Games in LTL Fragments

Salvatore La Torre

Dipartimento di Informatica ed Applicazioni Università degli Studi di Salerno

Linear-time Temporal Logic (LTL)

- □ Correctness requirements for reactive systems

 "Every request is eventually granted" \Box $(r \rightarrow \Diamond g)$
- ☐ Most studied decision problem:
 - lacktriangle model checking (closed systems) Is M a model of ϕ ?

LTL specs in open systems

The system is a module interacting with the other modules (environment)

- ☐ Controller synthesis
- ☐ Realizabilty of specifications
- □ Verification of open systems
- ☐ Modular verification (module-checking)

LTL Games

Decision Problem

- □ Strategy: function from play ending at a system state s to a successor of s
- ☐ Strategy is winning:
 All plays constructed according to it satisfy specification

Is there a winning strategy of the protagonist?

Computational Complexity of LTL Games

- □ Deciding LTL games is 2Exptime-complete [Pnueli-Rosner POPL'89]
- □ Complexity of games in LTL fragments:
 - ◆ Deterministic generators and games for LTL fragments [Alur La Torre LICS'01]
 - ◆ Games for positive LTL fragments [Marcinkowski -Truderung CSL'02]
 - ◆ Games in fragments without "next" and "unitl" [Alur La Torre Madhusudan CONCUR'03]

Other References

```
Realizability
[Abadi-Lamport-Wolper ICALP'89]
```

```
Module checking [Kupferman-Vardi CAV'96 & '97]
```

```
Alternating Temporal Logic
[Alur-Henzinger-Kupferman JACM'02]
```

Talk Outline

- ✓ Overview
- ⇒ Notation and general solution to LTL games
- □ Upper bounds: deteministic generators
- □ Lower bounds
 - □ Encoding TMs without "next" and "until"
 - \square Expspace-hardness of $B(L_{\diamondsuit, \land, \lor}(\Pi))$
 - \square 2Exptime-hardness of $\lfloor \square, \diamondsuit, \wedge, \vee (\Pi) \rfloor$
- □ Conclusions

LTL

□ Syntax

□ Semantics

- Op: p

LTL

□ Syntax

□ Semantics

LTL

□ Syntax

□ Semantics

- p U q: p p p q

Some Notation

- \square B(Γ) denotes:
 - lacktriangle Boolean combinations of formulas from Γ
- \Box $L_{op_1,...,op_k}(\Gamma)$ denotes:
 - $lack formulas from <math>\Gamma$ using only operators in the list op₁,...,op_k
- ☐ For example:

 $L_{\diamond, \wedge, \vee}(\Pi)$ denotes the LTL fragment

$$\varphi := p | \varphi \wedge \varphi | \varphi \vee \varphi | \diamondsuit \varphi, \quad p \in \Pi$$

More LTL fragments

- \Box $L_{\Box,\diamondsuit,\wedge,\vee}(\Pi)$: (usually LTL(\Box,\diamondsuit)) $\varphi := p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \varphi \mid \varphi \varphi$
- B(L \diamondsuit , \wedge (Π)): bool. combinations of ϕ := $p \mid \phi \land \phi \mid \diamondsuit \phi$
- \square B(L \$\phi, \phi, \lambda(\Pi)): bool. combinations of φ:= p | φ λφ | \$\phi \phi | \phi \phi
- \square B(L\$,0,Λ,ν(Π)): bool. combinations of $\varphi:=p\mid \varphi \land \varphi\mid \varphi \lor \varphi\mid \Diamond \varphi\mid \Diamond \varphi$

LTL Games

- ☐ Winning condition is an LTL formula
- □ Deciding LTL games is 2Exptime-complete [Pnueli-Rosner'89]
 - ◆Construct Buchi generator (size $n=2^{O(\phi)}$)
 [Vardi-Wolper'94]
 - ♦ Determinize it = Rabin automaton with $2^{O(n)}$ states and n pairs [Safra '88]
 - ◆Emptiness of Rabin tree automata with n states and m pairs: $O((n \cdot m)^{c \cdot m})$ [Pnueli-Rosner'89]

Buchi Games

- □Winning condition:
 - ◆Some accepting state must repeat infinitely often
- □ Decision algorithm:
 - ◆ O(d log m) space (d=longest simple distance, m=number of states)

Talk Outline

- ✓ Overview
- ✓ Notation and general solution to LTL games
- Upper bounds: deteministic generators
- □ Lower bounds
 - □ Encoding TMs without "next" and "until"
 - \square Expspace-hardness of $B(L_{\diamondsuit, \land, \lor}(\Pi))$
 - \square 2Exptime-hardness of $\lfloor \square, \diamondsuit, \wedge, \vee (\Pi) \rfloor$
- □ Conclusions

LTL Deterministic Generators

- □LTL formulas may not have

 Buchi deterministic generators
- ☐ Standard approach:
 - ◆ Construct nondeterministic generator
 - ◆ Determinize it
- □LTL formulas have deterministic generators of size and longest distance ≤ 2Exp (matching lower bounds [KV'98])

Generators for $B(L_{\diamondsuit, \wedge}(\Pi))$

- □ There exists DBA of Exp size and linear longest distance
- □Construction is optimal:
 - ♦ Ex. $\Diamond p_1 \land \dots \land \Diamond p_n$ States store fulfilled predicates Transition (non self-loop) required when new predicate is fulfilled

Partially-ordered Buchi Automata

- □Transition graph is a DAG with selfloops
- \Box Construction for intersection and union keeps linear longest distance (d_1+d_2)
- □ Complement is trivial

PODB Composition

PODB Composition

Generators for $B(L \diamond, \circ, \land(\Pi))$

- □ There exists DBA of Exp size and Exp longest distance
- □Construction is optimal:
 - \bullet Ex. \Box (p \rightarrow 0ⁿq)

States store sequence of last n input Exp-long path where the last n input are always different for each prefix

Automaton Construction

- \square Push inside next operators (O(n²))
- □Interesting case:
 - $\Diamond (p \land O^k q \land \Diamond \varphi)$
 - •Use k copies of A' (det. gen. for $\Diamond \varphi$)
 - ♦ At h release copy started at h-k if $p \land O \nmid q$ is not true at h-k, and release all the others, otherwise (no more copies are started in this last case)

Generators for $B(L_{\diamondsuit, \land, \lor}(\Pi))$ and $B(L_{\diamondsuit, \diamond, \lor, \lor}(\Pi))$

- □ There exists DBA of 2Exp size and Exp longest distance
- □Construction is optimal:
 - ◆ Ex. $\diamondsuit \bigwedge_{i=1}^{n} (p_i \lor \diamondsuit q_i)$ States store sets of q's: if P then check if $\diamondsuit q_i$ for $p_i \notin P$ Sequence of different sets of p's
- □Push outside disjunctions

Generator for $L_{\square, \diamondsuit, \wedge, \vee}(\Pi)$

- \Box $L_{\Box,\diamondsuit,\land,\lor}(\Pi)$ formulas may require det. generator of size and longest distance 2Exp
 - \bullet Ex. $\square (\diamondsuit \land_{i=1}^{n} (a_i \lor \diamondsuit b_i) \longrightarrow \diamondsuit \land_{i=1}^{n} (c_i \lor \diamondsuit d_i))$

(States store for each set of b's a list of sets of d's)

Generators Complexity

	Nondet. Gen.		Det. Generators	
	Size	L. Dist.	Size	L. Dist.
B(L♦,^(П))	Θ(Exp)	⊕(Linear)	Θ(Exp)	⊕(Linear)
B(L ⋄, o, ∧(Π))	⊕(Exp)	Θ(Exp)	Θ(Exp)	Θ(Exp)
B(L ⋄, ∧, ∨(Π))	Θ(Exp)	⊕(Linear)	Θ(2Exp)	Θ(Exp)
B(L ⋄, o, ∧, ∨ (Π))	⊕(Exp)	Θ(Exp)	⊕(2Exp)	Θ(Exp)
L□,♦,∧,v(∏)	Θ(Exp)	⊕(Linear)	Θ(2Exp)	Θ(2Exp)
LTL	Θ(Exp)	⊕(Exp)	Θ(2Exp)	Θ(2Exp)

Solving LTL Games

- \Box G= game graph, φ = LTL formula
 - igspace Construct deterministic generator A of ϕ models
 - ♦ Solve the Buchi game $(G \times A, W)$ (W is the acceptance condition of A on $G \times A$)

☐ Complexity Buchi games: O(d log m) space (d=longest simple distance, m=number of states)

Upper bounds

	Games	Det. Generators	
	Ounes	Size	L. Dist.
B(L♦, ^ (П))	PSPACE	Θ(Exp)	⊕(Linear)
B(L ⋄, o, ∧(Π))	EXPTIME	Θ(Exp)	Θ(Exp)
B(L ⋄, ^, v(∏))	EXPSPACE	Θ(2Exp)	⊕(Exp)
B(L ⋄, o, ∧, ∨ (Π))	EXPSPACE	⊕(2Exp)	Θ(Exp)
L□,♦,∧,∨(Π)	2EXPTIME	Θ(2Exp)	Θ(2Exp)
LTL	2EXPTIME	Θ(2Exp)	Θ(2Exp)

Talk Outline

- ✓ Overview
- ✓ Notation and general solution to LTL games
- ✓ Upper bounds: deteministic generators
- ⇒ Lower bounds
 - □ Encoding TMs without "next" and "until"
 - \square Expspace-hardness of $B(L \diamondsuit \land \lor (\Pi))$
 - \square 2Exptime-hardness of $\lfloor \square, \diamondsuit, \wedge, \vee (\Pi) \rfloor$
- □ Conclusions

$B(L_{\diamondsuit, \land}(\Pi))$: Pspace-hardness

QBF formula: A_1x_1 A_nx_n . $\Lambda_{i=1}^n c_i$

 $B(L_{\diamondsuit, \land}(\Pi))$ formula: $\bigwedge_{i=1}^{n} \diamondsuit c_i$

$B(L\diamond,\circ,\wedge(\Pi))$: Exptime-hardness

- □ Encoding from ALT-Pspace TM
- System wins on plays either encoding an accepting computation or not encoding a computation

□Encoding:

$$a_1 a_2 ... a_{i-1} q a_i ... a_n \longrightarrow a_1 a_2 ... q' a_{i-1} a'_i ... a_n$$

$$(a_1,1)$$
 $(a_2,2)...(a_{i-1},i-1)$ (a_i,i) ... (a_n,n) (q,a_i,i) (q',a'_i,L)

Talk Outline

- ✓ Overview
- ✓ Notation and general solution to LTL games
- ✓ Upper bounds: deteministic generators
- ⇒ Lower bounds
 - Description of the Encoding TMs without "next" and "until"
 - \square Expspace-hardness of $B(L \diamondsuit \land \lor (\Pi))$
 - \square 2Exptime-hardness of $\lfloor \square, \diamondsuit, \wedge, \vee (\Pi) \rfloor$
- □ Conclusions

Proving lower bounds

- □ Encode acceptance problem for Turing Machines
- □ Crucial point:

- □ Problems:
 - ◆Zoom to a cell content
 - ◆ Compare cells of consecutive configurations

With "until" and "next"

- \square Zoom to cell i = n(b_n...b₁):
 - ◆b_n...b₁ a to encode "cell b_n...b₁ contains a"
 - $\diamond \Diamond O(b_n \land O(... \land O(b_1 \land O a) ...))$ to check it
- □ Compare across configurations:
 - ◆Modulo-2 counter to distinguish among consecutive configurations
 - Constructs of type $OU(1 \land \phi_1)$

 Λ Λ

 \Box only checks for subsequences Es. $\Diamond(b_n \land \Diamond(... \land \Diamond(b_1 \land \Diamond a) ...)),$ ("b_n...b₁ a" may not be consecutive)

 $\Box \langle a_0 \rangle_0 \langle a_1 \rangle_1 ... \langle a_i \rangle_i ... \langle a_{2n-1} \rangle_{2n-1}$ (proper sequence)

□ \diamond only checks for subsequences Es. \diamond (b_n \wedge \diamond (... \wedge \diamond (b₁ \wedge \diamond a) ...)), ("b_n...b₁ a" may not be consecutive) □ $\langle a_0 \rangle_0 \langle a_1 \rangle_1 ... \langle a_i \rangle_i ... \langle a_{2^{n-1}} \rangle_{2^{n-1}}$ (proper sequence) $p_n ... p_1 a_i q_1 ... q_n$

□ \diamondsuit only checks for subsequences Es. $\diamondsuit(b_n \land \diamondsuit(... \land \diamondsuit(b_1 \land \diamondsuit a) ...))$, ("b_n...b₁ a" may not be consecutive)

 $\Box \langle a_0 \rangle_0 \langle a_1 \rangle_1 ... \langle a_i \rangle_i ... \langle a_{2n-1} \rangle_{2n-1}$ (proper sequence)

 $p_n...p_1 a_i q_1...q_n$

 $p_n...p_1$: binary encoding for i

 $q_{n}...q_{1}$: binary encoding for $2^{n}-1$ -

□ ○ only checks for subsequences

Es. $\diamondsuit(b_n \land \diamondsuit(... \land \diamondsuit(b_1 \land \diamondsuit a) ...))$, (" $b_n...b_1$ a" may not be consecutive)

 $\Box \langle a_0 \rangle_0 \langle a_1 \rangle_1 ... \langle a_i \rangle_i ... \langle a_{2n-1} \rangle_{2n-1}$ (proper sequence)

 $p_{n}...p_1 a_i q_1...q_n$ $p_{n}...p_1 : binary encoding for i$

 $q_{n}...q_{1}$: binary encoding for $2^{n}-1$ -

$$(p_j \in \{p_j^0, p_j^1\}, q_j \in \{q_j^0, q_j^1\})$$

Property of proper sequences

Property of proper sequences

- \Box For $\langle a_i \rangle_i = u a_i v$ (u-address, v-address):
 - $\diamond \langle a_0 \rangle_0 \dots \langle a_{i-1} \rangle_{i-1} u$ is the shortest prefix containing u as a subsequence
 - \bullet v $\langle a_{i+1} \rangle_{i+1}$ $\langle a_{2n-1} \rangle_{2n-1}$ is the shortest suffix containing v as a subsequence
- ☐Therefore:
 - \bullet u a v is a subseq of $\langle a_0 \rangle_0 \langle a_1 \rangle_1 ... \langle a_{2n-1} \rangle_{2n-1}$ iff a=a_i

```
□ 3-bits encoding of aababbab:
  000a111 001a011 010b101 011a001
                  100b110 101b010 110a100 111b000
\Box For u=011, v=001:
               u = 011
  000a111 001a011 010b101 011
```

01 100b110 101b010 110a100 111b000

v = 001

```
□ 3-bits encoding of aababbab:
  000a111 001a011 010b101 011a001
                  100b110 101b010 110a100 111b000
\Box For u=011, v=001:
               u = 011
  000a111 001a011 010b101 011
               v = 001
   01 100b110 101b010 110a100 111b000
```

```
□ 3-bits encoding of aababbab:
  000a111 001a011 010b101 011a001
                  100b110 101b010 110a100 111b000
\Box For u=011, v=001:
               u = 011
   000a111 001a011 010b101 011
               v = 001
   01 100b110 101b010 110a100 111b000
```

```
□ 3-bits encoding of aababbab:

000a111 001a011 010b101 011a001

100b110 101b010 110a100 111b000

□ For u=011, v=001:
```

```
u=011
000a111 001a011 010b101 011
v=001
```

01 100b110 101b010 110a100 111b000

```
□3-bits encoding of aababbab:
000a111 001a011 010b101 011a001
100b110 101b010 110a100 111b000
```

```
\Box For u=011, v=001:
```

```
u=011
000a111 001a011 010b101 011
```

```
v=001
01 100b110 101b010 110a100 111b000
```

```
□ 3-bits encoding of aababbab:

000a111 001a011 010b101 011a001

100b110 101b010 110a100 111b000

□ For u=011, v=001:
```

```
u=011
000a111 001a011 010b101 011
v=001
```

001 100b110 101b010 110a100 111b000

```
□ 3-bits encoding of aababbab:
  000a111 001a011 010b101 011a001
                  100b110 101b010 110a100 111b000
\Box For u=011, v=001:
               u=011
  000a111 001a011 010b101 011
               v = 001
  001 100b110 101b010 110a100 111b000
```

Talk Outline

- ✓ Overview
- ✓ Notation and general solution to LTL games
- ✓ Upper bounds: deteministic generators
- ⇒ Lower bounds
 - ✓ Encoding TMs without "next" and "until" U
 - \Rightarrow Expspace-hardness of $B(L \diamondsuit \land \lor (\Pi))$
 - \Rightarrow 2Exptime-hardness of $\lfloor \square, \diamondsuit, \wedge, \vee (\Pi) \rfloor$
- □ Conclusions

Results

```
    □ Th 1.
    Deciding L<sub>□,⋄,∧,∨</sub>(□) games is 2Exptime-hard (reduction from Alt. Expspace)
    □ Th 2.
```

(reduction from Alt. Exptime)

Deciding $B(L_{\diamond, \wedge, \vee}(\Pi))$ games is Expspace-hard

Schema of our reductions

- □Protagonist (system)
 - ◆generates configurations
 - ◆picks transitions when TM in ∃-states
- □ Adversary (environment)
 - ◆picks transitions when TM in ∀-states
 - ◆raises objections to check if the sequence of configurations is proper and conforms the behaviour of TM

```
    □Protagonist generates sequences of positions <a>;
    (i refers to configuration # and cell #)
    □Plays:
```

```
    □Protagonist generates sequences of positions <a>;
    (i refers to configuration # and cell #)
    □Plays:
```

 $u_0a_0v_0$

```
    □Protagonist generates sequences of positions <a>;
    (i refers to configuration # and cell #)
    □Plays:
```

 $u_0a_0v_0$ ok

```
Protagonist generates sequences of
  positions <a>i
     (i refers to configuration # and cell #)
 □Plays:
Joaovo ok
```

```
□ Protagonist generates sequences of
   positions <a>i
      (i refers to configuration # and cell #)
 □Plays:
u_0a_0v_0 ok ..... u_ya_yv_y ok..... u'_0a'_0v'_0 ......u_fa_fv_f
```

```
Protagonist generates sequences of positions <a>;
(i refers to configuration # and cell #)
```

□Plays:

```
u_0a_0v_0 ok ..... u_ya_yv_y ok..... u'_0a'_0v'_0 ......u_fa_fv_f ok ok .....
```

```
Protagonist generates sequences of
  positions <a>;
    (i refers to configuration # and cell #)
```

□Plays:

```
u_0a_0v_0 ok ..... u_ya_yv_y ok..... u'_0a'_0v'_0 ......u_fa_fv_f ok ok .....
```

Expspace-hardness

```
Protagonist generates sequences of
  positions <a>;
    (i refers to configuration # and cell #)
```

□Plays:

- □Generation of proper sequences:
 - \bullet verify $n(u_{j+1})=n(u_j)+1$ and $n(v_j)=2^n-1-n(u_j)$

...
$$p_n...p_1 a_j q_1...q_nobj_1 r_n...r_1 s_n...s_1$$

- □Generation of proper sequences:
 - \bullet verify $n(u_{j+1})=n(u_j)+1$ and $n(v_j)=2^n-1-n(u_j)$

- □Generation of proper sequences:
 - \bullet verify $n(u_{j+1})=n(u_j)+1$ and $n(v_j)=2^n-1-n(u_j)$

- □Generation of proper sequences:
 - \bullet verify $n(u_{j+1})=n(u_j)+1$ and $n(v_j)=2^n-1-n(u_j)$

$$\begin{array}{c|c} & same \\ \hline & same \\ \hline & ... & p_n...p_1 \ a_j \ q_1...q_n \obj_1 \ r_n...r_1 \ s_n...s_1 \\ \hline & (p_j^0 \Lambda \diamondsuit r_j^0) \ V(p_j^1 \ \Lambda \ \diamondsuit r_j^1) \end{array}$$

- □Generation of proper sequences:
 - \bullet verify $n(u_{j+1})=n(u_j)+1$ and $n(v_j)=2^n-1-n(u_j)$

$$\begin{array}{c|c} & \text{diff} \\ \hline & \text{diff} \\ \hline & \text{diff} \\ \hline \\ ... & p_n...p_1 \ a_j \ q_1...q_n \obj_1 \ r_n...r_1 \ s_n...s_1 \end{array}$$

$$(q_j^0 \Lambda \diamondsuit r_j^1) V (q_j^1 \Lambda \diamondsuit r_j^0)$$

 $\Diamond obj_1 \longrightarrow ($

 φ_2 = "p is same as r followed by p is same as s"

 ϕ'_2 = "p is same as r followed by q diff from r"

```
\phi'_1 = "p is same as r" \phi'_2 = "p is same as r followed by q diff from r"
```

 \triangleright Need only formulas in B(L \diamond , \wedge , \vee (Π))

- □ Verify that sequences are TM outcomes
- \square Adversary picks i-1, i, i+1, and j, and checks if cell i of C_{j+1} can "follow" cells i-1, i, i+1 of C_j
- □ "Small" formulas from $B(L \diamondsuit, \land, \lor (\Pi))$ do the job (property of proper sequences is crucial to match cell contents using only nested \diamondsuit)
- ☐ TM computes in exptime:
 - •at the end of a computation we can zoom to each position generating polynomially many bits

Results

```
    □ Th 1.
    Deciding L<sub>□,⋄,∧,∨</sub>(□) games is 2Exptime-hard (reduction from Alt. Expspace)
    □ Th 2.
```

(reduction from Alt. Exptime)

Deciding $B(L_{\diamond, \wedge, \vee}(\Pi))$ games is Expspace-hard

2Exptime-hardness

2Exptime-hardness

- □We cannot encode configuration #
- □We can still use proper sequences to zoom to cells within a configuration
- □ Focus on 2 consecutive configurations at a time

(modulo-3 counter incremented every time a new configuration is entered)

- Objection 1 similar to previous case
- □Objection 2 is allowed at the end of every configuration
- \Box To check φ from the penultimate configuration use obj₂ along with:
 - $\triangleright \bigvee_{j \in \{0,1,2\}} (\diamondsuit(j \land \phi \land \diamondsuit(j+1) \land \neg \diamondsuit(j+2)))$

- Objection 1 similar to previous case
- □Objection 2 is allowed at the end of every configuration
- To check φ from the penultimate configuration use obj₂ along with:
 - $\triangleright \bigvee_{j \in \{0,1,2\}} (\diamondsuit(j \land \phi \land \diamondsuit(j+1) \land \neg \diamondsuit(j+2)))$

- Objection 1 similar to previous case
- Objection 2 is allowed at the end of every configuration
- \Box To check φ from the penultimate configuration use obj₂ along with:
 - $ightharpoonup \bigvee_{j \in \{0,1,2\}} (\diamondsuit(j \land \phi \land \diamondsuit(j+1) \land \neg \diamondsuit(j+2)))$

(This is in $L_{\square, \diamondsuit, \wedge, \vee}(\Pi)$)

Complexity

	Games	Det. Generators	
		Size	L. Dist.
B(L♦, ^ (П))	Pspace-complete	Θ(Exp)	⊕(Linear)
B(L ⋄, o, ∧(Π))	Exptime-complete	⊕(Exp)	⊕(Exp)
B(L ⋄, ∧, ∨(Π))	Expspace-complete	Θ(2Exp)	⊕(Exp)
B(L ⋄, o, ∧, ∨ (Π))	Expspace-complete	Θ(2Exp)	Θ(Exp)
L□,♦,∧,∨(Π)	2Exptime-complete	Θ(2Exp)	Θ(2Exp)
LTL	2Exptime-complete	Θ(2Exp)	Θ(2Exp)

Talk Outline

- ✓ Overview
- ✓ Notation and general solution to LTL games
- ✓ Upper bounds: deteministic generators
- ✓ Lower bounds
 - ✓ Encoding TMs without "next" and "until" U
 - \checkmark Expspace-hardness of B(L \diamondsuit , \land , \checkmark (Π))
 - \checkmark 2Exptime-hardness of $L_{\square,\diamondsuit,\wedge,\vee}(\Pi)$
- **⊃** Conclusions

Fair safety-reachability games

- ☐ Games with fairness:
 - \bullet "(adv plays fair) \rightarrow (prot plays fair \land wins)
 - ◆"(prot plays fair) ∧ (adv plays fair → wins)
- $\Box B(L_{\Box \diamondsuit}(\Pi) \cup L_{\diamondsuit, \land}(\Pi)) : (B(L_{\diamondsuit, \land}(\Pi))^{F})$ fair safety-reachability games
- \square B(L \diamond , \wedge (Π))^F games are Pspace-complete

Fair safety-reachability games

- □ Games with fairness:
 - \bullet "(adv plays fair) \rightarrow (prot plays fair \land wins)
 - ◆"(prot plays fair) \(\lambda \) (adv plays fair → wins)
- $\Box B(L_{\Box \diamondsuit}(\Pi) \cup L_{\diamondsuit, \land}(\Pi)) : (B(L_{\diamondsuit, \land}(\Pi))^{F})$ fair safety-reachability games
- \square B(L \diamond , \wedge (Π))^F games are Pspace-complete

Decision algorithm uses Zielonka solution to Muller games along with det. generators for $L \diamondsuit$, \wedge (Π)

Fair safety-reachability games

- □ Games with fairness:
 - \bullet "(adv plays fair) \rightarrow (prot plays fair \land wins)
 - ◆"(prot plays fair) \(\) (adv plays fair → wins)
- $\Box B(L_{\Box \diamondsuit}(\Pi) \cup L_{\diamondsuit, \land}(\Pi)) : \qquad (B(L_{\diamondsuit, \land}(\Pi))^{F})$ fair safety-reachability games
- \square B(L \diamondsuit , \wedge (Π))^F games are Pspace-complete

Hardness: games with "Streett V Rabin" winning conditions are Pspace-hard (from QBF)

More in PSPACE

☐ Persistent strategy:

On a play, the player picks always the same move visiting the same location (weaker than memoryless)

More in PSPACE

☐ Persistent strategy:

On a play, the player picks always the same move visiting the same location (weaker than memoryless)

More in PSPACE

☐ Persistent strategy:

On a play, the player picks always the same move visiting the same location (weaker than memoryless)

Complexity of $L_{\diamondsuit, \wedge, \vee}(\Pi)$

- Theorem: [Marcinkowski-Truderung CSL'02] For specs in $L \diamondsuit, \land, \lor (\Pi)$, protagonist has a winning strategy iff can win against an adversary that uses only persistent strategies
- \square L_{\$\,\^\\\(\nu\)} games are in PSPACE

LTL fragments

Complexity: Model-checking

Computational Complexity

	Games	Model-checking
L♦,∧(Π)	Pspace-complete	NP-complete
$B(L_{\diamondsuit, \wedge}(\Pi))^F$	Pspace-complete	NP-complete
L⋄,^,∨(∏)	Pspace-complete	NP-complete
B(L ⋄, o, ∧(Π))	Exptime-complete	Pspace-complete
B(L ⋄, ^, √(Π))	Expspace-complete	NP-complete
B(L ⋄, o, ∧, ∨ (Π))	Expspace-complete	Pspace-complete
L□,♦,∧,∨(Π)	2Exptime-complete	NP-complete
LTL	2Exptime-complete	Pspace-complete

Box and Diamond

 $\Box \diamondsuit \varphi$ (eventually φ): $\Box \phi$ (always ϕ):

"□-�" fragments

 \square $L_{\square,\diamondsuit,\wedge,\vee}(\Pi)$: full " \square - \diamondsuit " LTL fragment

LTL Games

Computational Complexity of LTL Games

Computational Complexity of LTL Games

- □ Deciding LTL games is 2Exptime-complete [PR'89]
- □What about games in LTL fragments?
- □Previous research [AL'01] & [MT'02]
- □ Focus on fragments using only "always" (□) and "eventually" (♦) (no "until" or "next" are allowed)

Our results

Our results

□ Full "□ - ◇" LTL fragment

$$\phi := \mathsf{p} \mid \phi \mathsf{A} \phi \mid \phi \mathsf{V} \phi \mid \Diamond \phi \mid \Box \phi$$

- ☐ Games are 2Exptime-hard as for LTL
- ■Not allowing □ in the scope of ♦ and vice-versa games become Expspace-complete
 - ◆Expspace membership from [AL'01]
 - lacktriangle Using only either \Box or \diamondsuit games are in Pspace [MT'02]
- Games with safety and reachability specs augmented with fairness conditions are

LTL Games

- ☐ Winning condition is LTL formula
- \Box G= game graph, φ = LTL formula
 - igspace Construct det. generator A of ϕ models
 - ♦ Solve the game $(G \times A, W)$ (W is the acceptance condition of A on $G \times A$)
- □ 2Exptime-complete [PR'89]

Motivation

- □Game complexity is lower for Buchi, Rabin, and Streett games
- ☐ Model-checking is also easier in some LTL fragments
- □What about games in LTL fragments?

Problem 2: consecutive configs

٨

Problem 2: consecutive configs

- \square If "until" (U) is allowed then:
 - ◆Modulo-2 counter to distinguish among consecutive configurations
 - Constructs of type $(0 \land \varphi_0) \cup (1 \land \varphi_1)$
- □ Without "next" and "until"?
 - $igspace If # of configurations is <math>O(2^n)$, then number configurations (same as for cells)
 - ◆Otherwise, we need more ...

Linear Temporal Logic (LTL)

- □ Correctness requirements for reactive systems
- □Game-based interpretation:
 - controller synthesis
 - compositionality requirements
 - verification of open systems
 - modular verification (module-checking)

Zoom to the last two configs

- □ Configurations are counted with a modulo-3 counter
 - •use 3 new atomic propositions
 - the same propositions hold true on all cells of a configuration
- \Box To check φ from the penultimate configuration use:

Zoom to the last two configs

- □ Configurations are counted with a modulo-3 counter
 - •use 3 new atomic propositions
 - the same propositions hold true on all cells of a configuration
- \Box To check φ from the penultimate configuration use:

Zoom to the last two configs

- □ Configurations are counted with a modulo-3 counter
 - •use 3 new atomic propositions
 - the same propositions hold true on all cells of a configuration
- \Box To check φ from the penultimate configuration use:

Expspace-hardness

□ Objection 1:

- •adversary selects 2 consecutive positions
- protagonist loses if these positions witness that the sequence is not proper

□Objection 2:

- •adversary selects 4 positions to check that a position can derive from the positions of the previous configuration
- protagonist loses if these positions do not conform to TM behaviour
- ☐ formulas similar to Match(a,i)

Match(a,i)

- $\Box Seq(b_m,...,b_1) = \Diamond(b_m \land \Diamond(... \land \Diamond b_1)...)$
- $\Box Diff(q_j,b_j) = (q_j^0 \wedge b_j) \vee (q_j^1 \wedge \neg b_j)$
- ☐ Match(a,i) = Seq(Same(p_n,b_n),..., Same(p_1,b_1), a, Diff(q_1,b_1),..., Diff(q_n,b_n)) (b_n ... b_1 binary encoding of i)

LTL fragments

Complexity: Model-checking

