.
Again, we only suppose that the schedule is periodic with a period of P time
units, that only the periodic behavior is significant regarding the feasibility of
the system and this periodic behavior only depends on the relative phasings
between task requests.

A simple (regarding its principle) optimal offset assignment can be defined by
searching a feasible offset assignment among all offset combinations. Accord-
ing to Theorem 5.14 we have at most Ti possible values for Oi (i > 1) and
a single possibility for O1 (i.e., O1 = 0), consequently the total number of
combinations is at most

∏n
i=2 Ti = O((maxn

j=2 Tj)n−1), and the time complex-
ity of the corresponding offset assignment is O((maxn

j=2 Tj)n−1 × R), where
R is the maximal time complexity of the schedulability test (e.g., R = P for
asynchronous and general deadline systems, see Chapter 3 for more details)
and depends naturally on the scheduling rule and on the kind of asynchronous
task sets considered (in particular regarding the relation between the deadlines
and the periods). We shall now present a method to only consider the

Qn
i=1 Ti

P
non-equivalent offset assignments as described in Theorem 5.21.

5.7.1 Two tasks

We introduce our method by considering the non-equivalent offset assignments
for an offset free system composed of two tasks: τ1 and τ2.

5.7. OPTIMAL OFFSET ASSIGNMENT 229

τ1
? ? ? ? ? ?
0 4 8 12 16 20

τ2
? ? ? ? ?
0 5 10 15 20

Figure 5.16: Choosing O2 = 0 is equivalent to choose
O2 = 1,...

According to Theorem 5.14 and without loss of generality we can choose O1 =
0. Our goal is to find T1×T2

lcm{T1,T2} = gcd{T1, T2} non-equivalent choices for O2.
From Theorem 5.14 we know that we can restrict our search among the values
O2 = 0, O2 = 1, . . . , O2 = T2−1. First let us remark that regarding the relative
phasings between the requests of τ1 and those of τ2 some choices for O2 can be
considered as equivalent according to Definition 5.11.

Example 5.42 Consider the following characteristics for tasks τ1 and τ2: τ1 =
{T1 = 4, O1 = 0}, τi = {T2 = 5} (we do not specify other task characteristics
since they do not interfere in the relative phasings between task requests). We
see (Figure 5.16) that choosing O2 = 0 is equivalent to choose O2 = 1, or
O2 = 2, etc.

The first occurrence of τ2 is synchronous with τ1 if O2 = 0; the second occur-
rence of τ2 then has a difference of phase equal to 1 with τ1 and corresponds
to choose O2 = 1, etc. Regarding task τ1, choosing O2 = 0, O2 = 1, O2 = 2
or O2 = 3 is equivalent; it may be noticed that this is also the case whatever
the value of O1, since these equivalent choices of O2 generate the same relative
phasings between requests of τ2 and τ1. ■

Two choices (say v1, v2) are equivalent if they define the same relative phasing,
more formally:

∃k1, k2 ∈ N : (O1 + v1 + k1 · T2) mod T1 = (O1 + v2 + k2 · T2) mod T1.

It may be noticed that this relation does not depend on O1 (we shall see
the interest of this property in the more general case for the optimal offset
assignment for a set of n tasks).

∃k1, k2 ∈ N : (v1 + k1 · T2) mod T1 = (v2 + k2 · T2) mod T1. (5.3)

230 CHAPTER 5. OFFSET FREE SYSTEMS

Or

v1 ≡ v2 (mod gcd{T1, T2}). (5.4)

We shall show that Equation (5.3) is equivalent to Equation (5.4); from Equa-
tion (5.3) we get:

{

v1 + k1T2 = x + kT1

v2 + k2T2 = x + k′T1

Or

v1 + k1T1 =v2 + k2T2 + kT1 − k′T1

v1 =v2 + (k − k′)T1 + (k2 − k1)T2

v1 =v2 + gcd{T1, T2}k′′ + gcd{T1, T2}k′′′

v1 =v2 + gcd{T1, T2}(k′′ + k′′′)
v1 ≡v2 (mod gcd{T1, T2}).

Since 0 6≡ 1 · · · 6≡ gcd{Ti, Tj}− 1 (mod gcd{Ti, Tj}), it follows that the values
0, 1, . . . , gcd{T1, T2} − 1 are non-equivalent choices for O2.

The optimal offset assignment checks the feasibility of the system for all these
values.

5.7.2 n tasks

We consider now the offset assignment for a set of n tasks. Our method con-
structs non-equivalent asynchronous systems first by considering non-equivalent
choices for O2 (O1 is already fixed, e.g., O1 = 0); for each of these non-
equivalent choices for O2, the method considers next the non-equivalent choices
for O3 regarding the requests of τ1 and τ2 (O1 and O2 are already fixed), etc.

Suppose that the offsets O1, . . . , Oi−1 are fixed and consider the non-equivalent
choices for Oi regarding the relative phasings between the requests of τi and
those of τj (j < i). The request pattern limited to the requests of the task
sub-set {τ1, . . . , τi−1} is periodic with a period of lcm{T1, . . . , Ti−1}; from the
study of the case n = 2 it follows that there are gcd{Ti, lcm{T1, . . . , Ti−1}} non-
equivalent choices for Oi, e.g., all the integer values in the half-open interval
[0, gcd{Ti, lcm{T1, . . . , Ti−1}}).

5.8. DISSIMILAR OFFSET ASSIGNMENT 231

This method constructs
∏n

i=2 gcd{Ti, lcm{T1, . . . , Ti−1}} non-equivalent asyn-
chronous systems; let us now check that all the

Qn
i=1 Ti

lcm{Ti|i=1,...,n} non-equivalent
asynchronous systems are yielded. Consequently, it remains to show that
∏n

i=2 gcd{Ti, lcm{T1, . . . , Ti−1}} =
Qn

i=1 Ti

lcm{Ti|i=1,...,n} .

Theorem 5.43
n

∏

i=2

gcd{Ti, lcm{T1, . . . , Ti−1}} =
∏n

i=1 Ti

lcm{Ti|i = 1, . . . , n}
.

Proof. We show the property by induction on n. The property is obvious in
the trivial case, n = 2, since gcd{T1, T2} = T1×T2

lcm{T1,T2} . Suppose the property is
true up to n− 1 and consider the case of n. By induction hypothesis we have
that
∏n

i=2 gcd{Ti, lcm{T1, . . . , Ti−1}} =
Qn−1

i=1 Ti

lcm{T1,...,Tn−1} · gcd{Tn, lcm{T1, . . . , Tn−1}}.

and by definition of the function lcm and gcd we have that

lcm{T1, . . . Tn−1, Tn} = lcm{Tn, lcm{T1, . . . , Tn−1}}

=
Tn × lcm{T1, . . . , Tn−1}

gcd{Tn, lcm{T1, . . . , Tn−1}}
.

The property follows. ■

The computation of non-equivalent offsets can be resolved by applying the Eu-
clid’s algorithm to each pair (Ti, lcm{T1, . . . , Ti−1}). It may be noticed that
there may exist other methods; we leave again this question to the perspicac-
ity of the mathematicians. The maximal time complexity of this procedure
is O(n × log P). Consequently the maximal time complexity of our optimal
offset assignment is O(n× log P +

Qn
i=1 Ti

P ×R), where R is the maximal time
complexity of the schedulability test. Remark that the second term dominates
in general the first one.

5.8 Dissimilar offset assignment

We have studied in section 5.7 an optimal offset assignment rule which consid-
ers “all” offset assignments; more precisely, we have first shown that there are
finitely many non-equivalent offset assignments to be considered (i.e.,

∏n
i=2 Ti)

and then we have presented a method to reduce this number and consider only
the

Qn
i=1 Ti

P non-equivalent offset assignments. The simplification reduces signif-
icantly the number of assignments that the optimal algorithm has to consider,

232 CHAPTER 5. OFFSET FREE SYSTEMS

but this number remains exponential despite simplifications (for instance when
T1 = T2 = · · · = Tn, but then P = T1 is minimal). Moreover, this optimal
algorithm is based on the feasibility test for the corresponding asynchronous
task set, and we know that the maximal time complexity of such a test is in all
generality proportional to P . For these reasons, it seems interesting to define
a heuristic offset assignment rule which considers a single value for each offset.

We shall present here a rule to choose a single value for Oi among the non-
equivalent possibilities. The optimality of the corresponding offset assignment
is not preserved of course, but we shall see that this offset assignment schedules
a good proportion of systems which are not schedulable in the synchronous case
and that the time complexity of the offset assignment is polynomial in terms
of the number of tasks and the maximal period of the system.

Remark that, before applying a sophisticated offset assignment in order to
schedule an offset free system, there are some preliminary points to consider.

First, for the various classes of periodic task sets (regarding their deadlines)
considered in this work, we can first check if U ≤ 1 (which is sufficient for
late deadline systems using the deadline driven scheduler) and then check if
the system is schedulable in the synchronous case. The time complexity of
feasibility tests for synchronous systems are in all generality simpler than for
asynchronous systems. For a static scheduler in particular, except for arbitrary
deadline systems, this can be checked by a pseudo-polynomial algorithm (see
Chapter 3 for more details). If the system is not schedulable in the synchronous
case, it may exist a judicious choice of the offsets which schedules the system
if U ≤ 1.

For general deadline systems and static scheduling algorithms, the best re-
sponse time notion (studied in section 3.5) is interesting in the case where a
periodic task set is unschedulable in the synchronous case (i.e., r1

i > Di); in
this case the task set may be schedulable with a judicious choice of the offsets
only if the best case response time does not exceed the deadline.

Lemma 5.44 Let Γ = {τj = {Tj, Cj, Dj}|1 6 j 6 n}} be a general dead-
line and offset free task set schedulable with a judicious choice of the off-
sets O1, O2, . . . , On and the static priority assignment τ1 > τ2 > · · · > τn

then ρ∗i 6 Di where ρ∗i is the best case response time for a request of τi for
i = 1, . . . , n.

Proof. Immediate from the definition of ρ∗i (see section 3.5):

ρ∗i ≤ min
Si≤Rk

i≤Si+Pi

ρk
i ≤ Di.

5.8. DISSIMILAR OFFSET ASSIGNMENT 233

■

It may be noticed that the condition ρ∗i 6 Di is only a necessary condition. If
we consider the example introduced previously (Figure 3.15, with ρ∗2 = 6) for
all choices of O1, O2 the worst case occurs and we must have that D2 > r1

2 = 9
in order to have a feasible offset assignment.

If ρ∗i ≤ Di (i = 1, . . . , n) is satisfied, we still have to choose judiciously the
offsets, if feasible. Remark that in this case, choosing the offsets randomly is
already always a better choice than choosing O1 = O2 = · · · = On.

Remark also that the sufficient condition given by Lemma 5.44 for general
deadline and offset free systems for static schedulers may be applied for other
classes of periodic task sets and/or dynamic scheduling algorithms, but we do
not have an expression of the best case response time in these more general
cases. This problem seems difficult: recall that the computation of the best
response time was based on the (dual) property that the largest response time
occurs for the first request of τi in the synchronous case, and that this property
does not hold for more general classes of periodic task sets, nor for dynamic
scheduling algorithms.

We now come back to the problem of offset assignment and the presentation of
our rule. The main principle of our heuristic offset assignment rule is to choose
offsets in order to move away from the worst case, i.e., from the synchronous
case, as much as possible. We are looking for a rule which chooses the Oi’s
without inspecting the (periodic part of the) schedule but ensures that the
schedule moves away, as much as possible, from the synchronous case. This
problem is not obvious and we have investigated many solutions. Our heuristic
is closely based on the manner to estimate if a given offset assignment is close
(or not) to the synchronous case.

We estimate the proximity of an offset assignment with the synchronous case
by considering the minimal distance between two requests of different tasks
(in the periodic part of the schedule); we shall see later that this definition
can be refined, we do not give details here. Note that this distance is 0 for
synchronous systems (or for asynchronous systems which are equivalent to the
synchronous case). The more this interval is large, the more the requests are
dissimilar (from the synchronous case) in the whole schedule.

We shall present here our offset assignment rule, which maximizes the minimal
distance between two requests of different tasks. For convenience, let us call
our rule the dissimilar offset assignment.

We introduce our rule by considering first only the requests of τi and τj.
We have seen in section 5.7 that if we consider only the requests of τj and
those of τi, there are gcd{Ti, Tj} non-equivalent choices for Oi (whatever Oj):

234 CHAPTER 5. OFFSET FREE SYSTEMS

0, 1, . . . , gcd{Ti, Tj} − 1. Here we are concerned by the time which separates
the requests of τi and those of τj.

Theorem 5.45 Let r ∈ [0, gcd{Ti, Tj}), If Oj = Oi + r (or Oi = Oj + r) the
minimum number of time units between a request of τi and a request of τj is
min{r, gcd{Ti, Tj} − r}.

Proof. Without loss of generality we can assume that Oi = Oj + r. We
show the property by contradiction; suppose that the property is false, i.e., the
minimum number of time units between a request of τi and a request of τj is
b with 0 ≤ b < min{r, gcd{Ti, Tj} − r}. In this case we have to distinguish
between two cases:

(i) ∃k1, k2 ∈ N : 0 ≤ Oj + r + k1Ti − (Oj + k2Tj) = b,

(ii) ∃k1, k2 ∈ N : 0 ≤ Oj + k2Tj − (Oj + r + k1Ti) = b.

The first relation implies that b ≡ r (mod gcd{Ti, Tj}), which leads to a con-
tradiction since 0 ≤ b < r < gcd{Ti, Tj}.
The second relation implies that b ≡ −r (mod gcd{Ti, Tj}), which leads to a
contradiction since 0 ≤ b < gcd{Ti, Tj}−r or b+r < gcd{Ti, Tj} and b+r 6≡ 0
(mod gcd{Ti, Tj}). ■

It follows from Theorem 5.45 that the minimum number of time units between
a request of τi and a request of τj is

⌊

gcd{Ti,Tj}
2

⌋

and corresponds to the offset

assignment Oi = Oj +
⌊

gcd{Ti,Tj}
2

⌋

(or Oj = Oi +
⌊

gcd{Ti,Tj}
2

⌋

). Suppose that
δ = gcd{Ti, Tj} = max{gcd{Tk, Tr}|k 6= r} and consider the offset assignment
Oi = 0 and Oj =

⌊

δ
2

⌋

. This offset assignment maximizes the minimal distance
between two requests of different tasks. Although our criterion is satisfied,
we shall apply the same principle for the remaining free offsets, in order to
move away from the synchronization of the remaining task requests. Since our
criterion is based on the minimal distance between two requests of different
tasks, this distance is maximized by considering only the requests of τi and
τj, and we already fixed the offset between τi and τj, let us now consider the
minimal distance between other pairs of tasks. The second offset assignment
is based on the same principle, and consider the minimal distance between
two requests of different tasks (but the pair (i, j)). Suppose that p, r and δ′

are such that δ′ = gcd{Tp, Tr} = max{gcd{Ts, Tq}|q 6= s and (s, q) 6= (i, j)}.
In the second offset assignment we have to distinguish between two cases:
Op and Or are not already fixed or p (or r) is already fixed (e.g., p = i,
r 6= j). In the first case the rule fixes two more offsets: Op = 0 and Or =

5.8. DISSIMILAR OFFSET ASSIGNMENT 235

Op +
⌊

δ′
2

⌋

. The choice Op = 0 is somewhat arbitrary: what is significant is
|Op − Or|; a slight improvement could be choosing Op randomly in order to
avoid a synchronization of the requests of the τi and τp, or with the assignment
Op = Oj −

⌊

δ′
4

⌋

, but the latter rule seems difficult to adapt for the following
offset assignments. In the second case the rule fixes a single offset (e.g., Or =
Op +

⌊

δ′
2

⌋

). The next offset assignments respect the same principle until the n
offsets become fixed.

Remark that this offset assignment rule does not rely on the (priority) schedul-
ing algorithm nor on the kind of deadline (late/general/arbitrary case). The
rule only depends on the periods of the system and tries as much as possible
to move away from the synchronous case.

We consider now the (maximal) complexity of our offset assignment rule.

Theorem 5.46 The maximal time complexity of the dissimilar offset assign-
ment rule is O(n2(log Tmax+log n)) and the maximal space complexity is O(n2).

Proof. The dissimilar offset assignment rule computes (and stores) first the
value gcd{Ti, Tj} for each pair (Ti, Tj), this can be resolved by applying the
Euclid’s algorithm to each pair (Ti, Tj), j 6= i, hence the time complexity of

this procedure is O(
(

n
2

)

× log Tmax) = O(n2 × log Tmax). After that, the

rule sorts these values, with a maximal time complexity of n2 log n2 (e.g. with
Heapsort [Wei95, Sed92] which has a maximal time complexity of O(N log N)
– notice that the popular Quicksort [SF96] has a better average complexity
but a maximal time complexity of O(N2)) and realizes n offset assignments.
Hence, the maximal time complexity of the dissimilar offset assignment rule is
O(n2(log Tmax + log n)) and the maximal space complexity is O(n2). ■

We shall present now the evaluation of our heuristic rule. Since monotonic
priority assignments are not optimal for offset free systems, an evaluation in
this framework would be biased by this non-optimality. We shall rather study
the effectiveness of our rule for the dynamic deadline driven scheduler which
remains optimal for offset free systems, and we consider general deadline offset
free systems. We present here simulation results of our heuristic applied to a
large number of task sets chosen randomly. For each task set we first check if
the system is schedulable in the synchronous situation (case a), if this is not the
case, we check if the system is schedulable with randomly chosen offsets (case
b) and if the system is schedulable with the dissimilar offset assignment (case
c). Note that if the system is neither schedulable in the synchronous situation,
with random rule nor with the dissimilar offset assignment (case d), it may
exist another offset assignment which schedules the system. But answering to

236 CHAPTER 5. OFFSET FREE SYSTEMS

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10 11 12 13
n

Figure 5.17: Proportion of systems in case d.

the latter question amounts to consider
Qn

i=1 Ti

P non-equivalent asynchronous
systems, more precisely

Qn
i=1 Ti

P feasibility intervals, which leads to extremely
long computations. For this reason we limit our “classification” on cases a, b
and c. Consequently if the system is neither schedulable in the synchronous
situation, nor with random rule nor with the dissimilar offset assignment we
cannot draw any conclusion on the efficiency of our rule. Consequently, we
base our study on systems covered by case a, b and c. Note that if a system
is schedulable in the synchronous case, this is also the case with random and
dissimilar offset assignments; consequently the verification of the schedulability
using these rules is not necessary then.

The maximal time complexity of the classification of a single randomly chosen
system is the complexity of the feasibility test for an asynchronous and general
deadline system, i.e., O(P + Omax) as exhibited in Chapter 4, this number
grows exponentially with the number of tasks. We have oriented our task set
random generation in order to have “critical” systems, where the utilization
factor is large (i.e., near 1.0), and the interest of choosing offsets and then our
heuristic rule is relevant. In this situation, a large proportion of systems are
in the case d (however, we have already seen, in section 5.6 that the interest
of offset free systems remains relevant in that case); we have observed that
the proportion of systems in case d (i.e., #d

#a+#b+#c+#d) increases with n (see
Figure 5.17), so that a large number of simulations is needed in order to have
systems in cases a, b or c and perform our study. For this reason we have

5.8. DISSIMILAR OFFSET ASSIGNMENT 237

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 6 7 8 9 10 11 12 13
n

Synchronous
Random

Dissimilar offset assignment

Figure 5.18: Efficiency of our offset assignment rule.

strongly limited n and the Ti’s in our simulations, the number of tasks n is
chosen equiprobably in [5, 15], the Ti’s in [5, 30], the Di’s in [Ti

2 , Ti] and then
the computation times (Cj) are chosen randomly in the interval [1, Dj] and we
only consider systems where the utilization factor is near 1.

Figure 5.18 shows the proportion of systems in case a, b or c in function
of the number n of tasks (i.e., #a

#a+#b+#c ,
#b

#a+#b+#c ,
#c

#a+#b+#c). From these
simulations results, it can be noticed that:

❑ The interest of offset free systems again occurs in an obvious way, since
the proportion of systems in case a is very low in comparison with those
in cases b and c.

❑ In regard with Figures 5.15 it seems that the practical interest of offset
free systems is more important for heavily loaded general deadline system
using the deadline driven scheduler than for late deadline system with the
rate monotonic priority assignment. A finer study of this phenomenon
could be interesting but remains for further researches.

❑ It is very pessimistic to consider the feasibility of systems only in the
synchronous case. Choosing the offsets randomly already increases con-
siderably the number of feasible systems.

❑ Our heuristic offset assignment rule, like the random one, increases con-
siderably the number of feasible systems in comparison with the pes-

238 CHAPTER 5. OFFSET FREE SYSTEMS

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 6 7 8 9 10 11 12 13
n

#{b\c}
#b+#c

Figure 5.19: Proportion of cases where random rule is ‘better’ than the dis-
similar offset assignment.

simistic synchronous case. Moreover, our rule increases nicely the num-
ber of feasible systems in comparison with the random rule. Our rule, on
the average, schedules 38 % more systems than the random rule. That
leads to think that our criterion is a good measure of the proximity with
the synchronous situation and the efficiency of our rule.

Note that in our simulations the utilization factor is near 1: we consider “crit-
ical systems” where offset free systems and our heuristic rule is relevant. It
seems interesting also to consider the phenomenon in function of the utilization
factor, but this question remains for further research.

Figure 5.19 shows the proportion of systems where random is a better rule
than the dissimilar offset rule (i.e., #{b\c}

#b+#c – where {b\c} denotes the set of all
the systems schedulable with the random rule and not schedulable with the
dissimilar rule), except in marginal cases (i.e., n < 7), the proportion is about
15 %, which leads again to think that our criterion is a good measure of the
proximity with the synchronous situation, and exhibits the efficiency of our
rule.

5.9. CONCLUSION 239

5.9 Conclusion

In this chapter we have studied the scheduling problem of offset free systems.
We have first shown that we can restrict the offsets to have the same granu-
larity than the task characteristics; we have then shown that we can restrict
the problem to consider

Qn
i=1 Ti

P non-equivalent offset assignments and we have
proposed a method to construct these values. We have also studied the opti-
mality of the popular priority rules. We have shown that the (non) optimality
of monotonic priority assignments for offset free systems cannot be reduced
to similar results for asynchronous systems, but that the monotonic priority
assignments are also not optimal for offset free systems. We have shown the
practical interest to consider systems where the offsets can be chosen by the
scheduling algorithm, and we have first proposed an optimal offset assignment
which considers only the non-equivalent offset assignments; however the num-
ber of combinations remains exponential. For this reason, we have defined a
rule to choose a single offset for each task, to move away from the worst case.
This algorithm is nearly optimal and has a reasonable time complexity in terms
of the task characteristics.

Interesting questions for further research related to offset free systems include:
the study of optimal (or pseudo-optimal, i.e., heuristic) static priority assign-
ment for offset free systems; statistical analysis of the practical interest of
offset free systems with other random variables or with “real” systems; sta-
tistical analysis of the actual benefit of our dissimilar offset assignment with
other random variables, with “real” systems and in function of the utilization
factor; the study of other pseudo-optimal offset assignment rules for offset free
systems,...

240 CHAPTER 5. OFFSET FREE SYSTEMS

Bibliography

[Aud91] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical report, University
of York, England, 1991.

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and com-
plexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor. The Journal of Real-Time Systems, 2:301–
324, 1990.

[CS47] C. Chiu-Shao. Shu Shu Chiu Chang. C. Chiu-Shao, 1247.

[Dic19] Leonard Eugene Dickson. History of the Theory of Numbers, vol-
ume II. Chelsea Publishing Company, 1919.

[GD97] J. Goossens and R. Devillers. The non-optimality of the monotonic
priority assignments for hard real-time offset free systems. Real-Time
Systems, 13(2):107–126, September 1997.

[Goo95] J. Goossens. Priority assignment and offset assignment for hard real-
time offset free systems. In darts’95, workshop on Design and Anal-
ysis of Real-Time Systems. Université Libre de Bruxelles, November
1995.

[Knu69] Donald E. Knuth. The Art of Computer Programming, volume 2 of
Seminumerical Algorithms. Addison-Wesley, 1969.

[LW82] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2:237–250, 1982.

[Mat81] L. Matthiessen. Le problème des restes dans l’ouvrage chinois
swang-king de sun-tsze et dans l’ouvrage ta-yen-lei-schu de yih-hing.
Comptes rendus de l’Académie de Paris, 92:291–294, 1881.

241

242 BIBLIOGRAPHY

[Sed92] Robert Sedgewick. Algorithms in C++. Addison-Wesley Publishing
Company, 1992.

[SF96] Robert Sedgewick and Philippe Flajolet. An introduction to the anal-
ysis of algorithms. Addison-Wesley Publishing Company, 1996.

[Tin93] K. W. Tindell. Using offset information to analysis static priority
pre-emptively scheduled task sets. Technical report, University of
York, England, 1993.

[Tin94] K. W. Tindell. Adding time-offsets to schedulability analysis. Tech-
nical report, University of York, England, 1994.

[Wei95] Mark Allen Weiss. Data structures and algorithm analysis. The
Benjamin/Cummings Publishing Company, Inc., 1995.

Chapter 6

Conclusion

Tout s’anéantit, tout périt, tout passe ;
il n’y a que le monde qui reste.
Il n’y a que le temps qui dure.

— Denis Diderot.

We have considered in this work the scheduling problem of real-time systems.
More precisely we have studied the scheduling of hard real-time systems com-
posed of periodic and independent tasks for mono-processor systems. We have
considered static as well as dynamic scheduling algorithms. During our study
we have shown that from a theoretical as well as practical point of view it is
interesting to distinguish between three classes of periodic task sets regard-
ing the relation between the period and the deadline (i.e., late/general and
arbitrary deadline systems) and three other classes regarding the offsets (i.e.,
synchronous/asynchronous and offset free systems).

For the various popular scheduling algorithms (static and dynamic) we have
reviewed the literature and we have completed and corrected the theory, mainly
concerning the optimality and feasibility tests. We have also considered more
general classes of periodic task sets than those generally considered in the
literature, including asynchronous and arbitrary deadline systems. We have
first shown the interest to consider these more general classes and we have
extended the theory, particularly concerning the periodicity and feasibility
intervals (for static and dynamic schedulers).

For the various sub-classes of periodic task sets considered in this work we have
examined the response time notion. We have defined/extended this notion

243

244 CHAPTER 6. CONCLUSION

to handle general classes of periodic task sets, including asynchronous and
arbitrary deadline systems.

For static priority schedulers we have shown the interest of the response time
computation regarding the feasibility problems of these more general systems.
We have also considered the problem of the computation of these response
times. For the various classes of periodic task sets considered in this work, we
have proposed several methods for these computations. We have studied the
analytical and experimental (time and space) complexity of our algorithms.
The study of the response time computation in asynchronous situation (with
general deadlines) has provided the material to prove the property “stated” by
Liu and Layland concerning the worst case response time.

For the dynamic deadline driven scheduler we have extended the response
time computation (not considered in the literature) for the various classes of
periodic task sets considered in this work, we have studied the interest of
our general response time computation in comparison with previous results
for synchronous and asynchronous systems (i.e., regarding the analytical and
experimental complexity of the various approaches). For both cases, we have
shown the advantage of our approach. First, for asynchronous systems we
have shown that the maximal time complexity of our computation exhibits
an exponential improvement in comparison with the computation suggested
by those of Baruah, Howell and Rosier. We have also shown that the actual
time complexity of the computation of Baruah, Howell and Rosier is very
large and unreasonable in comparison with the response time approach. For
synchronous systems, we examined the worst case response time computation
of Spuri and we have shown the pessimism of this approach. We have first
corrected and generalized a result of Liu and Layland which point out that
we can check the feasibility of synchronous system by checking the deadline
until the first idle point. Our test amounts to calculate the response times of
the requests which occur before this point. The maximal time complexity of
this test exhibits again an exponential improvement in comparison with the
approach of Spuri. We have also shown the actual pessimism of the Spuri’s
approach and the actual benefit of ours. Hence, we feel to have justified the
interest of our general response time computation concerning the feasibility
test of synchronous/asynchronous systems for arbitrary deadlines.

We have shown that for static as well as for dynamic schedulers (and for the var-
ious classes of periodic task sets considered in this work) it is very pessimistic
to consider only the synchronous case, since a system can be unschedulable
in the synchronous case while being schedulable in a particular asynchronous
situation. For this reason we have considered the scheduling problem of offset
free systems. We have first shown that we can restrict the offsets to have the

245

same granularity than the task characteristics, we have then shown that we can
restrict the problem to consider

Qn
i=1 Ti

P non-equivalent offset assignments. We
have also studied the optimality of the popular priority rules. We have shown
that the (non) optimality of monotonic priority assignments for offset free sys-
tems cannot be reduced to similar results for asynchronous systems but we
have shown that the monotonic priority assignments are again not optimal for
offset free systems. We have shown the practical interest to consider system-
s where the offsets can be chosen by the scheduling algorithm. We have first
proposed an optimal offset assignment which considers only the non-equivalent
offset assignments; however the number of combinations remains exponential.
For this reason, we have defined a rule to choose a single offset for each task,
to move away from the worst case. This algorithm is nearly optimal and has
a reasonable time complexity in terms of the task characteristics.

Of course, there is a lot of interesting questions left for further researches; we
have formulated at the end of each chapter some research directions that could
lead to extensions and improvements of our work. It is clear that much more
(exciting) research is required to achieve this aim.

246 CHAPTER 6. CONCLUSION

List of Symbols

In the following formulas, some letters have specific meanings:

i, j, k, t Integer-valued arithmetic expression
x, y, b Real-valued arithmetic expression
g, h Boolean-valued expression.

g ∧ h g and h
g ∨ h g or h (inclusive)
x ≈ y x is approximately equal to y
|x| Absolute value of x
[x, y) Half-open interval: {x|y ≤ x < z}
dxe Ceiling of x, least integer function: mink≥x k
(

n
k

)

Binomial coefficient: n!
(n−k)!·k!

Ci The worst case execution time of task number i
CS(R, t) The configuration of the schedule at time t
δk
i The kth request of task number i

δk
i � δp

j δk
i has a higher priority than δp

j
δk
i ≺ δp

j δk
i has a lower priority than δp

j
Di The deadline of task number i
Dmax max{Di|i = 1, . . . , n}
εi(t) The amount of processor time used by the last request of

τi in the interval [0, t)
εk
i (t) The amount of processor time used by the request δk

i
bxc Floor of x, greatest integer function: maxk≤x k
j ≡ k (mod i) Relation of congruence: j mod i = k mod i
gcd{j, k} Greatest common divisor of j and k
lcm{j, k} Least common multiple of j and k
logb x logarithm, base b, of x (when x > 0, b > 0, and b 6= 1):

the y such that x = by

ln x Natural logarithm: loge x
max Maximum

247

248 CHAPTER 6. CONCLUSION

min Minimum
mod modulo function
n The number of tasks
k! k factorial: 1× 2× · · · × k
N Natural numbers: 0, 1, 2, 3 . . .
N0 Strictly positive natural numbers: 1, 2, 3, . . .
Oi The offset of task number i
Omax max{Oi|i = 1, . . . , n}
O(f(x)) Big-oh of f(x)
P The least common multiple of all task period
Q Rational numbers
R Real numbers
r1
i The response time of the first request of τi

in the synchronous case
ρk

i The response time of the kth request of τi

ρ∗i The best response time of task τi

Rk
i Oi + (k − 1) · Ti

S ≡ S ′ S and S ′ are equivalent asynchronous systems
S A task set
Ti The period of task number i
Tmax max{Ti|i = 1, . . . , n}
τi Task number i
τi > τj Task τi has a higher priority than task τj

U
∑n

i=1
Ci
Ti

, the utilization factor
Z Integer numbers: . . . ,−2,−1, 0, 1, 2, . . .

Bibliography

[AB93] N. C. Audsley and A. Burns. Real-time system scheduling. Tech-
nical report, University of York, England, 1993.

[ABD+95] N. C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell,
and Andy J. Wellings. Fixed priority pre-emptive scheduling: An
historical perpective. The Journal of Real-Time Systems, 8, 1995.

[ABDW94] N. C. Audsley, A. Burns, R. I. Davis, and A. J. Wellings. Inte-
grating best effort and fixed priority scheduling. In Proceedings of
the 1994 Workshop on Real-Time Programming, June 1994.

[ABRT93] N. C. Audsley, A. Burns, M. Richardson, and K. Tindell. Applying
new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, pages 284–292, 1993.

[ABRW92] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Welling.
Deadline monotonic scheduling theory. In Boullard and Puente,
editors, Proc. IFAC/IFIP WRTP’92, pages 55–60, Bruges, Bel-
gium, 1992.

[ABRW93] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. In-
corporating unbounded algorithms into predictable real-time sys-
tems. Computer Systems Science & Engineering, 2:80–89, 1993.

[ABRW94] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings.
Stress: a simulator for hard real-time systems. Technical report,
University of York, England, 1994.

[Alt96] Peter Altenbernd. Timing Analysis, scheduling, and allocation of
periodic tasks. PhD thesis, Universitÿat-GH Paderborn, 1996.

[Aud90] N. C. Audsley. Deadline monotonic scheduling. Technical report,
University of York, England, 1990.

249

250 BIBLIOGRAPHY

[Aud91] N. C. Audsley. Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times. Technical report,
University of York, England, 1991.

[Bak74] K. R. Baker. Introduction to sequencing and Scheduling. John
Wiley & Sons., 1974.

[BD96] A. Burns and R. Davis. Choosing task periods to minimise sys-
tem utilisation in time triggered systems. Information Processing
Letters, 58:223–229, 1996.

[BF97] A. A. Bertossi and A. Fusiello. Rate-monotonic scheduling for
hard-real-time systems. European Journal of Operational Re-
search, pages 429–443, 1997.

[BHR93] S. K. Baruah, R. R. Howell, and L. E. Rosier. Feasibility problems
for recurring tasks on one processor. Theoret. Comput. Sci., 118:3–
20, 1993.

[BHR93] Sanjoy K. Baruah, Rodney R. Howell, and Louis E. Rosier. Fea-
sibility problems for recurring tasks on one processor. Theoret.
Comput. Sci., 1(118), 93.

[BMR90] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively schedul-
ing hard-real-time sporadic tasks on one processor. In ieee Com-
puter Society Press, editor, 11th Real-Time Systems Symposium,
pages 182–190, 1990.

[BMS93] Ozalp Babaouglu, Keith Marzullo, and Fred B. Schneider. A for-
malization of priority inversion. Technical report, University of
Bologna, 1993.

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor. The Journal of Real-Time Systems,
2:301–324, 1990.

[BS88] T. P. Baker and Alan Shaw. The cyclic executive and ada. ieee
Computer Society Press, pages 120–129, 1988.

[BS90] Kenneth R. Baker and Gary D. Scudder. Sequencing with ear-
liness and tardiness penalties: A review. Operation Research,
38(1):22–27, January-February 1990.

BIBLIOGRAPHY 251

[Bur94] A. Burns. Fixed priority scheduling with deadlines prior to com-
pletion. Technical Report YCS212, University of York, England,
1994.

[Bur93] A. Burns. Incorporating flexibility into offline scheduling for hard
real-time systems. Technical report, University of York, England,
93.

[But97] Giorgio C. Buttazzo. Predictable Scheduling Algorithms and Ap-
plications. Hard Real-Time Computing System. Kluwer Academic
Publishers, 1997.

[BW95] Alan Burns and Andy Wellings. A computational model for fixed
priority scheduling. M.S. in parallel computer and computation,
Warwick University, March 1995.

[CC89] H. Chetto and M. Chetto. Some results of the earliest deadline
scheduling algorithm. ieee Transaction on Software Engineering,
15(10), October 1989.

[Che87] Infan Kuok Cheong. Scheduling Imprecise Hard Real Time Jobs
with Cumulative Error. PhD thesis, University of Illinois, 1987.

[Che93a] Ken Chen. Scheduling in real-time systems: Problems and algo-
rithms. In Le salon des solutions informatiques temps-réel, 1993.

[Che93b] H. Chetto. Des tâches sporadiques en présence de tâches
périodiques. In Le salon des solutions informatiques temps réel,
pages 39–52, Janvier 1993.

[CL86] Hung-Yand Chang and Miron Livny. Distributed scheduling un-
der deadline constraints: a comparaison of sender-initiated and
receiver-initiated approachs. ieee Computer Society Press, 1986.

[CL88] Jen-Yao Chung and Jane W. S. Liu. Algorithms for scheduling
periodic jobs to minimize average error. ieee Computer Society
Press, 1988.

[CLBJM95] Claudine Chaouiya, Sophie Lefevre-Barbaroux, and Alain Jean-
Marie. Real-time scheduling of periodic tasks. Scheduling Theory
and its Applications, 1995.

[CLL90] Jen-Yao Chung, Jane W. S. Liu, and Kwei-Jay Lin. Scheduling
periodic jobs that allow imprecise results. ieee Transaction on
Computers, 39(9):1156–1174, 1990.

252 BIBLIOGRAPHY

[Cof76] E.G. Jr. Coffman. Computer and Job-Shop Scheduling Theory.
John Wiley & Sons, 1976.

[CS47] C. Chiu-Shao. Shu Shu Chiu Chang. C. Chiu-Shao, 1247.

[CS88] Sheng-Chang Cheng and John A. Stankovic. Scheduling algo-
rithms for hard real-time systems, a brief survey. In ieee Com-
puter Society Press, 1988.

[CSB89] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling
of real-time tasks under precedence constraints. The Journal of
Real-Time Systems, 1:265–281, 1989.

[CSB90] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling
of real-time tasks under precedence constraints. The Journal of
Real-Time Systems, 2:181–194, 1990.

[Dav93] R. I. Davis. Approximate slack stealing algorithms for fixed pri-
ority pre-emptive systems. Technical report, University of York,
England, 1993.

[Del94] Joÿelle Delacroix. Un controleur d’ordonnacement temps réel pour
la stabilite du earliest deadline en surcharge: le regisseur. PhD
thesis, Université Pierre et Marie Curie, 1994.

[Del96] Joÿelle Delacroix. Towards a stable earliest deadline scheduling
algorithm. The Journal of Real-Time Systems, 1996.

[Der74] M. Dertouzos. Control robotics: the procedural control of physical
processes. In Proceedings of the IFIP Congress, 1974.

[DGH96] S. De Vroey, J. Goossens, and Ch. Hernalsteen. A generic simu-
lator of real-time scheduling algorithms. In The 29th Simulation
Symposium, pages 242–249, April 1996.

[dGHM98] A. de Jacquier, J. Goossens, Ch. Hernalsteen, and Th. Massart.
A simulator of real-time systems, specified in et-lotos. In B. Bod-
nar, editor, Applied telecommunication Symposium, pages 147–
154. The Society for Computer Simulation International, April
1998.

[Dha77] S. K. Dhall. Scheduling Periodic-Time-Critical Jobs on Single
Processor and Multiprocessor Computing Systems. PhD thesis,
University of Illinois at Urbana-Champaign, 1977.

BIBLIOGRAPHY 253

[Dic19] Leonard Eugene Dickson. History of the Theory of Numbers, vol-
ume II. Chelsea Publishing Company, 1919.

[DL78] Sudarshan K. Dhall and C. L. Liu. On a real-time scheduling
problem. Operations Research, 26(1):127–140, January-February
1978.

[GD97] J. Goossens and R. Devillers. The non-optimality of the mono-
tonic priority assignments for hard real-time offset free systems.
Real-Time Systems, 13(2):107–126, September 1997.

[GH98] J. Goossens and Ch. Hernalsteen. A tool for statistical analysis of
hard real-time systems. In ieee Computer Society Press, editor,
Proceedings of The 31st Annual Simulation Symposium, pages 58–
65, Boston, Massachusetts, April 1998.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability, a guide to the Theory of NP-Completeness. W. H.
Freeman, San Francisco, 1979.

[Goo95] J. Goossens. Priority assignment and offset assignment for hard
real-time offset free systems. In darts’95, workshop on Design
and Analysis of Real-Time Systems. Université Libre de Bruxelles,
November 1995.

[Goo96] J. Goossens. General response time computation for hard real-
time periodic task sets. Technical Report 340, Université Libre de
Bruxelles, 1996.

[Goo97a] J. Goossens. Dynamic priority schedulers for hard real-time pe-
riodic task sets. Technical Report 358, Université Libre de Brux-
elles, 1997.

[Goo97b] J. Goossens. Feasibility test for synchronous periodic task sets
based on the response time computation. Technical Report 355,
Université Libre de Bruxelles, 1997.

[Goo97c] J. Goossens. Static preemptive schedulers for hard real-time pe-
riodic task sets. Technical Report 356, Université Libre de Brux-
elles, 1997.

[GS88] J. B. Goodenough and L. Sha. The priority ceiling protocol: a
method for minimizing the blocking of high priority ada tasks.
Ada Letters, VIII(7), 1988.

254 BIBLIOGRAPHY

[HaL94] Michael Gonzalez Hÿarbour and Mark H. Klein andJohn Lehoczky.
Timing analysis for fixed-priority scheduling of hard real-time sys-
tems. ieee Transaction on Software Engineering, 20(1), January
1994.

[HL88] Kwang S. Hong and Joseph Y-T. Leung. On-line scheduling of
real-time tasks. ieee Computer Society Press, 1988.

[HL89] Kwang Soo Hong and Joseph Y-T. Leung. Preemptive schedul-
ing with release times and deadlines. The Journal of Real-Time
Systems, 1, 1989.

[Hor74] W. A. Horn. Some simple scheduling algorithms. Naval Research
Logistics Quartely, 21:177–185, 1974.

[HR96] N. Homayoun and P. Ramanathan. Dynamic priority scheduling
of periodic and aperiodic tasks in hard real-time systems. The
Journal of Real-Time Systems, 6:207–232, 1996.

[HXT89] Jiawei Hong, Xiaonan, and Don Towsley. A performance analysis
of minimum laxity and earliest deadline scheduling in a real-time
system. ieee Transaction on Computers, 38(12):1736–1744, 1989.

[Jen93] E. Douglas Jensen. A scheduling model for scaleable real-time
computer systems. In Le salon des solutions informatiques temps
réel, pages 5–21, Janvier 1993.

[Jos85] M. Joseph. On a problem in real-time computing. Information
Processing Letters, 20:173–177, 1985.

[JP86] M. Joseph and P. Pandya. Finding response times in a real-time
system. The Computer Journal, 29(5):390–395, October 1986.

[KAS93] Daniel I. Katcher, Hiroshi Arakawa, and Jay K. Strosnider. Engi-
neering and analysis of fixed priority schedulers. ieee Transaction
on Software Engineering, 19(9), 1993.

[KLR94] M. H. Klein, J. P. Lehoczky, and R. Rajkumar. Rate-monotonic
analysis for real-time industrial computing. ieee Computer, 27(2),
1994.

[KMRS91] G. Koren, B. Mishra, A. Raghunathan, and D. Shasha. On-line
schedulers for overloaded real-time systems. Technical report,
Courant Institute, New York University, 1991.

BIBLIOGRAPHY 255

[Knu69] Donald E. Knuth. The Art of Computer Programming, volume 2
of Seminumerical Algorithms. Addison-Wesley, 1969.

[Kor92] Jan Korst. Periodic Multiprocessor Scheduling. PhD thesis, Tech-
nische Universiteit Eindhoven, 1992.

[KS91] G. Koren and D. Shasha. An optimal scheduling algorithm with
a competitive factor for real-time systems. Technical report,
Courant Institute, New York University, 1991.

[Lab74a] J. Labetoulle. Un algorithme optimal pour la gestion des processus
en temps réel. Revue Française d’Automatique, Informatique et
Recherche Opérationnelle, B-1:11–17, février 1974.

[Lab74b] Jacques Labetoulle. Some theorems on real time scheduling. Com-
puter Architectures and Networks, 1974.

[LB92] Sophie Lefevre-Barbaroux. Files d’attente avec arrivés atypiques:
environnement aléatoire et superposition de flux périodiques. PhD
thesis, Université de Paris-Sud Centre d’Orsay, 1992.

[Lee90] Jan Van Leeuwen. Algorithms and Complexity, volume A of Hand-
book of Theoritical Computer Science. Elsevier, 1990.

[Leh90] J. P. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In ieee Computer Society Press, editor,
Proceedings of the Real-Time Systems Symposium - 1990, pages
201–213, Lake Buena Vista, Florida, USA, December 1990.

[Leu89] Joseph Y.-T. Leung. An new algorithm for scheduling periodic,
real-time tasks. Algorithmica, 4:209–219, 1989.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the As-
sociation for Computing Machinery, 20(1):46–61, January 1973.

[LLN87] Jane W. S. Liu, Kwei-Jay Lin, and Swaminathan Natarjan.
Scheduling real-time, periodic jobs using imprecise results. ieee
Computer Society Press, 1987.

[LM80] Joseph Y.-T. Leung and M. L. Merrill. A note on preemptive
scheduling of periodic, real-time tasks. Information Processing
Letters, 11(3):115–118, November 1980.

256 BIBLIOGRAPHY

[LSD89] John Lehoczky, Liu Sha, and Ye Ding. The rate monotonic
scheduling algorithm: Exact characterization and average case
behavior. In ieee Computer Society Press, editor, Proceedings of
the Real-Time Systems Symposium, pages 166–171, 1989.

[LSS87] John Lehoczky, Lui Sha, and Jay K. Strosnider. Enhanced ape-
riodic responsiveness in hard real-time environments. ieee Com-
puter Society Press, pages 261–270, 1987.

[LSsY91] Jane W. S. Liu, Wei-Kuan Shih, and Albert Chuang shi Yu. Al-
gorithms for scheduling imprecise computations. ieee Computer,
24(5):58–68, May 1991.

[LW82] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity
of fixed-priority scheduling of periodic, real-time tasks. Perfor-
mance Evaluation, 2:237–250, 1982.

[Mac98] Christophe Macq. Etude pratique des principaux algorithmes
d’ordonnancement de tâches apériodiques en présence de tâches
périodiques dans un système temps réel. Master’s thesis, Univer-
sité Libre de Bruxelles, Belgique, 1998.

[Mat81] L. Matthiessen. Le problème des restes dans l’ouvrage chinois
swang-king de sun-tsze et dans l’ouvrage ta-yen-lei-schu de yih-
hing. Comptes rendus de l’Académie de Paris, 92:291–294, 1881.

[MC70] R. R. Muntz and E. G. Coffman. Preemptive scheduling of real-
time tasks on multiprocessor systems. Journal of the Association
for Computing Machinery, 17(2):324–338, April 1970.

[MD78] A. Mok and M. Dertouzos. Multiprocessor scheduling in a hard
real-time environment. In Proceedings of the Seventh Texas Con-
ference on Computing Systems, 1978.

[MF75] Graham McMahon and Michael Florian. On scheduling with
ready times and due dates to minimize maximum lateness. Oper-
ations Research, 23(3):475–482, May-June 1975.

[Moi85] Abha Moitra. Analysis of hard real-time systems. Technical re-
port, Cornell University–Department of Computer Science, 1985.

[Mok83] Aloysius Ka-Lau Mok. Fundamental Design Problems of Dis-
tributed Systems for The Hard-Real-Time Environment. PhD the-
sis, Massachusetts Institute of Technology, 1983.

BIBLIOGRAPHY 257

[NZM91] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An
Introduction to the Theory of Numbers. John Wiley & Sons, Inc.,
1991.

[Oh94] Yingfeng Oh. The Design and Analysis of Scheduling Algorithms
for Real-Time and Fault-Tolerant Computer Systems. PhD thesis,
University og Virginia, May 1994.

[OS93a] Yingfeng Oh and Sang H. Son. Preemptive scheduling of tasks
with reliability requirements in distributed hard real time systems.
Technical report, University of Virginia, 1993.

[OS93b] Yingfeng Oh and Sang H. Son. Scheduling of hard real-time tasks
with 1-processor-fault-tolerance. Technical Report CS-93-27, U-
niversity of Virginia, 1993.

[Par92] Chang Yun Park. Predicting determinitic execution times of real-
time programs. PhD thesis, University of Washington, 1992.

[PD93] F. Panzieri and R. Davoli. Real time systems: A tutorial. Tech-
nical Report UBLCS-93-22, University of Bologna, 1993.

[PDP93a] F. Panzieri, L. Donatiello, and L. Poretti. Scheduling real time
tasks: A performance study. Technical Report UBLCS-93-10,
University of Bologna, 1993.

[PDP93b] F. Panzieri, L. Donatiello, and L. Poretti. Scheduling real time
tasks: Aperformance study. Technical Report UBLCS-93-10, U-
niversity of Bologna, 1993.

[PM94] Mihir Pandya and Miroslaw Malek. Minimum achievable utiliza-
tion for fault-tolerant processing of periodictasks. Technical Re-
port CS-TR-94-07, University of Texas, Austin, 1994.

[Ram95] K. Ramamritham. Dynamic priority scheduling. M.S. in parallel
computer and computation, Warwick University, March 1995.

[RCM96] Ismael Ripoll, A. Crespo, and A. K. Mok. Improvement in feasibil-
ity testing for real-time tasks. The Journal of Real-Time Systems,
11:19–39, 1996.

[Ric92] Mike Richardson. The stress hard real-time system simulator.
Technical report, University of York, England, 1992.

258 BIBLIOGRAPHY

[RlSaL87] Ragunathan Rajkumar and liu Sha andJohn Lehoczky. On coun-
tering the effects of cycle-stealing in a hard real-time environment.
In ieee Computer Society Press, 1987.

[RSZ89] Krithi Ramaritham, John A. Stankovic, and Wei Zhao. Distribut-
ed scheduling of tasks with deadline and resource requirements.
ieee Transaction on Software Engineering, 38(8):1110–1122, Au-
gust 1989.

[Sah79] Sartaj Sahni. Preemptive scheduling with due date. Operations
Research, 27(5):925–934, September-October 1979.

[Sak94] Manas Chandra Saksena. Parametric Scheduling for Hard Real-
Time Systems. PhD thesis, University of Maryland, 1994.

[SB96] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dynamic
priority systems. The Journal of Real-Time Systems, 10, 1996.

[Sch92] Werner Schutz. On the testability of distributed real-time systems.
Technical Report 3092, University of Vienna, Austria, 1992.

[Sed92] Robert Sedgewick. Algorithms in C++. Addison-Wesley Publish-
ing Company, 1992.

[Ser72] Omri Serlin. Scheduling of time critical processes. In the 1972
Spring Joint Computer Conference, volume 40 of afips Confer-
ence Proceedings, 1972.

[SF96] Robert Sedgewick and Philippe Flajolet. An introduction to the
analysis of algorithms. Addison-Wesley Publishing Company,
1996.

[SG90] Liu Sha and John B. Goodenough. Real-time scheduling theory
and ada. ieee Computer, pages 53–62, April 1990.

[SHH91] Alexander D. Stoyenko, V. Carl Hamacher, and Richard C. Holt.
Analysing hard-real-time programs for guaranteed schedulability.
ieee Transaction on Software Engineering, 17(8):737–749, Au-
gust 1991.

[SLL90] Wei Kuan Shih, J. W. S. Liu, and C. L. Liu. Scheduling periodic
jobs with deferred deadlines. Technical Report UIUCDCS-R-90-
1593, University of Illinois at Urbana-Champaign, 1990.

BIBLIOGRAPHY 259

[SLR86] Liu Sha, John P. Lehoczky, and Ragunathan Rajkumar. Solution
for some pratical problems in prioritized preemptive scheduling.
In ieee Computer Society Press, editor, Proceedings of the Real-
Time Systems Symposium, 1986.

[SLS88] Brinkley Sprunt, John Lehoczky, and Liu Sha. Exploiting unused
periodic time for aperiodic service using the extended priority
exchange algorithm. ieee Computer Society Press, 1988.

[Spu96] Marco Spuri. Analysis of deadline scheduled real-time systems.
Technical Report 2772, Institut National de Recherche en Infor-
matique et en Automatique, 1996.

[SR] John A. Stankovic and Krithi Ramamritham. Tutorial: Hard
real-time systems. ieee.

[SR90] John A. Stankovic and Krithi Ramamritham. What is predictabil-
ity for real-time systems? Real-Time Systems, 2:247–254, 1990.

[SR91] John A. Stankovic and Krithi Ramamritham. The spring kernel
a new paradigm for real-time systems. ieee Software, 8(3):62–72,
May 1991.

[SRL90] Liu Sha, Ragunathan Rajkumar, and John Lehoczky. Priori-
ty inheritance protocols: An approach to real-time synchroniza-
tion. ieee Transaction on Software Engineering, 39(9):1175–1185,
September 1990.

[SS87] John Lehoczkyand Liu Sha and Jay K. Strosnider. Enhanced ape-
riodic responsiveness in hard real-time environment. ieee Com-
puter Society Press, 1987.

[SSK+94] Jack Stankovic, Kang Shin, Herman Kopetz, Krithi Ramam-
ritham, and al. Real-time computing: A critical enabling tech-
nology. Technical report, University of Massachusetts, 1994.

[SSL89] Brinkley Sprunt, Liu Sha, and John Lehoczky. Aperiodic task
scheduling for hard real-time systems. The Journal of Real-Time
Systems, 1:27–60, 1989.

[SSW94] David B. Shmoys, Clifford Stein, and Joel Wein. Improved approx-
imation algorithms for shop scheduling problems. SIAM Journal
on Computing, 23(3):617–632, June 1994.

260 BIBLIOGRAPHY

[ST93] David B. Shmoys and Éva Tardos. An approximation algorithm
for the generalized assignment problem. Technical report, Cornell
University, 1993.

[Sta92] John A. Stankovic. Distributed real time computing: The next
generation. Technical report, University of Massachusetts, 1992.

[Sta93] John Stankovic. Reflective real-time system. Technical report,
University of Massachusetts, June 28, 1993.

[SW93] John A. Stankovic and Fuxing Wang. The integration of schedul-
ing and fault tolerance in real time systems. Technical report,
University of Massachusetts, 1993.

[TaMS96] T. Tia and J. W.-S. Liu anf M. Shankar. Algorithms and opti-
mality of scheduling soft aperiodic requests in fixed-priority pre-
emptive systems. The Journal of Real-Time Systems, 10:23–43,
1996.

[TBW92] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in
priority pre-emptively scheduled systems. In Real-Time Systems
Symposium, December 1992.

[Tin93a] K. W. Tindell. An extensible approach for analysing fixed pri-
ority hard real-time tasks. Technical report, University of York,
England, 1993.

[Tin93b] K. W. Tindell. Using offset information to analysis static priority
pre-emptively scheduled task sets. Technical report, University of
York, England, 1993.

[Tin94a] K. W. Tindell. Adding time-offsets to schedulability analysis.
Technical report, University of York, England, 1994.

[Tin94b] K. W. Tindell. An extensible approach for analysing fixed priority
hard real-time tasks. The Journal of Real-Time Systems, 1994.

[Tin94c] Kenneth William Tindell. Fixed Priority Scheduling of Hard Real-
Time Systems. PhD thesis, University of York, England, 1994.

[TLS94] Too-Seng Tia, Jane W.-S. Liu, and M. Shankar. Aperiodic request
scheduling in fixed-priority preemptive systems. Technical report,
University of Illinois at Urbana-Champaign, 1994.

BIBLIOGRAPHY 261

[Var96] T. Vardanega. Tool support for the construction of statically
analysable hard real-time ada systems. In Proceedings of the Real-
Time Systems Symposium, 1996.

[vTK91] André M. van Tilborg and Gary M. Koob. Scheduling and Re-
source Management. Foundations of Real-Time Computing. K-
luwer Academic Publishers, 1991.

[Wan93] Fuxinf Wang. Issues related to dynamics scheduling in real time
systems. PhD thesis, University of Massachusetts Amherst, 1993.

[Wei95] Mark Allen Weiss. Data structures and algorithm analysis. The
Benjamin/Cummings Publishing Company, Inc., 1995.

[XP88] Jia Xu and David Lorge Parnas. Scheduling algorithms for hard
real-time systems–a brief survey. ieee Transaction on Software
Engineering, 1988.

[XP90] Jia Xu and David Lorge Parnas. Scheduling processes with re-
lease times, deadline, precedence, and exclusion relations. ieee
Transaction on Software Engineering, 16(3):360–369, 1990.

[XP93] Jia Xu and David Lorge Parnas. On satisfying timing constraints
in hard-real-time systems. ieee Transaction on Software Engi-
neering, 19(1), 1993.

[YS91] Michal Young and Lih-Chyun Shu. Hybrid online/offline schedul-
ing for hard real-time systems. Technical report, Purdue Univer-
sity, 1991.

[Zal] Januz Zalewski. Real-time systems glossary. Glossary.

[ZRS87] Wei Zhao, Krithivasan Ramamritham, and John A. Stankovic.
Scheduling tasks with ressource requirements in hard real-
time systems. ieee Transaction on Software Engineering, SE-
13(5):564–576, 1987.

Index

asynchronous, 11

busy period, 40

cyclic executive, 9

deadline, 4
arbitrary, 11, 36, 52, 65, 94, 97,

103, 135, 155
general, 11, 34, 43, 67, 129, 148
hard, 4
late, 11, 20
soft, 4

deadline monotonic, 34
dynamic priority, 9

equivalent systems, 206, 207, 226
expedient, 25

failure, 3
feasibility interval, 38, 42, 48, 58,

126, 131, 133, 138, 140
feasibility test, 94, 180
fully utilize, 28

hyper-period, 28

idle, 8
point, 39, 84, 120

laxity, 186
least laxity first scheduling algorith-

m, 186

non-preemptive, 9

offset

granularity, 201
limited growing, 210

offset free systems, 11, 200
optimality, 21, 26, 34, 36, 44, 52,

125, 212, 215, 226
definition, 116, 214
non-, 44, 219

optimlaity, 117

period, 7
precedence constraint, 4
predictability, 3
preemptive, 9

rate monotonic, 20
real-time scheduling, 8
relative phasing, 47, 211, 219
relative urgency algorithm, 124
request, 5, 7

active, 8
resource requirement, 5
response time, 22, 64

1st request, 65, 142
kth request, 67, 97, 148, 155
best case, 88
worse, 172
worst case, 85, 172

schedulability test, 103
schedulable,feasible, 21
schedule, 12, 20, 113

extended, 134, 135
feasible, 13
partial, 48
partially extended, 128, 129

262

INDEX 263

unfeasible, 13
separation time, 210–212
stability, 59, 192
static priority, 9, 19, 112
synchronous, 11, 140, 166

task, 3, 5
aperiodic, 8
critical, 59
dependent, 5
independent, 5
periodic, 7, 10
request, 5
sporadic, 7

timing constraint, 4

