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An Antichain Algorithm for LTL Realizability

Emmanuel Filiot Naiyong Jin  Jean-Francois Raskin

Université Libre de Bruxelles (ULB), Belgium

Abstract. In this paper, we study the structure of underlying autontetsed
constructions for solving the LTL realizability problem.e/8how how to reduce
the LTL realizability problem to a game with an observer vwhahecks that the
game visits a bounded number of times accepting states af/arsal co-Buchi
word automaton. We show that such an observer can be madenitestic and
that this deterministic observer has a nice structure whaih be exploited by
an incremental algorithm that manipulates antichains ofgypositions. We have
implemented this new algorithm and our first results are e@igouraging.

1 Introduction

Automata theory has revealed very elegant for solving watitbon and synthesis prob-
lems. A large body of results in computer aided verificatian be phrased and solved
in this framework. Tools that use those results have beecesstully used in indus-
trial context, see [16] for an example. Nevertheless, tlageestill plenty of research
to do and new theory to develop in order to obtain more efficédgorithms able to
handle larger or broader classes of practical exampleeri®@gcwe and other authors
have shown in [4-6, 14, 20] that several automata-basedroetiens enjoy structural
properties that can be exploited to improve algorithms doraata. For example, in [6]
we show how to solve more efficiently the language inclusiosbfem for nondeter-
ministic Blchi automata by exploiting a partial-ordertthaists on the state spaces of
subset constructions used to solve this problem. Othectstial properties have been
additionally exploited in [7]. In this paper, we pursue thige of research and revisit
the automata-based approachd realizability. We show that there are also automata
structures equipped with adequate partial-orders thabeaxploited to obtain a more
practical decision procedure for this 2ETIME-COMPLETE problem.

The realizability problem for ahTL formula ¢ is best seen as a game between
two players [13]. Each of the player is controlling a subgehe setP of propositions
on which theLTL formula ¢ is constructed. The set of propositiofsis partitioned
into I the set ofinput signalsthat are controlled by "Player input” (the environment,
also called Player), and O the set ofoutput signalshat are controlled by "Player
output” (the controller, also called Play@). The realizability game is played in turns.
PlayerO is the protagonist, she wants to satisfy the formplavhile Player! is the
antagonist as he wants to falsify the formulaPlayerO starts by giving a subset, of
propositions', Player! responds by giving a subset of propositiggsthen PlayeO
giveso; and Playel responds by;, and so on. This game lasts forever and the outcome
of the game is the infinite word = (igUop) (i1 Uo1)(i2Uoz) - - - € (2F)¥. We say that

! Technically, we could have started with Playefor modeling reason it is conservative to start
with PlayerO.



PlayerO wins if the resulting infinite wordw is a model of.? This problem is central
when dealing with specifications for reactive systems. at ttontext, the signals of
the environment being uncontrollable, unrealizable dfmadions are useless as they
can not be implemented. Th&L realizability problem has been studied starting from
the end of the eighties with the seminal works by Pnueli ansineo[13], and Abadi,
Lamport and Wolper [1]. The 28 TIME lower bound was established in [15].

The classical automata-based solutioi Ta synthesis can be summarized as fol-
lows. Given arlLTL formula¢, construct a nondeterministic Biichi automatég that
accepts all models that satisfy transformA into a deterministic Rabin automatdh
using Safra’s determinization procedure [17], and Bs&s an observer in a turn-based
two-player game. Unfortunately, this theoretically elegarocedure has turn out to be
very difficult to implement. There are two main reasons fatthrirst, Safra’s deter-
minization procedure generates very complex state spat#ss are colored trees of
subsets of states of the original automaton. No nice symlolaiia-structure is known
to handle such state spaces. Second, the game to solve asttetep (on a potentially
doubly-exponential state-space) is a Rabin game, and itbidgm is known to be NP
completé.

This situation has triggered further research for altévegtrocedures. Most no-
tably, Kupferman and Vardi in [10] have recently proposedcpedures that avoid the
determinization step and so the Safra’s construétitm particular, they reduce the
LTL realizability problem to the emptiness of a Universal QeeBi Tree automaton
(UCT). They show how to test emptiness ofJ&LT by translation to an alternating
weak Biichi tree automaton, again translated into a noerhéistic Blichi tree au-
tomaton for which testing emptiness is easy. All these step® been implemented
and optimized in several ways by Jobstmann and Bloem in adaltgd Lily [9]. In
contrast to this method, we will see that our approach is doezt and even without
further optimizations, our implementatidwacia outperformd.ily.

In this paper, we also rely on a Safraless decision procddutbe LTL realizabil-
ity problem and we identify structural properties that allos to define an antichain
algorithm in the line of our previous works. Our proceduresitniversal Co-Buchi
Word automatonJCW. Those automata have the following simple nice propertg. If
Moore machinel/ with m states defines a language included into the language defined
by aUCW with n states, then obviously every run on the words generatetd lpon-
tains at mos2mn accepting states. As a consequence a Moore machine thatesto
language defined by dCW also enforces a stronger requirement defined by the same
automaton where the acceptance condition is strengthersesd calle@mn-bounded
one: "a run is accepting if it passes at m@sin times by an accepting state”. Using
the result by Safra, we know that the size of a Moore machiaerdalizes a language
defined by &JCW can be bounded. This gives a reduction from the general @notd

2 As a subproblem, if the specification is realizable, we wamitnstruct a Moore-machine that
implements the winning strategy of the protagonist. Thisaided the LTL synthesis problem.

% Older works also consider the realizability problem butrfare expressive and computation-
ally intractable formalisms, see [19].

4 Instead of Rabin automata, Parity automata can also be Gg8gd\evertheless, there are no
known polynomial time algorithm to solve parity games.

5 As a consequence, they call their new proced@afsalesprocedures. Nevertheless they use
the result by Safra in their proof of correctness.



the problem of the realizability of &boundedJCW specification. Contrary to general
UCW specificationsk-boundedJCW specifications can easily be made deterministic
and, most importantly the underlying deterministic auttonas always equipped with
a partial-order on states that can be used to efficiently pudetie its state space us-
ing our antichain method. We have implemented this new laitcalgorithm and our
experiments show promising results.

The rest of this paper is organized as follows. In Section & recall definitions.
In Section 3, we show how to reduce thEL realizability problem to the realizability
of a k-boundedJCW specification. In Section 4, we show structural propertighe
deterministic structure that we obtain from thdoundedJCW specification and study
antichains for manipulating sets of states of this deteistimstructure. In Section 5,
we report on preliminary experiments using our antichagoathm for synthesis and
compare them to the results obtained by using theltdpl[9]. In Section 6, we draw
conclusions and identify future works. Detailed proofsarailable in Appendix.

2 LTL and Realizability Problem

Linear Temporal LogicTL) The formulas ofLTL are defined over a set of atomic
propositionsP. The syntax is given by the grammar:

¢ ==ploVe|-g|Xo|oUP peP

The notationdrue, false, ¢1 A ¢2, 0o and ¢ are defined as usual. In particular,
Op = trueldp andyp = —O—¢. LTL formulase are interpreted on infinite words
w = ogo102--- € (2F)¥ via a satisfaction relation = ¢ inductively defined as
follows: (i) w = pif p € 0p, (i) w = ¢1 V g2 if w = ¢1 Orw = ¢o, (iti) w = —¢ if

w @, (iv) wE Xoif or09... E ¢, and(v) w | ¢1 U, if there isn > 0 such that
OnOn41--- ': ¢2 and for all0 < i < n, 00471 - ': ¢1.

LTL Realizability ProblemAs recalled in the introduction, the realizability problémn
LTL is best seen as a game between two players. Each of the gaymtrolling a sub-
set of the sef” of propositions on which theTL formula is constructed. Accordingly,
unless otherwise stated, we partition the set of propastidinto I the set ofnput sig-
nalsthat are controlled by "Player input” (the environmentpoatsilled Player), and
O is the set obutput signalghat are controlled by "Player output” (the controllerals
called Playep)). Itis also useful to associate this partitionffvith the three following
alphabetsy = 2°, ¥; = 27 andX, = 2°. We denote by the empty set. The real-
izability game is played in turns. Playér starts by giving a subset, of propositions,
PlayerI responds by giving a subset of propositiagsthen PlayeiO giveso; and
PlayerI responds by;, and so on. This game lasts forever and the output of the game
is the infinite word(ip U 0g) (i1 U 01)(i2 U 02) - - - € X*. The players play according to
strategies. A strategy for Playéris a (total) mapping\o : (XoX;)* — Yo while a
strategy for Playef is a (total) mapping\; : Xo(X;X0)* — X;. The outcome of the
strategies\o and\; is the wordoutcome (Ao, A7) = (09 Uig)(01 Uiy)... such that
for a”j >0, 0j = /\0(00i0 .. .Oj_lij_l) andz'j = )\[(OoiQOj_ll'j_loj). In particular,
0oy = /\0(6) andz'o = )\](00).

We can now define the realizability problem. Givenlan. formula ¢ (the specifica-
tion), therealizability problems to decide whether there exists a stratagyof Player



O such that for all strategie; of Playerl, outcome(\p, A7) = ¢. If such a strategy
exists, we say that the specificatigns realizable

For example, lef = {q}, O = {p} andy> = pUq. The formulay is not realizable.

If up to the instant for output, the environment never assgrthen the controller has
to assertp as it has no idea of whether the environment will asgeiri the future.
This strategy will not make the propeniy/q satisfied provided the environment never
assertg. HoweverOq — (pUq) is realizable. The assumptidry states thag will hold

at some point, and ensures the controller wins if it alwagersp.

Infinite Word AutomataAn infinite word automatoover the finite alphabe¥ is a tuple
A= (X,Q,q0,c,d) whereQ is a finite set of stategy € @ is the initial stateqx C @

is a set of final states adC @ x X x @ is a transition relation. For all € @ and all

oe X, weletdé(q,0) =1{q¢ | (¢,0,q4") € 6}. We let|A| = |Q| + |A| be the size ofA.

We say thatd is deterministidf Vg € Q Vo € X' |§(q, 0)| < 1. Itis completef for all

g€ Q,andallc € ¥, 6(¢q,0) # @. In this paper, unless otherwise stated, the automata
are complete. Aun of A on a wordw = ooy --- € X% is an infinite sequence of
statesp = pop1 -+ € Q¥ such thatpy = ¢ and for alli > 0, ¢;11 € 6(q;, pi). We
denote byRuns 4 (w) the set of runs oA onw. We denote byisit(p, ¢) the number of
times the statg occurs along the rup. We consider three acceptance conditions (a.c.)
for infinite word automata. A word is accepted bw if (depending on the a.c.):

Non-deterministic Blichi 3p € Runs 4(w), 3¢ € «, Visit(p, q) = 0o
Universal Co-Buchi Yp € Runsa(w), ¥q € a, Visit(p,q) < oo
UniversalK-Co-Buchi :Vp € Runsa(w), Vg € «, Visit(p,q) < K

The set of words accepted bywith the non-deterministic Biichi a.c. is denoted by
Lp(A), and with this a.c. in mind, we say thatis a non-deterministic Buchi word au-
tomatonNBW for short. Similarly, we denote respectively by:(A) andLc x (A4) the
set of words accepted by with the universal co-Biichi and universalco-Bichi a.c.
respectively. With those interpretations, we say thas a universal co-Buichi automa-
ton (UCW) and thai A, K) is a universaK -co-Buchi automatorl{(KCW) respectively.

By duality, we have clearly.,(A) = Lyc(A), for any infinite word automatod. Fi-
nally, note that forang < K; < K5, we have thaLyc k, (A) C Luc i, (A) C Lyc(A4).

Infinite automata andTL It is well-known (see for instance [18]) thBlBWs subsume
LTL in the sense that for dllTL formulag, there is aiNBW A (possibly exponentially
larger) such thaby(Ay) = {w | w = ¢}. Similarly, by duality it is straightforward to
associate an equivalebiCW to anyLTL formula¢: take A4 with the universal co-

Bichia.c., s@lyc(A-¢) = Lo(A-¢) = Lo(Ay) = {w | w = ¢}.

To reflect the game point of view of the realizability problese introduce the no-
tion of turn-based automata to define the specificatioturA-based automatoA over
the input alphabe¥’; and the output alphabg&l, is atupled = (X, Yo, Qr, Qo, qo,
0r,90) whereQ@r, Qo are finite sets of input and output states respectivglys Qo
is the initial statepr € Q7 U Qo is the set of final states, agd C Q; x X7 x Qo,
0o € Qo x Yo x Qr are the input and output transition relations respectiveig
completsf for all ¢; € Q, and allo; € Xy, 6;(qr,0r) # &, and for allgo € Yo and
all oo € Xo, do(g0,00) # @. As for usual automata, in this paper we assume that
turn-based automata are always complete. Turn-based ataohstill runs on words



Fig. 1. tbUCW for ¢q — (pUq) wherel = {¢} andO = {p}

from X as follows: a run on a words = (op U ig)(01 U iy)--- € X¥ is a word

p = pop1--+ € (QoQr)“ such thaipy = go and for allj > 0, (p25, 0, p2j+1) € do

and (p2j41, 45, p2j+2) € 0r. All the acceptance conditions considered in this paper
carry over to turn-based automata. Turn-based automateawiteptance conditiorts

are denoted btbC, e.g.tbNBW. EveryUCW (resp.NBW) with state set) and transi-
tion setA is equivalent to &UCW (resptbNBW) with | Q|+ | 4| states: the new set of

o,Uo;

states ig) U A, final states remain the same, and each transitieng —— ¢’ € A
whereo, € Yo ando; € Xy is split into a transitiony 2% r and a transitiom 2 ¢'.

Moore Machineslt is known that if theLTL specification is realizable, it is also re-
alizable by a finite-state strategy that can be representeidgtance by a Moore ma-
chine [13]. AMoore machinel/ with input alphabet”’; and output alphabeYy is a
tuple (X1, Yo, Q. 9o, 00, gar) WhereQ), is a finite set of states with initial state
qo, O : Qur x X1 — QIS a transition function, andy, : Q — Yo is an
output function. It iscompleteif for all ¢ € Qy and allo € Xy, dp(q,0) is de-
fined. We extend,; to 63, : X7 — Qs inductively as follows:3,(e) = ¢o and
03 (uo) = 0am (03, (u), o). The language oM, denoted byL (M), is the set of words
w = (09 Uig)(o1 Uiy)--- € Z¥ suchthatforall > 0,d35,(i0...7;-1) is defined and
0j = g(63;(i0 .. .i5—1)). In particular,oy = g(63,(€)) = g(qo). The size of a Moore
machine is defined similarly as the size of an automaton.

Thanks to previous remarks, th€L realizability problem can be reduced to decid-

ing, given atbUCW A over inputsXY; and outputsto, whether there is a non-empty
complete Moore machingf such thatL.(M) C Lyc(A).

Running exampléA tbUCW A equivalenttodqg — (pUgq) is depicted in Fig. 1. Output
states)o = {1,4, 6, 8} are depicted by squares and input sté)es= {2, 3,5,7,9} by
circles. In the transitionsl stands for the setS; or X, depending on the contextg
(resp.—p) stands for the sets that do not contaifresp.p), i.e. the empty set. One can
see that starting from stateif the controller does not asseraind next the environment
does not asseqt then the runis in staté From this state, whatever the controller does,
if the environment asseris then the controller loses, as stétwill be visited infinitely
often. A strategy for the controller is to assgdill the time, therefore the runs will loop



in statesl and2 until the environment assergs Afterwards the runs will loop in states
8 and9, which are non-final.

3 Reduction to a UK CW Objective

In this section, we reduce the realizability problem withpadfication given by a turn-
based universal co-Buchi automatahl{CW) to a specification given by a turn-based
universalK -co-Bichi automatontbUKCW). Then we reduce this new problem to an
infinite turn-based two-player game with a safety winningditon. This is done via
an easy determinization ®bUKCWs (which produces a deterministisUKCW). To
solve this game efficiently, we propose an antichain-bakgdithm in Section 4.

Lemmal. LetA be atbUCW over inputs¥; and outputsyy with n states, and\// be
a Moore machine over inpuS; and outputst with m states. Thed (M) C Lyc(A)

Proof. The back direction is obvious sindgc 1 (A) C Lyc(A) forall k € N. We sketch
the forth direction (the whole proof is in Appendix). Infoatty, the infinite paths of\/
starting from the initial state defines words that are aazgply A. Therefore in the
product of M and A, there is no cycle visiting an accepting stateAfwhich allows
one to bound the number of visited final states by the numbstatés in the produci.

Lemma 2. Given a realizablebUCW A over inputsY’; and outputsyy with n states,
if A is realizable, there exists a non-empty and complete Mo@ehime with at most
n?"*2 1 1 states that realizes it.

Proof. We sketch the proof. In a first step, we show by using Safra&rdenization of
NBWs thatA is equivalent to a turn-based deterministic and completémutomaton
A%, By using a result of [12], we can assume thigt has at mosin := 202712 4 2
states. We then viewl? has a turn-based two-player parity gagieAd?) (with at most
m states) such that? (or equivalentlyA) is realizable iff Player O has a winning strat-
egy inG(A?). Itis known that parity games admit memoryless strate@eIherefore

if A?is realizable, there exists a strategy for Player @'{m?) that can be obtained by
removing all but one outgoing edge per Player O's state. Wfinally transform this
strategy into a Moore machine with at magt'+2 + 1 states that realize4? (and A).

The following Theorem states that we can reduce the redligabf a tbUCW
specification to the realizability of &b UKCW specification.

Theorem 1. Let A be atbUCW over X7, ¥o with n states ands = 2n(n?"*2 + 1).
ThenA is realizable iff( A, K) is realizable.

Proof. If A is realizable, by Lemma 2, there is a non-empty and completer®ma-
chine M with m statesn < n?"*2 + 1) realizing A. Hence we havé (M) C Lyc(A)
and by Lemma 1, this is equivalent I M) C Lyca2mn(A4). We can conclude since
Lyc2mn(A) C Lyc k (A) (2mn < K). The converse is obvious sin€ge xk C Lyc(A).

In the first part of this section, we reduced i) CW realizability problem to the
tbUKCW realizability problem. In the next part, we reduce this nealem to a safety
game. It is based on the determinizationtbUKCWs into turn-based deterministic
universal0-Co-Buchi automata, which can also be viewed as safety game



Safety GameTurn-based two-player games are played on game arenas Ipjayers,
Player | and Player O. fJame arenas a tupleG = (So, S1, so, T) whereS;, Sp are
disjoint sets of player states{ for Player | andS,, for Player O),so € So is the initial
state, andl’ C Sp x S; U St x So is the transition relation. Ainite playon G of
lengthn is a finite wordr = momy ... 7, € (So U Sp)* such thatry = s¢ and for
alli=0,...,n—1, (m,m41) € T. Infinite plays are defined similarly. Note that all
infinite plays belong tq.5,S7)“. A winning condition is a subset ofSoS7)“. A
play 7 is won by Player O ifr € W, otherwise it is won by Player I. Atrategy\; for
Playeri (i € {I,0}) is a mapping that maps any finite plays whose last staten .S;

to a states’ such thaf(s, s’) € T. Theoutcomeof a strategy)\; of Player: is the set
Outcomec ();) of infinite playst = momma - -+ € (Sp.Sr)¥ such that for allj > 0,

if 7, € S;, thenmj11 = \i(mo, ..., ;). We consider the safety winning condition. It
is given by a subset of states denotedsbye. A strategy\; for Playeri is winning

if Outcome(\;) C safe”. We sometimes writ€So, Sy, so, T, safe) to denote the
game(G with safety conditiorsafe. Finally, a strategy\; for Player: is winning in the
gameG from a states € Sp U Sy ifitis winning in (So, S, s, 7).

Determinization otUKCW Let A be atbUCW (Yo, X1, Qo, Q1, 90, v, Ao, Ar) and

K e N.WeletQ = Qo UQ;andA = Ap U A;. Itis easy to construct an equiv-
alent turn-based deterministic univerato-Buchi automatoret (A, K). Intuitively,

it suffices to extend the usual subset construction with taranfor allg € @, that
count (up toK + 1) the maximal number of accepting states which have beetedisi
by runs ending up iny. If the counter of a state is-1, it means that no run on the
prefix read so far ends up in The final states are the sets in which a state has its
counter greater thak'. Let [n] = {—1,0,1,...,n}, for all n € N. Formally, we let
det(A, K) = (Yo, X1, Fo, Fr, Fo, o, o, 51) where:

Fo = {F | F'is amapping fronQo to [K + 1]}
Fr = {F | F'is amapping fron@); to[K + 1]}
_ -1 if ¢ # qo
Fo =e€Qor (qo € F) otherwise
o ={FeFrUFo|3q,Flq) > K}
succ(F, o) = g — max{min(K + 1, F(p) + (¢ € a)) | g € A(p,0), F(p) # —1}
do = SUCC|x, x 30 dr = succ|z, xx,
wheremax ) = —1, and(q € «) = 1if ¢ is in «, and0 otherwise. The automaton

det(A, K) has the following properties:

Proposition 1. Let A be atbUCW andK € N. Thendet(A, K) is deterministic, com-
plete, andLyco(det(A, K)) = Ly x (A4).

Reduction to a Safety gamEinally, we define the gamé&'(A, K) as follows: it is
det(A, K) where input states are viewed as Pla}/sistates and output states as Player
O’s states. Transition labels are ignored. FormaliyA, K) = (Fo, Fi1, Fo, T, safe)
wheresafe = F — o’ andT = {(F, F’) | o € Yo U X, F’ = succ(F,0)}.

Theorem 2 (Reduction to a safety game). Let A be atbUCW over inputsX’; and
outputsXo with n states ¢ > 0), and letK = 2n(n?"*2 + 1). The specificationl is
realizable iff PlayerO has a winning strategy in the ganmi§ A, K).



4 Antichain-based Symbolic Algorithm

A fixed point algorithmin the previous section, we have shown how to reduce the re-
alizability problem to a safety game. Symbolic algorithmsdolving safety games are
constructed using the so-called controllable predecegsrator, see [8] for details. Let
A= (X0,%r1,Q0,Qr,q0,, Ao, Ar) be atbUCW with n states K = 2n(n?"t2+41)
andG(A, K) = (Fo, Fr, Fo, T, safe) be the two-player turn-based safety game de-
fined in the previous section. Remind that= Ap U A; and letF = Fp U F7. In
our case, the controllable predecessor operator is bashé two following monotonic
functions over”:

Pre; : 270 — 271

S = A{FeF|VF € Fo,(F,F')eT = F' e S}nsafe

Prep : 271 — 2%o0
S —{FeFo|3F € Fr,(F,F') e T}Nnsafe

Let CPre = Prep o Pre; (CPre stands for “controllable predecessors”). The function
CPre is monotonic over the complete latti¢g”©, C), and so it has a greatest fixed
point that we denote bgPre”.

Theorem 3. The set of states from which Player O has a winning strategy(iA, K)
is equal toCPre™.

In particular, by Theorem 2, € CPre” iff the specificationA is realizable. To com-
pute CPre*, we consider the following--descending chainS, = F, and fori > 0
Si+1 = CPre(SZ-) N .S;, until Sk+1 = Sk.

Ordering of game configurationg/e define the relatiorkC F; x F; U Fo x Fo
by F < F'iff Vg, F(q) < F'(q). Itis clear that< is a partial order. Intuitively, if
Player O can win from¥” then she can also win from al < F”’. Formally,< is a
game simulation relation in the terminology of [3].

Closed sets and antichainA. set S C F is closed for<, if VF € S - VF' <
F - F' € S. We usually omit references tg if clear from the context. Lef; andSs
be two closed sets, théfy N Sy and.S; U S, are closed. Furthermore, the image of a
closed sefs by the functiondre;, Prep, andCPre are closed sets:

Lemma 3. For all closed setsSy, S> C F, S3 C Fo, the setPres(S1), CPre(Ss),
andPre;(S3) are closed.

As a consequence, all the sets manipulated by the symbgbcitdms are closed sets.
We next show how to represent and manipulates those seis miffjc

Theclosureof asetS C F, denoted byS, isthesetS’ = {F' € F|3IF € S-F’ <
F'}. Note that for all closed sets C F, | S = S. AsetL C F is anantichainif all
elements of. are incomparable for. LetS C F, we denote by S| the set of maximal
elementsof, thatis[S] = {F € S | AF' € S-F' # FAF < F'}, itis an antichain. If
S is closed theri[S] = S, i.e. antichains areanonical representatiorfer closed sets.
Next, we show that antichains are a compact and efficienésgpitation to manipulate
closed sets iF. We start with the algorithm for union, intersection, memsbé and
inclusion. Since the size of a statee F is in practice much smaller than the number
of states in the antichains, we consider that operationsatessare in constant time.



Proposition 2. Let L1, Lo C F be two antichains and” € F, then(i) | L; U |
Ly = |[L1 U Ls], this antichain can be computed in timi¥ (| L1 | + |L2|)?) and its
size is bounded by | + |Ls|, (i7) | L1N | Lo = |[L1 N Lo], whereFy M Fy : ¢ —
min(F (¢q), F»(q)), this antichain can be computed in tini&|L1|?> x |L»|?) and its
size is bounded bbL1| X |L2|, (ZZZ) 1Ly Cl Lo iff VIV € Ly -AFy € Ly - |y < Fy,
which can be established in tin@®(| L1 | x |Ls|), (iv) F €] L; can be established in
timeO(|L1| x |Q]).

Let us now turn to the computation of controllable predecesd.etF € F, ando €
X1 U Xo. We denote by?2(F, o) € F the function defined by:

Q(F,0):qc Qv min{max—-1,F(¢) - (¢ € a)) | (¢,0,4") € 6}

Note that sinced is complete, the argument of min is a non-empty set. The fomct

2 is not the inverse of the functiosucc, assucc has no inverse in general. Indeed,
it might be the case that a staté € F has no predecessors or has more than one
predecessal such thasucc(H, o) = F. However, we prove the following:

Proposition 3. Forall I, F’ € F nsafe, and allo € X7 U X, the following propo-
sitions hold:

(i) FXF = QF,0) X 2(F, o) (131) F =% 2(succ(F,o),0)

(1i) F = F' = succ(F,o) < succ(F’,o) (i) succ(2(F,o),0) X F

ForallS C Fando € X U X, we denote byPre(S,0) = {F | succ(F,o) € S}
the set of predecessors 8f The set of predecessors of a closed|détis closed and
has a unique maximal elemef{ F, o):

Lemmad4. Forall F € Fnsafeando € X1 U Xp, Pre(|F, o) =|2(F,0).

Proof. Let H € Pre(]F, o). Hencesucc(H, o) < F. By Prop. 3i), we have
2(succ(H,o),0) = 2(F,0), fromwhich we getH < (F, o), by Prop. 3iii).
Conversely, lefd < 2(F, o). By Prop. 3ii), succ(H, o) < succ({2(F,o), o). Since
by Prop. 3iv), succ(2(F,0),0) < F, we getsucc(H,o) < F. O

We can now use the previous result to compute the contrellateldecessors:

Proposition 4. Let A be atbUKCW. Given two antichaind.;, L, such thatL; C
FrnsafeandLs; C Fp N safe:

Preo(lL1) = UUEEO Pre(|L1,0) = Useso HQ(F,0) | Fe L}
Prer(1L2) = N,ex, Pre(lLle,0) =Nyex, HR2(F,0) | F € Lo}

Preo(] L1) can be computed in tim@(|Xo| x |A| x |L1|), andPre;(| Ly) can be
computed in time((|A| x |Ly|)!*1]).

As stated in the previous proposition, the complexity of algorithm for computing
thePre; is worst-case exponential. We establish as a corollaryeh#xt proposition
that this is unavoidable unle$s=NP. Given a graplts = (V, E), a set of vertice8V is
an independent set iff no pairs of element$linare linked by an edge if. We denote
by IND(G) = {W CV |V{v,v'} € E-v ¢ W Vv ¢ W} the set of independent sets
of vertices ofG. The problem "independent set” asks given a gr&p# (V, E) and an
integer0 < k < |V|, if there exists an independent setGhof size larger thark. It is
known to beNP-complete.



Proposition 5. Given a graphG = (V, E), we can construct in deterministic poly-
nomial time aUKCW A, with K = 0, and an antichainZ such thatIND(G) =]
Pre;(Preo(Preo((L))).

Corollary 1. There is no polynomial time algorithm to compute Bre; operation on
antichains unles$ = N P.

Note that this negative result is not a weakness of antishéimueed, it is easy to see
from the proofs of those results that any algorithm basedaata structure that is able
to represent compactly the set of subsets of a given set isgartiperty.

Incremental AlgorithmIn practice, for checking the existence of a winning strafeg
Player O in the safety game, we rely on an incremental apprd#e use the following
property of UKCWs: for all K1, K5 - 0 < Ky < K3 - Lyc,,,(A) € Lye k,(A) C
L..(A). So, the following theorem which is a direct consequencl@fprevious prop-
erty allows us to test the existence of strategies for irsingavalues of:

Theorem 4. For all tbUCWSs A, for all K > 0, if Player O has a winning strategy in
the game= (A, K) then the specification defined Hyis realizable.

Unrealizable SpecificationsThe incremental algorithm is not reasonable to test unre-
alizability. Indeed, with this algorithm it is necessaryéach the bounghn (n?" 24 1)

to conclude for unrealizability. To obtain a more practialgorithm, we rely on the
determinacy ofv-regular games (a corollary of the general result by Matfif).

Theorem 5. For all LTL formulase, either (i) there exists a Player O’s strategy,
s.t. for all Player I's strategies\;, outcome (Ao, A1) |= ¢, or there exists a Player I's
strategy); s.t. for all Player O's strategiedo, outcome(Ao, A1) &= —¢.

So, when arLTL specificationg is not realizable for Player O, it means thab is
realizable for Player |. To avoid in practice the enumeratid values forK up to
2n(n?"*2 + 1), we propose the following algorithm. First, given the LTLrfwula ¢,
we construct twdJCWSs: one that accepts all the models¢@fdenoted byA,, and
one that accepts all the models-ef, denoted byA-.4. Then we check realizability by
Player O ofp, and in parallel realizability by Player | ef¢, incrementing the value of
K. When one of the two processes stops, we knawiff realizable or not. In practice,
we will see that eithep is not realizable for Player O for a small value fgfor —¢ is
realizable for Player | for a small value &f.

Example We apply the antichain algorithm on theUCW {a}

depicted in Fig. 1, withk = 1. Remind that/ = {¢} and '

O = {p}, so that¥; = {@,{q}} and X = {@,{p}}. For

space reasons, we cannot give the whole fixpoint computa- %. &

tion. We starts with the safe state@( A, K') for Player O,

i.e. the constant function fro@o to 1 denoted byF; =
(1 1,4+~ 1,6 — 1,8 — 1). It represents the setF.
Then we computdPre; (] F1)] Nnsafe = [| 2(F1,{q}) N | 2(F, )] N safe.
We have2(Fy,{q}) = 2~ 1,3 — 1,5 — 0,7 — 0,9 — 1) and2(Fy, @) =
(2+—1,3+— 1,5 — 1,7~ 0,9 — 1). Therefore[Pre;(| F})] = {F> := (2 —

Fig. 2. Moore machine



1,3~ 1,5 0,7+ 0,9 — 1)}. Then we have2(Fs, {p}) = 2(F2, @) = (1 —
1,4~ 0,6 — 0,8 — 1). Therefore[Prep (| F>)] N safe = [CPre({F,})] N safe =
{1 -~ 1,4~ 0,6 — 0,8 — 1)}. At the end of the computation, we get the fix-
point | {F := (1 — 1,4 — —1,6 — —1,9 — 1)}. Since the initial state/,

is in | F', Player O has a winning strategy and the formula is realizaBtom the
fixpoint computation, we can extract a winning strategy fa tontroller. An exam-
ple is given by the Moore machin& depicted in Fig. 2. Note that for alt € X,
succ(succ(F, {p}), o) €| F. By monotonicity ofsucc and the fact that" € safe, the
runs on the words defined by this machine visit only non-fitetes indet(A, K), so
that L(M) C Lyco(det(A, K)) = Lyc k (A) € Luc(4).

5 Performance Evaluation

In this section, we briefly present our implementatiaacia and compare it taily [9].
More information can be found online [2Acacia is a prototype implementation of
our antichain algorithm for checkirlg L realizability. To achieve a fair comparison, as
Lily, Acacia is written in Perl. For a controller specification, which s@ts of anLTL
formula and a partitiod I, O} of input/output variablesicacia tests realizability of
the specification. If it is realizable, it outputs a Moore miae representing a winning
strategy for the controller, whose correctness can be ediiify model-checking tools,
otherwise it outputs a winning strategy for the environméstLily, Acacia runs in
two steps. The first step buildstaUCW for the formula, and the second step checks
realizability of the automaton. We borrow th&L-to-tbUCW construction procedure
from Lily such that we can exclude the influence of automata congirutctithe perfor-
mance comparison betwedaacia andLily®. We carried out experiments on a Linux
platform with a 2.1GHz CPU and 2GB of memory. We compahkedcia andLily on
the test suite included ihily, and on other examples derived frduity’s examples, as
detailed further. As shown in the previous section (Thedbs@mealizability or unreal-
izability tests are slightly different, as we test unrealiitity by testing the realizability
by the environment of the negation of the specification. mehkperiments, depending
on whether the formula is realizable or not, we only repcetréssults for the realizabil-
ity or unrealizability tests. In practice, those two testsidd be run in parallel. Tables 1
and 2 report the results of the tests for realizable and linadde examples respectively.
In those tables,

Column tbUCW St./Tr. gives the number of states and transitions ofttiéCWs trans-
formed fromLTL formula. One may encounter whenLily’'s tbUCW optimization
procedure concludes the language emptiness abibiEW.

Column tbUCW Time(s) gives the time (in seconds) spent in building upthie CWs.
For realizability testsl.ily andAcacia construct the sameéUCW, while for unrealiz-
ability tests, they are different (as shown in Section 4, eethetbUCW corresponding
to the negation of the formula).

Column Rank gives the maximal rank used hyily when trying to transform the
tbUCW to an alternating weak tree automat&ankis a complexity measure fduily.

8 1n Lily, this first step produces universal co-Biichi tree autornaéa X -labeled X;-trees,
which can easily be seentJCWSs over inputsy; and outputsyo . Although the two models
are close, we introducadUCWs for the sake of clarity.



Column Check Time(s) gives the time (in seconds) spent in realizability checklihg
the language of ebUCW is proved to be empty during the optimization stelgsy, will
directly conclude for unrealizability.

Column K reports the minimak’ for which Acacia was able to conclude realizability
of thetbUKCW. Usually, K is small for realizable specifications.

Column No. Iter. gives the number of iterations to compute the fixpoint.

Column max{|Pre;|} /max{|Preo|} reports the maximal sizes of the antichains ob-
tained during the fixpoint computation when applyiige; andPre, respectively.

Lily’s test suite includes examples 1 to 23. Except examples4l @hd 11, they are all
realizable. Table 1 shows, except demo A6acia performs much better than Lily in
realizability tests. For unrealizability tests, if we dotnake into account the time for
tbUCW constructionAcacia performs better as well.

In the test suite, demo 3 describes a scheduler. We have ga&ealability test by
introducing more clients. In Table 1, from 3.4 to 3.6, wheartkmber of clients reached
4, Lily ran over-time & 3600 seconds). HoweveAcacia managed in finishing the
check within the time bound.

One can weaken/strengthen a specification by removingfaipgenvironment as-
sumptions and controller assertions. We have carried ouagndstic test based on
demo 22. In the test cases from 22.3 to 22.9, the environnssonhaptions are getting
stronger and stronger. The specifications turn out to b&zeddé after the case 22.5. A
controller with a stronger environment shall be easier &dize. The data in Table 1,
from 22.5 to 22.9, confirm our predication. For unrealiziépitheck, in Table 2 from
22.1to 22.4, both tools spent more time on case 22.4 thansm2&3. HoweveAca-
cia turns out to be better fo€heck TimeFinally, we can see that the bottleneck for
examples 22.1 to 22.9, as well as for examples 20 to 22, isrtteedpent to construct
the automaton.

As a conclusion, the experiments show that the AntiChaioréttyn can speed up the
realizability check significantly and therefore show thags ia promising approach.

6 Summary

This paper described a novel Safraless approach to the lalizadility problem, based
on universalK-Co-Bichi word automata, which can be easily determiniBydex-
ploiting the structure of the determinized automata, weevedrle to define an antichain
algorithm to solve the realizability problem, which havebesuccessfully implemented
in the toolAcacia. In particular, an experimental evaluation showed fuwaicia outper-
forms the existing tooLily. These results come without any further optimizations. It
raises a lot of questions for future works, we give only a févthem. As shown by
the experimental results, the bottleneck of this approsdiftén the construction of the
automaton from the formula, and the time spent on the rdalizachecking is highly
related to the size of the automaton. Given a bokndne could apply heuristics to
prune the automaton, and in particular branches that \@sitepting states more than
k times. For a smalk, this would reduce the size of the automaton drasticallyti@n
other hand, the LTL-to-automata construction that we heefromLily constructs an



Lily Acacia
tbUCW |tbUCW/|| Rank | Check|| K [No.|max{|Prec|}/| Check
St./Tr. | Time(s) | Time(s) Time(s)|lIter. maxX{|Pre;|} | Time(s)
3 | 10/28 | 0.97 1 030 | 0|2 2/2 0.00
5 | 13/47 | 1.53 1 0651 0] 2 212 0.01
6 | 19/63| 3.19 1 091 0|3 3/3 0.03
7 | 11/34| 1.42 1 031 0] 2 2/2 0.01
8 3/6 0.07 1 0.02 | 0|1 1/1 0.00
9 | 5/10 | 0.33 1 0031 16 3/2 0.01
10| 7/21 | 0.63 1 010 | 0|1 1/1 0.00
12| 8/26 | 0.35 1 007( 01 1/1 0.00
13| 3/4 0.02 1 001 1|3 2/1 0.00
14| 5/13 | 0.26 1 007 (1] 4 3/3 0.01
15| 6/16 | 0.24 1 011 2|9 9/13 0.08
16| 8/26 | 0.57 1 145 || 3 |16 64/104 7.89
17| 6/20 | 0.40 1 031 || 2|12 8/7 0.10
18| 8/31 | 0.92 1 235 | 2 |12 19/19 0.89
19| 7/17 | 0.75 3 405 || 2 |12 5/5 0.03
20| 25/198| 7.03 1 099 (013 1/1 0.04
21| 13/72 | 15.61 1 188 1| 0| 4 25/13 0.40
221 19/115| 25.28 1 121 1|7 47 0.10
23| 7/12 | 0.47 1 004 | 212 2/1 0.00
3.1| 10/28 | 1.09 1 031 1|2 2/2 0.01
3.2| 18/80 | 2.60 1 770 | 112 4/4 0.07
3.3|26/200| 2.60 1 55499 1| 2 8/8 0.65
3.4| 34/480| 7.59 - [>3600| 12 16/ 16 8.46
3.5(42/1128 12.46 - >3600| 1| 2 32/ 32 138.18
3.6/50/2608 22.76 - [>3600| 12 64/64  |2080.6
225 7/38 | 4.17 1 050 (| 2 |19 4/6 0.12
22.6 19/115| 21.20 1 152|117 a/7 0.11
22.7 13/75| 7.51 1 073 | 1|6 3/4 0.05
22.8 10/50 | 3.82 1 043 {115 2/3 0.03
22.9 7/29 1.46 1 033 1|5 2/3 0.02
Table 1. Performance comparison for realizability test
Lily Acacia
tbUCW [tbUCW| Check|{tbUCW |tbUCW K |No.max{|Pre;|}/| Check
St./Tr. | Time(s) Time(s)| St./Tr. |Time(s) |lter.,maxX{|Preo|}|Time(s
1 (%] 0.17 | 0.01 6/27 | 0.24 |1| 1 1/1 0.00
2 %] 0.17 | 0.01 || 18/101| 1.89 [3| 6 1/1 0.05
4 || 18/56| 3.53 | 1.13 || 23/121| 3.16 (2| 8 3/4 0.14
11 %] 1.32 | 0.04 || 3/10 | 0.07 |0] 1 1/1 0.00
22.11 5/9 0.18 | 0.09 || 22/126| 4.97 |1| 5 2/2 0.05
22.2| 4/14 | 0.32 | 0.11 || 23/126| 4.85 |1| 4 1/1 0.04
22.3] 5/15 | 0.36 | 0.11 ([ 23/130| 6.25 |1| 5 2/2 0.06
22.4| 6/34 | 2.48 | 0.18 || 26/137| 6.47 |1|10 12/10 0.38
Table 2. Performance comparison for unrealizability test




automaton with symbolic transitions (labeled with Booléarmulas). Our implemen-
tation does not benefit from this compact representatioih gasimerates all the sets of
labels that satisfy the Boolean formulas on the transiti@nsoptimization would be to
handle those symbolic transitions efficiently. Anothermpiging future work would be
to combine our approach to the antichain algorithm for LTtissability [20], which
does not construct an automaton explicitly. Finally, on aertbeoretical point of view,
we would like to prove the correctness of our Safraless élgorwith a Safraless proof,
as the proof of Lemma 2 still relies on the Safra’s deternaitian procedure.
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A Missing Proofs

A.1 Proof of Lemmal

Proof. The back direction is obvious sindgc ,(A) C Lyc(A) forall £ € N.
For the forth direction, we first transfordy into atbNBW A,; such thatL(M) =
Lp(Ay). It suffices to copy every state dff and to define the transitions as follows:

if ¢ & ¢ is a transition ofM with i € X, and the output of is 0 € X, then we

transform this transition into the twd; transitionsy = ¢¢ andq® — ¢’ whereq® is
a fresh state denoting a copy @fAll states ofA,, are set to be final, so thag(Ax)
is exactly the set of traces of infinite paths4f; (viewed as an edge-labeled graph)
starting from the initial state. By hypothesis,(Ay;) C Lyc(A). Note thatd ,, has2m
states.

Let @ be the set of states of, Q) 4,, the set of states ol ,; andA x A, the product
of A and A,/ (i.e. the automaton ovel; U Yo whose set of states 9 x Qa,,,
initial states are pairs of initial states, and transitibase the form(q, p) % (¢/,p’)
for all transitionsy = ¢’ of A andp % p’ of Ayy). SinceLp(Ayr) € Luc(A), there
is no cycle inA x Aj; reachable from an initial state and that contains a iate)
whereq € @ is final. Indeed, otherwise there would exist an infinite patil x A,
visiting (g, p) infinitely often. Every infinite word obtained as a trace d§tbath would
be accepted byl,; but not by A (since there would be a run on it visitinginfinitely
often). Therefore the runs of on words accepted by, visit at mos2nm final states,
wheren (resp.2m) is the number of states of (resp.A ). O

A.2 Proof of Lemma 2

Parity Conditions The proof uses the parity acceptance condition for autoaradgor
games. Given an automatéhwith state set) g, a parity acceptance condition is given
by a mapping: from Q5 to N. A run p is accepting ifmin{c(q) | ¢ € Inf(p)} is even.
Final states are not neededifor this acceptance condition. We denotely,, .(B)
the language accepted Byunder the parity acceptance condition

Given a turn-based two-player gatée= (So, S, so, 4), the parity winning con-
dition is given by a mapping: So U S; — N. In that case, for all € {O, I'}, a strat-
egy \; for Player: is winning if Outcomeg(X\;) C {7 € (SoS1)¥ | min{c(s) | s €
Inf(m)} is ever.

Proof Let A = (207 E[a Q07 Qla qo0, @, 507 51) We IetQ = QOUQI ands = 5OU6I-
Let Ap; be the automatofly, Q, qo, v, 6). We denote byn : (Yo X7)¥ — X¥ the
function that maps any worth = o0pigo1i1 ... t0 m(w) = (o9 U ig)(o1 Uiy)....
Note thatm admits an inverse denoted by '. We have thain(Ly(Aor)) = Lp(A)
(*). By Safra’s determinization, there exists a deterntinigarity automator; with
a parity conditione such thatL,,, .(Dor) = Lu(Aor). Moreover, by [12], we can
assume thabo; has at most?" 2 states. SiNC&.p,qr(Dor) C (X1X0)%, it is easy
to transformDy; into a deterministic turn-based parity automatorwith a parity
conditionc’ such thatl,q,- .(Dor) = m™ (Lyar,« (D)) it suffices to take the product
with the two-states automaton that accepfy X';)“ (let i ando its two states). The
states of the product are therefore pdirg) with ¢ a state ofDo; andp € {i, 0}, and



we letc'(q,p) = c(q). Note thatD has at mosgn?"+?2 states. From equality (*) and
the equalitieS.par.(Dor) = m™ (Lpar,e (D)) @andLpar.(Dor) = Lo(Aor), we get
Lyar, (D) = Lp(A). Then we complete the automatéhby adding two dead states
and get a complete deterministic turn-based automato(with at most2n2"*2 + 2
states). Finally, we take the dual parity conditien= ¢’ + 1 which increments the
value of each state bl so thatL,, .,(A%) = £ — Lyar. (D) = X% — Lp(A), from
which we getLyc(A) = Lparc,(A?).

Let A4 = (X0, X1,Q%, Q% q0,64,6%) andQ? = Q¢ U Q%. We now view A?
has a turn-based two-player parity gated?) = (Q¢, Q¢, g0, A): Q% are Player O’s
states ¢, being the initial state) whil€)¢ are Player I's states, and we put a transition
(q,p) € A from a state; € Q? to a statep € Q if there existss € X; U X and
a transitiong = pin A%, SinceA? has at mosgn?"t2 4 2 statesG(A¢) has also at
most2n?"+2 states.

The specificatiom? is realizable (or equivalentlyl is realizable) iff Playe has
a winning strategy inG(A?). Therefore if A is realizable, Playe© has a winning
strategy inG(A%) given by a mapping from Q¢, to Q¢ such thaOutcome 44 (7)
are wordsp over (Q%Q%4)« such thatnin{c(q) | ¢ € Inf(p)} is even. Moreover, those
words correspond to accepting runs4f on words overY. Therefore the strategy
~ can easily be used to define a Moore machifesuch thatl.(M) C Lyu,.(A?) =
Lyc(A): first we assume that is totally ordered. The machin¥ is defined as follows:
QY are its statesqo is the initial state, the output functionis defined byg(q) =

min{a, | (¢,0.,7(q)) € 64}, for all ¢ € Q%, and finally we put a transitiop 7= ¢/,
forallg,¢' € Q%, and allo; € X7 if v(q) == ¢’ € §¢. Note thatM is complete since
A is complete, and has less th@m "2 4 2) /2 = n?"+2 + 1 states. O

A.3 Proof of Theorem 2

Proof. Suppose thatl is realizable. By Theorem 1A, K) is also realizable, as well as
det(A, K). Thus there is exists non-empty and complete Moore macdHiter inputs
X1 and outputsyy such thatL (M) C Lyco(det(4, K)). We now construct a winning
strategyy for PlayerO in G(A, K). Intuitively, Outcomeg 4,k (7y) will correspond
to runs ofdet(A, K') on words ofL (M ). Therefore, sincé.(M) C Lyco(det(A, K)),
Outcomeg 4, i) (7v) won'tvisit final states. For the sake of clarity, we view tMsore
machine as a (total) mapping: X7 — Y. First assume that’r andX; are totally
ordered by some ordet. TakeH = FPF{ ... FL_|F9 € (FoF)*Fo afinite play
of length2m + 1 in G(A, K). The wordH defines a wordv(H) € F; as follows:
w(H) = of ..ol where foralll <i <m,o! =min{o |succ(Fl,, o) =FC}.
We lety(H) = succ(F9, M\(w(H))) (it exists sincelet(A, K) is complete, by Prop.
1).
We now prove thay is winning. Letd = F{ F{ FCF] --- € (FoFr)“nOutcomec 4, k) (7).
Foralli € {0,...,n}, let H; = F{F{...FPF!. We associatéd/ with a word
upg = (0§ Ucf)(0PUol) .- € 24 whereforalli > 0,09 = Aol ...0l_ ,)ands! =
min{o | succ(F/, o) = FY,}. Note that since\ is winning,uy € Luco(det(4, K)).
Moreover, by definition ofy, for all i > 0, succ(FC,09) = F}. ThereforeH is the
run ofdet(A, K) onuy and all states off are not final states.

Conversely, suppose that Player O has a winning stratégy=(A, K). Itis known
that we can assume thatis memoryless [8]. So let be a mapping fron¥#o to Fi.



We construct a winning strategy for the controller, repnése as a Moore machine
M, = (Yo, X1, Fo, Fv, 64, g). Its state set iFo with initial stateFy; forall F' € Fo,

the output off” is defined by, (F') = o, for somes € X suchthabo (F,o,) = v(F)

(it exists since(F,~(F)) € T), forall F € Fp, and allo; € Xy, the transition
function is defined by, (F,o;) = 6;(y(F),0;). Sincew is winning, it is clear by
construction that all states o1, reachable from the initial state are non-final. Therefore
L(M,) C Lyco(det(A, K)) = Lyc(A). Moreover,M, is complete, sincéet(A, K)

is complete. Since there is a winning strategyn G(A, K), it means thatz(A, K) is
non-empty, and so i&/,, which concludes the proof. O

A.4  Proof of Proposition 3

Proof. (i) It holds as mag—1, F'(¢) — ¢ € o) <max(—1, F'(q) — q € a), Vg € Q.
(#7) itholds as MK + 1, F(¢')+¢ € o) <min(K +1,F'(¢')+¢q € a),¥q € Q.

(131) Letq € Q. We show that for all € §(¢, o), F'(q) < succ(F,o)(¢") — (¢’ €
«). This will be sufficient to conclude since itimplies tHatq) < max(—1,succ(F,o)(q¢’)—
(¢ € a)), forall¢’ € §(q, o), and therefore thal (q) < £2(succ(F, o), o)(q).
So letq € d(q,0), and letl(q") = {¢" | (¢",0,¢') € 6, F(¢") # —1}. Since
(g,0,¢") € §, we haveg € I(¢'). We know thatsucc(F, o)(q") = max{min(K +
LF(@")+q¢ € a)| ¢’ € I(¢)}. Sinceq € I(¢'), succ(F,o)(¢) > min(K +
LF(@+4¢ €a).lf Fg)+4¢ € a < K+1,thensucc(F,o)(q") — (¢’ € o) > F(q).
The case(q) + (¢’ € «) isimpossible sincé’'(q) < K, asF' ¢ safe.

(iv) Letq € Q. We first show that for alf’ suchthatq’, o, q) € d and2(F, 0)(q’) #
—1,02(F,0)(¢") < F(q) — (¢ € «). This will be sufficient to conclude since it implies
thatmin(K + 1, 2(F,0)(¢')+ (¢ € «)) < F(q), forall ¢’ suchtha{¢’, 0,q) € ¢, and
therefore thasucc(2(F, 0),0)(q) < F(q).

So letq’ suchthatq’, o,q) € 6 and2(F,0)(¢’) # —1.LetI(¢") ={¢" | (¢',0,¢") €
0}.Since(d’, 0,q) € §, we havey € I(q’). We know that2(F, 0)(q') = min{maxz(-1, F(¢")—
(¢" € @) | ¢" € I(¢')}. Sinceg € I(q'), we get2(F,0)(q') < max(—1,F(q) —(q €
«)). The caseF'(q) — (¢ € a) < —1 is impossible, since otherwise we would have
Q2(F,0)(¢") = —1, which contradicts the hypothesis. Thereforez(—1, F'(¢) — (¢ €

a)) = F(q) — (¢ € o) and2(F,0)(¢') < F(q) — (q € o). O

A.5 Proof of Proposition 5

Proof. We start by a simple remark. LetbetbUKCW with input states); and output
stateso. WhenK = 0, Player I's locations i (A, K) are exactly the subsets @f;
and Player O’s locations are the subset§)ef, and the partial order corresponds to
set inclusion.

Now, let us consider for each = {v,v'} € E the antichain (forC) Ly, =
{V\ {v},V\ {v'}}, L compactly represents all the subsetd/athat are independent
of the edge{v, v'}. ClearlyIND(G) = [, ,nep [ L{v.}- AS adirect consequence of
the NP completeness of the independent set problem, it dagxisb a polynomial time
algorithm to compute the antichain for this intersectiotessa? = N P. Indeed, this
antichain contains the maximal independent sets.



Now, we show how to constructdK CW A and an antichain of subsets of states
L such thaPre;(Prep (Prep(L)) is exactlyIND(G). We can assume th&t is totally
ordered by some order, and for all edges- {v,v'} € E, we denote byr(e) the
minimal element ot and bym(e) its maximal element. Now, the set of state of the au-
tomaton is structured in four layerS; = {ok, ko} belongsto Player IS5 = {(v, e, 7) |
veV,ee E,i e {1,2}} belongs to Player 051 = {(v,¢e) | v € V,e € E} belongs
to Player O. FinallySy = {v | v € V'} belongs to Player |. Note that we do not make
players strictly alternate here to simplify the expositibis easy to add a layer between
the two actions of Player O to make the automaton turn-bdséubse additional states,
Player | would have only one action and the operako®; would simulate the identity.
The objective of Player O is to ensure that the control ends gpateok € S3, so we
take L = {{ok}}. Now, we explain how to put transitions between states antbcie
Pre;(Preo(Preo(((L))). The transitions fromby and.S; are{((v, e, ), (e, i), 0k) |
mi(e) # v U {((v,€,1),(e,i), ko) | mi(e) = v Ve # €}, itis easy to verify that
Preo(L) is equal to| Uecp{{(v,e,1) | v # m(e)},{(v,e,2) | v # ma(e)}. The
transitions fromS; to S, are{((v,e), 4, (v,e,4)) | i € {1,2} Av € V Ae € E}. As
states ofS; belongs to Player O the controllable configurati®neo (Preo((L)) are
LUeer{{(v,e) | v # mi(e)}, {(v,e) | v # ma(e)}}. The transitions front, to Sy
are{(v,e, (v,e)) | v € V Ae € E}. As states inSy belongs to Player I, we have that
|Prer(Preo(Preo((L))) = IND(G), indeed Player | can decide to verify any edge for
independence, so only independent set of vertices can Beeir{(Preo (Preo((L))).
O



