
Computational Complexity for State-Feedback Controllers with Partial
Observation

Gabriel Kalyon, Tristan Le Gall, Hervé Marchand and Thierry Massart

Abstract— We study the computational complexity of several
decision and optimization control problems arising in partially
observed discrete event systems. These problems are related
to the state avoidance problem where one must compute a
controller which prevents the system from accessing a set of
bad states and which is maximal for a defined criterion, based
on inclusion of the set of states remaining reachable after the
control. We focus our study on memoryless controllers.

Keywords: Discrete Event Systems, Controller Synthesis,
Partial Observation, Computational Complexity.

I. INTRODUCTION

Controller synthesis of discrete event systems (DES) has
been widely studied these last twenty years [1]. In the
particular case of the state avoidance control problem, the
controller C is valid for some DES T and a set of states
Bad, if C prevents T from reaching any state of Bad. Of
course validity is not sufficient to have a valuable solution
and permissiveness criteria [4], [9] allow to discuss the
quality of the solutions and to select the optimal one for
the selected criterion. Unfortunately in general, the controller
has only a partial (or imperfect) view of the system, since
in practice the observing material of the system to control
has a limited precision and some parts of the system can just
not be observed. This partial observation makes the problem
more difficult since in general, as we will see, it is no longer
possible to find the optimal controller and the algorithms are
hard.

In this paper, we study the synthesis of valid and “best
possible” controllers for partially observed discrete event
systems. We follow the approach taken by [6], where the
partial observation is modeled by a mask, corresponding to a
mapping from the state space to an observation space, and we
consider state-feedback controllers, whose control is based
on the current state of the system [12], rather than on the
string of events executed by it (event-feedback controllers).
Compared to the event approach, the state-feedback control
approach does not receive a lot of attention in the literature;
but, in particular cases, it has been seen to require a re-
duced computational complexity for partially observed and
non-deterministic systems [3]. We therefore formalize our

Gabriel Kalyon, Tristan Le Gall and Thierry Massart are with the
Université Libre de Bruxelles (U.L.B.), First.Last@ulb.ac.be

Hervé Marchand is with the IRISA/INRIA, Campus de Beaulieu, Rennes,
France, First.Last@irisa.fr

G. Kalyon is supported by the Belgian National Science Foundation
(FNRS) under a FRIA grant.

This work has been done in the MoVES project (P6/39) which is part
of the IAP-Phase VI Interuniversity Attraction Poles Programme funded by
the Belgian State, Belgian Science Policy.

state-based approach and study the complexity of various
interesting problems in this setting. More precisely, given
two controllers C1 and C2, we give a definition to say that
C1 is “better” than C2. The used model and the definition of
permissiveness are formalized in section II. In section III, we
then define the precise control problems that we study. We
motivate and formalize several synthesis or decision ques-
tions one may want to solve or answer, such as maximality
of a valid controller. We then study, in sections IV and V, the
complexity of these problems and show that they are hard
or that no polynomial algorithm can solve them unless P =
NP (where P stands for deterministic polynomial time and
NP stands for nondeterministic polynomial time).

Related works: The computational complexity of event-
feedback controller synthesis received a lot of attention in the
literature. Under full observation, it is proven in [2] that the
problem of deciding if there exists a controller such that the
accepted language of the corresponding controlled system is
included in a desired behavior is NP-hard when the system to
control is composed of several concurrent systems or when
the desired language is the intersection of several languages.
Under partial observation on the actions, Tsitsiklis proves
in [10] that the problem of deciding if there exists a controller
such that the behavior of the corresponding controlled system
lies between two languages (of actions) cannot be solved in
polynomial time (unless P = NP). When both languages are
equal, this problem can be solved in polynomial time for
the centralized [10] and decentralized [8] cases. Note that
we cannot use a transformation from these problems to the
problems we are interested in, because the transformation
would be exponential.

The state-feedback controller synthesis receives only re-
cently more attention. Given a set of allowable states Q, a
controller with full observation, whose resulting controlled
system is the supremal subset of Q, can be computed in
polynomial time [11]. In [9], properties of M-controllability
give a necessary and sufficient condition to synthesize a
controller with partial observation, whose resulting con-
trolled system achieves exactly a set of allowable states Q.
When this behavior cannot be achieved, the authors propose
an algorithm to synthesize a controller, whose resulting
controlled system is a subset of Q. Both algorithms have a
polynomial complexity. Unfortunately, the second one does
not always give a maximal solution w.r.t. set inclusion. Then,
a natural question is to know if there exists an efficient
algorithm to synthesize a maximal solution. In [3], the
authors generalize the results of [9] using a mask, which
is a covering (overlapping sets of indistinguishable states) of

the state space instead of a partition, and a non-deterministic
system to control. The computational complexity of their
algorithm is also polynomial.

II. FRAMEWORK

We define in this section, the underlying model of discrete-
event systems and the notion of permissiveness.

A. Discrete Event Systems

Definition 1 (Discrete Event Systems): A discrete event
system (DES) is a tuple T = 〈DV ,D0,Σ, δ,Dm〉 where:
(i) DV is the set of states, (ii) D0 ⊆ DV is the set of initial
states, (iii) Σ is the set of labels, (iv) δ : DV × Σ 7→ 2DV

is the transition relation, and (v) Dm ⊆ DV is the set of
marked (accepting) states.

Notations: A predicate over the domain DV is defined
as a subset P ⊆ DV (the set of states for which the
predicate holds). The complement of a set H ⊆ DV is
denoted by H . B = {tt,ff} denotes the set of Boolean values.
δ(ν, σ)! denotes that δ is defined on 〈ν, σ〉 and is non-empty.
reach(T) ⊆ DV denotes the set of states that are reachable
from the initial states of T and reach(T , ν) ⊆ DV (for any
ν ∈ DV) the set of states that are reachable from ν in T .

B. Means of Observation.

We consider systems with partial observation, where there
is an uncertainty about the real state the system is. This par-
tial observation is formally defined by a set of observations :

Definition 2 (Set of observations): A set of observations
of the state space DV is a pair 〈DObs,M〉, where DObs is
the observation space and the mask M : DV 7→ DObs gives
for each state ν ∈ DV the observation M(ν) the controller
has when the system is in this state.

For each observation obs ∈ DObs, M−1(obs) gives the set
of states ν such that M(ν) = obs. One can notice that the
mask M is a partition of the state space; but, the results we
prove in this paper hold even when M is a covering [3], [4]
of the state space.

C. Means of Control.

Following the Ramadge & Wonham Theory [7], [1], we
want adjoin a controller C, which interacts with the system
T in a feedback manner as illustrated in Fig. 1: the controller
observes the system and according to his observation delivers
the set of events that have to be disabled in order to
ensure the desired properties on the system. The control is
performed by means of controllable events. The alphabet Σ is
partitioned into the set of controllable events Σc and the set
of uncontrollable events Σuc; only controllable events can
be forbidden by the controller. In our case, the controller
aims to restrict the system’s behavior to ensure a forbidden
state invariance property (i.e. to prevent the system from
reaching a bad state). The controller with partial observation
is formally defined as follows:

Definition 3 (Controller): Given a DES T =
〈DV ,D0,Σ, δ,Dm〉, and a set of observations 〈DObs,M〉, a
controller for T is a pair C = 〈S, E〉, where:

T

C = 〈S, E〉
M

obs = M(ν)

ν ∈ DV

S(obs) ⊆ Σc

Fig. 1. Control under partial information

• S : DObs 7→ 2Σc is a supervisory function which
defines, for each observation obs ∈ DObs, the set S(obs)
of controllable actions that have to be forbidden when
obs is observed by the controller.

• E ⊆ DV is a set of states to forbid, which restricts the
set of initial states1.

The controller is memoryless, i.e. the current observation of
the system is maintained until the arrival of the next one.

The controlled system resulting from the feedback inter-
action between the system to control and the controller is
given by a DES whose transition relation and set of initial
states are restricted :

Definition 4 (Controlled DES): Given a DES T =
〈DV ,D0,Σ, δ,Dm〉, a set of observations 〈DObs,M〉, and
a controller C = 〈S, E〉, the system T controlled by C, is a
DES T/C = 〈DV , (D0)/C ,Σ, δ/C ,Dm〉, where:

• (D0)/C = D0 \ E
• δ/C : DV × Σ 7→ 2DV is defined by: [(ν′ ∈ δ(ν, σ)) ∧

(σ 6∈ S(M(ν)))] ⇒ (ν′ ∈ δ/C(ν, σ)). An action σ can
no longer be fired from a state ν, if σ is forbidden by
control in the observation state of ν.

D. Permissiveness

The notion of permissiveness has been introduced to
compare the quality of different controllers for a given DES.
An obvious definition is :

Definition 5 (Permissiveness): Given a DES T , and a set
of observations 〈DObs,M〉, a controller C1 is more permis-
sive than a controller C2 iff reach(T/C2

) ⊆ reach(T/C1
).

When the inclusion is strict, we say that C1 is strictly more
permissive than C2.
Indeed, in our settings, it seems more coherent to define
the permissiveness w.r.t the states that are reachable in the
controlled system, rather than w.r.t. the language of the
actions that can be fired in the controlled system, since
the observations are (masked) states of the system and not
actions. However, we will see that in general, no optimal
controller exists. Notice also that two controlled systems with
the same reachable state space can have different enabled
transitions2.

Usually, when designing the controller, it may be asked
that the controlled system is deadlock free or non-blocking :

Definition 6 (Deadlock Free System): Given a DES T =
〈DV ,D0,Σ, δ,Dm〉, a state ν ∈ DV is deadlock free if ∃σ ∈

1We suppose that the controller can restrict the set of initial states of the
system in order to prevent it from starting its execution in a bad state.

2We could have used an extended definition of permissiveness where if
two controlled systems have equal reachable state space, inclusion of the
transitions that can be fired from reachable states is also taken into account

Σ : δ(ν, σ)!. Moreover, the system T is deadlock free if all
the reachable states of T are deadlock free.

Definition 7 (Non-blocking System): Given a DES T =
〈DV ,D0,Σ, δ,Dm〉, a state ν ∈ DV is non-blocking if
reach(T , ν) ∩ Dm 6= ∅. Moreover, the system T is non-
blocking if all the reachable states of T are non-blocking.

III. DEFINITION OF THE PROBLEMS

We start from the State Avoidance Control Problem
(SACP), where given a set Bad of forbidden states and a
system T to control, the problem consists in synthesizing
a controller C, which prevents the controlled system T/C
from reaching Bad. In [11], the author proves that if T is
fully observed, there is a most permissive controller solving
SACP. This uniqueness result however does not hold when
the controller only has a partial observation of the system [4].

In this framework, our goal is thus to find a maximal solu-
tion, i.e. a solution such that no other solution is strictly more
permissive. This problem is called Maximal State Avoidance
Control Problem (MSACP) and is formally defined by:

Problem 1 (MSACP): For a DES T , a set of observa-
tions 〈DObs,M〉 and a predicate Bad, which gives a set
of forbidden states, the maximal state avoidance control
problem consists in computing a controller C = 〈S, E〉 such
that (safety) reach(T/C) ∩ Bad = ∅ and (maximality) no
controller C′ = 〈S ′, E′〉, satisfying this condition, is strictly
more permissive than C.

In the following, we say that a controller C is valid if it
satisfies the property reach(T/C) ∩Bad = ∅.

In section IV, we show that this problem is difficult to
solve when system T is finite, and is even undecidable [4]
when system T is infinite. Therefore, we may wonder
whether a given controller C (obtained for example by an
approximation algorithm) defines a good solution.

Several criteria may define what a good solution is:
1) no another valid controller C′ exists such that, for the

system T , C′ is strictly more permissive than C
2) in the controlled system T/C , a given set of states Min

is reachable (∅ 6= Min ⊆ DV)
We may wonder, in each case, how difficult it is to deter-

mine if C satisfies one of those criteria. The problem related
to the first criterion is named Maximal State Avoidance
Control Decision Problem (MSACDP) and is defined by:

Problem 2 (MSACDP): For a DES T , a set of obser-
vations 〈DObs,M〉, a predicate Bad, which gives a set of
forbidden states, and a valid controller C = 〈S, E〉, the
maximal state avoidance control decision problem consists
in deciding if C is maximal, i.e. if there exists no valid
controller C′ such that C′ is strictly more permissive than
C.

The problem related to the second criterion is named
Interval State Avoidance Control Problem (ISACP) and is
defined by:

Problem 3 (ISACP): For a DES T , a set of observations
〈DObs,M〉 and non-empty predicates Min and Max, which
give the minimum and the maximum set of allowable states,
the interval state avoidance control problem consists in

deciding if there exists a controller C = 〈S, E〉 such that
Min ⊆ reach(T/C) ⊆ Max.

Min can be seen as the minimum admissible behavior and
Max as the maximum admissible behavior (the controller
must prevent from reaching Max).

In section V, we prove that these problems are also difficult
to solve. An alternative is then to measure the quality of
the controller with a criterion which seems to be weaker
than the permissiveness: the number of states which remains
reachable after control. Of course this criterion gives limited
information since two solutions with the same number of
reachable states may be completely different, but one can
hope to solve efficiently the state avoidance control problem
with this simpler criterion of maximality. Unfortunately,
this problem is also difficult to solve, because we prove in
section V that the following problem is NP-complete:

Problem 4 (MCSACP): For a DES T , a set of observa-
tions 〈DObs,M〉, and a predicate Bad, which gives a set
of forbidden states, the maximal cardinality state avoidance
control problem consists in deciding if there exists a valid
controller C = 〈S, E〉 such that |reach(T/C)| ≥ N (where
N ∈ N+).

In the sequel, we also consider, for all problems defined
above, the computational complexity for the cases where the
controlled system must be non-blocking and deadlock free.

IV. COMPLEXITY OF OPTIMIZATION PROBLEMS

In this section, we present complexity results for the
Maximal State Avoidance Control Problem, defined in
section III, and the deadlock free and non-blocking versions
of this problem.

Proposition 1: MSACP is NP-hard.
A reduction of 3SAT into our problem will be used to prove
the proposition. Let us first illustrate the principle of the
reduction.

Example 1: Let φ be a boolean formula in Conjunctive
Normal Form (CNF) defined by: φ = (p0∨¬p1∨p2)∧ (p0∨
¬p1 ∨ ¬p1).

We would like to construct from φ an instance of MSACP ,
and in particular a DES Tφ = 〈DV ,D0,Σ, δ,Dm〉, in such
a way that a particular state (named true) of Tφ will be
reachable in the controlled system iff φ is satisfiable. In our
example, φ is composed of 2 clauses and 3 variables. The
construction is the following:

• we create for each variable pi (∀i ∈ [0, 2]) the states3

p0
i , p

1
i , p

1
i , p

2
i , p

2
i , sti, st

′
i, for each clause ci (∀i ∈ [1, 2])

the states `i,1, `i,2, `i,3 (i.e. one state for each literal of
the clause) and 4 additional states st, st′, bad, true (see
Fig. 2).

• the observation space DObs = {op0, op1, op2, ost}.
Thus, there is an observation state opi for each variable
pi of φ.

3A simpler construction can be defined without the states sti, st
′
i, but

Tφ is then non-deterministic. Thus, these states allow to make the system
to control deterministic.

p0
0 p0

1 p0
2 st

bad

true

p1
0

p1
0

p2
0

p2
0

: action ⊥

: action !

!1,1

!2,1

!1,2 !1,3

st′

!2,2 !2,3

p1
1

p1
1

p2
1

p2
1

p1
2

p1
2

p2
2

p2
2

Part 1

Part 2

Part 3
: action σ1

st0 st′0 st2 st′2st1 st′1

: action σ2

Fig. 2. Construction of Tφ.

• the states bad, true, st, st′, sti, st
′
i (∀i ∈ [0, 2])

are indistinguishable (i.e. M−1(ost) =
{st, st′, st0, st′0, st1, st′1, st2, st′2, bad, true}) and
for each other state, the observation state of
its related proposition is observed (for example:
M−1(op0) = {p0

0, p
1
0, p

1
0, p

2
0, p

2
0, `1,1, `2,1}).

• there are 4 controllable actions >, ⊥, σ1, σ2 (see Fig. 2).
The construction is mainly composed of 3 parts (see

Fig. 2):
• with the part 1, a maximal valid controller must allow

at least one action (among > and ⊥) in opi (∀i ∈ [0, 2]).
Indeed, if not, the controller which forbids no action in
opi (∀i ∈ [0, 2]) and forbids only σ2 in ost, would be
more permissive.

• with the part 2, a maximal valid controller, which allows
σ1 and σ2 in ost, must forbid at least one action (among
> and ⊥) in opi (∀i ∈ [0, 2]). Indeed, if for example
{>,⊥} is allowed in op0, then bad will be reachable
from p1

0 and p2
0 (through p1

0 and p2
0) in the controlled

system.
• Thus, a maximal valid controller C = 〈S, E〉, which

enables σ1 and σ2 in ost, must allow exactly one action
(among > and ⊥) in opi (∀i ∈ [0, 2]). Then, we can
create an one-to-one mapping between the choices of
the action to forbid among > and ⊥ in these states (the
function S) and the valuations val : {p0, p1, p2} 7→ B
(which assign a value to the variables of φ). We define
this relation as follows: (∀i ∈ [0, 2] : S(opi) = {⊥}
iff val(pi) = tt). It means that > is allowed in opi iff
the value of pi is tt. So, the part 3 is constructed in
such a way that from the state `1,1, if S corresponds

to a valuation val |= φ (resp. val 6|= φ), then true
is reachable (resp. bad is reachable) in the controlled
system. Indeed, if the literal `i,j of a clause ci is
valuated to true, then from the state `i,j we can reach
`i+1,j (or true if ci is the last clause) and if `i,j is
valuated to false, then from this state we can reach
`i,j+1 (or bad if `i,j is the last literal of the clause).
For example:

– if val is such that val(p0) = val(p1) = ff and
val(p2) = tt, then we traverse the states `1,1, `1,2,
`2,1, `2,2 and true.

– if val is such that val(p0) = ff and val(p1) =
val(p2) = tt, then we traverse the states `1,1, `1,2,
`1,3, `2,1, `2,2, `2,3 and bad.

Note that, since bad cannot be reached in MSACP , if
the formula is unsatisfiable, Part 3 (hence true) will not
be reachable in the computed solution.
Proof: Polynomial transformation from 3SAT to

MSACP . We consider a CNF formula φ over a set of
variables P = {p0, . . . , pk}: φ =

∧nc

m=1 cm, where nc > 0
and the clauses cm =

∨3
j=1 `m,j . Each `m,j is a variable in P

(positive literal) or the negation of a variable in P (negative
literal). We denote by Cl the set of clauses of φ.

An instance of MSACP is built from 3SAT as follows.
First, we define the state space DV , the observation space
DObs and the set of forbidden states Bad:

1) The domain DV = {bad, true, st, st′}
∪ {sti, st′i| ∀i ∈ [0, k]} ∪ {p0

i , p
1
i , p

2
i , p

1
i , p

2
i | ∀pi ∈ P}

∪{`m,1, `m,2, `m,3| ∀cm ∈ Cl}
2) DObs = {opi| ∀pi ∈ P} ∪ {ost}
3) Bad = {bad}
In the sequel, we denote OP = {opi| ∀i ∈ [0, k]}, the set

of observation states, ost excluded.
The states bad, true, st, st′, sti, st

′
i (∀i ∈ [0, k]) are

indistinguishable and for each other state, the observation
state of its related proposition is observed. Formally:

1) ∀opi ∈ OP ,M−1(opi) = {p0
i , p

1
i , p

2
i , p

1
i , p

2
i } ∪ {`m,j

|m ∈ [1, nc]∧j ∈ [1, 3]∧((`m,j = pi)∨(`m,j = ¬pi))}
2) M−1(ost) = {st, st′, bad, true}∪{sti, st′i| ∀i ∈ [0, k]}
Finally, we define the system Tφ = 〈DV ,D0,Σ, δ,Dm〉

to control. The construction of Tφ is such that true will be
reachable in the controlled system obtained by the resolution
of MSACP iff φ is satisfiable. Formally, Tφ is defined by:

1) the set DV defined above.
2) the set D0 = {p0

0}.
3) the set of events Σ = Σc ·∪Σuc with Σc =

{>,⊥, σ1, σ2} and Σuc = ∅. Intuitively, a transition
δ(x,>) (resp. δ(x,⊥)) represents a valuation x = tt
(resp. x = ff).

4) the transition relation δ defined as follows:
a) ∀i ∈ [0, k − 1] : δ(p0

i ,>) = δ(p0
i ,⊥) = {p0

i+1}.
Moreover, δ(p0

k,>) = δ(p0
k,⊥) = {st} (Part 1 of

Fig. 2).
b) δ(st, σ1) = {st0} and ∀i ∈ [0, k] : δ(sti, σ1) = {st′i}

and δ(sti, σ2) = {p1
i }. Moreover, ∀i ∈ [0, k − 1] :

δ(st′i, σ
1) = {sti+1} and δ(st′i, σ

2) = {p2
i }. And

δ(st′k, σ2) = {p2
k}.

c) ∀i ∈ [0, k] : δ(p1
i ,>) = {p1

i }, δ(p1
i ,⊥) = {bad},

δ(p1
i ,>) = {st′}, δ(p2

i ,⊥) = {p2
i }, δ(p2

i ,>) =
{bad} and δ(p2

i ,⊥) = {st′} (Part 2 of Fig. 2).
d) δ(st′, σ1) = {`1,1}.
e) for the states of the clause cm (∀m ∈ [1, nc−1]), we

define the following transitions:
i) if `m,j (for j = 1, 2) is a positive literal,

δ(`m,j ,⊥) = {`m,j+1} and δ(`m,j ,>) =
{`m+1,1}. Otherwise, δ(`m,j ,>) = {`m,j+1} and
δ(`m,j ,⊥) = {`m+1,1}.

ii) if `m,3 is a positive literal, δ(`m,3,⊥) =
{bad} and δ(`m,3,>) = {`m+1,1}. Otherwise,
δ(`m,3,>) = {bad} and δ(`m,3,⊥) = {`m+1,1}.

f) for the states of the clause cnc
, we define the follow-

ing transitions:
i) if `nc,j (for j = 1, 2) is a positive literal,

δ(`nc,j ,⊥) = {`nc,j+1} and δ(`nc,j ,>) =
{true}. Otherwise, δ(`nc,j ,>) = {`nc,j+1} and
δ(`nc,j ,⊥) = {true}.

ii) if `nc,3 is a positive literal, δ(`nc,3,⊥) =
{bad} and δ(`nc,3,>) = {true}. Otherwise,
δ(`nc,3,>) = {bad} and δ(`nc,3,⊥) = {true}.

5) the set Dm = DV (in fact, Dm can have any value)
The algorithm to decide 3SAT is the following. From the

formula φ, we build an instance of MSACP as described
above. We get a controller C = 〈S, E〉 from an algorithm
solving MSACP and we decide that φ is satisfiable iff true ∈
reach((Tφ)/C). If we prove this equivalence, then MSACP

is NP-hard, since 3SAT is NP-complete.
Proof of the equivalence: φ is satisfiable iff true ∈

reach((Tφ)/C), where C is a maximal valid controller.
We first prove that a maximal valid controller C = 〈S, E〉

is such that {p0
0} 6∈ E.

Lemma 1: The controllers C1 = 〈S1, E1〉, with {p0
0} ∈

E1, are not maximal.
Proof: reach((Tφ)/C1

) = ∅, because the set of initial
states in the controlled system is empty, i.e. (D0)/C1 = ∅.
The controller, which forbids only σ2 in ost is valid and
more permissive than C1. �

In what follows, we will use the notation IS to denote a
subset of DV which does not include {p0

0}.
Then, we prove that a maximal valid controller must allow

at least one action (among > and ⊥) in each observation state
of OP .

Lemma 2: If C = 〈S, IS〉 is a maximal valid controller,
then ∀opi ∈ OP : S(opi) 6= {>,⊥}.

Proof: Suppose there exists opi ∈ OP such
that S(opi) = {>,⊥}. Then, reach((Tφ)/C) ⊂
{p0

0, p
0
1, . . . , p

0
k, st}. The controller, which forbids only

σ2 in ost is valid and more permissive than C. But, it is a
contradiction with the fact that C is maximal. �

This property implies that st is reachable in the system
controlled by a maximal valid controller.

Now, we prove that a maximal valid controller must forbid
at least one action (among > and ⊥) in each observation state
of OP (if σ1 and σ2 are allowed in ost).

Lemma 3: If C = 〈S, IS〉 is a maximal valid controller
and if σ1, σ2 6∈ S(ost), then ∀opi ∈ OP : S(opi) 6= ∅.

Proof: Suppose that opj ∈ OP is such that S(opj) = ∅.
The set {p1

i , p
2
i | ∀i ∈ [0, k]} is reachable in (Tφ)/C , because

σ1, σ2 6∈ S(ost) and by Lemma 2. In particular, p1
j and p2

j

are reachable. Since, no action is forbidden in these states,
the state bad is reachable from these states (through p1

j and
p2

j). But, it is a contradiction with the fact that C is valid. �

For the controllers which forbid exactly one action (among
> and ⊥) in the states of OP , we have an one-to-one
mapping between the choices of the action to forbid among
> and ⊥ in each observation state of OP and the valuations
val : P 7→ B (which assign a value to each variable of P).
We define this mapping as follows: ∀i ∈ [0, k] : (S(opi) =
{⊥} iff val(pi) = tt). It means that > is allowed in opi iff
the value of pi is tt.

Lemma 4: Let C = 〈S, IS〉 be a maximal valid controller.
If φ is not satisfiable, then σ1 6∈ S(ost) and σ2 ∈ S(ost).
Hence, true 6∈ reach((Tφ)/C).

Proof: Suppose that σ1 ∈ S(ost), then C is not
maximal, because the controller, which forbids only σ2 in
ost, is more permissive than C.

Now, suppose that σ2 6∈ S(ost). Then, by Lemma 2
and 3, a maximal valid controller must forbid exactly one
action among > and ⊥ in the states of OP and `1,1 ∈
reach((Tφ)/C). Let val : P 7→ B be a valuation. Since, φ
is not satisfiable, there exists at least one clause c ∈ Cl such
that val 6|= c. Let cj be this first clause (then c1, . . . , cj−1 are
satisfied by val). Then for all 1 ≤ m < j, cm is satisfied and
by the construction of Tφ, there exists a path between `m,1

and `m+1,1 in the controlled system. But, since val 6|= cj ,
the state bad is reachable from `j,1; it is a contradiction. �

Lemma 5: Let C = 〈S, IS〉 be a maximal valid controller.
If φ is satisfiable, then true ∈ reach((Tφ)/C).

Proof: Let C1 = 〈S1, IS〉 be a controller such that
σ1, σ2 6∈ S1(ost) and the choice of the action to forbid
among > and ⊥ in the states of OP corresponds to a
valuation val′ : P 7→ B satisfying φ. Such a valuation
exists, since φ is satisfiable. Now, we prove that true ∈
reach((Tφ)/C1

). The state `1,1 is reachable, because σ1, σ2 6∈
S1(ost). Similarly as above, since each cm (1 ≤ m < nc)
is satisfied by val′, there exists a path between `m,1 and
`m+1,1, and bad is not reachable from `m,1. Moreover, since
val′ |= cnc

, there is a path between `nc,1 and true, and bad
is not reachable from `nc,1.

Clearly, C1 is more permissive than any valid controller
C2 = 〈S2, IS〉 with σ1 ∈ S2(ost) or σ2 ∈ S2(ost). Thus,
for φ satisfiable, a maximal valid controller C3 = 〈S3, IS〉 is
such that σ1, σ2 6∈ S3(ost), and, by Lemma 2 and 3, must
forbid exactly one action among > and ⊥ in the states of
OP

By the proof of Lemma 4, the valid controllers C4 =
〈S4, IS〉, whose function S4 is constructed from a valuation

not satisfying φ, are such that σ1 ∈ S4(ost) or σ2 ∈ S4(ost).
Indeed, if not, bad would be reachable. In consequence, these
controllers cannot be maximal.

Thus, for φ satisfiable, the maximal valid controllers C5 =
〈S5, IS〉 are such that σ1, σ2 6∈ S5(ost) and the choice of
the action to forbid among > and ⊥ in each state of OP
corresponds to a valuation satisfying φ. As shown above,
true is reachable with these controllers. �

In conclusion, by Lemma 4 and 5, if C is a maximal valid
controller, then φ is satisfiable iff true ∈ reach((Tφ)/C). �

One can note that the system Tφ is deterministic. Thus,
Proposition 1 holds for deterministic systems to control.
Moreover, the propositions we prove in the sequel will also
hold for deterministic systems.

Now, we can easily obtain the same result for the
Deadlock Free Maximal State Avoidance Control Problem
(DFMSACP) (i.e. solving MSACP so that the resulting
controlled system T/C is deadlock free). This problem is also
difficult to solve.

Proposition 2: DFMSACP is NP-hard.
Proof: The proof consists in a reduction from MSACP

to DFMSACP . From T = 〈DV ,D0,Σ, δ,Dm〉, we build
the system to control Tn = 〈DV ,D0,Σn, δn,Dm〉 for the
instance of DFMSACP , where:

• Σn = Σ ·∪ {σn}. The new action σn is uncontrollable.
• ∀ν ∈ DV , ∀σ ∈ Σ : δn(ν, σ) = δ(ν, σ). Moreover,
∀ν ∈ DV : δ(ν, σn) = {ν}. Thus, σn can be fired from
any state ν ∈ DV and loops on ν.

〈DObs,M〉 and Bad do not change for the instance of
DFMSACP .

Now, we prove the correctness of the polynomial transfor-
mation. For that, we show that a controller C is a solution of
MSACP iff it is a solution of DFMSACP . This equivalence
holds, because Tn contains only deadlock free states. �

The Non-blocking Maximal State Avoidance Control
Problem (NbMSACP) (i.e. solving MSACP so that the
resulting controlled system T/C is non-blocking) is also
difficult to solve.

Proposition 3: NbMSACP is NP-hard.
Proof: The proof consists in a reduction from MSACP

to NbMSACP . From T = 〈DV ,D0,Σ, δ,Dm〉, we build the
system to control T ′ = 〈DV ,D0,Σ, δ,D′

m〉 for the instance
of NbMSACP , where D′

m = DV . 〈DObs,M〉 and Bad do
not change for the instance of NbMSACP .

Now, we prove the correctness of the polynomial transfor-
mation. For that, we show that a controller C is a solution of
MSACP iff it is a solution of NbMSACP . This equivalence
holds, because ∀ν ∈ DV : ν ∈ D′

m, and thus T ′ contains
only non-blocking states. �

V. COMPLEXITY OF DECISION PROBLEMS

We demonstrated that MSACP is NP-hard. However, it is
quite easy to find a “good” valid controller [3], [4], [9], but
without the certainty that it is a maximal one. In Section III,
we gave some quality criteria and defined the problems

related to those criteria. We now give complexity results for
those decision problems.

A. Maximal State Avoidance Control Decision Problem

Proposition 4: MSACDP is coNP-complete.
Proof: We prove that the complementary problem of

MSACDP (named MSACDP), which consists in deciding
if there exists a valid controller C′ strictly more permissive
than C, is NP-complete.

First, we prove that MSACDP ∈ NP. Given T ,
〈DObs,M〉, Bad and C, we select a controller C′ = 〈S ′, E′〉,
and test that C′ is valid and strictly more permissive than C.
These properties can be verified in polynomial time. If C′
satisfies these properties, then it is a solution to MSACDP .
Therefore, MSACDP ∈ NP.

The second part of the proof consists in a reduction from
3SAT to MSACDP . An instance of MSACDP is built from
3SAT as follows. The system to control Tφ, the set of
observations 〈DObs,M〉 and the set Bad are built as in the
proof of Proposition 1. The controller C = 〈S, ∅〉 is built as
follows for the supervisory function S:

S(obs) =
{

∅ if obs ∈ OP
{σ2} if obs = ost

Now, we prove the correctness of the polynomial trans-
formation. For that, we show that φ is satisfiable iff there
exists a valid controller C′ strictly more permissive than C.
This equivalence is proven as follows:

• If φ is not satisfiable, then there exists no valid con-
troller C′ strictly more permissive than C. Indeed, by
Lemma 4, if φ is not satisfiable, then a maximal valid
controller allows σ1 in ost and forbids σ2 in ost. In
consequence, C is a maximal valid controller.

• If φ is satisfiable, then there exists a valid controller C′
strictly more permissive than C. Indeed, the controller
C1 defined in the proof of Lemma 5 is valid and strictly
more permissive than C. �

The deadlock free (DFMSACDP) and non-blocking
(NbMSACDP) versions of this problem are also coNP-
complete [5]. The proof consists in a reduction from
MSACDP to DFMSACDP (resp. NbMSACDP) and the
polynomial transformation is based on the one of Proposi-
tion 2 (resp. Proposition 3).

B. Interval State Avoidance Control Problem

Proposition 5: ISACP is NP-complete.
Proof: First, we prove that ISACP ∈ NP. Given T ,

〈DObs,M〉, two predicates Min and Max, we select a con-
troller C = 〈S, E〉 and test that Min ⊆ reach(T/C) ⊆
Max. This property can be verified in polynomial time. If
C satisfies this property, then it is a solution to ISACP .
Therefore, ISACP ∈ NP.

The second part of the proof consists in a reduction from
3SAT to ISACP . An instance of ISACP is built from 3SAT as
follows. The system to control Tφ and the set of observations
〈DObs,M〉 are built as in the proof of Proposition 1. We set
Min = {true} and Max = {bad}.

Now, we prove the correctness of the polynomial transfor-
mation. For that, we show that φ is satisfiable iff there exists
a controller C such that Min ⊆ reach((Tφ)/C) ⊆ Max. This
equivalence is proven as follows:

• If φ is not satisfiable, then there is no controller C such
that Min ⊆ reach((Tφ)/C) ⊆ Max. Indeed, a controller
C solving ISACP must prevent from reaching bad,
because if not, reach((Tφ)/C) 6⊆ Max. Then, Lemma 4
remains valid, i.e. if φ is not satisfiable, then true is
not reachable in the system Tφ controlled by a valid
controller. Thus, there is no controller C such that
Min ⊆ reach((Tφ)/C) ⊆ Max.

• If φ is satisfiable, then there exists a controller C such
that Min ⊆ reach((Tφ)/C) ⊆ Max. Indeed, if φ is
satisfiable, then the controller C1 defined in the proof
of Lemma 5 is such that true is reachable and bad is
not reachable. This controller also satisfies that Min ⊆
reach((Tφ)/C1

) ⊆ Max. Thus, there exists at least one
controller solving ISACP . �

The deadlock free (DFISACP) and non-blocking
(NbISACP) versions of this problem are also NP-
complete [5]. The proof consists in a reduction from ISACP

to DFISACP (resp. NbISACP) and the polynomial trans-
formation is based on the one of Proposition 2 (resp. Propo-
sition 3).

C. Maximal Cardinality State Avoidance Control Problem

Proposition 6: MCSACP is NP-complete.
Proof: First, we prove that MCSACP ∈ NP. Given T ,

〈DObs,M〉, and Bad, we select a controller C = 〈S, E〉
and test that C is valid and |reach(T/C)| ≥ N . These
properties can be verified in polynomial time. If C satisfies
these properties, then it is a solution to MCSACP . Therefore,
MCSACP ∈ NP.

The second part of the proof consists in a reduction from
3SAT to MCSACP . An instance of MCSACP is built from
3SAT as follows. The system to control Tφ, the set of
observations 〈DObs,M〉 and the set Bad are built as in the
proof of Proposition 1. We set N = 3.k + 5.

Now, we prove the correctness of the polynomial transfor-
mation. For that, we show that φ is satisfiable iff there exists
a valid controller C such that |reach(T/C)| ≥ 3.k + 5. This
equivalence is proven as follows:

• If φ is not satisfiable, then there exists no valid con-
troller C such that |reach(T/C)| ≥ 3.k + 5. Indeed,
by Lemma 4, if φ is not satisfiable, then a maximal
valid controller allows σ1 in ost and forbids σ2 in ost.
In consequence, all valid controllers C are such that
|reach(T/C)| < 3.k + 5.

• If φ is satisfiable, then there exists a valid controller C
such that |reach(T/C)| ≥ 3.k +5. Indeed, the controller
C1 defined in the proof of Lemma 5 is valid and such
that |reach(T/C)| ≥ 3.k + 5. �

The deadlock free (DFMCSACP) and non-blocking
(NbMCSACP) versions of this problem are also NP-
complete [5]. The proof consists in a reduction from

MCSACP to DFMCSACP (resp. NbMCSACP) and the
polynomial transformation is based on the one of Proposi-
tion 2 (resp. Proposition 3).

VI. CONCLUSION

In this paper, we considered the computational complexity
of several problems. We studied the problems consisting in
(i) computing a maximal solution for SACP , (ii) deciding if
a given controller is maximal, (iii) deciding if there exists a
solution within a range of behaviors, (iv) deciding whether
there exists a valid controller, for which a given minimal
number of states is reachable in the resulting controlled sys-
tem. We proved that no deterministic polynomial algorithm
can solve these problems (unless P = NP). These proper-
ties hold for deterministic and non-deterministic systems to
control and also when the deadlock free or non-blocking
properties must be ensured.

A potential approach for future research is to develop
efficient approximate algorithms using for example the lin-
ear programming. Another area for future research is to
study sub-cases of the considered problems, where we make
assumptions on the problems, to make their computation
easier.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Prof. J-F. Raskin and
Nicolas Maquet for their helpful insights.

REFERENCES

[1] C. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems (2nd edition). Springer, 2008.

[2] P. Gohari and W. M. Wonham. On the complexity of supervisory
control design in the rw framework. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 30(5):643–652, 2000.

[3] R.C. Hill, D.M. Tilbury, and S. Lafortune. Covering-based supervisory
control of partially observed discrete event systems for state avoidance.
In 9th International Workshop on Discrete Event Systems, May 2008.

[4] G. Kalyon, T. Le Gall, H. Marchand, and T. Massart. Control of
infinite symbolic transition sytems under partial observation. Accepted
to European Control Conferences, 2009.

[5] G. Kalyon, T. Le Gall, H. Marchand, and T. Massart. Results of np-
completeness for state-feedback controllers. Technical report of the
verification group 121, Université Libre de Bruxelles, March 2009.

[6] R. Kumar, V. Garg, and S.I. Marcus. Predicates and predicate trans-
formers for supervisory control of discrete event dynamical systems.
IEEE Trans. Autom. Control, 38(2):232–247, 1993.

[7] P.J. Ramadge and W.M. Wonham. The control of discrete event
systems. Proceedings of the IEEE; Special issue on Dynamics of
Discrete Event Systems, 77(1):81–98, 1989.

[8] K. Rudie and J. C. Willems. The computational complexity of
decentralized discrete-event control problems. IEEE Transactions on
Automatic Control, 40:1313–1319, 1995.

[9] S. Takai and S. Kodama. Characterization of all m-controllable
subpredicates of a given predicate. International Journal of Control,
70:541–549(9), 10 July 1998.

[10] J. N. Tsitsiklis. On the control of discrete event dynamical systems.
Mathematics of Control, Signals and Systems, 2(2):95–107, 1989.

[11] W.M. Wonham. Lecture notes on control of discrete-event systems.
Technical report, University of Toronto, 2005.

[12] W.M. Wonham and P.J. Ramadge. Modular supervisory control of
discret-event systems. Mathematics of Control, Signals, and Systems,
1(1):13–30, 1988.

