Centre Fédéré en Veérification

Technical Report number 2009.109

Fixpoint Guided Abstraction Refinement for
Alternating Automata

Pierre Ganty, Nicolas Maquet, Jean-Francois Raskin

UCL /5,

Université ¢ [} ?
catholique %==¢
delouvain e’

UNIVERSITE de Liege

This work was partially supported by a FRFC grant: 2.4530.02
and by the MoVES project. MoVES (P6/39) is part of the IAP-Phase VI Interuniversity
Attraction Poles Programme funded by the Belgian State, Belgian Science Policy

http://www.ulb.ac.be/di/ssd/cfv

Fixpoint Guided Abstraction Refinement
for Alternating Automata

Pierre Ganty, Nicolas Maquet- and Jean-Francois Raskin

1 University of California, Los Angeles, USA
2 Université Libre de Bruxelles (ULB), Belgium

Abstract. In this paper, we develop and evaluate two new algorithmsHheck-
ing emptiness of alternating automata. Those algorithriid bao previous works.
First, they rely on antichains to efficiently manipulate state-spaces underlying
the analysis of alternating automata. Second, they areaagbstigorithms with
built-in refinement operators based on techniques thab&xpformation com-
puted by abstract fixed points (and not counter-exampladsassually the case).
The efficiency of our new algorithms is illustrated by expeital results.

1 Introduction

Alternating automata are a generalization of both nondgtestic and universal au-
tomata. In an alternating automaton, the transition m@ais defined using positive
Boolean formulas: disjunctions allow for the expressionafideterministic transitions
and conjunctions allow for the expression of universalgiaons. The emptiness prob-
lem for alternating automata beinggPACECOMPLETE [3], several computationally-
hard automata-theoretic and model-checking problems eareduced in polynomial
time to the emptiness problem for those automata. Here ane slustrative examples.
The emptiness problem for a productrohondeterministic automata, the language in-
clusion between two nondeterministic automata, orlfile model-checking problem
can be reduced in linear time to the emptiness problem ferradting automata. It is
thus very desirable to design efficient algorithms for cliwglemptiness of those au-
tomata. In this paper, we propose new algorithms for efftirerhecking the emptiness
problem for alternating automata over finite words. Those algorithms combine two
recent lines of research.

First, we use efficient techniques basedamtichains initially introduced in [6],
to symbolically manipulate the state-spaces underlyiegathalysis of alternating au-
tomata. Antichain-based techniques have been applied¢vadgroblems in automata
theory [6, 8,9, 1] and for solving games of imperfect infotima [13]. For example,
in [9], we show how to solve the language inclusion probletmieen nondeterministic
Buchi automata efficiently by exploiting the structureshed automata-based construc-
tions underlying this problem. Automata that were out otreaf existing algorithms
can be treated with these new antichain algorithms, sed H0$6or new developments

* This author is supported by an FNRS-FRIA grant.

on that problem. Those techniques have also been applibdsuitcess to the satisfia-
bility and model-checking ofTL specifications [8]. Our team has implemented these
algorithms in a tool called AASKA [7], which is available for downlodd

Second, to apply this antichain technique to even largdaimtes of alternating
automata, we instantiate a generic abstract-refinememtadehat we have proposed
in [5] and further developed in [11, 12]. This abstract-refirent method does not use
counter-examples to refine unconclusive abstractionga&gnto most of the methods
presented and implemented in the literature, see for exafdpl Instead, our algo-
rithm uses the entire information computed by the abstraatyais and combines it
with information obtained by one application of a concretedicate transformer. The
algorithm presented in [5] is a generic solution that doasleed directly to efficient
implementations. In particular, as shown in [11], in ordepbtain an efficient imple-
mentation of this algorithm, we need to define a family of edxttdomains on which
abstract analysis can be effectively computed, as welladipal operators to refine the
elements of this family of abstract domains. In this paperuse the set gbartitions
of the locations of an alternating automaton to define theljaaf abstract domains.
Those abstract domains and their refinement operators caseleboth irforward and
backwardalgorithms for checking emptiness of alternating automata

To show the practical interest of these new algorithms, we rmplemented them
into the ALASKA tool. We illustrate the efficiency of our new algorithms ommples of
alternating automata constructed frafiL specifications interpreted over finite words.
With the help of those examples, we show that our algorithrasable to concentrate
the analysis on important parts of the state-space andagbstvay the less interesting
partsautomatically This allows us to treat much larger instances than with tmeete
forward or backward algorithms. We are confident that these algorithms will allow
us to solve problems of practical relevance that are cuyrent of reach of automatic
methods.

Structure of the papern Sect. 2, we recall some important notions about altemgati
automata and about the lattice of partitions. In Sect. 3,egall the basis for antichain
algorithms and their application to the emptiness of alténg automata. In Sect. 4,
we develop an adequate family of abstract domain based ofattiee of partitions
along with the tools to refine elements of this family. In S&ctwve present our abstract
forward and backward algorithms with refinement. In Secivéreport on experiments
that illustrate the efficiency of our algorithms. Finallyewlraw some conclusions and
evaluate future directions in Sect. 7.

2 Preliminaries

Alternating Automata.Let S be a set. We not&8*(S) the set ofpositive Boolean
formulasoverS. Formally,B*(S) ::= s | ¢1 V ¢2 | ¢1 A ¢2, Wheres € S. A valuation
for a set of propositiot$ is encoded as a subset®fFor each formula € B*(S) we
write [¢] C 2° the set of valuations that satisfy as usuals € [¢] is interpreted as
the valuation that assigns “true” only to the variableg.ihet X’ be a finite alphabet.

! See http://www.antichains.be

A finite word w is a finite sequence = oyo; ...0,_1 Of letters fromX. We write
2* the set of finite words oveX'. We now recall the definition aflternating automata
over finite wordgAFA for short).

Definition 1. An alternating finite automators a tuple (Loc, X, qo, 9, F') where :
Loc = {l,...,1,} is the set of locationsZ = {oy,...,0.,} is the set of alphabet
symbols;qy € Loc is the initial location;d: Loc x X — BT (Loc) is the transition
function; andF’ C Loc is the set of accepting locations.

As we will often manipulate sets of sets of locations in thguss, we will refer to
the inner sets asells Let Cells(S) = 2°. A cell of an AFA with locationsLoc is an
element ofCells(Loc). Instead of defining the traditional notion of runs #&FA, we
define their semantics asdirected graphthe nodes of which are cells. Each edge in
the cell graph is labeled by an alphabet symbol.

Definition 2. Let A = (Loc, X, qo, 9, F), [A] = (V, E) where:V = Cells(Loc) and
(c,o,c) € Eiff ¢ € [Njc.0(I,0)]. Awordw = o1, ..., 0, isacceptedy the automa-
ton A iff there exists a pathy, c1, . . ., ¢, Of cells ofV such thaty € co, ¢, € Cells(F)
(the set ofaccepting cells andVi € [1,...,p] : (¢;—1,04,¢;) € E.

In the sequel, we will considdid] simply as the set of edgds of the cell graph
and leave the set of vertic&simplicit.

Predicate TransformersWe have defined the semantics of alternating automata as a

directed graph of cells. To explore this graph, we pesdicate transformersf type
2Ce|ls(Loc) N 2Ce|ls(Loc).

Definition 3. We consider the followingredicate transforme(sl is anAFA) :

posto[A](X) = {cz | Her, 0,¢2) € [A]: er € X} post[A|(X) = U, 5 post . [A](X)
post,[A)(X) = {ez2| V(e1,0,¢2) € [A]: e1 € X} post[A](X) = ¢ 5 post, [A](X)
preg[Al(X) = {e1 | Her, 0,¢2) € [A]: eo € X} pre[A|(X) = U, ¢ 5 pre,[A](X)

preg[Al(X) = {e1 | V{er,0,¢2) € [A]: e € X} pre[A](X) = ¢ 5 Pre, [A](X)

These predicate transformers are actually two pairs whieHwal of each otheras
expressed in the following lemma.

Lemma 1. For any AFA A with locationslLoc, for any X C Cells(Loc), we have that
post|A)(X) = post[A](X) and pre[A](X) = pre[A)(X), whereX = Cells(Loc) \ X.

The lattice of partitions.The heart of our abstraction scheme isprtition the set
of locationsLoc of an AFA, in order to build a smaller (hopefully more manageable)
automaton. We recall the notion of partitions and some df freperties.

Let P be a partition of the se§ = {l;,...,l,} into k classeqcalledblocksin the
sequelyP = {by,..., by }. Partitions are classically ordered as follows: < Ps iff
Vb, € P1,3by € Py: by C bs. Itis well known, see [2], that the set of partitions
together with< form a complete lattice wherf{l; },...,{l,}} is the <-minimal el-
ement,{{l1,...,l,}} is the<-maximal element and the greatest lower bound of two
partitionsP; andP,, notedP; A Ps, is the partition givenbyb # 0 | 3by € P1,3 by €

Pa: b = by Nby}. The least upper bound of two partitiofs andP», notedP; Y Pa,
is the finest partition such that givére P; U Py, forall i; # [, : [; € bandi; € b we
have :3V € P, Y P2: I; € b’ andl; € b'. Also, we shall usé as a function such that
P(1) simply returns the block to which! belongs irP.

Example 1.Given the setS = {a,b,c} and two partitionsd; = {{a,b},{c}} and
Ay = {{a,c}, {b}}. We have thatd; A Az = {{a},{b},{c}}, A1 Y A2 = {a,b,c},
andAs(a) = {a, c}.

3 Deciding AFA Emptiness Using Antichains

A fundamental problem regardifg-A is theemptiness problene., to decide if there
exists at least one word accepted byAdfA. Since nondeterministic automatsdRA,
for short) emptiness can be solved in linear-time, a natohition is to first perform
an AFA — NFA translation and then check for emptiness. The translaiaginple
(albeit computationally difficult), as it amounts to a sutxs@nstruction, similar to that
of NFA determinization. Notice that the cell-graph semanticfABA defined in the
previous section is essentially &FA obtained by subset construction. The following
theorem exhibits two different methods of checking for emgss, each evaluating a
fixpoint-expression on the cell-graph.

Theorem 1. Let A = (Loc, X, qo, 6, F') be an AFA. The language ofd is empty
if and only if (the two expressions are equivalel, = Cells(Loc) \ X) :
(1 - post[A](z) U [qo]) C Cells(F) or (ux - pre[A](z)U Cells(F)) C [qo]

Order relation onCells(-) and antichains.In earlier works [6, 8, 9], we have designed
new efficient algorithms for several automata-theoretibpgms. Those algorithms are
based on efficient manipulations of sets of cells usangichains The crucial prop-
erty of antichains is that they are canonical represemtstdd closed sets (for the set
inclusion order) of cells. We summarize here some usefulien antichains for rep-
resenting and manipulating closed sets. More details cdourel in [6].

Let D be some finite domain. We define thpward-closureof X C Cells(D) as
1X ={ceCells(D) |3 € X:cD}. AsetX C Cells(D) is upward-closedff
X = 1X. Thedownward-closuref X is | X = {c € Cells(D) |3 € X: c C }.
The setX is downward-closedf X = | X . For any upward-closed sé&t, there exists
a unique set ofminimal element$ X | = {c € X | 3¢ € X: ¢ C c}. Likewise,
for any downward-closed séf, there exists a unique set mfaximal elementgX| =
{ce X |P € X: Dc}.Both setg X | and[X] antichainsand theycanonically
representheir upward- and downward-closure, respectively. In,fdckK = 7X then
X =T|X] andifX = | X thenX = |[X].

Antichain manipulation and predidate transformerAntichains of cells have addi-
tional useful properties. First, positive Boolean opermatjunion and intersection) on
closed sets preserves closedness and can be carried oendffion antichains. Also
set inclusions between closed sets, and set membershipecetfidiently decided on
the antichains representation. Second, as it will be d@steddl below, each of the four

predicate transformergdst, post, pre, pre) can be evaluatedirectly over antichains
without the need to consider any non-minimal or non-maxicedll Furthermore, each
of these predicate transformers evaluates to sets whicti@sed for subset inclusion
In other words, the result of their computation can be casailyi represented using
antichains. In this work, we do not provide implementatievel details on how the
predicate transformers are computed or how to compute ttiehaim representing a
closed set of cells. Such information can be found in [8] afid The two following
lemmas respectively ensure that all four predicate transfcs evaluate to sets of cells
which can be represented with antichains; and that they earahsparently applied on
antichains.

Lemma 2. For any AFA A with locationsLoc, for any X C Cells(Loc) we have
that post[A](X) is upward-closedpost[A](X) is downward-closedpre[A](X) is
downward-closed, angre[A](X) is upward-closed.

Lemma 3. Let A be anAFA with locationsLoc. For any setX C Cells(Loc) we
have thatpost[A](X) = post[A](1X), post|A](X) = post[A](| X)), pre[A](X) =
pre[AJ(1X), andpre[A](X) = pre[A](1X).

Efficient computation on antichains representatidre union and intersection opera-
tors on upward- or downward-closed sets of cells can be effiisi computed directly
over antichains in polynomial time. Léf andY be two antichains. In the sequel, we
note by X LI'Y andX MY the unique antichain which respectively represent therunio
and the intersection of the sets representedkbgndY . Subset inclusion can also be
decided in polynomial time on antichain representatiofgcivwe noteX C Y.

Finally, we show how to use antichains to evaluate more effity the fixpoint-
expressions of Theorem 1. Notice tlfa$] andCells(F') are respectively upward- and
downward-closed sets of cells. Als[Cells(F')] = {{F}}, |Cells(F)| = {{l} | &
F}, [[ao]] = {{a0}}, and[[go]] = {Loc\ {q0}}, all of which are antichains of linear
size w.r.t. to theAFA. We can now rewrite the fixpoint expressions of Theorem 1 to
exploit the properties of antichains.

Theorem 2. Let A = (Loc, X, o, 0, F') be anAFA. The language ofl is empty iff
(the two expressions are equivalent alid= Cells(Loc) \ X) : L
(n - [post[A](z)| U [[q0]]) E [Cells(F)] or (- [pre[A](z)] U [Cells(F)]) T [qo]]

This theorem provides the basis of efficient antichain-badgorithms to decide
AFA emptiness. In the sequel, we will refer to them respectiasltheconcrete forward
andconcrete backwardlgorithms, as they directly on the semantic®\6A.

4 Abstraction of Alternating Automata

4.1 Abstract domain

In this section, we present an original algorithmic framegwior the analysis oAFA,
using antichains along with abstract interpretation. @iga AFA with locationsLoc,
our algorithm will use a family of abstract domains definedtwy set of partitions?

of Loc. The concrete domain is the complete latt&€"s(->%) and each partitiorP
defines the abstract domain2$"*(P). We refer to elements dells(Loc) asconcrete
cellsand elements ofells(P) asabstract cellsAn abstract cell is thus a set of blocks
of the partition? and it represents all the concrete cells which can be cartetitby
choosing at least one location from each block. To captuseréipresentation role of
abstract cells, we define the following predicate.

Definition 4. The predicateCovers : Cells(P) x Cells(Loc) — {T, L} is defined as
follows : Covers(c®, ¢) iff ¢ = {P(I) | I € c}.

Note that concrete cells are covered by a unique abstrdetlodg abstract cells usually
cover many concrete cells.

Example 2.Let Loc = {1,2,3,4,5}, P = {by = {1},b23 = {2,3},bs5 = {4,5}}.
We have thaCovers({b1,b45},{1,3}) is false,Covers({b1,bs 5}, {1,4}) is true, and
Covers({b1,bs5},{1}) is false.

To make proper use of the theory of abstract interpretati@ndefine arabstraction
and aconcretizationfunctions, and show that they form@alois connectiorbetween
the concrete domain and each of our abstract domains.

Definition 5. LetP be a partition of the sdtoc, we define the functions
ap : 2Ce|ls(Loc) N 2Cel|s(73) and’}/p . 2Ce|ls(73) N 2Ce|ls(Loc) as follows :
ap(X)={c*|Fce X: Covers(c*,)}, yp(X) = {c| Fc* € X: Covers(c*,c)}.

In the sequel, we will omit thé@ subscript ofa and~y when the partition is clear from
the context. Additionaly, we definer = yp o ap.

Lemma 4. For any partition of Loc : (2¢¢5(tec)) %, (2Ces(P)).

Note thata and~y form aGalois insertionas it is easy to see that for &, ap o yp is
the identity function.

4.2 Efficient abstract analysis

In the sequel, we will need to evaluate fixpoint-expressawes the abstract domain. In
theory, we could simply surround every predicate transérotcuring in the fixpoint-
expressions by o -0+ to obtain an abstract fixpoint. However, for obvious perfante
concerns, we want to avoid as many concretization and alistnasteps as possible, and
ideally make all the computatiomrectly over the abstract domaifrurthermore, we
would like that theseabstract predicate transformeenjoy the same useful properties
w.r.t. antichains so that we can reuse the results of thaqussection. To achieve this
goal, we proceed as follows. Given a partitirof the set of locations of an alternating
automaton, we usesyntactic transformatiofi that builds arabstractAFA which over-
approximates the behavior of the original automaton. Liatétis section we will show
that thepre andpost predicate transformers can be directly evaluated on tratradt
automaton to obtain the same result (but much faster) than th- o v computation
on the original automaton. To express this syntactic t@nsétion, we definsyntactic
variantsof the abstraction and concretization functions.

Definition 6. Let P be a partition of the setoc. We define the followingyntactic
abstraction and concretization functions over positiv@Ban formulas.

& : Bt (Loc) — BT (P) 4 : BY(P) — Bt (Loc)
a(l) ="P(l) 3(b) = \/1
leb
Q1 V ¢2) = a(d1) V a(e2) Y(p1V ¢2) = F(d1) V A(2)
G(d1 A p2) = a(d1) A a(p2) (p1 A p2) = 5(h1) A F(h2)

We formalize the link between the two variantscoénd+y as follows.

Lemma 5. For every¢ € BT (Loc) we have thafa(¢)] = «([¢]), and for every
¢ € B¥(P) we have thaf§(¢)] = v([¢])-

We can now define thé transformation.

Definition 7. Let A = (Loc, X, qo,0, F) and P a partition of Loc. (4,P) =
(Loc®, ¥, bg, 0%, F*) where:Loc® = P, by = P(qo), 6°(b,0) = a(V,g, 0(l,0)),
andF*={beP|bNF #0}.

Theorem 3. Let A be anAFA, P a partition of its locations andi® = (A, P), a o
post[A] o v = post[A®] and« o pre[A] o v = pre[A%].

This theorem is crucial for the practical efficiency of ouy@ithms. In our framework,
the evaluation of an abstract fixpoint on a large automatooueats to compute a con-
crete fixpoint on a smaller automaton that is easy to obthav(transformation can be
done in linear time). This latter fixpoint computation carpeeformed with antichains,
using all the results of Section 3.

4.3 Precision of the abstract domain

We now present some results about precision and repredéptabour family of
abstract domains. In particular, for the automatic refineinoé abstract domains, we
will need an effective way of computing tloearsest partitiorwhich can represent an
upward- or downward closed set of cells without loss of mieaoi.

Definition 8. A set of cellsX C Cells(Loc) is representable in the abstract domain
2Cels(P) iff 1p(X) = X (recall thatup = vp o ap).

Lemma 6. Let X C Cells(Loc), letP; andPs be two partitions ofoc. If X is repre-
sentable withP; and representable witfPs, thenX is representable withP; Y P.

As the lattice of partition is a complete lattice, we haveftiikwing corollary.

Corollary 1. For all X C Cells(Loc), there exists a coarsest partitidd = Y{P’ |
up (X) = X} such thatup (X) = X.

For upward- and downward-closed sets, we have an efficigntav@mpute this coars-

est partition. We start with upward-closed sets. To obtaialgorithm, we use the no-

tion of neighbour list The neighbour list of a locatidrwith respect to an upward-closed
setX, which we writeN'x (1) is the set of subsets abc along whichl appears in X |.

Definition 9. Let X C Cells(Loc) be an upward-closed set. Timeighbour listof a
location! € Loc w.r.t. X is the setNx (1) = {¢\ {l} | c€ | X],l € c}.

The following lemma states that if two locations share theesaeighbour lists w.r.t.

an upward-closed seX, then they can be put in the same partition block and preserve
the representability oK. ConverselyX cannot be exactly represented by any partition
which puts into the same block two locations that have difieneighbour lists.

Lemma 7. For any partition P of Loc, for any upward-closed seX, the setX is
representable iRC"(P) iff vV 1,1’ € Loc - P(I) = P(I') — Nx (1) = Nx(I').

In other words, computing the neighbour list w.At.for each element dfoc suffices
to compute the coarsest partition which can represent

Corollary 2. For all upward-closed seX C Cells(Loc), the partition? induced by
the equivalence relatioh~ ! iff N'x (I) = Nx (I') is the coarsest partition that is able
to representX. Assuming that X | has been computed, this partition is computable in
O(nlogn) set comparisons, whereis the size of X |.

The representability of downward-closed sets is immediditie the following lemma.
In practice, we simply compute the coarsest partition fercbmplementary upward-
closed set.

Lemma 8. Let X C Cells(Loc), P a partition ofLoc. pup(X) = X iff up(X) = X.

5 Abstraction Refinement Algorithm

This section presents two fixpoint-guided abstraction esfient algorithms foAFA.
These algorithms share several ideas with the genericitdgopresented in [5] but they
are formally different, so we provide arguments showingrtb@rectness. To make the
algorithms more readable, we have chosen not to includerttiehain-specific nota-
tions in the pseudo-code. From the results of Sect. 3, is #asge that the forward
abstract algorithm only manipulates upward-closed setitevthe backward abstract
algorithm only manipulates downward-closed sets, so akiélsets can be represented
using antichains, which is what we implemented. We coneéatrere on explanations
related to the abstract forward algorithm. The abstrackwaod algorithm is the dual
of this algorithm and its correctness can be establishedverasimilar way. We first
give an informal presentation of the ideas underlying tigeiathm and then we expose
formal arguments for its soundness and completeness.

Input: A = (Loc, X, qo, 9, F) Input: A = (Loc, X, qo, 9, F)

Output: True iff L(A) = 0 Output: True iff L(A) =0
1 Py — {F,Loc\ F} 1 Po — {{qo},Loc\ {qo}}
2 Zy « Cells(F) 2 Zo < [qo]
3 foriin0,1,2,...do 3 foriin0,1,2,...do
4 | AT — 0(A,P) 4 | A — 0(A,P)
5 | A% = (Loc®, X, bo, 5%, F®) 5 | A% = (Loc®, X, bo, 0%, F*)
6 I; — IIbo]] 6 Bi — CeIIS(FO‘)
7 R; « px- (I;Upost[AT](z))Nap, (Z;) 7 R; «— px- (BsUpre[A7](x)) Nap, (Zs)
8 if post[A$](R;) C ap,(Z;) then 8 if pre[AT](R:) C ap,(Z;) then
9 | retun True 9 | retun True

10 if [qo] € Z; then if Cells(F) € Z; then

11 L return False 11 L return False

12 | Zipr —yp,(Ri) N prelAl(yp,(R:)) 12 | Zis1 — yp,(Ri) N post[A](vp, (R:))
13 Pit1 — Y{P | /J/p(ZZ‘+1) = ZZ‘+1} 13 Pit1 — Y{P | pxp(ZiJr1) = Zi+1}

=
o

Fig. 1. Theabstract-forward(left) andabstract-backwardright) FGAR algorithms.

Description of the forward abstract algorithnilThe most important information com-
puted in the algorithm isZ;, which is an over-approximation of the set of reachable
cells which cannot reach an accepting cell 8teps or less. In other words, all the cells
outsideZ; are either unreachable, or can lead to an accepting ceBteps or less (or
both). Our algorithm always uses the coarsest partiftpthat allowsZ; to be repre-
sented in the corresponding abstract domain. The algofibgins by initializingZ,
with the set of accepting cells and by initializifigy accordingly (lines 1 and 2). The
main loop proceeds as follows. First, we compute the alisieachable cell&; which
are withinZ;, which is done by applying theétransformation usin; (line 4), and by
computing a forward abstract fixpoint (line 7)./K; does not contain a cell which can
leaveZ;, we know (as we will formally prove later in this section) thlae automaton
is empty (line 8). If on the other hand, an initial cell (i.a.cell containing;y) is no
longer inZ; then we know that it can lead to an accepting cell fteps or less (as it is
obviously reachable) and we conclude that the automatasrisempty (line 11). In the
case where both tests failed, wedinethe information contained i&Z; by removing all
the cells which can leav&; in one step, as we know that these cells are either surely
unreachable or can lead to an accepting cell4n1 steps or less. Finally, the current
abstract domain is changed to be able to represent th&Zpéime 13), using the neigh-
bour list algorithm of Corollary 2. It is important to noteattthis refinement operation
is not the traditional refinement used in counter-exampigagliabstraction refinement.
Note also that our algorithm does not necessarily choosevaabstract domain that
is strictly more precise than the previous one as in [5].dadt the algorithm uses the
most abstract domain possible at all times. As we cannotorelyhe termination proof
from [5], we provide a new one at the end of this section.

Completness and correctness of the forward abstract afigori Correctness and com-
pletness relies on the properties formalized in the follmilemma.

Lemma 9. LetReach = px - [qo] U post[A](z) be the reachable cells of, let Bad® =
W= pred[A](Cells(F)) be the cells that can reach an accepting celkisteps or less,
7=0

and let us notesafe” = Cells(Loc) \ Bad", i.e. the set of cells that cannot reach an
accepting cell ink steps or less. The following four properties hold:

1. Vi >0: up,(Z;) = Z;,1.e.Z; is representable in the successive abstract domains;

2. Vi >0: Z;41 C Z;, i.e. the set<; are decreasing;

3. Vi > 0: Reach N Safe’ C Z;, i.e. Z; over-approximates the reachable cells that
cannot reach an accepting cell irsteps or less;

4, if Z; = Zi+1 thenpost[A“](Ri) - Oépi(Zi).

Proof. We prove each point in turn. Poiftis straightforward a®, is chosen in lind

to be able to represeitty, andP;, 1 is chosen in linel3 to be able to represett; ;.
Paint2 follows directly from the fact thak; C «;(Z;), Z; is representable i, by the
previous point, and the definition &f ., ; in line 12. PoinB3 is established by induction.
The property is clearly true foZ,. Let us establish it forZ; 1, using the induction
hypothesis that it is true fa¥;. By soundness of the theory of abstract interpretation,
we know that in liner we compute a seR; which over-approximates the seéach N
Safe’. In line 12 we remove cells that can leave this set in one stef; s is an over-
approximation of the reachable cells that cannot reach espding cell ini + 1 steps
or less, i.eReach N Safe! ™! C Z;+1, which concludes the proof. Poigtis established
as follows. If Z; = Z;,1, then clearlypost[A](v;(R;)) C ~:(R;) as no cell can leave
~i(R;) in one step (from lind2). Then~;(R;) C Z; shows thatpost[A](y:(R;)) C
Z,;. Finally we conclude from monotonicity af; (itself a consequence of the Galois
connection, see lemma 4) thaf(post[A](v:(R:))) € «;(Z;) which is equivalent to
post[A¥](R;) C «;(Z;) by theorem 31

We can now establish the soundness and completeness ofgouittah with the fol-
lowing theorem.

Theorem 4. The forward abstract algorithm with refinement is sound aonhplete to
decide the emptiness AFA.

Proof. Let A be the AFA on which the algorithm is executed. First, let us show
that the algorithm is sound. Assume that the algorithm retdfrue”. In this case,
the test of line8 evaluates to true which implies thabvst[A*](R;) C R; and so
post[A]l(vi(R:)) € 7vi(R;). Becausey;(R;) is an over-approximation of the concrete
reachable cells and ag(R;) C Z; we know that all the accepting cells are unreach-
able. Now, assume that the algorithm returns “False”. Theh< Z; which means that
qo is able to reach an accepting celliisteps or less. Sinag is obviously reachable,
we can conclude that the languageAfs non-empty. To prove the completeness of
the algorithm, we only need to establish its terminatiorisTha direct consequence of
point2 and poin#4 of the previous lemma

6 Experimental Evaluation

In this section, we evaluate the practical performance ofexhniques with three series
of benchmarks. Each benchmark is composed of a pdif bfformulas(«, ¢) inter-
preted on finite words, and for which we want to knowpifs a logical consequence

of ¢, i.e. if ¥ |= ¢ holds. To solve this problem, we translate the formula —¢ into
anAFA and check that the language of tAEA is empty. This translation is linear in
the size of the formula and creates a location inAlRé for each subformula. As we
will see, ouryy formulas are constructed as large conjunctions of cométrand model
the behavior of finite-state systems, while thiormulas model properties of those sys-
tems. We defined properties with varying degreekodlity. Intuitively, a propertyy

is local when only a small number of subformulas/oére needed to establish|= ¢.
This is not a formal notion but it will be clear from the examgl We will show in
this section that our abstract algorithms are able to aufoaily identify subformulas
which are not needed to establish the property. Due to ladpate, we only report
results where) = ¢ holds. Positive instances are clearly the most difficultnast be
prove that the correspondigrA is empty, which requires to compute the entire fixed
point (See Theorem 2). We now briefly recall the definitiond'Df interpreted over
finite words and we follow by presenting each benchmark in.tur

Finite-WordLTL. Let Prop be a finite set of propositions. ATL formula¢ overProp
is of the form:¢ ::= p € Prop | =¢ | ¢1 A 2 | 1 V 2 | X | 1 Udpa. Let X = 2Prop,
The semantics of a finite-wold'L formula¢, which we notg¢], is a subset of* as
defined by the following semantic rules. Lete X*. We use the following notations :
w; is the letter inw at the position, starting at zerofw| is the length ofv; andw;_, is
the suffix ofw starting at position.

w € [p] iff p € wo ; w € [~g] iff w & [¢]

w € [¢1 A ¢o] iff w € [é1] andw € [¢2]

w € [¢1 V ¢2] iff w e [¢1] orw € [¢2]

w ¢ [X¢] if |w| < 2, otherwisev € [X ¢] iff wi_. € [¢]

w € [pr1Ug] iff 31,0 <i < |w|:wi € [po] @andV 5,0 < j <i:wj, € [¢1]

We define the syntactic shortcutse andfalsein the usual way, as well aB¢ =
trueU ¢ andG¢ = —F-¢. Notice that no word of length 0 or 1 can satis§true,
which is convenient to detect the end of the word. The fornfttaX true is thus valid
in finite-wordLTL, andG X true is not satisfiable.

Benchmark 1.The first benchmark takes 2 parameters> 0 and0 < k£ < n:
Benchl(n,k) = (Al=y G(pi — (F(=pi) A F(pis1))), Fpo — Fpy). Clearly we
have that) = ¢ holds for all values of and also that the subformulas®ffor i > &
are not needed to establigh= ¢.

Benchmark 2.This second benchmark is used to demonstrate how our dgaitan
automatically detect less obvious versions of localitytfoa Bench1. It uses 2 parame-
tersk andn with 0 < k£ < n and is built using the following recursive nesting definitio
Sub(n,1) = Fpy; for odd values ok > 1 Sub(n, k) = F(p, A X (Sub(n, k —1)));
and for even values d > 1 Sub(n, k) = F(-p, A X(Sub(n,k — 1))). Our second
benchmark is Bench2(n, k) = (A=) G(p; — Sub(i + 1,k)), Fpo — Fp,). Itis
relatively easy to see thdt = ¢ holds for any value ok, and that for odd values @f,
the nested subformulas beyond the first level are not needestablish the property.

Benchmark 3This third and final benchmark aims to demonstrate the use$slof our
abstraction algorithms in a more realistic setting. We sgetthe behavior of a lift with

n floors with a parametritTL formula. An example of such formulas can be found in
the appendix. For floors,Prop = {f1,..., fn,b1, ..., bn,open}. The f; propositions
represent the current floor. Only one of th&s can be true at any time, which is initially
f1. Theb; propositions represent the state (lit or unlit) of the ¢mittons of each floor
and there is only one button per floor. The additionadn proposition is true when the
doors of the lift are open. The constraints on the dynamitisissystem are as follows :
(%) initially the lift is at the first floor and the doors are opén) the lift must close its
doors when changing floorsii() the lift must go through floors in the correct order,
(iv) when a button is lit, the lift eventually reaches the cqomexling floor and opens
its doors, and finally«) when the lift reaches a floor, the corresponding button tveso
unlit. Let n be the number of floors. We apply our algorithms to check tvapprties
which depend on a parametewith 1 < k < n, namelySpecl(k) = G((f1 A bx) —
(=fxU fr-1)), andSpec2(k) = G((f1 A b A br—1) — (bU=bg—1)).

Experimental resultsAll the results of our experiments are found in Fig. 2, andewver
performed on a quad-core 3,2 Ghz Intel CPU with 12 Gb of merrug to lack of
space, we only report results for the concrete forward averse backward algorithms
which were the fastest (by a large factor) in all our experntaeThe columns of the
table are as followsATC is the size of the largest antichain encounterts is the
number of iterations of the fixpoin TC'* and AT'C"” are respectively the sizes of the
largest abstract and concrete antichains encountstegkis the number of execution
of the refinement steps an®| is the maximum number of blocks in the partitions.
Benchmark 1The partition sizes of the first benchmark illustrate how algiorithm
exploits the locality of the property to abstract away thiel@vant parts of the system.
For local properties, i.e. for small values bf|P| is small compared t¢Loc| mean-
ing that the algorithm automatically ignores many subfdaswvhich are irrelevant to
the property. For larger values &f the abstraction overhead becomes larger, but that
overhead becomes less important as the system gBsvschmark 20n the second
benchmark, our abstract algorithm largely outperformscthivecrete algorithm. Notice
how for k > 3 the partition sizes do not continue to grow (it also holdsvalues of

k beyond 5). This means that contrary to the concrete algorifGAR does not get
trapped in the intricate nesting of ti&modalities (which are not necessary to prove the
property) and abstracts it completely with a constant nurobgartition blocks. The
speed improvement is consideralBenchmark 30n this final benchmark, the abstract
algorithm outperforms the concrete algorithm when thellcaf the property spans
less than 5 floors. Beyond that value, the abstract algorgtams to take longer than
the concrete version. From tA§ Ccolumn, one can see that the antichain sizes remain
constant in the concrete algorithm, when the number of flomm®ases. This strongly
indicates that the difficulty of this benchmark comes mafntyn the exponential size
of the alphabet rather than the state-space itself. Becausagorithms only abstracts
the locations and not the alphabet, these results are muising. But again, for local
properties, the gains are very significant.

Lift: Specl Bench?2 Benchl

Lift: Spec2

concrete forward

abstract backward

| n [E][Loc]][Prop]

time |ATCliters

time [ATC*[ATC"|itergsteps|P|

1115/ 50 | 12 | 0,10 | 6 | 3 | 0,23 | 55 2 5| 3 |27
155/ 66 | 16 | 160 | 6 | 3 | 0,56 | 55 2 5] 3 |31
19/5/ 82 | 20 | 76,62 6 | 3 | 864 | 55 2 5] 3 |35
1y7, 50| 12 | 0,13 | 8 | 3| 0,87 | 201 2 5] 3 |31
157/ 66 | 16 | 204 | 8 | 3 | 1,21 | 201 2 5| 3 |35
197 82 | 20 | 9579| 8 | 3 | 9,99 | 201 2 5| 3 |39
119 50 | 12 | 0,16 | 10| 3 | 12,60| 779 2 5] 3 |35
159 66 | 16 | 2,69 | 10 | 3 | 13,42| 779 2 5] 3 |39
19/9| 82 | 20 |125,85 10| 3 | 46,47 | 779 2 5| 3 |43
711 19 8 006 | 8|2 010 | 11 2 41 3 |14
10(1 25| 11 | 006 | 10| 2 | 0,10 | 14 2 4 | 3 |17
13/1 31| 14 | 008 | 14| 2 | 0,12 | 17 2 4| 3 |20
713| 33 8 0,78 [201| 14| 0,13 | 11 2 41 3 |26
10/3| 45 | 11 |802,17 433q 20| 0,30 | 14 2 41 3 |35
133| 57 | 14 |>1000| - - 1,26 | 17 2 4| 3 |44
715| 47 8 |88,15(2122 26| 0,14 | 11 2 4| 3 |26
10/5| 65 | 11 |> 1000| - -1 037 | 14 2 4| 3 |35
135/ 83 | 14 |> 1000| - - | 147 | 17 2 4| 3 |44
8|3 84| 17 | 0,30 | 10 (17| 051 | 283 40 (7] 4 |21
12|3| 116| 25 | 17,45| 10| 25| 1,63 | 23 40 | 7| 4 |21
16|3| 148 | 33 |498,65 10 | 33| 26,65| 23 40 | 7| 4 |21
8|4/ 84| 17 | 0,26 | 10 (17| 1,29 | 37 72 |10| 6 |24
12/4/ 116| 25 | 17,81| 10 | 25| 5,02 | 37 72 |10| 6 |24
16|4| 148 | 33 |555,44| 10 | 33| 78,75| 37 72 10| 6 |24
8|5 84| 17 | 0,32 | 10 (17| 3,70 | 42 | 141 |12 | 8 |27
12|5| 116| 25 | 20,24| 10 | 25| 47,45 42 | 141 | 12| 8 |27
16|5| 148 | 33 |543,27| 10 | 33 |> 1000 - - - - |-
8|3/ 84| 17 | 0,46 | 10 (17| 1,18 | 58 72 | 8| 4 |22
12|3| 116| 25 | 17,98| 10 | 25| 3,64 | 58 72 | 8| 4 |22
16|3| 148 | 33 |557,75 10 | 33| 48,90| 58 72 | 8| 4 |22
8|4/ 84| 17 | 0,29 | 10 |17| 3,04 | 124 | 126 |11| 6 |25
12/4| 116| 25 | 19,29| 10 | 25| 10,63 | 124 | 126 |11| 6 |25
16|4| 148 | 33 |576,56| 10 | 33 |128,40, 124 | 126 | 11| 6 |25
8|5 84| 17 | 0,31 | 10 (17| 15,88 | 131 | 266 | 14| 8 |28
12|5| 116| 25 | 19,47| 10 | 25|283,90, 131 | 266 | 14| 8 |28
16|5| 148 | 33 |568,83 10 | 33 |> 1000 - - - - |-

Fig. 2. Experimental results. Times are in seconds.

7 Discussion

We have proposed in this paper two new abstract algorithrttsr@iinement for decid-
ing language emptiness fé&A. Our algorithm is based on an abstraction-refinement
scheme inspired from [5], which is different from the usweinement techniques based
on counter-example elimination [4]. Our algorithm alsolthsiion the successful tech-
nique of antichains, that we have introduced in [6], to syhaadly manipulate closed
sets of cells (sets of sets of locations). We have demoesitwith a set of benchmarks
that our algorithm is able to find coarse abstractions forglemautomata constructed
from largeLTL formulas. For a large number of instances of those benclhsndué ab-
stract algorithms outperform by several order of magnithdeconcrete algorithms. We
believe that this clearly shows the interest of our new aligors and their potential fu-
ture developments. Several lines of future works can beseméd. First, we should try
to design a version of our algorithms where refinements asecan counter-examples
and compare the relative performance of the two methodarSeeve have developed
our technique for automata on finite words. We need to develo theory to be able
to apply our ideas to automata on infinite words. The fixed t3amvolved in deciding
emptiness for the infinite word case are more complicateai(lysnested fixed points)
and our theory must be extended to handle this case. Firtallguld be interesting to
enrich our abstraction framework to deal with very largehalpets, possibly by parti-
tioning the set of alphabet symbols.

References

1. A. Bouajjani, P. Habermehl, L. Holik, T. Touili, and T. jdar. Antichain-based universality

and inclusion testing over nondeterministic finite tremauata. INCIAA, pages 57-67, 2008.

. S. Burris and H. P. SankappanavarCourse in Universal AlgebraSpringer, 1981.
. A.K. Chandra, D. Kozen, and L. J. Stockmeyer. AlternatibrACM 28(1):114-133, 1981.

4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Cemstample-guided abstraction
refinement for symbolic model checking. ACM 50(5):752—794, 2003.

5. P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guidestrattion refinements. I1BAS '07
volume 4634 oLNCS pages 333-348. Springer, 2007.

6. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. ishtins: A new algorithm for
checking universality of finite automata. @AV 2006 volume 4144 oL NCS pages 17-30.
Springer, 2006.

7. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. AlaskaAT VA pages 240-245, 2008.

8. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. AntigiaiAlternative algorithms for
LTL satisfiability and model-checking. IRACAS volume 4963 oL NCS 2008.

9. L. Doyen and J.-F. Raskin. Improved algorithms for the@ma#ta-based approach to model-
checking. INTACAS volume 4424 of NCS pages 451-465. Springer, 2007.

10. S. Fogarty and M. Vardi. Buechi complementation and-sfmnge termination, 2009. to
appear in TACAS.

11. P. Ganty. The Fixpoint Checking Problem: An Abstraction Refinemensgestive PhD
thesis, Université Libre de Bruxelles, 2007.

12. P. Ganty, J.-F. Raskin, and L. Van Begin. From many plazésw: automatic abstraction
refinement for petri netf-undamenta Informaticaé8(3):275-305, 2008.

13. J.-F. Raskin, K. Chatterjee, L. Doyen, and T. A. Henzingdgorithms for omega-regular
games with imperfect informatior.ogical Methods in Computer Scien@&%3), 2007.

w N

8 Appendix
This is the formula for the lift system with 2 floors :

FIA=f2Nopen AG(((b1 — (b1 U (f1 A open))) A (b2 — (b2 U (f2 A open)))))A
G((open — (f1V f2))) AG(((f1 — (=f2)) A (f2 — (=f1))A

G((f1 = ~Xf2) A (f2 = ~(Xf1))A

G(((FIANX3(true)) — X2((F1V £2))) A((f2A X3 (true)) — X2((F1V £2)))))A
G(((f1 — =b1) A (f2 — —b2)))

