Games in LTL Fragments

Salvatore La Torre

Dipartimento di Informatica ed Applicazioni
Universita degli Studi di Salerno



Linear-time Temporal Logic (LTL)

dCorrectness requirements for

reactive systems
"Every request is eventually granted”
O (r—<g)

dMost studied decision problem:

€ model checking (closed systems)
Is M a model of ¢ ?



LTL specs in open systems

The system is a module interacting with
the other modules (environment)

1 Controller synthesis
[ Realizabilty of specifications
1 Verification of open systems

3 Modular verification (module-checking)



LTL Games



















Decision Problem

1 Strategy: function
from play ending at a system state s
to a successor of s

J Strategy is winning :
All plays constructed according to it
satisfy specification

Is there a winnng strategy of the
protagonist?



Example: Strategy




Example: Strategy




Example: Strategy




Example: Strategy

» Game graph: »
“c

G -
B2o|

» Specification: O(a—<¢b)




Example: Strategy

» Game graph: »
"c

G -
=

» Specification: O(a—<¢b)




Example: Strategy

» Game graph: »
"c

G -
=

» Specification: O(a—<¢b)




Example: Strategy

» Game graph: »
"c

G -
=

» Specification: O(a—<¢b)




Example: Strategy

» Game graph: »
"c

G -
=0

» Specification: O(a—<b)




Computational Complexity of LTL
Games

L Deciding LTL games is 2Exptime-complete
[Pnueli-Rosner POPL'89]

dComplexity of games in LTL fragments:

€ Deterministic generators and games for LTL
fragments  [Alur - La Torre LICS'01]

€ Games for positive LTL fragments
[Marcinkowski - Truderung CSL'02]

€ Games in fragments without "next" and “unit!”
[Alur - La Torre - Madhusudan CONCUR'03]




Other References

Realizability
[Abadi-Lamport-Wolper ICALP'89]

Module checking
[Kupferman-Vardi CAV'96 & '97]

Alternating Temporal Logic
[Alur-Henzinger-Kupferman JACM'02]



Talk Outline

v Overview
< Notation and general solution to LTL games
L Upper bounds: deteministic generators
dLower bounds
LdEncoding TMs without "next" and "until”
Expspace-hardness of

d2Exptime-hardness of
dConclusions



LTL

dSyntax
P=ploAP|oVO| 00 |O0o |00 |9 Uo

JdSemantics




LTL

dSyntax
P=ploAP|oVO| 00 |O0o |00 |9 Uo

JdSemantics

- Hprpop P PP
»O———O———0

O »O




LTL

dSyntax
P=ploAP|oVO| 00 |O0o |00 |9 Uo

JdSemantics

-pUg p p p p ¢
O »O———»O

»O »O




Some Notation

d B(I') denotes:
€ Boolean combinations of formulas from I'

3 Lop,,..op, (I') denotes:

¢ formulas from I" using only
operators in the list op;,...,0p,

L For example:
denotes the LTL fragment

o=ploAelovelOe, pell



More LTL fragments

d Lo,o (D) ¢ (usually LTL(
Po:=plorp|ove| oo

Q) )
0@

3 B(Lo, (1)) : bool. combinations of

P:=p|l PArAp| 0@

 B(L ¢,0,A(11)) : bool. combinations of

P:=p|lorp| 0| 0@

3 B(L ¢,0,4,v(I1)) : bool. combinations of
PO=plorp|ove|op|o



LTL Games

d Winning condition is an LTL formula

1 Deciding LTL games is 2Exptime-complete
[Pnueli-Rosner'89]

® Construct Buchi generator (size n=20())
[Vardi-Wolper'94]

& Determinize it = Rabin automaton with 29" states
and n pairs [Safra '88]

€®Emptiness of Rabin tree automata with n states
and m pairs: O( (n'm) ¢m ) [Pnueli-Rosner'89]



Buchi Games

dWinning condition:

€ Some accepting state must repeat
infinitely often

Decision algorithm:
€ O(d log m) space

(d=longest simple distance,
m=number of states)



Talk Outline

v Overview
v Notation and general solution to LTL games
< Upper bounds: deteministic generators
dLower bounds
LdEncoding TMs without "next" and "until”
Expspace-hardness of

d2Exptime-hardness of
dConclusions



LTL Deterministic Generators

HLTL formulas may not have
Buchi deterministic generators

1 Standard approach:

& Construct nondeterministic generator
®Determinize it

ALTL formulas have deterministic generators

of size and longest distance <2Exp
(matching lower bounds [KV'98])



Generators for B(L o, (IT))

dThere exists DBA of Exp size and
linear longest distance

dConstruction is optimal:
®Ex. Op/A.... AOp,

States store fulfilled predicates

Transition (non self-loop) required when new
predicate is fulfilled



Partially-ordered Buchi Automata

dTransition graph is a DAG with self-
loops

dConstruction for intersection and union
keeps linear longest distance (d;+d,)

dComplement is trivial

QEfficient construction for O(pA o)
from POBD for <o



PODB Composition




PODB Composition

C'Q\




Generators for B(L ¢,0, ~(IT))

dThere exists DBA of Exp size and
Exp longest distance

dConstruction is optimal:
¢ Ex. O(p—>0"q)

States store sequence of last n input

Exp-long path where the last n input are
always different for each prefix



Automaton Construction

A Push inside next operators (O(n?))

dInteresting case:
C(pAOKg A o)

@ Use k copies of A" (det. gen. for < o)

€ At h release copy started at h-k
if p AOKq is not true at h-k, and
release all the others , otherwise
(no more copies are started in this last case)



Generators for B(L 4 A,+(I1)) and
B(LQ,O,A,V(H))

dThere exists DBA of 2Exp size and
Exp longest distance

dConstruction is optimal:
® Ex. OAL;(piVOQ)

States store sets of q's :
if P then checkif & g, for p, ¢ P
Sequence of different sets of p's

Push outside disjunctions



Generator for Lg,o,,v (1)

d Lo,oav(T) formulas may require det.
generator of size and longest distance

2Exp
‘EX D(O/\I 1(0 Ob)_>0/\| 1(C 0dl))

(States store for each set of b's
a list of sets of d's)



Generators Complexity

Nondet. Gen. Det. Generators

Size | L.Dist. | Size | L. Dist.
B(L o, (IT)) ®(Exp) | ®(Linear)
B(L ¢,0,(IT)) O(Exp) [ O(Exp)
B(L o, v(IT)) ®(2Exp)| O(Exp)
B(L ¢,0,A,v(I1)) ®(2Exp)| ©(Exp)
La,o,a v(IT) ®(2Exp)
LTL O(2Exp)| ©(2Exp)




Solving LTL Games

d 6= game graph, ¢ = LTL formula

@ Construct deterministic generator A of ¢ models

@ Solve the Buchi game (G x A, W)
(W is the acceptance condition of Aon G x A)

d Complexity Buchi games: O(d log m) space
(d=longest simple distance, m=number of states)



Upper bounds

Det. Generators

Games

Size | L. Dist.
B(L o, (IT)) ®(Exp) | ©(Linear)
B(L o,0,(I1)) o(Exp) | ©Exp)
B(L o, v(IT)) ®(2Exp)| ©(Exp)
B(L ¢,0,A,v(I1)) ®(2Exp)| ©O(Exp)
La,o,a v(I1) 2EXPTIME |®(2Exp)
LTL 2EXPTIME [6(2Exp)| ©(2Exp)




Talk Outline

v Overview
v Notation and general solution to LTL games
v Upper bounds: deteministic generators
< Lower bounds
LdEncoding TMs without "next" and "until”
Expspace-hardness of

d2Exptime-hardness of
dConclusions



B(L &, (IT)) : Pspace-hardness

QBF formula: Ax;. .. Ax,. Al c.

B(Lo.» (IT) formula: AL, Oc,

Al./ .1\4, e — T
N N

X ™ X,



B(L 0,0,~(IT)) : Exptime-hardness

JEncoding from ALT-Pspace TM

System wins on plays either

encoding an accepting computation or
not encoding a computation

HdEncoding:

a,a,...4;_4 q Gi...an a,a... q d_ a i...an

(a;.1) (a2,2)..(0;.1,i-1) (aii) ..(a, 1) (q.0.i) (q".a%.L)



Talk Outline

v Overview
v Notation and general solution to LTL games
v Upper bounds: deteministic generators
< Lower bounds
2Encoding TMs without "next" and "until”
Expspace-hardness of

d2Exptime-hardness of
dConclusions



Proving lower bounds

L Encode acceptance problem for Turing
Machines

dCrucial point:

dProblems:

€®Zoom to a cell content
€ Compare cells of consecutive configurations



With “until” and “next”

dZoom to cell i = n(b,...b)):

&b, .b,atoencode “cell b,..b; contains a"
@ OO0(b,AO(... AO(biAO a) ...)) to check it

dCompare across configurations:

€ Modulo-2 counter to distinguish among
consecutive configurations

& Constructs of type O U (1A oy)



New encoding of computations



New encoding of computations

< only checks for subsequences

Es. Ob AL AO(b A a) L)),
("b,..b; @" may not be consecutive)

d <ap>g <ap... <@, ..<@on>ony (proper sequence)



New encoding of computations

< only checks for subsequences

Es. Ob AL AO(b A a) L)),
("b,..b; @" may not be consecutive)

d <ap>g <apq... <@, ..<@on>ony (proper sequence)

/

pn-"pl g; 4.9,




New encoding of computations

< only checks for subsequences

Es. Ob AL AO(b A a) L)),
("b,..b; @" may not be consecutive)

D <Clo>o <01>1..

pn-"pl g; 4.9,

. <@ ..<Qon_1>»nq (proper sequence)

/

p,...p; + binary encoding for i
d,.-q; : binary encoding for 2n-1-



New encoding of computations

< only checks for subsequences

Es. Ob AL AO(b A a) L)),
("b,..b; @" may not be consecutive)

D <Clo>o <(11>1..

pn-"Pl g; 41...9y

. <@ ..<Qon_1>»nq (proper sequence)

/

p,...p; + binary encoding for i
d,.-q; : binary encoding for 2n-1-

(pyelp®pi}. qelg®.q5'h)



Property of proper sequences



Property of proper sequences

dFor<gp>; =ua;v (u-address, v-address):

® <ayg ... <a; >_(u is the
containing U as a subsequence

® V<a,,q.....50on >on 1 1S The
containing vV as a subsequence

dTherefore:

€ uavisasubseq of <ay>y <a>..<aon 200 iIff a=a,



Example: proper sequences

3-bits encoding of aababbab:

000a111 00140011 010b101 011a001
100b110 101b010 1104100 111000

dFor u=011, v=001":
u=011
000a111 0010011 010b101 011
v=001
01 100b110 101b010 1104100 111b0O0OO



Example: proper sequences

3-bits encoding of aababbab:

000a111 00140011 010b101 011a001
100b110 101b010 1104100 111000

dFor u=011, v=001":
u=I011

[
000a111 0010011 010b101 011

v=001
01 100b110 101b010 1104100 111b0O0OO



Example: proper sequences

3-bits encoding of aababbab:

000a111 00140011 010b101 011a001
100b110 101b010 1104100 111000

JdFor u=011, v=001:
u=IOI11

| |
000a111 0010011 010b101 011
v=001
01 100b110 101b010 1104100 111b0O0OO



Example: proper sequences

3-bits encoding of aababbab:

000a111 00140011 010b101 011a001
100b110 101b010 1104100 111000

dFor u=011, v=001":
w0l

[ | I
000al111 0014011 010b101 O11

v=001
01 100b110 101b010 1104100 111b0O0OO



Example: proper sequences

3-bits encoding of aababbab:

000a111 00140011 010b101 011a001
100b110 101b010 1104100 111000

dFor u=011, v=001":
w0l

[ | I
000al111 0014011 010b101 O11

V= OPI
01 100b110 101b010 1100100 111b000




Example: proper sequences

3-bits encoding of aababbab:

000a111 00140011 010b101 011a001
100b110 101b010 1104100 111000

dFor u=011, v=001":
w0l

[ | I
000al111 0014011 010b101 O11

v=001
001 100b110 101b010 1104100 111b0O0O0



Example: proper sequences

3-bits encoding of aababbab:

000a111 00140011 010b101 011a001
100b110 101b010 1104100 111000

dFor u=011, v=001":
w0l

[ | I
000al111 0014011 010b101 O11

v=001
001 100b110 1016010 110a100 1116000




Talk Outline

v Overview
v Notation and general solution to LTL games
v Upper bounds: deteministic generators

< Lower bounds
v'Encoding TMs without "next" and “until” U

SExpspace-hardness of
22Exptime-hardness of
dConclusions



Results

dTh 1.
Deciding games is 2Exptime-hard
(reduction from Alt. Expspace)
dTh 2.
Deciding games is Expspace-hard

(reduction from Alt. Exptime)



Schema of our reductions

dProtagonist (system)

®generates configurations
®picks transitions when TM in 3-states

JAdversary (environment)

®picks transitions when TM in V-states

®raises objections to check if the
sequence of configurations is and

the of TM



Expspace-hardness



Expspace-hardness

dProtagonist generates sequences of
positions <a>;
(i refers to configuration # and cell #)

Plays:



Expspace-hardness

dProtagonist generates sequences of
positions <a>;
(i refers to configuration # and cell #)

Plays:

UoQoVo



Expspace-hardness

dProtagonist generates sequences of
positions <a>;
(i refers to configuration # and cell #)

Plays:

UpQpVo ok



Expspace-hardness

dProtagonist generates sequences of
positions <a>;
(i refers to configuration # and cell #)
Plays:
/Ob\h

UpQpVo ok



Expspace-hardness

dProtagonist generates sequences of
positions <a>;
(i refers to configuration # and cell #)

Plays:

/

UoGoVo oK ... u,aVv, oK..... Ug@gVg .o.v... UQeVy

obj; /objl



Expspace-hardness

dProtagonist generates sequences of
positions <a>;
(i refers to configuration # and cell #)

Plays:

/

UoGoVo oK ... u,aVv, oK..... Ug@gVg .o.v... usasVs ok ok

obj; /objl



Expspace-hardness

dProtagonist generates sequences of
positions <a>;
(i refers to configuration # and cell #)
Plays:
obj; ob] ob |
/ / J1 / J1

UoGoVo oK ... u,aVv, oK..... Ug@gVg .o.v... usasve ok ok ......



Expspace-hardness

dProtagonist generates sequences of
positions <a>;
(i refers to configuration # and cell #)

Plays:
obj, ob ob]
v o~ J1 - o J1
UoGoVo oK ... u,aVv, oK..... Ug@gVg .o.v... usasve ok ok ......

“bb,



Objection 1



Objection 1

dGeneration of proper sequences:
& verify and

.. Pp---P1 GJ d1.--9, .- Objl Pn..-IM Sn...Sl



Objection 1

dGeneration of proper sequences:
& verify and

.. Pp---P1 GJ d1.--9, .- Objl Pn..-IM Sn...Sl




Objection 1

dGeneration of proper sequences:
& verify and

|~ R
pn-"pl GJ ql"'qn ...... Ole r'n...r'l Sn...Sl




Objection 1

dGeneration of proper sequences:
& verify and

|~ R
pn-"pl GJ ql"'qn ...... Ole r'n...r'l Sn...Sl

(PPAPAV(p! A Oril)




Objection 1

dGeneration of proper sequences:
& verify and

@A PV (gt A Or)0)



Formula for proper sequences

<>Obj1 —_—> (

[ (succ(r,s) A o) —02] A

(01— ¢,)
)



01
02

Formula for proper sequences

<>Obj1 —_—> (

[ (succ(r,s) A o) —02] A
) ((P'1 — > (P'z)

"p is same as r”
"p is same as r followed by p is same as s”



(P'l
(P'z

Formula for proper sequences

<>Obj1 —_—> (

[ (succ(r,s) A o) —02] A
) ((P'1 — > (P'z)

"p is same as r”
"p is same as r followed by q diff from r"



Formula for proper sequences

<>Obj1 —_—> (

[ (succ(r,s) A o) —02] A
) ((P'1 — > (P'z)

¢’y = "p is same as r"
¢, = "p is same as r followed by q diff from r”

»Need only formulas in B(L o,,v(IT))



Objection 2

dVerify that sequences are TM outcomes

Q Adversary picks i-1, i, i+1, and j, and checks if
cell i of C;,; can “follow" cells i-1, i, i+1 of C,

a"Small” formulas from do the job

(property of proper sequences is crucial to match cell
contents using only nested <)

L TM computes in exptime:

€ at the end of a computation we can zoom to each
position generating polynomially many bits



Results

dTh 1.
Deciding games is 2Exptime-hard
(reduction from Alt. Expspace)
dTh 2.
Deciding games is Expspace-hard

(reduction from Alt. Exptime)



2Exptime-hardness



2Exptime-hardness

JWe cannot encode configuration #

dWe can still use proper sequences to
zoom to cells within a configuration

Focus on 2 consecutive configurations

at a time

(modulo-3 counter incremented every time
a new configuration is entered)



Objections

dObjection 1 similar to previous case

dObjection 2 is allowed at the end of
every configuration

dTo check ¢ from the penultimate
configuration use obj, along with:

» Vje{O,l,Z} (O Ao AO(j+1) A =-O(§+2)))



Objections

dObjection 1 similar to previous case

dObjection 2 is allowed at the end of
every configuration

dTo check 9 from the penul’rimm‘e

e _emm=—

» VJE{OIZ} (O(J Ao AO(H)A "<>(J+2)))
\




Objections

dObjection 1 similar to previous case

1Objection 2 is allowed at the end of
every configuration

dTo check ¢ from the penultimate
configuration use obj, along with:

» Vje{O,l,Z} (O Ao AO(j+1) A =-O(§+2)))

(This is in )



Complexity

Det. Generators

Games

Size | L. Dist.
B(Lo,a (I1)) Pspace-complete | ®(Exp) | ©(Linear)
B(, O, 0 A( )) Exptime-complete ®(Exp) ®(Exp)
B(__ O A, v(_ )) Expspace-complete O(2Exp)| ©(Exp)
B(L o,0,4,v (IT))| Expspace-complete [@(2Exp)|[ ©(Exp)
La,o,a,v(IT) ®(2Exp)
LTL 2Exptime-complete | @(2Exp)| ©(2Exp)




Talk Outline

v Overview
v Notation and general solution to LTL games
v Upper bounds: deteministic generators

v’ Lower bounds
v'Encoding TMs without "next" and “until” U
v'Expspace-hardness of
v 2Exptime-hardness of

< Conclusions



Fair safety-reachability games

dGames with fairness:
®"(adv plays fair) = (prot plays fair A wins)
€ "(prot plays fair) A (adv plays fair = wins)

0 D ( )

fair safety-reachability games

A games are Pspace-complete



Fair safety-reachability games

dGames with fairness:
®"(adv plays fair) = (prot plays fair A wins)
®"(prot plays fair) A (adv plays fair = wins)

0 D ( )

fair safety-reachability games

A games are Pspace-complete

Decision algorithm uses Zielonka solution to Muller
games along with det. generators for



Fair safety-reachability games

dGames with fairness:
®"(adv plays fair) = (prot plays fair A wins)
®"(prot plays fair) A (adv plays fair = wins)

0 D ( )

fair safety-reachability games

A games are Pspace-complete

Hardness: games with "StreettV Rabin" winning
conditions are Pspace-hard (from QBF)



More in PSPACE

L Persistent strategy:

On a play, the player picks always the
same move visiting the same location

(weaker than memoryless)



More in PSPACE

L Persistent strategy:

On a play, the player picks always the
same move visiting the same location

(weaker than memoryless)




More in PSPACE

L Persistent strategy:

On a play, the player picks always the
same move visiting the same location

(weaker than memoryless)

persistent
not memoryless




Complexity of L, ., (I1)

1 Theorem: [Marcinkowski -Truderung CSL'02]
For specs in Lo,,v(IT),

protagonist has a winning strategy iff
can win against an adversary that uses
only persistent strategies

0 Lo,a,v(IT) games are in PSPACE



LTL fragments

Lo

Lo,,v(IT) B(L o, (ID))F
B(L o,{ B(L ¢, », v(IT))
\ /
B(L ©,0,A,v (H))
L O,0,A, V(H) \z‘“

P
L a



Complexity: Model-checking

NP-complete

B(L ¢,0, A.(H)) \

B(L o, A, v(IT))

B(Lo O,A V(H)) \

L|:| 0 A, V(H)

«
LTL e~
Pspace-complete -.,. 2@%\3“&




Complexity: Games

Lo,a(Il

Lo (I1)
/Lo,mv(H) B(L o, (M)

8L 00,2 (D) B(L o, v(IT))
\ /
B(L ©,0,A,v (H))
La,o.av (H) \eX¢

T e ™



Complexity: Games

e Pspace-complet

—~—
7 =
r o
L O, A () ~~-
’ N
N
N
/ AN
N

B(L o4, v(IT))

L O,0,A, V(H) \z“e
LTL / ,CO“\Q

™




Complexity: Games

e Pspace-comple
g Lo,Aa(Il)
/ \
B(Lo,a (H))F

g‘\\~-_\ B(L O A V(H))
=

LDIOI“I v (II ‘6

LTL ;
2@4\3" e



Complexity: Games

e Pspace-complet

Ay AT T~
7 \\\
) L O, A () -
P4 l =
~
Ve

/ /

/

~N

N
] (M
5 et

o

O/

N

2N

a

X

U



cXptl

Complexity: Games

e Pspace-complet

/// L O/ (““) \\\\\\\\\\\\\\ N
&" // / \\\
5 )~
5 ()"
E ﬂ—///////
o
QO /
!
E ___________________



Computational Complexity

Games Model-checking
Lo, (IT) Pspace-complete | NP-complete
B(L o, (ID)F | Pspace-complete NP-complete
Lo,a,v(IT) Pspace-complete NP-complete
B(L ¢,0,4(IT)) | Exptime-complete | Pspace-complete
B(L o,,v(IT)) |Expspace-complete| NP-complete
B(L o,0,A,v(IT))| Expspace-complete | Pspace-complete
La,o,a v(I1) |2Exptime-complete| NP-complete
LTL 2Exptime-complete | Pspace-complete




Box and Diamond

d $o ( P):

O 6




"0-9" fragments

full "0 - &" LTL fragment

boolean combinations of

o=ploroloveloe, pell
(no O in the scope of <> and vice-versa)



LTL Games




Decision problem: Is there a winnng
strategy of the protagonist?




Decision problem: Is there a winnng
strategy of the protagonist?




Decision problem: Is there a winnng
strategy of the protagonist?




Decision problem: Is there a winnng
strategy of the protagonist?

» Game graph: »
.0

© '
=)

» Specification: O(a—<¢b)




Decision problem: Is there a winnng
strategy of the protagonist?




Decision problem: Is there a winnng
strategy of the protagonist?




Decision problem: Is there a winnng
strategy of the protagonist?




Decision problem: Is there a winnng
strategy of the protagonist?




Decision problem: Is there a winnng
strategy of the protagonist?




Computational Complexity of LTL
Games



Computational Complexity of LTL

Games

Deciding LTL games is

2Exptime-complete [PR'89]
dWhat about games in LTL fragments?

dPrevious research [AL'01] &

HdFocus on fragments using on
1} " (D) and 1))

MT02]

Y
" (0)

(no “until” or "next" are allowed)



Our results



Our results

QFull "O - &" LTL fragment
¢:=plOAP[OVO OO
dGames are 2Exptime-hard as for

oo

_TL

[ Not allowing O in the scope of <> and vice-versa
games become Expspace-complete

®Expspace membership from [AL'01]

® Using only either O or <> games are in Pspace [MT'02]

dGames with safety and reachability specs
augmented with fairness conditions are

Denare ramnleots



LTL Games

d Winning condition is LTL formula

0 6= game graph, ¢ = LTL formula

€ Construct det. generator A of ¢ models

@ Solve the game (G x A, W)
(W is the acceptance condition of Aon G x A)

L 2Exptime-complete [PR'89]



Motivation

LdGame complexity is lower for Buchi,
Rabin, and Streett games

LModel-checking is also easier in some
LTL fragments

dWhat about games in LTL fragments?



Problem 2: consecutive configs



Problem 2: consecutive configs

AIf "until” (V) is allowed then:

€ Modulo-2 counter to distinguish among
consecutive configurations

@ Constructs of type (0A ¢p) U (1A o)

dWithout "next"” and “until”?

@ If # of configurations is O(2"), then number
configurations (same as for cells)

¥ Otherwise, we need more ...



Linear Temporal Logic (LTL)

dCorrectness requirements for
reactive systems

LGame-based interpretation:
€ controller synthesis
€ compositionality requirements
& verification of open systems
€ modular verification (module-checking)



Zoom to the last two configs

dConfigurations are counted with a modulo-3

counter

®use 3 new atomic propositions
€ the same propositions hold true on all cells of a

configuration
[ To check ¢ from the penultimate
configuration use:

O \/ 012 (O A oA O(j+1) A ~O(j+2)))



Zoom to the last two configs

dConfigurations are counted with a modulo-3

counter

®use 3 new atomic propositions
€ the same propositions hold true on all cells of a

configuration
[ To check ¢ from the penultimate
configuration use:

® \ico12) (OG A 0 A O(+1) A ~O(j+2)))

\\

-~



Zoom to the last two configs

dConfigurations are counted with a modulo-3

counter

®use 3 new atomic propositions
€ the same propositions hold true on all cells of a

configuration
[ To check ¢ from the penultimate
configuration use:

® \ico12) (O A A O(#1) A =O(j+2))

\\

——



Expspace-hardness

dObjection1:
®adversary selects 2 consecutive positions

O?ro'ra onist loses if these positions witness
hat the sequence is not proper

dObjection 2:

®adversary selects 4 positions to check that a
position can derive Trom the positions of the
previous configuration

®protagonist loses if these positions do not
conform to TM behaviour

3 formulas similar to Match(a,i)



Match(a,i)

3 Seq(b,.,...b;) = O(b, A O(.. AObB))...)
D Same(pJ'bJ) = (PJ'OA _'bj)V (pjll\ bJ)
Q Diff(q;b;) = (q°4 by)v(gj'a- b))

d Match(a,i) = Seq(Same(p,.b,) .....

Same(py,by), a, Diff(qy,by)...., Diff(q,.bn))
(b,..b; binary encoding of i)



LTL fragments

Lo, (1)
— T~
LO,A,V(H)
o\
/



Complexity: Model-checking

. NP-Complete L0 A ( )
B(L <, O, I\(H))
\ /
B(Lo O,A,v (H))
LTL / .mzlco“\v

Pspace-complete L Ry



Complexity: Games

B(L <, 0, I\(H))
\ /
B(L 0,0, Q
\eX¢
LTL / .“\c’c’o«\?



Complexity: Games

- Pspace-comple1

\\\\\\\\\
\\\\\\\
\\
s
/ LO A L A \\
i !
,
/
P4
~
s/ /
I. /
.... /
..
...
..
..




Complexity: Games

e Pspace-complet

/ \\\_
/ T
e e A =
) 4 )
’-.. 7 L / ( - -‘L) T
L] 7 -
.. - )
°. // \\
°
. AN
. /




Complexity: Games

e Pspace-complef
....... Lo, a(IT)
8 - / SN
v
Q.
£
O
Q
!
WL ORIV

cXptl



Complexity: Games

e Pspace-complef
....... Lo, a(IT)
&’_ - / SN
v
Q.
£
O
Q
!
WL ORIV

cXptl



