
When are Timed Automata Determinizable?

Christel Baier1, Nathalie Bertrand2, Patricia Bouyer3, and Thomas Brihaye4

1 Technische Universität Dresden, Germany
2 INRIA Rennes Bretagne Atlantique, France

3 LSV, CNRS & ENS Cachan, France
4 Université de Mons, Belgium

Abstract. In this paper, we propose an abstract procedure which, given
a timed automaton, produces a language-equivalent deterministic infinite
timed tree. We prove that under a certain boundedness condition, the
infinite timed tree can be reduced into a classical deterministic timed au-
tomaton. The boundedness condition is satisfied by several subclasses of
timed automata, some of them were known to be determinizable (event-
clock timed automata, automata with integer resets), but some others
were not. We prove for instance that strongly non-Zeno timed automata
can be determinized. As a corollary of those constructions, we get for
those classes the decidability of the universality and of the inclusion
problems, and compute their complexities (the inclusion problem is for
instance EXPSPACE-complete for strongly non-Zeno timed automata).

1 Introduction

Timed automata have been proposed by Alur and Dill in the early 90s as a model
for real-time systems [2]. A timed automaton is a finite automaton which can
manipulate real-valued variables called clocks, that evolve synchronously with
the time, can be tested and reset to zero. One of the fundamental properties
of this model is that, although the set of configurations is in general infinite,
checking reachability properties is decidable. From a language theory point-of-
view, this means that checking emptiness of the timed language accepted by a
timed automaton can be decided (and is a PSPACE-complete problem). The
proof relies on the construction of the so-called region automaton, which finitely
abstracts behaviours of a timed automaton. Since then, its appropriateness as
a model for the verification of real-time systems has been confirmed, with the
development of verification algorithms and dedicated tools.

There are however two weaknesses to that model: a timed automaton cannot
be determinized, and inclusion (and universality) checking is undecidable [2], ex-
cept for deterministic timed automata. This basically forbids the use of timed au-
tomata as a specification language. Understanding and coping with these weak-
nesses have attracted lots of research, and, for instance, testing whether a timed
automaton is determinizable has been proved undecidable [6]. Also, the undecid-
ability of universality has been further investigated, and rather restricted classes
of timed automata suffer from that undecidability result [1]. On the other side,

classes of timed automata have been exhibited, that either can be effectively
determinized (for instance event-clock timed automata [3], or timed automata
with integer resets [9]), or for which universality can be decided (for instance
single-clock timed automata [7]).

In this paper, we describe a generic construction that is applicable to ev-
ery timed automaton, and which, under certain conditions, yields a determin-
istic timed automaton, which is language-equivalent to the original timed au-
tomaton. The idea of the procedure is to unfold the timed automaton into a
finitely-branching infinite tree that records the timing constraints that have to
be satisfied using one clock per level of the tree (hence infinitely many clocks).
When reading a finite timed word in that infinite tree, we may reach several
nodes of the tree, but the timing information stored in the clocks is independent
of the run in the tree. Thanks to this kind of input-determinacy property, we
can determinize this infinite object, yielding another finitely-branching infinite
tree. And, under a boundedness condition on the amount of timing informa-
tion we need to store, we will be able to fold back the tree into a deterministic
timed automaton. This boundedness condition is not a syntactical condition on
the original timed automaton, but will be satisfied by large classes of timed au-
tomata: event-clock timed automata [3], timed automata with integer resets [9],
and strongly non-Zeno timed automata. Furthermore, our construction yields
automata of exponential-size in the first case, and doubly-exponential-size au-
tomata otherwise. In particular, our approach provides an EXPSPACE algorithm
to check universality (and inclusion) for a large class of timed automata, and
we prove that this complexity is tight. Our algorithm can easily be adapted into
a PSPACE one, in the special case of event-clock timed automata, allowing to
recover the known result of [3].

2 Timed automata

Preliminaries. Given X a finite or infinite set of clocks and M a non-negative
integer, a clock valuation over X bounded by M is a mapping v : X → TM

where TM = [0,M] ∪ {⊥}. We assume furthermore that ⊥ > M . The notation
⊥ is for abstracting values of clocks that are above some fixed value M . This is
rather non-standard (though used for instance in [8]) but it will be convenient in
this paper. We note 0̄ the valuation that assigns 0 to all clocks. If v is a valuation
over X and bounded by M , and t ∈ R+, then v + t denotes the valuation which
assigns to every clock x ∈ X the value v(x) + t if v(x) + t ≤M , and ⊥ otherwise
(in particular, if v(x) = ⊥, then (v + t)(x) = ⊥). For Y ⊆ X we write [Y ← 0]v
for the valuation equal to v on X \ Y and to 0̄ on Y , and v|Y for the valuation
v restricted to clocks in Y . A(n M -bounded) guard (or constraint) over X is a
finite conjunction of constraints of the form x ∼ c where x ∈ X, c ∈ N ∩ [0,M]
and ∼ ∈ {<,≤,=,≥, >}. We denote by GM (X) the set of M -bounded guards
over X. Given a valuation v and a guard g we write v |= g whenever v satisfies g.

A timed word over Σ is a finite sequence of pairs (a1, t1)(a2, t2) . . . (ak, tk)
such that for every i, ai ∈ Σ and (ti)1≤i≤k is a nondecreasing sequence in R+.

2

Timed automata. A timed automaton is a tuple A = (L, `0, Lacc, X,M,E)
such that: (i) L is a finite set of locations, (ii) `0 ∈ L is the initial location, (iii)
Lacc ⊆ L is the set of final locations, (iv) X is a finite set of clocks, (v) M ∈ N,
and (vi) E ⊆ L × GM (X) × Σ × 2X × L is a finite set of edges. Constant M is
called the maximal constant of A.

The semantics of a timed automaton A is given as a timed transition system
TA = (S, s0, Sacc, (R+ × Σ),→) with set of states S = L × T

X
M , initial state

s0 = (`0, 0̄), set of accepting states Sacc = Lacc × TXM , and transition relation
→ ⊆ S×(R+×Σ)×S composed of moves of the form (`, v)

τ,a−−→ (`′, v′) whenever
there exists an edge (`, g, a, Y, `′) ∈ E such that v+τ |= g and v′ = [Y ← 0](v+τ).

A run % of A is a finite sequence of moves, i.e., % = s0
τ1,a1−−−→ s1 . . .

τk,ak−−−→ sk.
It is said initial whenever s0 = (`0, 0̄). An initial run is accepting if it ends in
an accepting location. The timed word u = (a1, t1)(a2, t2) . . . (ak, tk) is said to
be read on % whenever ti =

∑i
j=1 τj for every 1 ≤ i ≤ k. We write L(A) for the

set of timed words (or timed language) accepted by A, that is the set of timed
words u such that there exists an initial and accepting run % which reads u.

A timed automatonA is deterministic whenever for every timed word u, there
is at most one initial run which reads u. It is strongly non-Zeno whenever there
exists K ∈ N such that for every run % = s0

τ1,a1−−−→ s1 . . .
τk,ak−−−→ sk in A, k ≥ K

implies
∑k
i=1 τi ≥ 1. This condition is rather standard in timed automata [4].

Example 1. An example of timed automaton is depicted in Fig. 1. This automa-
ton will be used as a running example throughout the paper in order to illustrate
the different steps of our construction. This automaton is not deterministic and
accepts the timed language {(a, t1)(a, t2) · · · (a, t2n) | n ≥ 1, 0 < t1 < t2 < · · · <
t2n−1 and t2n − t2n−2 = 1}, with the convention that t0 = 0. The timed word
(a, 0.5)(a, 1.6)(a, 2.9) can be read on the initial run (`0, 0)

0.5,a−−−→ (`3, 0)
1.1,a−−−→

(`0, 0)
1.3,a−−−→ (`1,⊥) but is not accepted. The last configuration of the above run

is (`1,⊥) because the value of clock x should be 1.3, but as it is larger than the
maximal constant 1, we abstract the precise value into ⊥.

`0 `1`3 `2
x>0,a x=1,a,{x}

x>0,a,{x}

x>0,a,{x}

Fig. 1. A timed automaton A

On timed bisimulations. A strong timed (resp. time-abstract) simulation re-
lation between two timed transition systems Ti = (Si, si,0, Si,acc, (Σ ∪ R+),→i)

for i ∈ {1, 2} is a relation R ⊆ S1 × S2 such that if s1 R s2 and s1
t1,a−−→ s′1 for

some t1 ∈ R+ and a ∈ Σ, then there exists s′2 ∈ S2 (resp. t2 ∈ R+ and s′2 ∈ S2)
such that s2

t1,a−−→ s′2 (resp. s2
t2,a−−→ s′2) and s′1 R s′2. A strong timed (resp. time-

abstract) bisimulation relation between two timed transition Ti for i ∈ {1, 2}
is a relation R ⊆ S1 × S2 such that both R and R−1 are strong timed (resp.
time-abstract) simulation relations. The above relations preserve initial (resp.

3

accepting) states whenever s1,0 R s2,0 (resp. s1 R s2 and si ∈ Si,acc implies
s3−i ∈ S3−i,acc). Note that the notion of strong timed bisimulation which pre-
serves initial and accepting states is stronger that that of language equivalence.

The classical region construction. We let X be a finite set of clocks, and
M ∈ N. We define the equivalence relation ≡X,M between valuations in TM as
follows: v ≡X,M v′ iff (i) for every clock x ∈ X, v(x) ≤M iff v′(x) ≤M ; (ii) for
every clock x ∈ X, if v(x) ≤ M , then bv(x)c = bv′(x)c, and (ii) for every pair
of clocks (x, y) ∈ X2 such that v(x) ≤ M and v′(x) ≤ M , {v(x)} ≤ {v(y)} iff
{v′(x)} ≤ {v′(y)}. 5 The equivalence relation is called the region equivalence for
the set of clocks X w.r.t. M , and an equivalence class is called a region. We note
RegXM for the set of such regions. A region r′ is a time-successor of a region r if
there is v ∈ r and t ∈ R+ such that v + t ∈ r′. If v is a valuation, we will write
[v] for the region to which v belongs (when X and M are clear in the context).

It is a classical result [2] that given a timed automaton A with maximal
constant M and set of clocks X, the relation RX,M between configurations of A
defined by (`, v) RX,M (`, v′) iff v ≡X,M v′ is a time-abstract bisimulation.

3 Some transformations

In this section, we describe a general construction that aims at determinizing a
timed automaton. We know however that not all timed automata can be deter-
minized [2], and even that we cannot decide whether a timed automaton can be
determinized [6]. We will thus give conditions that will ensure (i) that our pro-
cedura can be properly applied, and (ii) that the resulting timed automaton is
deterministic and accepts the same language as the original automaton. We will
then analyze the complexity of the procedure, and apply it to several subclasses
of timed automata, some of which were known to be determinizable, some other
were not known to be determinizable.

This construction consists in four steps: (i) an unfolding of the original au-
tomaton into an infinite timed tree, (ii) a region abstraction, (iii) a symbolic
determinization, and (iv) a reduction of the number of clocks, allowing to fold
the tree back into a timed automaton. These steps are described in the following
subsections. Due to page limitation, we will give no formal definitions of the ob-
jects we build in our construction, and better illustrate the construction on the
running example. All details of the construction can be found in the appendix.

3.1 Construction of an equivalent infinite timed tree

In this first step, we unfold the timed automaton A into a finitely-branching
infinite timed tree A∞ that has infinitely many clocks (one clock per level of
the tree), we call Z = {z0, z1, . . .} this infinite set of clocks. The idea of this
unfolding is to use a fresh clock reset at each level of the tree in order to record
5 Where bαc (resp. {α}) denotes the integral (resp. fractional) part of α.

4

the timing constraints that have to be satisfied in A. Each node n of A∞ is
labelled by a pair (`, σ) ∈ L × ZX where ` records the location of A that node
n simulates and σ describes how the clocks of A are encoded using the clocks
of A∞ (if σ(x) = zi, the value clock x would have in A is the current value of
clock zi). The advantage of this infinite timed tree is that it enjoys some input-
determinacy property: when reading a finite timed word u in A∞, there may be
several runs in the tree that read u, but the timing information stored in the
clocks is independent of the run in the tree (see Remark 4).

Example 2. Part of the infinite timed tree A∞ associated with the timed au-
tomaton A of Fig. 1 is depicted in Fig. 2. Notice that a fresh clock is reset a
each level; for instance z2 is reset on all edges from level-1 to level-2 nodes (i.e.
n1 → n3 and n2 → n4). The timed tree A∞ corresponds to the unfolding of A,
the two branches starting from the node n0 represent the possible choice in state
`0 of A, the same phenomenon also happens in n4. The label of n4 is (`0, z2); it
means that node n4 represents the location `0 of A and that the value of clock
x can be recovered from the current value of clock z2. It is important to observe
how the second component of the label evolves. First consider the edge n4 → n5;
it represents the transition from `0 to `1 in A, which does not reset clock x; the
reference for clock x is the same in n5 as it is in n4, that is why the label of n5

is (`1, z2). Now consider the edge n4 → n6; it represents the transition from `0
to `3 in A, which resets clock x; the reference for clock x thus becomes z3, the
clock which has just been reset, that is why the label of n6 is (`3, z3).

n0

(`0,z0)

n1 (`1,z0) n2 (`3,z1)

n3 (`2,z2) n4

(`0,z2)

n5 (`1,z2) n6 (`3,z3)

n7 (`2,z4) n8 (`0,z4)

...

level 0

level 1

level 2

level 3

level 4

z0>0,a,{z1} z0>0,a,{z1}

z0=1,a,{z2} z1>0,a,{z2}

z2>0,a,{z3} z2>0,a,{z3}

z2=1,a,{z4} z3>0,a,{z4}

Fig. 2. The infinite timed tree A∞ associated with the timed automaton A of Fig. 1.

The correctness of this unfolding is stated in the follow lemma.

Lemma 3. The relation R1 between states of A and states of A∞ defined by
(`, v ◦ σ) R1 (n, v) if label(n) = (`, σ) is a strong timed bisimulation.

5

Remark 4. In A∞, for every finite timed word u, there is a unique valuation
vu ∈ T

Z|u| such that for every initial run % in A∞ that reads u, % ends in
some configuration (n, vu) with level(n) = |u|. Indeed, if the timed word u is
of the form (a1, t1)...(a|u|, t|u|), any initial run % reading u necessarily ends in a
configuration (n, vu) where level(n) = |u| and vu(zj) = t|u| − tj for any j ≤ |u|.

3.2 A region abstraction

In this second step, we extend in a natural way the classical region equivalence to
the above infinite timed tree: at level i of the tree, only clocks in Zi = {z0, · · · , zi}
are relevant (all other clocks have not been used yet), we thus consider regions
over that set of clocks. We note R(A∞) for this region abstraction, that we still
interpret in a timed manner. We do not illustrate this transformation step on
our running example, since R(A∞) is easily obtained from A∞, but only depict
the transformation on an edge, see below:

n (`,σ)

n′ (`′,σ′)

level i

level i+1

g,a,{zi+1}

n,r (`,σ)

n′,r′ (`′,σ′)

r′′,a,{zi+1}

r: region over Zi

r′: region over Zi+1
=r′′∧(zi+1=0)

r′′: region over Zi
time successor of r
included in g

It is worth noting that, in R(A∞), any state reached after a transition is of the
form ((n, r), v), where n is a node of A∞ (of some level, say i), r is a region over
Zi, and v is a valuation over Zi which belongs to r. It is not difficult to see that,
as in the standard region construction in timed automata, two states ((n, r), v1)
and ((n, r), v2) with v1, v2 ∈ r are time-abstract bisimilar. Furthermore, R(A∞)
will satisfy the same input-determinacy property as A∞ (see Remark 4). The
correctness of R(A∞) can then be stated as follows.

Lemma 5. The relation R2 between states of A∞ and states of R(A∞) defined
by (n, v) R2 ((n, r), v) if v ∈ r is a strong timed bisimulation.

3.3 Symbolic determinization

This third step is the crucial step of our construction. We will symbolically
determinize the infinite timed tree R(A∞) using a rather standard subset con-
struction, and we note SymbDet(R(A∞)) the resulting infinite tree. However
there will be a subtlety in the subset construction: useless clocks will be forgot-
ten ‘on-the-fly’. More precisely, at each node, we only consider active clocks, i.e.
clocks that appear in the label of the node (other clocks record values that do
not impact on further behaviours of the system). The determinization is then
performed on the ‘symbolic’ alphabet composed of regions over active clocks
and actions, and thanks to the input-determinacy property of R(A∞), this sym-
bolic determinization coincides with the determinization of the underlying timed
transition system. Let us explain this crucial step on our running example.

6

Example 6. The construction of SymbDet(R(A∞)) is illustrated on Fig. 3. The
determinization is performed using a classical subset construction. For example
starting from node n0, both n1 and n2 can be reached via a transition with
guard 0 < z0 < 1. This is reflected by the leftmost {n1, n2}-node on the first
level. It is also important to understand the meaning of active clocks. In A∞,
the only active clock in node n4 is z2. Therefore, guards on transitions leaving
the node ({n4}, z2 = 0) in SymbDet(R(A∞)) are regions over this unique clock
z2. If we consider a node combining n5 and n6, active clocks will consist in the
union of active clocks in both nodes, hence z2 and z3. For sake of readability,
we have mostly ommitted labels of nodes on Fig. 3, but they can be naturally
inferred from those in R(A∞); for instance, the label of the top-rightmost node
is {(`1, z0), (`3, z1)}, the union of the labels of n1 and n2 in R(A∞).

({n0},z0=0)

({n1,n2},0=z1<z0<1) ({n1,n2},0=z1<z0=⊥) ({n1,n2},0=z1<z0=1)

label
{(`1,z0),(`3,z1)}

({n3,n4},z2=0) ({n4},z2=0) ({n3},z2=0)

({n5,n6},0=z3<z2<1) ({n5,n6},0=z3<z2=⊥) ({n5,n6},0=z3<z2=1)

({n7,n8},z4=0) ({n8},z4=0) ({n7},z4=0)

...

0<z0<1

z0>1

z0=1

0<z1<z0=1
0<z1 ,z0 6=1

z1>0

0<
z1<

1<
z0 0=z1<z0=1

0<z2<1 z2>1

z2=1

0<z2<1

z2>1

z2=1

0<z3<z2=1 0<z3 ,z2 6=1

z3>1

0<z3
<1<z2

0=z3<z2=1

Fig. 3. The DAG induced by the infinite timed tree SymbDet(R(A∞))

The subset construction induces a DAG (as seen on Fig. 3). However the rest
of the construction will require a tree instead of a DAG; we thus add markers to
nodes, so that we can have several copies of a node, depending on the ancestors.
A node in SymbDet(R(A∞)) is thus a tuple (?,K, r) where ? is a marker, K is
a subset of node names in R(A∞) (they all have same level), and r is a region
over the set Act(K) =

⋃
n∈K,label(n)=(`,σ) σ(X), the set of active clocks in K.

The correctness of SymbDet(R(A∞)) is stated in the following proposition.

Proposition 7. SymbDet(R(A∞)) is a deterministic timed tree, and for every
node N = (?,K, r) and for every valuation v ∈ TAct(K) with v ∈ r,

L(SymbDet(R(A∞)), (N, v)) =
⋃
n∈K
L(R(A∞), ((n, r), v))

7

Remark 8. In case A has a single clock x, a level-i node of SymbDet(R(A∞))
carries the following information: a finite set of pairs of the form (`, x 7→ zj)
for some j ≤ i and a region for clocks in Zi. We skip details, but with this
information, we can easily recover the well-quasi-order that gives the decidability
of the universality problem in single-clock timed automata [7].

3.4 Reduction of the number of clocks

SymbDet(R(A∞)) is an infinite object (it is an infinite timed tree and it has in-
finitely many clocks). Our aim is to fold this tree back into a deterministic timed
automaton. Obviously we cannot do so for all timed automata, and so far we have
not made any assumption on A. Given γ ∈ N, we say that SymbDet(R(A∞))
is γ-clock-bounded if in every node, the number of active clocks is bounded by
γ. Under this hypothesis, we will be able to quotient SymbDet(R(A∞)) by an
equivalence of finite index, and get a deterministic timed automaton BA,γ which
accepts the same language as the original timed automaton A.

The idea will be to fix a finite set of clocks Xγ = {x1, · · · , xγ}, and starting
from the level-0 node of SymbDet(R(A∞)) to rename the active clocks in all
nodes into clocks in Xγ . Under the γ-clock-boundedness assumption, each time
we will require a new clock (because a new one has become active), there will
be (at least) one free clock in Xγ . Of course, we rename clocks in guards and
regions as well, and change the labels of the nodes accordingly (an element of
the label of a node is now a pair (`, σ) where ` is a location of A and σ : X 7→ Xγ

assigns to each clock of A its representative in the tree). The new object is still
infinite, but it has finitely many clocks. A node is now a tuple (?,K, r) where ?
is a marker, K is a subset of nodes in R(A∞) and r is a region over (a subset
of) Xγ . Now it is just a matter of noticing that two nodes with the same region
and the same labels are strongly timed bisimilar (in particular they are language
equivalent). Timed automaton BA,γ is obtained by merging such nodes.

Example 9. Observing Fig. 3, it is easy to see that SymbDet(A∞) is 2-clock-
bounded. So one can rename the clocks toX2 = {x1, x2}, for instance we can map
clocks with even indices to x1 and clocks with odd indices to x2. After this renam-
ing, nodes sharing the same label (that is: set of locations of A, mappings from X
to {x1, x2} and regions over {x1, x2}) can be merged. Indeed, one can show that
subtrees rooted at nodes with the same label are strongly timed bisimilar. For in-
stance, in our running example, nodes ({n0}, z0 = 0) and ({n4}, z2 = 0), labelled
respectively by {(`0, z0)} and {(`0, z2)} in SymbDet(R(A∞)), are merged into a
single location with region x1 = 0. The resulting timed automaton is depicted on
Fig. 4. In general, a location of this automaton is of the form ({(`j , σj) | j ∈ J}, r)
where J is a finite set, `j is a location of A, σj : X → X2, and r is a region over
a subset of X2. In our running example, there is a single clock x, hence we
assimilate σj with the value σj(x).

The correctness of the construction is stated in the following proposition.

Proposition 10. Assume that SymbDet(R(A∞)) is γ-clock-bounded. Then, BA,γ
is a deterministic timed automaton, and L(BA,γ) = L(A).

8

({(`0,x1)},x1=0)

({(`1,x1),(`3,x2)},0=x2<x1<1) ({(`1,x1),(`3,x2)},0=x2<x1=⊥) ({(`1,x1),(`3,x2)},0=x2<x1=1)

({(`0,x1),(`2,x1)},x1=0) ({(`2,x1)},x1=0)

0<x1<1,a

{x2}

x1>1,a

{x2}

x2>0,a

{x1}

x1=1,a

{x2}

x1=1,a

{x1}

0<
x2,
x1 6=

1,a

{x1}

0<x2<1<x1 ,ax1 :=0

x1=1,a

{x1}

0<
x
1<

1,a{x
2 }

x1
>
1,
a

{x2
} x1=

1,a

{x2}

Fig. 4. The deterministic version of A: the timed automaton BA,γ

3.5 Algorithmic issues and complexity

In this subsection, we shortly discuss the size of the automaton BA,γ and the
effectiveness of its construction. If A = (L, `0, Lacc, X,M,E) is a timed automa-
ton such that SymbDet(R(A∞)) is γ-clock-bounded (for some γ ∈ N), then the
timed automaton α(A, γ) = BA,γ has roughly 2|L| · γ|X| ·

(
(2M + 2)(γ+1)2 · γ!

)
locations because a location is characterized by a finite set of pairs (`, σ) with `
a location of A and σ : X → Xγ , and a region over Xγ .

The procedure we have described goes through the construction of infinite
objects. However, if we abstract away the complete construction, we know pre-
cisely how locations and transitions are derived. Hence, BA,γ can be computed
on-the-fly by guessing new transitions, and so can its complement (since BA,γ
is deterministic). A location of the automaton BA,γ can be stored in space log-
arithmic in α(A, γ), and we will thus be able to check for universality (e.g.) in
nondeterministic space log(α(A, γ)).

4 Our results

We will now investigate several classes of timed automata for which the procedure
described in Section 3 applies.

4.1 Some classes of timed automata are determinizable!

Automata satisfying the p-assumption (TAp). Given p ∈ N, we say that a
timed automaton A satisfies the p-assumption if for every n ≥ p, for every run
% = (`0, v0)

τ1,a1−−−→ (`1, v1) . . .
τn,an−−−→ (`n, vn) in A, for every clock x ∈ X, either x

is reset along % or vn(x) = ⊥. This assumption will ensure that we can apply the
previous procedure, because if A satisfies the p-assumption, SymbDet(R(A∞)) is
p-clock-bounded. Then we observe that any strongly non-Zeno timed automaton
(we write SnZTA for this class) satisfies the p-assumption for some p ∈ N which
is exponential in the size of the automaton. We thus get the following result:

9

Theorem 11. For every timed automaton A in SnZTA or in TAp, we can con-
struct a deterministic timed automaton B, whose size is doubly-exponential in
the size of A, and which recognizes the same language as A.

Event-clock timed automata (ECTA) [3]. An event-clock timed automaton
is a timed automaton that contains only event-recording clocks: for every letter
a ∈ Σ, there is a clock xa, which is reset at every occurrence of an a. It is easy
to see that the deterministic timed tree associated with such an automaton is
|Σ|-clock-bounded. Thus, applying our procedure, we recover the result of [3],
with the same complexity bound.

Theorem 12. For every timed automaton A in ECTA, we can construct a de-
terministic timed automaton B, whose size is exponential in the size of A, and
which recognizes the same language as A.

Timed automata with integer resets (IRTA) [9]. A timed automaton with
integer resets is a timed automaton in which every edge e = (`, g, a, Y, `′) is such
that Y is non empty if and only if g contains at least one atomic constraint of
the form x = c, for some clock x. In that case, we observe that the deterministic
timed tree associated with such an automaton is (M + 1)-clock-bounded. We
thus recover the result of [9], with the same complexity bound.

Theorem 13. For every timed automaton A in IRTA, we can construct a de-
terministic timed automaton B, whose size is doubly-exponential in the size of
A, and which recognizes the same language as A.

4.2 Deciding universality and inclusion

The universality and the inclusion problems are undecidable for the general
class of timed automata [2]. Given A and B two timed automata, the univer-
sality problem asks whether L(A) is the set of all finite timed words, and the
inclusion problem asks whether L(B) ⊆ L(A). When A belongs to one of the
above determinizable classes, we will be able to decide the universality and the
inclusion problems (there is no need to restrict automaton B). We establish now
the precise complexity of those problems, and start by providing a lower bound
for the universality problem.

Proposition 14. Checking universality in timed automata either satisfying the
p-assumption for some p or with integer resets is EXPSPACE-hard.

Proof (sketch). The idea of the proof is as follows. Given an exponential-space
Turing machine M with input word w0, we define a timed automaton AM,w0

such that AM,w0 is universal if and only if M does not halt on input w0. An
execution of M over w0 is encoded by a timed word, and AM,w0 will accept
all finite timed words that are not encodings of halting executions of M on w0.
Assuming |w0| = n, the maximal length of the tape is 2n, and a configuration

10

of M can be seen as a pair 〈q, w〉, where q is a control state of M and w is a
word of length 2n that represents the content of the tape (the position of the
tape head is marked by a dotted letter). We furthermore require that actions
are separated by precisely one time unit, which entails for instance that control
states should be separated by precisely 2n + 1 time units.

A finite timed word may not be the encoding of an halting computation inM
for several reasons: it is not the encoding of a proper execution inM, or it does
not end in the halting state, or actions do not occur at integer time points, or
control states are not separated by 2n+1 time units, etc. All these properties can
be described using either timed automata satisfying the p-assumption, or timed
automata with integer resets. For instance, a rule of the form (q, a, b, right, q′) can
be non-faithfully mimicked for two reasons: either the dotted letter (representing
the position of the head) is not transferred faithfully, (first automaton below) or
the rest of the configuration is not copied properly (second automaton below).

y=1,q,{y} y=1,ȧ,{x,y} y=1,x=2n+2,¬ḃ

y=1,{y} y=1,¬Q,{y} y=1,{y} y=1,{y}

y=1,q,{y} y=1,a,{x,y} y=1,x=2n+1,¬a

y=1,{y} y=1,¬Q,{y} y=1,{y} y=1,{y}

All other cases can be handled in a similar way, which concludes the proof. ut

This lower bound applies as well for the inclusion problem in the very same
classes of timed automata. Note that strongly non-Zeno timed automata are
never universal, but we can modify the above proof to show that the inclusion
problem is EXPSPACE-hard as well for strongly non-Zeno timed automata.

Summary of the results. We can summarize our results in the following table.
The column on the left indicates the subclass we consider. New results are in
red and italic, and in particular we can notice that there was no lower bound
known for the class IRTA.

size of the det. TA universality problem inclusion problem

TAp doubly exp. EXPSPACE-complete EXPSPACE-complete

SnZTA doubly exp. trivial EXPSPACE-complete

ECTA [3] exp. PSPACE-complete PSPACE-complete

IRTA [9] doubly exp. EXPSPACE-complete EXPSPACE-complete

11

5 Conclusion

In this paper, we proposed a general framework for the determinization of timed
automata by means of an infinite timed tree. We showed that for a wide range
of timed automata this infinite tree is language equivalent to a deterministic
timed automaton. The construction of this deterministic timed automaton yields
the basis for algorithms to check universality or language inclusion. Concerning
the complexity, these algorithms applied to event-clock timed automata [3] and
timed automata with integer resets [9] provide tight bounds. In addition, our
general framework yields the decidability of the universality problem for strongly
non-Zeno timed automata, which was not known before.

We have focused on finite timed words, but we believe the procedure can be
extended to timed automata over infinite timed words (with an ω-regular accept-
ing condition), by incorporating a Safra-like construction in our procedure. In
that framework the strong non-Zenoness assumption will even take more sense,
and we thus claim that strongly non-Zeno timed automata are determinizable!

References

1. S. Adams, J. Ouaknine, and J. Worrell. Undecidability of universality for timed
automata with minimal resources. In Proc. 5th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’07), volume 4763 of Lecture
Notes in Computer Science, pages 25–37. Springer, 2007.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, L. Fix, and Th. A. Henzinger. A determinizable class of timed automata.
In Proc. 6th International Conference on Computer Aided Verification (CAV’94),
volume 818 of Lecture Notes in Computer Science, pages 1–13. Springer, 1994.

4. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-
tomata. In Proc. IFAC Symposium on System Structure and Control, pages 469–474.
Elsevier Science, 1998.

5. D. D’Souza and N. Tabareau. On timed automata with input-determined guards.
In Proc. Joint Conference on Formal Modelling and Analysis of Timed Sys-
tems and Formal Techniques in Real-Time and Fault Tolerant System (FOR-
MATS+FTRTFT’04), volume 3253 of Lecture Notes in Computer Science, pages
68–83. Springer, 2004.

6. O. Finkel. Undecidable problems about timed automata. In Proc. 4th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’06),
volume 4202 of Lecture Notes in Computer Science, pages 187–199. Springer, 2006.

7. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. In Proc. 19th Annual Symposium on Logic in Computer
Science (LICS’04), pages 54–63. IEEE Computer Society Press, 2004.

8. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science, 3(1:8), 2007.

9. P. V. Suman, P. K. Pandya, S. N. Krishna, and L. Manasa. Timed automata with
integer resets: Language inclusion and expressiveness. In Proc. 6th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’08),
volume 5215 of Lecture Notes in Computer Science, pages 78–92. Springer, 2008.

12

Technical Appendix

Environments numbered with letters do not appear in the core of the paper.

Complements for Section 2

Infinite timed trees. An infinite timed tree is a tuple T = (N,Nacc, Z,M, Lab, level , label , E)
where (i) N is a countable set of nodes, (ii) Nacc ⊆ N is a set of accepting nodes,
(iii) Lab is a set of labels, (iv) level : N → N is a function that gives a level to each
node, (v) label : N → Lab labels each node with some element of Lab, (vi) Z is a
countable set of clocks, and (vii) E ⊆ N×GM (Z)×Σ×2(Z)×N is an infinite set
of edges (where 2(Z) denotes the finite subsets of Z) such that (n, g, a, Y, n′) ∈ E
implies level(n′) = level(n) + 1, for every node n′ with level(n′) > 0 there is a
single node n for which there can exist edges with pattern e = (n, , , , n′), and
for every node n, there are finitely many edges with pattern (n, , , ,) (the tree
is finitely branching).

The semantics of a labelled infinite timed tree is a timed transition system,
defined as an easy extension of that for timed automata.

Proofs and complements for Subsection 3.1

Let A = (L, `0, Lacc, X,M,E) be a timed automaton. We define the infinite
timed tree A∞ = (N∞, N∞acc, Z,M,L× ZX , level , label , E∞) as follows:

– its set of clocks is Z = {zi | i ∈ N};
– there is one node n`0 ∈ N∞ with level(n`0) = 0 and label(n`0) = (`0, σ0)

where σ0(x) = z0 for each x ∈ X;
– assume that we have constructed all nodes of level i. For each such node n

(with label(n) = (`, σ)) and for each transition `
g,a,Y−−−→ `′ inA, we add a node

n′ such that label(n′) = (`′, σ′) with σ′(x) = σ(x) if x ∈ X \ Y and σ′(x) =

zi+1 if x ∈ Y , level(n′) = i+1 and we add a transition n
g[x←σ(x)],a,{zi+1}−−−−−−−−−−−−→ n′

to E∞;
– a node n ∈ N∞ is accepting (in N∞acc) if label(n) = (`, σ) with ` ∈ Lacc.

Note that for each node n of the tree A∞, if level(n) = i and label(n) = (`, σ),
then σ(X) ⊆ Zi = {z0, . . . , zi}. This can easily be proved by induction on the
level i. Based on this observation, we assume in the sequel that such a σ denotes
a function in ZXi (instead of ZX). Moreover, this observation leads to another
one, on valuations. A valuation of this “infinite” timed automaton is a priori a
function from the countable set Z to T, but at level i, only values of clocks in
Zi really make sense. Hence in the sequel, when writing a configuration (n, v),
we will assume that v is a valuation on Zi if level(n) = i, rather than on the
countable set of clocks Z.

i

Lemma 3. The relation R1 between states of A and states of A∞ defined by
(`, v ◦ σ) R1 (n, v) if label(n) = (`, σ) is a strong timed bisimulation.

Proof. We prove that R1
−1 is a strong timed simulation of A∞ by A. In the

rest of the proof, we assume that (`, v ◦ σ) R1 (n, v) where label(n) = (`, σ)
and level(n) = i. We first focus on continuous transitions, and we assume that:
(n, v) t−→ (n, v+ t) for some t ∈ R+. The continuous transition (`, v ◦σ) t−→ (`, (v ◦
σ)+t) also makes sense in A and we clearly have that (`, (v◦σ)+t) R1 (n, v+t).
We now focus on discrete transitions and we assume that (n, v) a−→ (n′, v′) in A∞
with label(n′) = (`′, σ′). There exists an edge (n, g̃, a, {zi+1}, n′) in A∞, with
v |= g̃. This edge corresponds to some edge (`, g, a, Y, `′) in A, with g[x←σ(x)] = g̃.
We clearly have that v satisfies the guard g̃ if and only if v ◦ σ satifies g. In
particular, there is a transition (`, v ◦ σ) a−→ (`′, ṽ) which makes sense in A. It
remains to prove that ṽ = v′ ◦ σ′. If x /∈ Y , ṽ(x) = v(σ(x)) and σ(x) = σ′(x),
thus ṽ(x) = v′(σ′(x)) (because σ(x) 6= zi+1). If x ∈ Y , then σ′(x) = zi+1 and
thus ṽ(x) = 0 = v′(σ′(x)) = v′(zi+1). We thus obtain the desired result in both
cases (time elapsing as well as discrete transitions).

The proof in the other direction follows exactly the same lines. ut

In particular, as the relation R1 preserves initial and accepting states, we
immediately obtain the following corollary.

Corollary A For every level-i node n of A∞, for every valuation v ∈ T
Zi

L(A∞, (n, v)) = L(A, (`, v ◦ σ)).

Proofs and complements for Subsection 3.2

The classical region abstraction extends to the labelled infinite timed tree A∞
using the following lemma.

Lemma B The relation ≡M defined on states of A∞ by

(n, v) ≡M (n, v′) if level(n) = i and v ≡Zi,M v′

is a time-abstract bisimulation.

Proof. Assume that there exists t ∈ R
+ such that: (n, v) t−→ (n, v + t) and

(n, v) ≡M (n, v′). Since v ≡Zi,M v′, and ≡Zi,M is a time-abstract bisimula-
tion, there exists t′ ∈ R+ such that (v + t) ≡Zi,M (v′ + t′). This implies that

(n, v + t) ≡M (n, v′ + t′) with (n, v′) t′−→ (n, v′ + t′).
Assume now that there exists a ∈ Σ such that (n, v) a−→ (ñ, ṽ) and (n, v) ≡M

(n, v′) with level(n) = i and label(n) = (`, σ). In particular there exists an
edge e in A∞ of the form (n, g, a, {zi+1}, ñ) such that the valuation v satisfies
the guard g. Since v ≡Zi,M v′, and g only constrains clocks in Zi, valuation
v′ also satisfies the guard g. Hence the edge e can also be taken from (n, v′),

ii

and there exists a valuation ṽ′ with (n, v′) a−→ (ñ, ṽ′). It remains to prove that
(ñ, ṽ) ≡M (ñ, ṽ′). By definition of A∞, level(ñ) = i+ 1, so we need to show that
ṽ ≡Zi+1,M ṽ′. To see this, observe that v and ṽ (respectively v′ and ṽ′) agree on
the values for the clocks in Zi (since only the clock zi+1 has been reset on e).
Moreover, ṽ(zi+1) = ṽ′(zi+1) = 0, since clock zi+1 was reset along edge e. Hence
ṽ ≡Zi+1,M ṽ′ and thus (ñ, ṽ) ≡M (ñ, ṽ′). ut

We construct a region abstraction for A∞ that we call R(A∞). At level i the
regions are those associated with the set of clocks Zi. The region abstraction
is intuitively the quotient of A∞ by the region equivalence ≡M exhibited in
Lemma B. Precisely, R(A∞) is an infinite labelled timed tree defined as follows:

– (n`0 , z0 = 0) is the initial node. As n`0 it has level 0 and label (`0, σ0);
– assume all nodes of level i have been constructed. For each node (n, r) of

level i and for each transition n
g,a,Y−−−→ n′ in A∞, for every basic constraint

r′′ ∈ RegZiM such that r′′ is a time-successor of r and r′′ |= g, we add a level-

(i+ 1) node (n′, r′) and an edge (n, r)
r′′,a,Y−−−−→ (n′, r′), where r′ ∈ Reg

Zi+1
M is

the region obtained from r′′ by adding the contraint zi+1 = 0.
If label(n′) = (`′, σ′), the label of the new node (n′, r′) is set to (`′, σ̃′) where
σ̃′(x) = ⊥ if r′ ∩ (σ′(x) ≤M) = ∅, and σ̃′(x) = σ′(x) otherwise.6

– a node (n, r) is accepting if n is accepting in A∞.

Remark C In the timed transition system associated with R(A∞), all config-
urations that are visited are of the form ((n, r), v) with v ∈ r. Furthermore, if
label(n, r) = (`, σ), then σ(x) 6= ⊥ implies r ⊆ (σ(x) ≤M).

Lemma 5. The relation R2 defined between states of A∞ and states of R(A∞)
by (n, v) R2 ((n, r), v) if v ∈ r is a strong timed bisimulation.

Proof. We first prove that R2 is a timed strong similuation of A∞ by R(A∞).
Let n be a level-i node in A∞, and v be a valuation over Zi, and assume that
v ∈ r (hence (n, v) R2 ((n, r), v)). Assume that (n, v)

t,a−−→ (n′, v′) in A∞. This

transition comes from some edge n
g,a,Y−−−→ n′ in A∞, with v + t |= g and v′ is a

valuation over Zi+1 such that v′(z) = v(z)+ t for all z ∈ Zi and v′(zi+1) = 0. By

construction of R(A∞), there exists an edge (n, r)
r′′,a,Y−−−−→ (n′, r′) with r = [v]

r′′ = [v+ t], and r′ = [v′]. Hence, there is a transition ((n, r), v)
t,a−−→ ((n′, r′), v′)

in R(A∞). Since trivially (n′, v′) R2 ((n′, v′), r′), we get the desired result.
We now prove that R2 is a strong timed simulation of R(A∞) by A∞. Let

(n, r) be a level-i node in R(A∞) and v a valuation over Zi such that v ∈
r. Assume ((n, r), v)

t,a−−→ ((n′, r′), v′). There must exist an edge (n, r)
r′′,a,Y−−−−→

(n′, r′) in R(A∞) with r = [v], r′′ = [v + t] and r′ = [v′]. Then, by definition of
6 Informally, we record with the label how clocks of the original automaton should be

mapped onto the clocks of the tree, but in case its value is ⊥ (meaning larger than
the maximal constant), then we set it to ⊥ because the precise reference to a clock
of the tree is not relevant anymore.

iii

R(A∞), there is an edge n
g,a,Y−−−→ n′ with r′′ |= g. Since v + t |= r′′, this edge

can be taken from (n, v + t): then (n, v)
t,a−−→ (n′, ṽ′) is a possible move in A∞

for some valuation ṽ′. Obviously ṽ′ = v′ and (n′, v′) R2 ((n′, r′), v′), hence the
result. ut

As the construction of R(A∞) preserves initial and accepting states, we get
the following corollary.

Corollary D For every level-i node n of A∞ and any valuation v ∈ T
Zi , if

r = [v], then L(R(A∞), ((n, r), v)) = L(A∞, (n, v)).

This property of R(A∞) will ensure that a symbolic determinization will
coincide with a real determinization of the underlying timed system.

Proofs and complements for Subsection 3.3

The infinite timed tree R(A∞), as A∞, has some input-determinacy property [5]:

Lemma E Let u be a finite timed word that can be read from (n0, 0̄) in A∞.
There is a unique sequence τu ∈ (RegM×Σ×2Z)|u| (where RegM =

⋃
i≥0 RegZiM),

a unique region ru ∈ Reg
Z|u|
M , and a unique valuation vu ∈ ru such that for every

initial run % in R(A∞) that reads u, the underlying sequence of edges for % is
τu,and % ends in some state ((n′, ru), vu) with level(n′) = |u|.

Proof. The proof is by induction on the length of the timed word u. The base
case |u| = 0 is trivial: there is a unique initial run on the empty word in R(A∞).

Assume that u = w · (a, t), that t′ is the largest time-stamp appearing in w,
and that the lemma holds for w. There exists a unique sequence τw ∈ (G(Z)×Σ×
2Z)|w|, a unique region rw over Z|w| and a unique valuation vw in rw satisfying the
conditions of the lemma. Let g be the region over Z|w| corresponding to valuation
vw + t− t′. By definition of R(A∞), for all initial runs, the last transition fired
while reading u is labelled (g, a, {z|u|}). The underlying sequence of edges for all
initial runs on u is thus τw concatenated with (g, a, {z|u|}). The arrival region

ru ∈ Reg
Z|u|
M is also uniform, and corresponds to the region g together with the

constraint z|u| = 0. Moreover the nodes have level |u|, since they are children of
level |w| (= |u|−1) nodes. This completes the induction step, and concludes the
lemma. ut

Lemma F Assume n (resp. n′) is a level-i (resp. level-(i+1)) node in A∞ with

label(n) = (`, σ) (resp. label(n′) = (`′, σ′)), and that (n, r)
g,a,{zi+1}−−−−−−−→ (n′, r′) is

a transition of R(A∞). Take any set S ⊇ σ(X). For every region r̃ over Zi such
that r̃|S = r|S and (n, r̃) is a node of R(A∞), for every g̃ that is a time-successor

of r̃ and such that g̃|S = g|S, there is a transition (n, r̃)
eg,a,{zi+1}−−−−−−−→ (n′, r̃′) for

some r̃′ so that r̃′|S′ = r′|S′ where S′ = S ∪ {zi+1} (note that in particular,
S′ ⊇ ((S \ σ(X)) ∪ σ′(X))).

iv

Proof. First notice that the edge (n, r)
g,a,{zi+1}−−−−−−−→ (n′, r′) in R(A∞) comes from

an edge n
g′,a,{zi+1}−−−−−−−→ n′ in A∞ (where g is a basic region-based constraint

entailing g′), which itself comes from an edge `
g′′,a,Y−−−−→ `′ inA with g′′[x←σ(x)] = g′.

Let ṽ ∈ r̃ and t̃ ∈ R+ such that ṽ + t̃ ∈ g̃. As r̃|S = r|S and g̃|S = g|S ,
there is v ∈ r and t ∈ R+ such that v + t ∈ g and (v + t)|S = (ṽ + t̃)|S . This

yields a move ((n, r), v)
t,a−−→ ((n′, r′), v′) with label(n′, r′) = (`′, σ′). We have

that ((n, r), v) and (`, v ◦ σ) are strongly timed bisimilar (by composing the two
strong timed bisimulations R2 and R1, see Lemma 5 and Lemma 3). Thus, in
A, there is a move (`, v ◦ σ)

t,a−−→ (`′, v′ ◦ σ′), and as σ(X) ⊆ S, we have that

(ṽ ◦ σ) + t̃ = (v ◦ σ) + t and thus that there is a move (`, ṽ ◦ σ)
et,a−−→ (`′, v′ ◦ σ′).

Hence due to Lemma 5 and Lemma 3, there is a move ((n, r̃), ṽ)
et,a−−→ ((n′, r̃′), ṽ′)

for some r̃′ and some ṽ′ ∈ r̃′. Hence there is a transition (n, r̃)
eg,a,{zi+1}−−−−−−−→ (n′, r̃′)

in R(A∞). We have that ṽ′(z) = ṽ(z) + t̃ = v(z) + t = v′(z) if z ∈ S, and
that ṽ′(zi+1) = 0 = v′(zi+1). Thus, we get that r̃′S′ = r′S′ , which concludes the
proof. ut

Starting withR(A∞) we build an infinite timed tree SymbDet(R(A∞)), which
is deterministic and accepts the same timed language as R(A∞). It is constructed
as follows.

– its initial node is N0 = (?0, {n0}, r0) where ?0 is a marker, r0 is the initial
region defined by (z0 = 0), and label(N0) = {(`0, σ0)} with σ0(x) = z0 for
every x ∈ X;

– assume all level-i nodes have been built and are of the form N = (?,K, r)
where:
• ? is a marker that identifies that node7

• K is a finite subset of level-i nodes of R(A∞),
• label(N) = {(`, σ) | ∃n ∈ K s.t. label(n) = (`, σ)},
• setting Act(K) =

⋃
(`,σ)∈label(N) σ(X), r is a region over set of clocks

Act(K). Act(K) is a subset of Zi called the set of active clocks in K.8

We write Act(N) for Act(K) whenever N = (?,K, r).
We pick a level-i node N = (?,K, r). For every (g, a) where g is a region over
Act(K), we create a new node N ′ = (?′,K ′, r′) (where ?′ is a new marker
not used elsewhere) whenever

K ′ = {n′ | ∃(n, r̃) eg,a,{zi+1}−−−−−−−→ (n′, r̃′) transition of R(A∞)
s.t. r̃|Act(K) = r, g̃|Act(K) = g}

and r̃′|Act(K′) = r′. In the above definition, we have the following:

7 Markers ensure that we construct a tree and not a DAG.
8 Note that if zi ∈ Act(K), then r ⊆ (zi ≤M) (i.e. zi is bounded in r).

v

r̃: region over set of clocks Zi
r̃′: region over set of clocks Zi+1

r̃|Act(K): region over set of clocks Act(K) ⊆ Zi
r̃′Act(K′): region over set of clocks Act(K ′) ⊆ Zi+1

We add a transition N
g,a,{zi+1}−−−−−−−→ N ′ to the tree. Node N ′ has level i + 1

and label {label(n′) | n′ ∈ K ′};
– a level-i node N is accepting if it contains an accepting node.

Remark G It is easy to see that a configuration (N, v) with N = (?,K, r) can
be reached in the timed transition system associated with SymbDet(R(A∞)) iff
v ∈ r. We call such a configuration a safe configuration.

Also, if N = (?,K, r) is a node of SymbDet(R(A∞)), and if (`, σ) ∈ label(N),
then for every clock x ∈ X, σ(x) 6= ⊥ implies r ⊆ (σ(x) ≤M).

We will see in Proposition 7 that this construction ensures that SymbDet(R(A∞))
is deterministic and it accepts the same finite timed words as R(A∞).

Proposition 7. SymbDet(R(A∞)) is a deterministic timed tree, and for every
node N = (?,K, r) and for every valuation v ∈ TAct(K) with v ∈ r,

L(SymbDet(R(A∞)), (N, v)) =
⋃
n∈K
L(R(A∞), ((n, r), v))

Proof. By construction, because of the markers ?, this is an infinite timed tree.
Assume that it is not deterministic. It means that there is a node N = (?,K, r)

and two transitions N
g1,a,{zi}−−−−−−→ N1 and N

g2,a,{zi}−−−−−−→ N2 such that g1 ∩ g2 6= ∅
and N1 6= N2. Both g1 and g2 are regions over Act(K), hence g1 = g2. This
is not possible, because we have constructed a single node for every pair (g, a)
where g is a region over Act(K). Hence SymbDet(R(A∞)) is deterministic.

We turn to the second property, and start proving it from the initial configu-
ration (N0, v0) of SymbDet(R(A∞)), where N0 = (?0,K0, r0) with r0 = (z0 = 0)
and v0(z0) = 0. Let u be a finite timed word that can be read from (N0, v0) in
SymbDet(R(A∞)).

– As SymbDet(R(A∞)) is deterministic, when reading u from (N0, v0) we reach
a single configuration (Nu, vu) with Nu = (?u,Ku, ru) and vu ∈ ru. Note that
vu is a valuation over set of clocks Act(Ku) ⊆ Z|u|.

– The timed word u may also be read in R(A∞) from initial configuration
((n0, r0), v0). Applying Lemma E, we have that there is a single valuation ṽu
and a single region r̃u (with ṽu ∈ r̃u) such that any path in R(A∞) starting
from ((n0, r0), v0) and reading u leads to some configuration ((ñu, r̃u), ṽu).
We write K̃u for the set of such nodes ñu. Note that ṽu is a valuation over
set of clocks Z|u|.

vi

We will prove the following property, by induction on the length of u:

Ku = K̃u and vu = ṽu|Act(Ku) (1)

This property obviously holds for the empty word. We now assume that this
property holds for a timed word w, and we assume that u = w(a, t). We further-
more note t′ the last time stamp appearing in w. In R(A∞), there is at least one
path of the form:

((n0, r0), v0) w; ((n, r̃w), ṽw)
t−t′,a−−−−→ ((n′, r̃u), ṽu).

Recall from Lemma E that the valuation ṽw (resp. ṽu) is independant of the
path of R(A∞) reading w (resp. u). Valuation ṽu can be obtained from ṽw by:
for every z ∈ Z|u|,

ṽu(z) =

{
0 if z = z|u|

ṽw(z) + t− t′ if z 6= z|u|

In SymbDet(R(A∞)), we have that

(N0, v0) w; (Nw, vw)
t−t′,a−−−−→ (Nu, vu)

and vu is a valuation over Act(Ku). The last move above comes from a transition

Nw
r′′,a,{z|u|}−−−−−−−→ Nu in SymbDet(R(A∞)). Furthermore, we have that vw+t−t′ |=

r′′ and vu =
(
[z|u| ← 0](vw + t− t′)

)
|Act(Ku)

.
Take nu ∈ Ku. By construction of SymbDet(R(A∞)), there exist nw ∈ Kw

and a transition (nw, r)
r′′,a,{z|u|}−−−−−−−→ (nu, r′) in R(A∞) such that r|Act(Kw) = rw,

r′′|Act(Kw) = r′′, and r′|Act(Ku) = ru. Let z ∈ Act(Ku):

vu(z) =
{

0 if z = z|u|
vw(z) + t− t′ if z ∈ Act(Ku) \ {z|u|}

As Act(Ku) \ {z|u|} ⊆ Act(Kw) and as vw(z) = ṽw(z) for every z ∈ Act(Kw)
(by induction hypothesis), we get that

vu(z) =
{

0 if z = z|u|
ṽw(z) + t− t′ if z ∈ Act(Ku) \ {z|u|}

= ṽu(z)

Hence, ṽu|Act(Ku) = vu and also r̃u|Act(Ku) = ru.
Now, by induction hypothesis, nw ∈ Kw = K̃w, hence in R(A∞), there is an

execution reading w of the form

((n0, r0), v0) w; ((nw, r̃w), ṽw)

and ṽw|Act(Kw) = vw, and r̃w|Act(Kw) = rw. In particular, r|Act(Kw) = r̃w|Act(Kw).
Applying Lemma F, if r′′ = [ṽw + t − t′], we get that there is a transition

vii

(nw, r̃w)
r′′,a,{z|u|}−−−−−−−→ (nu, ru) such that r′′|Act(Kw) = r′′|Act(Kw) = r′′ and ru|Act(Ku) =

r′|Act(Ku) = ru. The transition ((nw, r̃w), ṽw)
t−t′,a−−−−→ ((nu, ru), ṽu) is thus possi-

ble, and nu ∈ K̃u.
Conversely assume that nu ∈ K̃u. There is an execution

((n0, r0), v0) w; ((nw, r̃w), ṽw)
t−t′,a−−−−→ ((nu, r̃u), ṽu)

for some nw ∈ K̃w = Kw (by i.h.), and the last move comes from a transition

of the form (nw, r̃w)
r′′,a,{z|u|}−−−−−−−→ (nu, r̃u) in R(A∞), where ṽw + t − t′ |= r′′ and

ṽu = [z|u| ← 0](ṽw + t − t′). This transition is a witness for the construction of

some N from Nw with a transition Nw
g,a,{z|u|}−−−−−−→ N with g = r′′|Act(Kw) because

r̃w|Act(Kw) = rw and r̃|Act(Ku) = ru. It remains to see that this transition can

be concretized into (Nw, vw)
t−t′,a−−−−→ (N, v) for some v, because vw + t − t′ =

(ṽw + t− t′)|Act(Kw) |= g. Hence there is a run

(N0, v0) w; (Nw, vw)
t−t′,a−−−−→ (N, v)

that can be rewritten as
(N0, v0) u; (N, v)

which yields (Nu, vu) = (N, v). Hence, nu ∈ Ku, which concludes the proof.
In particular, we conclude that

L(SymbDet(R(A∞)), (N0, v0)) = L(R(A∞), ((n0, r0), v0)).

Now fix a configuration (N, v) of SymbDet(R(A∞)), and say it is reachable
reading the timed words w, whose duration is d. Note in particular that v = vw
and that N = (?,Kw, rw). Then:

L(SymbDet(R(A∞)), (N, v)) = {u | w · (u+ d) ∈ L(SymbDet(R(A∞)), (N0, v0))}
= {u | w · (u+ d) ∈ L(R(A∞), ((n0, r0), v0))}
=

⋃
n∈Kw

L(R(A∞), ((n, rw), ṽw))

=
⋃

n∈Kw

L(A∞, (n, ṽw))

=
⋃

n∈Kw|label(n)=(`,σ)

L(A, (`, ṽw ◦ σ))

=
⋃

(`,σ)∈label(N)

L(A, (`, ṽw ◦ σ))

=
⋃

(`,σ)∈label(N)

L(A, (`, v ◦ σ))

(because σ(X) ⊆ Act(Kw))

viii

This concludes the proof of the proposition. ut

Corollary H The relation R3 between safe configurations of SymbDet(R(A∞))
defined by

(N1, v1) R3 (N2, v2) if v1 = v2 and label(N1) = label(N2)

is a strong timed bisimulation.

Proof. The proof of Proposition 7 ensures that (N1, v1) and (N2, v2) are language-
equivalent in SymbDet(R(A∞)). Since SymbDet(R(A∞)) is deterministic, they
are thus also strongly timed bisimilar. ut

The previous corollary can be generalized. Let N1 = (?1,K1, r1) and N2 =
(?2,K2, r2) be two nodes of SymbDet(R(A∞)). We say that they are equivalent
w.r.t. a bijection ι : Act(N1)→ Act(N2) whenever label(N1) = {(`j , σj) | j ∈ J}
implies label(N2) = {(`j , ι ◦ σj) | j ∈ J}, and r1[z←ι(z)] = r2.

Lemma I The relation R4 between safe configurations of SymbDet(R(A∞)) de-
fined by

(N1, v1) R4 (N2, v2) if there is a bijection ι s.t. N1 and N2

are equivalent w.r.t. ι and v1 = v2 ◦ ι

is a strong timed bisimulation.

Proof. Assume that (N1, v1)
t,a−−→ (N ′1, v

′
1) and (N1, v1) R4 (N2, v2). Thus there

exists an edge e1 = (N1, g1, a, {y1}, N ′1) in SymbDet(R(A∞)). Since (N1, v1) R4

(N2, v2), valuations v1 and v2 satisfy v1[z←ι(z)] = v2, and hence (v1 + t)[z←ι(z)] =
(v2 + t). Thus, the regions of (v1 + t)[z←ι(z)] and (v2 + t) coincide. Moreover
[v1 + t] corresponds to the guard g1 in the edge e1. Since N1 and N2 share the
same set of locations, by construction of SymbDet(R(A∞)), there is a transition
e2 = (N2, g2, a, {y2}, N ′2) in SymbDet(R(A∞)) such that g2 = g1[z←ι(z)] = [v2+t].
Clearly v1 |= g1 if and only if v2 |= g2. Thus the transition e2 is firable from
(N2, v2 + t). Let (N ′2, v

′
2) be the configuration reached from (N2, v2 + t) after

e2 has been fired, i.e. we have that (N2, v2)
t,a−−→ (N ′2, v

′
2). It remains to prove

that (N ′1, v
′
1) R4 (N ′2, v

′
2). Bijection ι can be extended in a unique way into ι′

by letting ι′(y1) = y2 and ι′(y) = ι(y) if y 6= y1. In particular, we have that
v′2(ι′(y1)) = v′2(y2) = v′1(y1) = 0. Let us now consider y 6= y2, we have that

v′2(y) = v2(y) since y 6= y2

= v1(ι−1(y)) since v1 = v2 ◦ ι
= v′1(ι−1(y)) since ι−1(y) 6= y1

Thus, we have that v′1 = v′2 ◦ ι. A similar reasoning can be made for the labels of
N ′1 and N ′2, and we get that N ′1 and N ′2 are equivalent w.r.t. ι′. This concludes
the proof. ut

ix

Remark J In case A has a single clock x, a level-i node of SymbDet(R(A∞))
carries the following information: a finite set of pairs of the form (`, x 7→ zj)
for some j ≤ i and a region for clocks in Zi. Hence we can see such a level-i
node as a pair (P, r) where P ⊆ L × Zi and r ∈ RegZiM , and we will say that
(i, P, r) � (i′, P ′, r′) whenever i ≤ i′, and there is an injection κ : Zi 7→ Zi′

such that
(
r′|κ(Zi)

)
= r[z←κ(z)] and {(`, κ(z)) | (`, z) ∈ P} ⊆ P ′. This view of a

node actually coincides with the word encoding and the subword relation proposed
in [7], and we can prove that � is indeed a well-quasi-order. We thus recover
the decidability of the universality problem in single-clock timed automata (over
finite timed words) [7].

Proofs and complements for Subsection 3.4

Let γ ∈ N. We say that SymbDet(R(A∞)) is γ-clock-bounded if for every node
N of SymbDet(R(A∞)), |Act(N)| ≤ γ. Under this assumption we will be able
to bound the number of clocks in the infinite tree. We let Xγ = {x1, . . . , xγ},
and we define inductively for every node N of SymbDet(R(A∞)) an injective
function Γγ [N] : Act(N)→ Xγ :

– For the initial node N0, we let Γγ [N0](z0) = x1.
– Let N = (?,K, r) be a level-i node, and assume that we have defined properly

Γγ [N]. Consider a transition N
g,a,Y−−−→ N ′ in SymbDet(R(A∞)). We define

Γγ [N ′] : Act(N ′)→ Xγ as follows:

Γγ [N ′](zj) =

Γγ [N](zj) if zj ∈ Act(N) ∩Act(N ′)
xk if zj ∈ Act(N ′) \Act(N),

where k = min{h | xh /∈ Γγ [N](Act(N) ∩Act(N ′))}

There is at most one additional clock in Act(N ′) compared with Act(N) (this
is zi+1), and if all clocks were used in N (i.e., Γγ [N](Act(N)) = Xγ) and
zi+1 becomes active, it means that a clock in Act(N) has been desactivated.

Let N = (?,K, r) be a node of SymbDet(R(A∞)). We replace node N by a
node Γγ(N) = (?,K, r[z←Γγ [N](z)]) and set its label to {(`, Γγ [N] ◦ σ) | (`, σ) ∈
label(N)}. Just remark that in the above set, Γγ [N]◦σ is an application from X
to Xγ . We define in a natural way the infinite timed tree Γγ(SymbDet(R(A∞)))

from SymbDet(R(A∞)) by replacing any transition N
g,a,Y−−−→ N ′ by a transition

Γγ(N)
g[z←Γγ [N](z)],a,Γγ [N ′](Y)
−−−−−−−−−−−−−−−−→ Γγ(N ′).

Lemma K If SymbDet(R(A∞)) is γ-clock-bounded, the relation R5 between
states of SymbDet(R(A∞)) and states of Γγ(SymbDet(R(A∞))) defined by

(N, v ◦ Γγ [N]) R5 (Γγ(N), v)

is a strong timed bisimulation.

x

Proof. Let us first notice that, by construction of Γγ(SymbDet(R(A∞))), we have

that the edge N
g,a,Y−−−→ N ′ exists in SymbDet(R(A∞)) if and only if the edge

Γγ(N)
g[z←Γγ [N](z)],a,Γγ [N ′](Y)
−−−−−−−−−−−−−−−−→ Γγ(N ′) exists in Γγ(SymbDet(R(A∞))). More-

over, we have that the valuation v satisfies the guard g[z←Γγ [N](z)] if and only
if the valuation v ◦ Γγ [N] satisfies the guard g. From the previous discussion,

one can conclude that the transition (N, v ◦ Γγ [N])
t,a−−→ (N ′, ṽ′) makes sense in

SymbDet(R(A∞)) if and only if the transition (Γγ(N), v)
t,a−−→ (Γγ(N ′), v′) makes

sense in Γγ(SymbDet(R(A∞))). Let us now evaluate the reached valuations in
both cases in order to conclude the proof by showing that ṽ′ = v′ ◦ Γγ [N ′]. For
all x ∈ Xγ , we have that:

v′(x) =

{
v(x) if x /∈ Γγ [N ′](Y)
0 if x ∈ Γγ [N ′](Y).

For all z ∈ Act(N ′), we have that:

ṽ′(z) =

{
v ◦ Γγ [N](z) if z /∈ Y
0 if z ∈ Y.

If z ∈ Act(N)∩Act(N ′), we clearly have that z /∈ Y and Γγ [N ′](z) /∈ Γγ [N ′](Y);
we can thus conclude that:

ṽ′(z) = v ◦ Γγ [N](z) since z /∈ Y
= v ◦ Γγ [N ′](z) since z ∈ Act(N) ∩Act(N ′)
= v′ ◦ Γγ [N ′](z) since Γγ [N ′](z) /∈ Γγ [N ′](Y).

If z ∈ Act(N ′)\Act(N), then z ∈ Y and Γγ [N ′](z) = xk, where xk is the unique
clock in Γγ [N ′](Y), thus

ṽ′(z) = 0 = v′(xk) = v′ ◦ Γγ [N ′](z).

Hence we have proved that ṽ′ = v′ ◦ Γγ [N ′], which concludes the proof. ut

Lemma L Γγ(SymbDet(R(A∞))) is a deterministic timed labelled tree.

Proof. Since the functions Γγ(N) are injective, for all z, z′ ∈ Act(N) we have
that if z 6= z′ then Γγ [N](z) 6= Γγ [N](z′). In particular, if two guards g and
g′ of SymbDet(R(A∞)) are disjoint, the corresponding guards g[z←Γγ [N](z)] and
g′[z←Γγ [N](z)] are also disjoint in Γγ(SymbDet(R(A∞))). Since SymbDet(R(A∞))
is a deterministic timed labelled tree (see Proposition 7), we can thus conclude
that it is also the case of Γγ(SymbDet(R(A∞))). ut

Corollary M For every configuration (N, v) of SymbDet(R(A∞)),

L(Γγ(SymbDet(R(A∞))), (Γγ(N), v)) = L(SymbDet(R(A∞)), (N, v ◦ Γγ [N]))

xi

Lemma N Assume that SymbDet(R(A∞)) is γ-clock-bounded. The relation R6

between safe 9 configurations of Γγ(SymbDet(R(A∞))) defined by

(Γγ(N1), v1) R6 (Γγ(N2), v2) if v1 = v2 and label(Γγ(N1)) = label(Γγ(N2))

is a strong timed bisimulation.

Proof. First, let us notice that Lemma K ensures that (Γγ(Ni), vi) and (Ni, vi ◦
Γγ [Ni]) are strongly timed-bisimilar (for i = 1, 2).

We have that

Γγ [Ni](Act(Ni)) = Γγ [Ni](
⋃

(`,σ)∈label(Ni)

σ(X))

=
⋃

(`,σ)∈label(Ni)

Γγ [Ni](σ(X))

=
⋃

(`,σ′)∈label(Γγ(Ni))

σ′(X)

by definition of label(Γγ(Ni)). Since label(Γγ(N1)) = label(Γγ(N2)), we get
that Γγ [N1](Act(N1)) = Γγ [N2](Act(N2)). This allows to define a bijection ι :
Act(N1)→ Act(N2) defined by ι = Γγ [N2]−1 ◦Γγ [N1] (this is possible as Γγ [Ni]
is injective). In particular, we have that if label(N1) = {(`j , σj) | j ∈ J} then
label(N2) = {(`j , ι ◦ σj) | j ∈ J}, and (r1)[z←ι(z)] = r2. This means that the two
nodes N1 and N2 are equivalent w.r.t. ι. Hence, since v1◦Γγ [N1] = v2◦Γγ [N2]◦ι,
we can conclude that (N1, v1◦Γγ [N1]) and (N2, v2◦Γγ [N2]) are strongly bisimilar
by using Lemma I.

To conclude the proof, we combine the bisimulations, using the previously
defined notations, we have proved that:

(Γγ(N1), v1) R5 (N1, v1 ◦ Γγ [N1]) R4 (N2, v2 ◦ Γγ [N2]) R5 (Γγ(N2), v2)

Thus the relation R6 is a strong timed bisimulation. ut

Remark O Furthermore, since Γγ(SymbDet(R(A∞))) is deterministic, the sub-
trees rooted at two R6-equivalent nodes are isomorphic.

Lemma P Assume that SymbDet(R(A∞)) is γ-clock-bounded. The relation R7

between safe configurations of Γγ(SymbDet(R(A∞))) defined by

(Γγ(N1), v1) R7 (Γγ(N2), v2) if v1 ≡M,Xγ v2 and label(Γγ(N1)) = label(Γγ(N2))

is a time-abstract bisimulation.

9 A safe configuration of Γγ(SymbDet(R(A∞))) is a configuration (Γγ(N), v) with
v ∈ r, when Γγ(N) = (N, r).

xii

Proof. Assume that we have (Γγ(N1), v1), (Γγ(N2), v2) and (Γγ(N ′1), v′1) such

that (Γγ(N1), v1) R7 (Γγ(N2), v2) and (Γγ(N1), v1)
t1,a−−→ (Γγ(N ′1), v′1) for some

t1 ∈ R+. Let us notice that we have that (Γγ(N1), v1) R6 (Γγ(N2), v1), thus by

Lemma N, the following transition makes senses (Γγ(N2), v1)
t1,a−−→ (Γγ(N ′2), v′1).

Since v1 ≡M,Xγ v2 and ≡M,Xγ is a time-abstract bisimulation, we can find t2
such that [v1 + t1] = [v2 + t2]; in particular v1 + t1 and v2 + t2 satisfy the same
guards. This allows us to consider the transition (Γγ(N2), v2)

t2,a−−→ (Γγ(N ′2), v′2),
where v′1 ≡M,Xγ v

′
2; this concludes the proof. ut

Given a safe configuration (Γγ(N), v), we write [(Γγ(N), v)]R7 for its equiva-
lence class w.r.t. the equivalence relation R7. Furthermore, if Γγ(N) = (?,K, r)
then r is a region over Xγ , and v ∈ r. Hence, we can speak of the equivalence
class of Γγ(N) instead, and write [Γγ(N)]R7 . Thus, an equivalence class is char-
acterized by its label (a finite set of pairs (`, σ) with ` a location of A and
σ : X → Xγ), and a region over clocks in Xγ . There are thus finitely many such
classes.

If SymbDet(R(A∞)) is γ-clock-bounded, we define the timed automaton
BA,γ as follows. Its set of clocks is Xγ . Its set of locations is the (finite set)
{[Γγ(N)]R7 | N node of SymbDet(R(A∞))}, its initial location is [Γγ(N0)]R7

where N0 is the level-0 node of SymbDet(R(A∞)), and a location is accepting
whenever N is accepting in SymbDet(R(A∞)) (note that this is independent of
the choice of the representative as the acceptance condition in SymbDet(R(A∞))

only depends on the labels). There is a transition C1
g,a,Y−−−→ C2 whenever there

exists some transition Γγ(N1)
g,a,Y−−−→ Γγ(N2) in Γγ(SymbDet(R(A∞))) where

Γγ(N1) ∈ C1 and Γγ(N2) ∈ C2. By Lemma P this is independent of the choice
of the representative.

Lemma Q Assume that SymbDet(R(A∞)) is γ-clock-bounded. The relation R8

defined by
(Γγ(N), v) R8 ([Γγ(N)]R7 , v),

where (Γγ(N), v) is a safe configuration of Γγ(SymbDet(R(A∞))), is a strong
timed bisimulation between Γγ(SymbDet(R(A∞))) and BA,γ .

Proof. The proof is in the same vein as that of Lemma 5. We first prove that
R8 is a strong timed simulation of Γγ(SymbDet(R(A∞))) by BA,γ . Let Γγ(N) =
(?,K, r) be a node in Γγ(SymbDet(R(A∞))), and v be a valuation over Xγ ,
and assume that v ∈ r (hence (Γγ(N), v) R8 ([Γγ(N)]R7 , v)). Assume that

(Γγ(N), v)
t,a−−→ (Γγ(N ′), v′) in Γγ(SymbDet(R(A∞))). This transition comes

from some edge Γγ(N)
g,a,Y−−−→ Γγ(N ′) in Γγ(SymbDet(R(A∞))), with v + t |= g

and v′ is a valuation overXγ such that v′(x) = v(x)+t for all x /∈ Y and v′(x) = 0

otherwise. By construction, there exists an edge [Γγ(N)]R7

g,a,Y−−−→ [Γγ(N ′)]R7 in

BA,γ . Hence, there is a transition ([Γγ(N)]R7 , v)
t,a−−→ ([Γγ(N ′)]R7 , v

′) in BA,γ .
Since trivially (Γγ(N ′), v′) R8 ([Γγ(N ′)]R7 , v

′), we get the desired result.

xiii

We now prove that R8 is a strong timed simulation of BA,γ by Γγ(SymbDet(R(A∞))).
Let [Γγ(N)]R7 be a node in BA,γ , where Γγ(N) = (?,K, r) and v is a valu-

ation over Xγ such that v ∈ r. Assume ([Γγ(N)]R7 , v)
t,a−−→ ([Γγ(N ′)]R7 , v

′).

There must exist an edge [Γγ(N)]R7

g,a,Y−−−→ [Γγ(N ′)]R7 in BA,γ . Then, by def-

inition of BA,γ , Γγ(SymbDet(R(A∞))) contains an edge Γγ(N)
g,a,Y−−−→ Γγ(N ′′)

such that label(Γγ(N ′)) = label(Γγ(N ′′)).Since v + t |= g, this edge can be

taken from (Γγ(N), v + t): then (Γγ(N), v)
t,a−−→ (Γγ(N ′′), v′) is a transition of

Γγ(SymbDet(R(A∞))). Moreover, we clearly have that (Γγ(N ′), v′) R7 (Γγ(N ′′), v′).
This allows us to conclude that (Γγ(N ′), v′) R8 ([Γγ(N ′)]R7 , v

′), hence the re-
sult. ut

Proposition 10. Assume that SymbDet(R(A∞)) is γ-clock-bounded. Then, BA,γ
is a deterministic timed automaton, and L(BA,γ) = L(A).

Proof. The determinism of BA,γ is guaranteed by Lemma L and Lemma N. Com-
bining Corollary A, Corollary D and Proposition 7, one can easily conclude that
L(A) = L(SymbDet(R(A∞)). Under the γ-clock-bounded hypothesis, Corol-
lary M ensures that L(SymbDet(R(A∞)) = L(Γγ(SymbDet(R(A∞))), we thus
have that L(A) = L(Γγ(SymbDet(R(A∞))). The final equality: L(BA,γ) = L(A)
is obtained by means of Lemma Q. ut

Remark R Timed automaton BA,γ has diagonal guards, due to the use of re-
gions as guards, but there is actually no need of these diagonal constraints (be-
cause the order of fractional parts of clocks is given by the region we are in before
firing the transition), and we could replace any region constraining a transition
by the smallest (non-diagonal) guard including the region. However this would
have required extra explanation, and we thought the current construction was
technical enough.

Complements for Subsection 3.5

If A = (L, `0, Lacc, X,M,E) is a timed automaton such that SymbDet(R(A∞))
is γ-clock-bounded (for some γ ∈ N), then the timed automaton BA,γ has at
most

2|L| · γ|X| ·
(

(2M + 2)(γ+1)2 · γ!
)

locations (because, a location is characterized by a finite set of pairs (`, σ) with
` a location of A and σ : X → Xγ , and a region over clocks in Xγ), and at most

α(A, γ)2 ·
(

(2M + 2)(γ+1)2 · γ!
)
· |Σ|

transitions. In some cases, we can improve the way clocks in X are mapped into
clocks in Xγ (see construction of Γγ(SymbDet(R(A∞))) page x), and get better
upper bounds for the size of A.

xiv

The procedure we have described to construct (under some conditions) an
equivalent deterministic timed automaton is not really effective because it goes
through the construction of infinite objects. However, if we abstract away the
complete construction, we know precisely how locations and transitions are de-
rived. Indeed, given A = (L, `0, Lacc, X,M,E), a location of BA,γ is a pair
({(`j , σj) | j ∈ J}, r) where J is finite, `j ∈ L, σj : X 7→ Xγ and r ∈ Reg

Xγ
M .

– There is a transition

({(`j , σj) | j ∈ J}, r)
g,a,{y}−−−−→ ({(`′j , σ′j) | j ∈ J ′}, r′)

whenever:

• for all j ∈ J , there is j′ ∈ J ′ and a transition (`j , rj)
eg,a,eY−−−→ (`′j , r

′
j) in

R(A) such that

(rj)[x←σj(x)] ⊇ r
(r′j′)[x←σ′j′ (x)] ⊇ r

′

g̃[x←σj(x)] ⊇ g

σ′j′(x) =

{
σj(x) if x 6∈ Ỹ
y if x ∈ Ỹ

• vice-versa (for all j′ ∈ J ′, there is j ∈ J . . .).
– There is a transition

({(`j , σj) | j ∈ J}, r)
g,a,∅−−−→ ({(`′j , σ′j) | j ∈ J ′}, r′)

whenever:

• for all j ∈ J , there is j′ ∈ J ′ and a transition (`j , rj)
eg,a,∅−−−→ (`′j , r

′
j) in

R(A) such that
(rj)[x←σj(x)] ⊇ r
(r′j′)[x←σ′j′ (x)] ⊇ r

′

g̃[x←σj(x)] ⊇ g
σ′j′ = σj

• vice-versa (for all j′ ∈ J ′, there is j ∈ J . . .).

Hence, BA,γ can be computed on-the-fly by guessing a new transition, and so
can its complement (since BA,γ is deterministic). A location of the automaton
BA,γ can be stored in space logarithmic in α(A, γ), and we can thus check for
universality in nondeterministic space log(α(A, γ)).

Similarly, we can check whether the language of a timed automaton C is
included in the language of A by using this deterministic version B(A, γ) in
nondeterministic space log(α(A, γ)).

xv

Proofs and complements for Subsection 4.1

Lemma S Let p ∈ N and A be a timed automaton in TAp. Then the infinite
timed tree SymbDet(R(A∞)) is p-clock-bounded.

Proof. By induction on the level i of a node n in R(A∞), we can easily prove
that label(n) = (`, σ) implies σ(X) ⊆ {⊥} ∪ {zi−p+1, . . . , zi}. ut

Lemma T Every strongly non-Zeno timed automaton A satisfies the p-assumption
for some p exponential in the size of A.

Proof. Let A be a strongly non-Zeno timed automaton, and consider its region
automaton R(A). Take a run % that visits a region r twice. The part of %, say %′,
between those two visits follows a cycle of R(A). Assume x ∈ X is a clock which
is not reset along %′. If r bounds clock x, it means that the global duration of %′ is
no more than 1 time unit, and that we can iteratively construct runs of arbitrary
length that will follow the cycle of R(A), whose duration will be bounded, hence
violating the strongly non-Zeno assumption. Hence region r does not bound
clock x, and initially in %′, the value of x is ⊥.

Set now p− 1 as the longest acyclic sequence of transitions in R(A). Take a
run % = (`0, v0)

t1,a1−−−→ (`1, v1) . . .
tn,an−−−→ (`n, vn) in A with n ≥ p. If we project %

on the regions, we get a path (`0, r0) a1−→ (`1, r1) a2−→ . . .
an−−→ (`n, rn) such that

there exist 0 ≤ i < j ≤ n with (`i, ri) = (`j , rj), and whenever x ∈ X is a clock
which is not reset along %, it means that vi(x) = ⊥ and thus that vn(x) = ⊥.
We deduce that A satisfies the p-assumption. The value of p can be bounded by
1 + |L| · (2M + 2)|X|+1. ut

Theorem 11. For every timed automaton A in SnZTA or in TAp, we can con-
struct a deterministic timed automaton B, whose size is doubly-exponential in
the size of A, and which recognizes the same language as A.

Proof. Thanks to Lemmas S and T, any strongly non-Zeno timed automaton is
determinizable. Morover, applying previous results, the size of BA,γ is

2|L|·γ
|X|
·
(

(2M + 2)(γ+1)2 · γ!
)

with γ = 1 + |L| · (2M + 2)|X|+1, hence doubly exponential in the size of A. ut

Theorem 12. For every timed automaton A in ECTA, we can construct a de-
terministic timed automaton B, whose size is exponential in the size of A, and
which recognizes the same language as A.

Proof (Sketch). The construction we have presented yields a doubly-exponential-
size automaton. However, by slightly twisting the way we rename clocks into
clocks in Xγ , we can get a singly-exponential-size automaton. If we write Xγ =
{za | a ∈ Σ}, when taking a transition labelled with a, the clock za is always
free and can be chosen. Thus, if X = {xa | a ∈ Σ} where clock xa is associated

xvi

with event a, we can take all σ’s so that σ(xa) = za or σ(xa) = ⊥. Hence, the
size of the constructed automaton becomes:

2|L| ·
(

(2M + 2)(|Σ|+1)2 · |Σ|!
)

which is a single exponential in the size of A. ut

Theorem 13. For every timed automaton A in IRTA, we can construct a de-
terministic timed automaton B, whose size is doubly-exponential in the size of
A, and which recognizes the same language as A.

Proof (Sketch). Along a run in R(A∞), a clock can be put as active at integer
time-points. Also, an active clock vanishes after more than M time units (and
is replaced in the construction by ⊥). Hence, at most M + 1 clocks are required
to be active at any time. The result follows. ut

Proofs and complements for Subsection 4.2

Proposition 14. Checking universality in timed automata either satisfying the
p-assumption for some p or with integer resets is EXPSPACE-hard.

Proof. We do the proof by reduction from the halting problem for (deterministic)
Turing machines running in exponential space.

Let M be a deterministic Turing machine which runs in exponential space,
and fix an input w0 of length n. The length of the tape which will be used
when running M on w0 is bounded by 2n. We show how to construct a timed
automaton AM,w0 such that AM,w0 is universal if and only if M doesn’t stop
on w0.

We describe how to encode an execution of the Turing machine by a timed
word and AM,w0 will accept all finite timed words that are not encodings of a
halting execution ofM on w0. We assume that the alphabet ofM is {a, b}, that
the set of states ofM is Q, its initial state is q0, its halting state is qHalt, and that
is the blank character. We mark a letter with a dot if the head of the machine
points to that letter. A configuration of the Turing machine can thus be viewed
as a pair (q, w) where q ∈ Q, and w ∈ {a, b,#, ȧ, ḃ, #̇}2n (with a single dotted
letter, which indicates the position of the head) is the content of the tape.

An execution of M over w0 is thus a sequence of consecutive configurations
(q0, w0) → (q1, w1) → · · · → (qp, wp) (we assume each wi has length exactly 2n

by possibly adding some #’s). Such an execution is encoded by the timed word

(q0, 0)(w0[1], 1) . . . (w0[2n], 2n)(q1, 2n + 1)(w1[1], 2n + 2) . . . (wp[2n], (2n + 1)p).

We will construct a timed automaton which accepts all (finite) timed words
which are not encodings of an accepting execution ofM on w0. We will explain
at the end of the proof how this timed automaton can be transformed into a

xvii

timed automaton that satisfies the p-assumption for some p or into a timed
automaton with integer resets. In the next pictures, we will write Q to denote
any action in q, or ¬Q for any action outside Q, or any similar convention. We
write no action name on a transition if it can be any. Finally, x 6= 1 is a shorthand
for two transitions, one constrained by x < 1 and the other constrained by x > 1.
For the moment, the reader should forget about dashed edges.

A (finite) timed word u might not be the encoding of an halting computation
in M for several reasons:

1. either there is a factor of the form q(¬Q)∗q′ in the untiming of u whereas
there is no rule saying that from q we can reach q′:

q q′

¬Q

2. or the timed word does not start with the initial state of M:

¬q0

¬Q

3. or the last state in u is not the halting state of M:

Q\{qHalt},{x,y}

y=1,¬Q,{y}

4. or there is a letter that happens at a non-integral time-point, or there is no
letter at some integral time-point (except when the word stops):

x 6=1

x=1,{x}

5. or there is no dotted letter between two consecutive control states in u:

Q Q

¬{ȧ,ḃ,#̇}

6. or there are two dotted letters or more between two control states:

{ȧ,ḃ,#̇} {ȧ,ḃ,#̇}

¬Q

7. or there are not 2n + 1 time units between two consecutive control states in
u:

xviii

q,{x,y} y=1,x 6=2n+1,q′

y=1,¬Q,{y}

8. or a rule of the form (q, a, b, right, q′) is not faithfully mimicked: either the
dotted letter is not transferred properly, or the rest of the configuration is
not copied properly, yielding the two following automata.

q,{y} ȧ,{x,y} y=1,x=2n+2,¬ḃ

y=1,¬Q,{y} y=1,{y}

q,{y} a,{x,y} y=1,x=2n+1,¬a

y=1,¬Q,{y} y=1,{y}

9. or a rule of the form (q, a, b, left, q′) is not faithfully mimicked: either the
dotted letter is not transferred properly, or the rest of the configuration is
not copied properly, yielding the two following automata.

q,{y} ȧ,{x,y} y=1,x=2n,¬ḃ

y=1,¬Q,{y} y=1,{y}

q,{y} a,{x,y} y=1,x=2n+1,¬a

y=1,¬Q,{y} y=1,{y}

10. or the last configuration has not the correct length:

Q,{x,y} y=1,x 6=2n,¬Q

y=1,¬Q,{y}

11. or the initial configuration does not encode properly the initial content of
the tape, w0:

···
q0 w0[1] w0[2] w0[n]

#

¬w0[1] ¬w0[2] ¬w0[n] ¬#∧¬Q

xix

It is tedious but easy to verify that the timed automaton we have just con-
structed, called AM,w0 , is universal iff there is no halting computation inM on
the timed word w0.

So far, the timed automaton does not verify the p-assumption, because of the
loops depicted in dashed lines. However it is worth noting that all these loops
could reset the two clocks of this timed automaton, without affecting the timed
language which is accepted. This new automaton satisfies the p-assumption for
p = 2n + 3.

We can also notice that thanks to module 4, we can assume that all edges of
the other modules reset clock y and test whether y = 1, without changing the
timed language which is accepted. This gives a new timed automaton which has
integral resets.

This concludes the proof of the EXPSPACE lower bound. ut

Proposition U The inclusion problem for strongly non-Zeno timed automata
is EXPSPACE-hard.

Proof. We do the very same proof as the previous one, except that we add the
constraint y = 1 and the reset of y on every transition. We consider the timed
automaton C:

y=1,{y}

It is not hard to get convinced that L(C) ⊆ L(AM,w0) iff M does not halt on
w0. ut

xx

