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Channel Systems

A.k.a. “communicating finite-state machines”
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Natural model for asynchronous communication protocols: SDL, Estelle

[von Bochmann 1978; Brand & Zafiropulo 1983]

Turing powerful!

Hence fully automated verification, aka model checking, is impossible on principle
grounds.
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The Paradox of Lossy Channel Systems

Model checking becomes possible when you assume channels are unreliable (can lose
messages). [Finkel 94; Abdulla & Jonsson 96b]

Termination and more general eventuality properties are decidable.

Reachability and more general safety properties are decidable.

These lossy channel systems are well-suited to the analysis of asynchronous protocols
that are designed to cope with message losses.
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Channel Systems: Perfect

W.l.o.g., we only consider systems made of one component and several channels.

S = 〈Q,Σ, C,∆〉 with
– Q = {q, . . .}, the control states

– Σ = {a, b, . . .}, the messages

– C = {c1, c2, . . . , cn}, the channels

– ∆ ⊆ Q × C × {?, !} × Σ × Q, the rules

Rules in ∆ written e.g. as “(q, c!a, q′)”

A configuration of S: σ = 〈q, u1, . . . , un〉

Perfect steps: 〈q, u1, . . . , un〉 −→ 〈r, v1, . . . , vn〉 if
— (q, ci?a, r) is a rule, ui = a.vi and vj = uj for j 6= i, or

— (q, ci!a, r) is a rule, vi = ui.a and vj = uj for j 6= i.
NB: no test for emptiness
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Channel Systems: Lossy

Subword ordering: abba v abracadabra

Subword relation for configurations: σ v σ′

Lossy steps: σ −→lossy σ′ def
⇔ σ w δ −→perf δ′ w σ′

Corollary: If σ1 −→ σ2 then σ′
1 −→ σ′

2 for any σ′
1 w σ1 and σ′

2 v σ2.

Lemma [Higman 1952]: the subword ordering is a well-quasi-order (wqo), i.e. any
infinite sequence u0, u1, u2, . . . of words has an infinite increasing subsequence
ui0 v ui1 v ui2 v · · ·

⇒ Applies equivalently to configurations of S ordered by v.

Corollary. Any set of configurations has a finite number of minimal elements.
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Lossy Channel Systems Are Not Trivial

Recurrent reachability is undecidable [Abdulla & Jonsson 1996a].

(Hence model checking of temporal properties is undecidable too.)

Boundedness is undecidable [Mayr 2003] (see also [DJS 1999]).

All behavioral equivalences are undecidable [S. 2001].

Additionally, all decidable problems are nonprimitive recursive [S. 2002].

In practice, the main limitation for verification is the undecidability of model
checking properties involving liveness and/or fairness.
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Probabilistic Lossy Channel Systems

Basic idea is to assume that message losses follow probabilistic rules , e.g. there is a
known “failure rate” [PN 1997].

More realist than just non-deterministic losses (protocols are designed with the idea
that losses are not that likely).

Randomization helps in general.
(Here by ruling out unrealistically nasty behaviors).

Definition: A Probabilistic LCS (a “PLCS”) is
a LCS equipped with
– positive weights on rules, and
– a constant probability ploss ∈ (0, 1).

q1

q2q3

c1!a
c1!a

c2?d

c1?b

c2!d

3

5

2

8

7

ploss = .01 +

The Verification of Probabilistic Lossy Channel Systems – p.8/25



Probabilistic Lossy Channel Systems

Basic idea is to assume that message losses follow probabilistic rules , e.g. there is a
known “failure rate” [PN 1997].

More realist than just non-deterministic losses (protocols are designed with the idea
that losses are not that likely).

Randomization helps in general.
(Here by ruling out unrealistically nasty behaviors).

Definition: A Probabilistic LCS (a “PLCS”) is
a LCS equipped with
– positive weights on rules, and
– a constant probability ploss ∈ (0, 1).

q1

q2q3

c1!a
c1!a

c2?d

c1?b

c2!d

3

5

2

8

7

ploss = .01 +

The Verification of Probabilistic Lossy Channel Systems – p.8/25



Probabilistic Lossy Channel Systems

Basic idea is to assume that message losses follow probabilistic rules , e.g. there is a
known “failure rate” [PN 1997].

More realist than just non-deterministic losses (protocols are designed with the idea
that losses are not that likely).

Randomization helps in general.
(Here by ruling out unrealistically nasty behaviors).

Definition: A Probabilistic LCS (a “PLCS”) is
a LCS equipped with
– positive weights on rules, and
– a constant probability ploss ∈ (0, 1).

q1

q2q3

c1!a
c1!a

c2?d

c1?b

c2!d

3

5

2

8

7

ploss = .01 +

The Verification of Probabilistic Lossy Channel Systems – p.8/25



Markovian Semantics

Semantics in form of a countable Markov chain.

Two interpretations of ploss:
global-fault model [PN97, BE99] vs. local-fault model [BS03,AR03].
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Global-Fault Model Is Less Realist

Assume ploss = .1.

〈s, a〉 〈s, ε〉
.1

〈s, bcabd〉 〈s, bcbd〉

. . .

. . .

.02

〈r, a〉

〈r, bcabd〉

.9

.9

Message losses are not independent events!
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Qualitative Verification of PLCS’s

Question: can we check whether P(S |= ϕ) = 1, i.e. whether ϕ holds almost surely,
for ϕ an LTL property?

Theorem [BE99]: Qualitative verification is decidable for the global-fault model,
assuming ploss ≥ .5.

NB: When ploss < .5, qualitative verification is undecidable [ABPJ00].

Theorem [BS03,AR03]: Qualitative verification is decidable for the local-fault
model, whatever ploss > 0.

Furthermore, whether P(S |= ϕ) = 1 does not depend on ploss, on the weights, on
the choice of a model.

Finite attractors play an essential rôle. . .
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Finite attractors

An attractor is a set W0 ⊆ W of configurations s.t.
for all σ ∈ W , P(σ |= 3W0) = 1.

NB: Then P(σ |= 23W0) = 1 for all σ.

Examples of finite attractors:

1. Random walk on the grid Z
2: any point.

2. Finite Markov chain: any set with one configuration from each bottom strongly
connected component.
3. PLCS’s assuming global-fault model: when ploss ≥ .5, the set of all empty
configurations is an attractor.
4. PLCS’s assuming local-fault model: the set of all empty configurations is an
attractor whatever ploss > 0.

We show how finite attractors provide finitary conditions for properties of countable
Markov chains.
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Algorithmic Ideas

A method for checking P(S |= ϕ) = 1:

1. Reduce P(S |= ϕ) to P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) for S′ = S ⊗Aϕ.

2. Build the finite graph GS′ of all configurations from W0 with an edge
〈s, ε〉 −→ 〈r, ε〉 if 〈r, ε〉 is reachable from 〈s, ε〉.

3. Since an infinite run of S ′ almost surely visits W0 infinitely often, it almost surely
ends up visiting a BSSC B of GS′ , and then it almost surely visits all configurations
reachable from B infinitely often.

4. Hence P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) = 1 iff all BSSCs B of GS′ reachable from σ0

satisfy
∧

i(B
∗
−→ Qi ⇒ B

∗
−→ Q′

i).

5. All this only needs reachability analysis of S ′. Hence decidability.

The Verification of Probabilistic Lossy Channel Systems – p.13/25



Algorithmic Ideas

A method for checking P(S |= ϕ) = 1:

1. Reduce P(S |= ϕ) to P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) for S′ = S ⊗Aϕ.

2. Build the finite graph GS′ of all configurations from W0 with an edge
〈s, ε〉 −→ 〈r, ε〉 if 〈r, ε〉 is reachable from 〈s, ε〉.

3. Since an infinite run of S ′ almost surely visits W0 infinitely often, it almost surely
ends up visiting a BSSC B of GS′ , and then it almost surely visits all configurations
reachable from B infinitely often.

4. Hence P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) = 1 iff all BSSCs B of GS′ reachable from σ0

satisfy
∧

i(B
∗
−→ Qi ⇒ B

∗
−→ Q′

i).

5. All this only needs reachability analysis of S ′. Hence decidability.

The Verification of Probabilistic Lossy Channel Systems – p.13/25



Algorithmic Ideas

A method for checking P(S |= ϕ) = 1:

1. Reduce P(S |= ϕ) to P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) for S′ = S ⊗Aϕ.

2. Build the finite graph GS′ of all configurations from W0 with an edge
〈s, ε〉 −→ 〈r, ε〉 if 〈r, ε〉 is reachable from 〈s, ε〉.

3. Since an infinite run of S ′ almost surely visits W0 infinitely often, it almost surely
ends up visiting a BSSC B of GS′ , and then it almost surely visits all configurations
reachable from B infinitely often.

4. Hence P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) = 1 iff all BSSCs B of GS′ reachable from σ0

satisfy
∧

i(B
∗
−→ Qi ⇒ B

∗
−→ Q′

i).

5. All this only needs reachability analysis of S ′. Hence decidability.

The Verification of Probabilistic Lossy Channel Systems – p.13/25



Algorithmic Ideas

A method for checking P(S |= ϕ) = 1:

1. Reduce P(S |= ϕ) to P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) for S′ = S ⊗Aϕ.

2. Build the finite graph GS′ of all configurations from W0 with an edge
〈s, ε〉 −→ 〈r, ε〉 if 〈r, ε〉 is reachable from 〈s, ε〉.

3. Since an infinite run of S ′ almost surely visits W0 infinitely often, it almost surely
ends up visiting a BSSC B of GS′ , and then it almost surely visits all configurations
reachable from B infinitely often.

4. Hence P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) = 1 iff all BSSCs B of GS′ reachable from σ0

satisfy
∧

i(B
∗
−→ Qi ⇒ B

∗
−→ Q′

i).

5. All this only needs reachability analysis of S ′. Hence decidability.

The Verification of Probabilistic Lossy Channel Systems – p.13/25



Algorithmic Ideas

A method for checking P(S |= ϕ) = 1:

1. Reduce P(S |= ϕ) to P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) for S′ = S ⊗Aϕ.

2. Build the finite graph GS′ of all configurations from W0 with an edge
〈s, ε〉 −→ 〈r, ε〉 if 〈r, ε〉 is reachable from 〈s, ε〉.

3. Since an infinite run of S ′ almost surely visits W0 infinitely often, it almost surely
ends up visiting a BSSC B of GS′ , and then it almost surely visits all configurations
reachable from B infinitely often.

4. Hence P(S′ |=
∧

i 23Qi ⇒ 23Q′
i) = 1 iff all BSSCs B of GS′ reachable from σ0

satisfy
∧

i(B
∗
−→ Qi ⇒ B

∗
−→ Q′

i).

5. All this only needs reachability analysis of S ′. Hence decidability.

The Verification of Probabilistic Lossy Channel Systems – p.13/25



An Assessment Of Qualitative Verification

+ Circumvents the undecidability of model checking lossy channel systems.

+ That precise values for weights etc. do not change the result is a bonus point: this
means we only assumed some kind of fairness property.

+ The global-fault model is vindicated!

– We’ll see later that the fairness assumption is sometimes not realistic.

– What about properties that do not hold almost surely but, say, 99% of the time?
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Quantitative Verification of PLCS’s

Question: can we compute P(S |= ϕ) when it is not = 1?

Theorem [Rab03]: There is a way to compute, for any tolerance τ > 0, a
probability p s.t. p − τ ≤ P(S |= ϕ) ≤ p + τ .

NB: Earlier solution by [PN97] is flawed.

This approximability result holds for the local-fault model (and the global-fault
model when ploss ≥ .5).

Again, finite attractors play an essential rôle. . .
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Again, finite attractors play an essential rôle. . .
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Algorithmic Ideas

What is P(σ0 |= 3σf )?
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p2,2,2

σ3,1

p3,1

×
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d = 1:

d = 2:
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? ⊥ > ? > ⊥

P
d
> ≤ P(σ0 |= 3σf ) ≤ P

d
> + P

d
? .

limd→∞ P
d
? = 0 for systems with a finite attractor!
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An Assessment Of Quantitative Verification

+ Allows performance evaluation.

? Some open problems remain.

– Requires that rules be given weights: where do these come from?
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Beyond Markov Chains

The problem with PLCS’s is that you have to view rules as probabilistic instead of
nondeterministic.

Classically, nondeterminism in rules comes from:

– arbitrary interleaving of asynchronous components

– abstraction of real-life programs

– open systems

– early designs

This cannot be realistically modeled by probabilities.

You want a Markov decision process model, where rules are nondeterministic and
losses are probabilistic!! [Bertrand & S. 2003].

Then we can ask questions such as “does P(ϕ) = 1 under all scheduling policies?”
(This is the adversarial qualitative viewpoint).
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What scheduling policies can do

s0

any

S

S
′
:

in eraseout erase

erasing gadget

retry success fail
?x

Question: is there a scheduling policy that makes S ′ visit success infinitely often
with > 0 probability?

Answer: yes iff (nondeterministic) S is unbounded!

Corollary: model checking qualitative properties under all scheduling policies is
undecidable.
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All Is Not Lost!

In previous proof, the nasty scheduling policy is unrealistic.

E.g. it needs remember infinitely many things.

Theorem (Bertrand & S. 2003): model checking qualitative properties under all
finite-memory policies is decidable.

NB: Algorithm only needs examine GS , the graph of empty configurations.

Some remaining open problems:

– What about cooperative qualitative model checking?

– What about computing minimal and maximal probabilities?
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Concluding remarks

It is possible to analyze systems combining two hard features: probabilities and
infinite state space.

Quantitative analysis is possible.

Qualitative analysis is possible.

Qualitative analysis of Markovian decision processes is a good substitute for
traditional linear-time model checking (minus the undecidability!).

Randomization helps.

All this is still new and many open questions remain.
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