
Centre Fédéré en Véri�cation

Technical Report number 2009.109

Fixpoint Guided Abstraction Re�nement for
Alternating Automata

Pierre Ganty, Nicolas Maquet, Jean-François Raskin

http://www.ulb.ac.be/di/ssd/cfv

This work was partially supported by a FRFC grant: 2.4530.02
and by the MoVES project. MoVES (P6/39) is part of the IAP-Phase VI Interuniversity

Attraction Poles Programme funded by the Belgian State, Belgian Science Policy

Fixpoint Guided Abstraction Refinement
for Alternating Automata

Pierre Ganty1, Nicolas Maquet2⋆ and Jean-François Raskin2

1 University of California, Los Angeles, USA
2 Université Libre de Bruxelles (ULB), Belgium

Abstract. In this paper, we develop and evaluate two new algorithms forcheck-
ing emptiness of alternating automata. Those algorithms build on previous works.
First, they rely on antichains to efficiently manipulate thestate-spaces underlying
the analysis of alternating automata. Second, they are abstract algorithms with
built-in refinement operators based on techniques that exploit information com-
puted by abstract fixed points (and not counter-examples as it is usually the case).
The efficiency of our new algorithms is illustrated by experimental results.

1 Introduction

Alternating automata are a generalization of both nondeterministic and universal au-
tomata. In an alternating automaton, the transition relation is defined using positive
Boolean formulas: disjunctions allow for the expression ofnondeterministic transitions
and conjunctions allow for the expression of universal transitions. The emptiness prob-
lem for alternating automata being PSPACE-COMPLETE [3], several computationally-
hard automata-theoretic and model-checking problems can be reduced in polynomial
time to the emptiness problem for those automata. Here are some illustrative examples.
The emptiness problem for a product ofn nondeterministic automata, the language in-
clusion between two nondeterministic automata, or theLTL model-checking problem
can be reduced in linear time to the emptiness problem for alternating automata. It is
thus very desirable to design efficient algorithms for checking emptiness of those au-
tomata. In this paper, we propose new algorithms for efficiently checking the emptiness
problem for alternating automata over finite words. Those new algorithms combine two
recent lines of research.

First, we use efficient techniques based onantichains, initially introduced in [6],
to symbolically manipulate the state-spaces underlying the analysis of alternating au-
tomata. Antichain-based techniques have been applied to several problems in automata
theory [6, 8, 9, 1] and for solving games of imperfect information [13]. For example,
in [9], we show how to solve the language inclusion problem between nondeterministic
Büchi automata efficiently by exploiting the structures ofthe automata-based construc-
tions underlying this problem. Automata that were out of reach of existing algorithms
can be treated with these new antichain algorithms, see also[10] for new developments

⋆ This author is supported by an FNRS-FRIA grant.

on that problem. Those techniques have also been applied with success to the satisfia-
bility and model-checking ofLTL specifications [8]. Our team has implemented these
algorithms in a tool called ALASKA [7], which is available for download1.

Second, to apply this antichain technique to even larger instances of alternating
automata, we instantiate a generic abstract-refinement method that we have proposed
in [5] and further developed in [11, 12]. This abstract-refinement method does not use
counter-examples to refine unconclusive abstractions contrary to most of the methods
presented and implemented in the literature, see for example [4]. Instead, our algo-
rithm uses the entire information computed by the abstract analysis and combines it
with information obtained by one application of a concrete predicate transformer. The
algorithm presented in [5] is a generic solution that does not lead directly to efficient
implementations. In particular, as shown in [11], in order to obtain an efficient imple-
mentation of this algorithm, we need to define a family of abstract domains on which
abstract analysis can be effectively computed, as well as practical operators to refine the
elements of this family of abstract domains. In this paper, we use the set ofpartitions
of the locations of an alternating automaton to define the family of abstract domains.
Those abstract domains and their refinement operators can beused both inforwardand
backwardalgorithms for checking emptiness of alternating automata.

To show the practical interest of these new algorithms, we have implemented them
into the ALASKA tool. We illustrate the efficiency of our new algorithms on examples of
alternating automata constructed fromLTL specifications interpreted over finite words.
With the help of those examples, we show that our algorithms are able to concentrate
the analysis on important parts of the state-space and abstract away the less interesting
partsautomatically. This allows us to treat much larger instances than with the concrete
forward or backward algorithms. We are confident that those new algorithms will allow
us to solve problems of practical relevance that are currently out of reach of automatic
methods.

Structure of the paper.In Sect. 2, we recall some important notions about alternating
automata and about the lattice of partitions. In Sect. 3, we recall the basis for antichain
algorithms and their application to the emptiness of alternating automata. In Sect. 4,
we develop an adequate family of abstract domain based on thelattice of partitions
along with the tools to refine elements of this family. In Sect. 5, we present our abstract
forward and backward algorithms with refinement. In Sect. 6,we report on experiments
that illustrate the efficiency of our algorithms. Finally, we draw some conclusions and
evaluate future directions in Sect. 7.

2 Preliminaries

Alternating Automata.Let S be a set. We noteB+(S) the set ofpositive Boolean
formulasoverS. Formally,B+(S) ::= s | φ1 ∨ φ2 | φ1 ∧ φ2, wheres ∈ S. A valuation
for a set of propositionS is encoded as a subset ofS. For each formulaφ ∈ B+(S) we
write JφK ⊆ 2S the set of valuations that satisfyφ; as usual,s ∈ JφK is interpreted as
the valuation that assigns “true” only to the variables ins. LetΣ be a finite alphabet.

1 See http://www.antichains.be

A finite wordw is a finite sequencew = σ0σ1 . . . σn−1 of letters fromΣ. We write
Σ∗ the set of finite words overΣ. We now recall the definition ofalternating automata
over finite words(AFA for short).

Definition 1. An alternating finite automatonis a tuple 〈Loc, Σ, q0, δ, F 〉 where :
Loc = {l1, . . . , ln} is the set of locations;Σ = {σ1, . . . , σm} is the set of alphabet
symbols;q0 ∈ Loc is the initial location;δ : Loc × Σ → B+(Loc) is the transition
function; andF ⊆ Loc is the set of accepting locations.

As we will often manipulate sets of sets of locations in the sequel, we will refer to
the inner sets ascells. Let Cells(S) = 2S. A cell of an AFA with locationsLoc is an
element ofCells(Loc). Instead of defining the traditional notion of runs forAFA, we
define their semantics as adirected graph, the nodes of which are cells. Each edge in
the cell graph is labeled by an alphabet symbol.

Definition 2. LetA = 〈Loc, Σ, q0, δ, F 〉, JAK = 〈V,E〉 where:V = Cells(Loc) and
〈c, σ, c′〉 ∈ E iff c′ ∈ J

∧
l∈c δ(l, σ)K. A wordw = σ1, . . . , σp is acceptedby the automa-

tonA iff there exists a pathc0, c1, . . . , cp of cells ofV such thatq0 ∈ c0, cp ∈ Cells(F)
(the set ofaccepting cells), and∀i ∈ [1, . . . , p] : 〈ci−1, σi, ci〉 ∈ E.

In the sequel, we will considerJAK simply as the set of edgesE of the cell graph
and leave the set of verticesV implicit.

Predicate Transformers.We have defined the semantics of alternating automata as a
directed graph of cells. To explore this graph, we usepredicate transformersof type
2Cells(Loc) → 2Cells(Loc).

Definition 3. We consider the followingpredicate transformers(A is anAFA) :
postσ[A](X) = {c2 | ∃〈c1, σ, c2〉 ∈ JAK : c1 ∈ X} post [A](X) =

⋃
σ∈Σ postσ[A](X)

p̃ostσ[A](X) = {c2 | ∀〈c1, σ, c2〉 ∈ JAK : c1 ∈ X} p̃ost [A](X) =
⋂

σ∈Σ p̃ostσ[A](X)
preσ[A](X) = {c1 | ∃〈c1, σ, c2〉 ∈ JAK : c2 ∈ X} pre[A](X) =

⋃
σ∈Σ preσ[A](X)

p̃reσ[A](X) = {c1 | ∀〈c1, σ, c2〉 ∈ JAK : c2 ∈ X} p̃re[A](X) =
⋂

σ∈Σ p̃reσ[A](X)

These predicate transformers are actually two pairs which aredual of each other, as
expressed in the following lemma.

Lemma 1. For anyAFA A with locationsLoc, for anyX ⊆ Cells(Loc), we have that

p̃ost [A](X) = post [A](X) andp̃re[A](X) = pre[A](X), whereX ≡ Cells(Loc) \X .

The lattice of partitions.The heart of our abstraction scheme is topartition the set
of locationsLoc of an AFA, in order to build a smaller (hopefully more manageable)
automaton. We recall the notion of partitions and some of their properties.

LetP be a partition of the setS = {l1, . . . , ln} into k classes(calledblocksin the
sequel)P = {b1, . . . , bk}. Partitions are classically ordered as follows:P1 � P2 iff
∀ b1 ∈ P1, ∃ b2 ∈ P2 : b1 ⊆ b2. It is well known, see [2], that the set of partitions
together with� form a complete lattice where{{l1}, . . . , {ln}} is the�-minimal el-
ement,{{l1, . . . , ln}} is the�-maximal element and the greatest lower bound of two
partitionsP1 andP2, notedP1fP2, is the partition given by{b 6= ∅ | ∃ b1 ∈ P1, ∃ b2 ∈

P2 : b = b1 ∩ b2}. The least upper bound of two partitionsP1 andP2, notedP1 g P2,
is the finest partition such that givenb ∈ P1 ∪ P2, for all li 6= lj : li ∈ b andlj ∈ b we
have :∃ b′ ∈ P1 g P2 : li ∈ b

′ andlj ∈ b′. Also, we shall useP as a function such that
P(l) simply returns the blockb to whichl belongs inP .

Example 1.Given the setS = {a, b, c} and two partitionsA1 = {{a, b}, {c}} and
A2 = {{a, c}, {b}}. We have thatA1 f A2 = {{a}, {b}, {c}}, A1 g A2 = {a, b, c},
andA2(a) = {a, c}.

3 Deciding AFA Emptiness Using Antichains

A fundamental problem regardingAFA is theemptiness problem; i.e., to decide if there
exists at least one word accepted by anAFA. Since nondeterministic automata (NFA,
for short) emptiness can be solved in linear-time, a naturalsolution is to first perform
an AFA → NFA translation and then check for emptiness. The translation is simple
(albeit computationally difficult), as it amounts to a subset construction, similar to that
of NFA determinization. Notice that the cell-graph semantics ofAFA defined in the
previous section is essentially anNFA obtained by subset construction. The following
theorem exhibits two different methods of checking for emptiness, each evaluating a
fixpoint-expression on the cell-graph.

Theorem 1. Let A = 〈Loc, Σ, q0, δ, F 〉 be an AFA. The language ofA is empty
if and only if (the two expressions are equivalent,X ≡ Cells(Loc) \ X) :
(µ x · post [A](x) ∪ Jq0K) ⊆ Cells(F) or (µ x · pre[A](x) ∪ Cells(F)) ⊆ Jq0K

Order relation onCells(·) and antichains.In earlier works [6, 8, 9], we have designed
new efficient algorithms for several automata-theoretic problems. Those algorithms are
based on efficient manipulations of sets of cells usingantichains. The crucial prop-
erty of antichains is that they are canonical representations of closed sets (for the set
inclusion order) of cells. We summarize here some useful results on antichains for rep-
resenting and manipulating closed sets. More details can befound in [6].

Let D be some finite domain. We define theupward-closureof X ⊆ Cells(D) as
↑X = {c ∈ Cells(D) | ∃ c′ ∈ X : c ⊇ c′}. A setX ⊆ Cells(D) is upward-closediff
X = ↑X . Thedownward-closureof X is ↓X = {c ∈ Cells(D) | ∃ c′ ∈ X : c ⊆ c′}.
The setX is downward-closediff X = ↓X . For any upward-closed setX , there exists
a unique set ofminimal elements⌊X⌋ = {c ∈ X | ∄ c′ ∈ X : c′ ⊂ c}. Likewise,
for any downward-closed setX , there exists a unique set ofmaximal elements⌈X⌉ =
{c ∈ X | ∄ c′ ∈ X : c′ ⊃ c}. Both sets⌊X⌋ and⌈X⌉ antichainsand theycanonically
representtheir upward- and downward-closure, respectively. In fact, if X = ↑X then
X =

x⌊X⌋ and ifX = ↓X thenX =
y⌈X⌉ .

Antichain manipulation and predidate transformers.Antichains of cells have addi-
tional useful properties. First, positive Boolean operation (union and intersection) on
closed sets preserves closedness and can be carried out efficiently on antichains. Also
set inclusions between closed sets, and set membership can be efficiently decided on
the antichains representation. Second, as it will be established below, each of the four

predicate transformers (post , p̃ost , pre, p̃re) can be evaluateddirectly over antichains,
without the need to consider any non-minimal or non-maximalcell. Furthermore, each
of these predicate transformers evaluates to sets which areclosed for subset inclusion.
In other words, the result of their computation can be canonically represented using
antichains. In this work, we do not provide implementation-level details on how the
predicate transformers are computed or how to compute the antichain representing a
closed set of cells. Such information can be found in [8] and [7]. The two following
lemmas respectively ensure that all four predicate transformers evaluate to sets of cells
which can be represented with antichains; and that they can be transparently applied on
antichains.

Lemma 2. For any AFA A with locationsLoc, for anyX ⊆ Cells(Loc) we have
that post [A](X) is upward-closed,p̃ost [A](X) is downward-closed,pre[A](X) is
downward-closed, and̃pre[A](X) is upward-closed.

Lemma 3. Let A be anAFA with locationsLoc. For any setX ⊆ Cells(Loc) we
have thatpost [A](X) = post [A](↑X), p̃ost [A](X) = p̃ost [A](↓X), pre[A](X) =
pre[A](↓X), andp̃re[A](X) = p̃re[A](↑X).

Efficient computation on antichains representation.The union and intersection opera-
tors on upward- or downward-closed sets of cells can be efficiently computed directly
over antichains in polynomial time. LetX andY be two antichains. In the sequel, we
note byX ⊔ Y andX ⊓ Y the unique antichain which respectively represent the union
and the intersection of the sets represented byX andY . Subset inclusion can also be
decided in polynomial time on antichain representations, which we noteX ⊑ Y .

Finally, we show how to use antichains to evaluate more efficiently the fixpoint-
expressions of Theorem 1. Notice thatJq0K andCells(F) are respectively upward- and
downward-closed sets of cells. Also,⌈Cells(F)⌉ = {{F}}, ⌊Cells(F)⌋ = {{l} | l 6∈

F}, ⌊Jq0K⌋ = {{q0}}, and⌈Jq0K⌉ = {Loc \ {q0}}, all of which are antichains of linear
size w.r.t. to theAFA. We can now rewrite the fixpoint expressions of Theorem 1 to
exploit the properties of antichains.

Theorem 2. LetA = 〈Loc, Σ, q0, δ, F 〉 be anAFA. The language ofA is empty iff
(the two expressions are equivalent andX ≡ Cells(Loc) \X) :
(µ x · ⌊post [A](x)⌋ ⊔ ⌊Jq0K⌋) ⊑ ⌊Cells(F)⌋ or (µ x · ⌈pre[A](x)⌉ ⊔ ⌈Cells(F)⌉) ⊑ ⌈Jq0K⌉

This theorem provides the basis of efficient antichain-based algorithms to decide
AFA emptiness. In the sequel, we will refer to them respectivelyas theconcrete forward
andconcrete backwardalgorithms, as they directly on the semantics ofAFA.

4 Abstraction of Alternating Automata

4.1 Abstract domain

In this section, we present an original algorithmic framework for the analysis ofAFA,
using antichains along with abstract interpretation. Given anAFA with locationsLoc,
our algorithm will use a family of abstract domains defined bythe set of partitionsP

of Loc. The concrete domain is the complete lattice2Cells(Loc), and each partitionP
defines the abstract domain as2Cells(P). We refer to elements ofCells(Loc) asconcrete
cellsand elements ofCells(P) asabstract cells. An abstract cell is thus a set of blocks
of the partitionP and it represents all the concrete cells which can be constructed by
choosing at least one location from each block. To capture this representation role of
abstract cells, we define the following predicate.

Definition 4. The predicateCovers : Cells(P) × Cells(Loc) → {⊤,⊥} is defined as
follows :Covers(cα, c) iff cα = {P(l) | l ∈ c}.

Note that concrete cells are covered by a unique abstract cell while abstract cells usually
cover many concrete cells.

Example 2.Let Loc = {1, 2, 3, 4, 5}, P = {b1 = {1}, b2,3 = {2, 3}, b4,5 = {4, 5}}.
We have thatCovers({b1, b4,5}, {1, 3}) is false,Covers({b1, b4,5}, {1, 4}) is true, and
Covers({b1, b4,5}, {1}) is false.

To make proper use of the theory of abstract interpretation,we define anabstraction
and aconcretizationfunctions, and show that they form aGalois connectionbetween
the concrete domain and each of our abstract domains.

Definition 5. LetP be a partition of the setLoc, we define the functions
αP : 2Cells(Loc) → 2Cells(P) andγP : 2Cells(P) → 2Cells(Loc) as follows :
αP(X) = {cα | ∃ c ∈ X : Covers(cα, c)}, γP(X) = {c | ∃ cα ∈ X : Covers(cα, c)}.

In the sequel, we will omit theP subscript ofα andγ when the partition is clear from
the context. Additionaly, we defineµP = γP ◦ αP .

Lemma 4. For any partitionP of Loc : (2Cells(Loc),⊆) −−→←−−α
γ

(2Cells(P),⊆).

Note thatα andγ form aGalois insertionas it is easy to see that for allP , αP ◦ γP is
the identity function.

4.2 Efficient abstract analysis

In the sequel, we will need to evaluate fixpoint-expressionsover the abstract domain. In
theory, we could simply surround every predicate transformer occuring in the fixpoint-
expressions byα◦·◦γ to obtain an abstract fixpoint. However, for obvious performance
concerns, we want to avoid as many concretization and abstraction steps as possible, and
ideally make all the computationsdirectly over the abstract domain. Furthermore, we
would like that theseabstract predicate transformersenjoy the same useful properties
w.r.t. antichains so that we can reuse the results of the previous section. To achieve this
goal, we proceed as follows. Given a partitionP of the set of locations of an alternating
automaton, we use asyntactic transformationθ that builds anabstractAFA which over-
approximates the behavior of the original automaton. Laterin this section we will show
that thepre andpost predicate transformers can be directly evaluated on this abstract
automaton to obtain the same result (but much faster) than the α ◦ · ◦ γ computation
on the original automaton. To express this syntactic transformation, we definesyntactic
variantsof the abstraction and concretization functions.

Definition 6. Let P be a partition of the setLoc. We define the followingsyntactic
abstraction and concretization functions over positive Boolean formulas.

α̂ : B+(Loc)→ B+(P) γ̂ : B+(P)→ B+(Loc)

α̂(l) = P(l) γ̂(b) =
∨

l∈b

l

α̂(φ1 ∨ φ2) = α̂(φ1) ∨ α̂(φ2) γ̂(φ1 ∨ φ2) = γ̂(φ1) ∨ γ̂(φ2)

α̂(φ1 ∧ φ2) = α̂(φ1) ∧ α̂(φ2) γ̂(φ1 ∧ φ2) = γ̂(φ1) ∧ γ̂(φ2)

We formalize the link between the two variants ofα andγ as follows.

Lemma 5. For everyφ ∈ B+(Loc) we have thatJα̂(φ)K = α(JφK), and for every
φ ∈ B+(P) we have thatJγ̂(φ)K = γ(JφK).

We can now define theθ transformation.

Definition 7. Let A = 〈Loc, Σ, q0, δ, F 〉 and P a partition of Loc. θ(A,P) =
〈Locα, Σ, b0, δ

α, Fα〉 where:Locα = P , b0 = P(q0), δα(b, σ) = α̂(
∨

l∈b δ(l, σ)),
andFα = {b ∈ P | b ∩ F 6= ∅}.

Theorem 3. LetA be anAFA, P a partition of its locations andAα = θ(A,P), α ◦
post [A] ◦ γ = post [Aα] andα ◦ pre[A] ◦ γ = pre[Aα].

This theorem is crucial for the practical efficiency of our algorithms. In our framework,
the evaluation of an abstract fixpoint on a large automaton amounts to compute a con-
crete fixpoint on a smaller automaton that is easy to obtain (theθ transformation can be
done in linear time). This latter fixpoint computation can beperformed with antichains,
using all the results of Section 3.

4.3 Precision of the abstract domain

We now present some results about precision and representability in our family of
abstract domains. In particular, for the automatic refinement of abstract domains, we
will need an effective way of computing thecoarsest partitionwhich can represent an
upward- or downward closed set of cells without loss of precision.

Definition 8. A set of cellsX ⊆ Cells(Loc) is representable in the abstract domain
2Cells(P) iff µP(X) = X (recall thatµP = γP ◦ αP).

Lemma 6. LetX ⊆ Cells(Loc), letP1 andP2 be two partitions ofLoc. If X is repre-
sentable withP1 and representable withP2, thenX is representable withP1 g P2.

As the lattice of partition is a complete lattice, we have thefollowing corollary.

Corollary 1. For all X ⊆ Cells(Loc), there exists a coarsest partitionP = g{P ′ |
µP′(X) = X} such thatµP(X) = X .

For upward- and downward-closed sets, we have an efficient way to compute this coars-
est partition. We start with upward-closed sets. To obtain an algorithm, we use the no-
tion ofneighbour list. The neighbour list of a locationl with respect to an upward-closed
setX , which we writeNX(l) is the set of subsets ofLoc along whichl appears in⌊X⌋.

Definition 9. Let X ⊆ Cells(Loc) be an upward-closed set. Theneighbour listof a
locationl ∈ Loc w.r.t.X is the setNX(l) = {c \ {l} | c ∈ ⌊X⌋, l ∈ c}.

The following lemma states that if two locations share the same neighbour lists w.r.t.
an upward-closed setX , then they can be put in the same partition block and preserve
the representability ofX . Conversely,X cannot be exactly represented by any partition
which puts into the same block two locations that have different neighbour lists.

Lemma 7. For any partitionP of Loc, for any upward-closed setX , the setX is
representable in2Cells(P) iff ∀ l, l′ ∈ Loc · P(l) = P(l′)→ NX(l) = NX(l′).

In other words, computing the neighbour list w.r.t.X for each element ofLoc suffices
to compute the coarsest partition which can representX .

Corollary 2. For all upward-closed setX ⊆ Cells(Loc), the partitionP induced by
the equivalence relationl ∼ l′ iff NX(l) = NX(l′) is the coarsest partition that is able
to representX . Assuming that⌊X⌋ has been computed, this partition is computable in
O(n log n) set comparisons, wheren is the size of⌊X⌋.

The representability of downward-closed sets is immediatewith the following lemma.
In practice, we simply compute the coarsest partition for the complementary upward-
closed set.

Lemma 8. LetX ⊆ Cells(Loc), P a partition ofLoc. µP (X) = X iff µP (X) = X.

5 Abstraction Refinement Algorithm

This section presents two fixpoint-guided abstraction refinement algorithms forAFA.
These algorithms share several ideas with the generic algorithm presented in [5] but they
are formally different, so we provide arguments showing their correctness. To make the
algorithms more readable, we have chosen not to include the antichain-specific nota-
tions in the pseudo-code. From the results of Sect. 3, is easyto see that the forward
abstract algorithm only manipulates upward-closed sets while the backward abstract
algorithm only manipulates downward-closed sets, so all these sets can be represented
using antichains, which is what we implemented. We concentrate here on explanations
related to the abstract forward algorithm. The abstract backward algorithm is the dual
of this algorithm and its correctness can be established in avery similar way. We first
give an informal presentation of the ideas underlying the algorithm and then we expose
formal arguments for its soundness and completeness.

Input : A = 〈Loc, Σ, q0, δ, F 〉
Output : True iff L(A) = ∅

P0 ← {F, Loc \ F}1

Z0 ← Cells(F)2

for i in 0, 1, 2, . . . do3

Aα
i ← θ(A,Pi)4

Aα
i = 〈Locα, Σ, b0, δ

α, F α〉5

Ii ← Jb0K6

Ri ← µx ·(Ii∪post [Aα
i](x))∩αPi

(Zi)7

if post [Aα
i](Ri) ⊆ αPi

(Zi) then8

return True9

if Jq0K 6⊆ Zi then10

return False11

Zi+1 ← γPi
(Ri) ∩ fpre [A](γPi

(Ri))12

Pi+1 ← g{P | µP(Zi+1) = Zi+1}13

Input : A = 〈Loc, Σ, q0, δ, F 〉
Output : True iff L(A) = ∅

P0 ← {{q0}, Loc \ {q0}}1

Z0 ← Jq0K2

for i in 0, 1, 2, . . . do3

Aα
i ← θ(A,Pi)4

Aα
i = 〈Locα, Σ, b0, δ

α, F α〉5

Bi ← Cells(F α)6

Ri ← µx · (Bi∪pre [Aα
i](x))∩αPi

(Zi)7

if pre [Aα
i](Ri) ⊆ αPi

(Zi) then8

return True9

if Cells(F) 6⊆ Zi then10

return False11

Zi+1 ← γPi
(Ri) ∩ gpost [A](γPi

(Ri))12

Pi+1 ← g{P | µP(Zi+1) = Zi+1}13

Fig. 1. Theabstract-forward(left) andabstract-backward(right) FGAR algorithms.

Description of the forward abstract algorithm.The most important information com-
puted in the algorithm isZi, which is an over-approximation of the set of reachable
cells which cannot reach an accepting cell ini steps or less. In other words, all the cells
outsideZi are either unreachable, or can lead to an accepting cell ini steps or less (or
both). Our algorithm always uses the coarsest partitionPi that allowsZi to be repre-
sented in the corresponding abstract domain. The algorithmbegins by initializingZ0

with the set of accepting cells and by initializingP0 accordingly (lines 1 and 2). The
main loop proceeds as follows. First, we compute the abstract reachable cellsRi which
are withinZi, which is done by applying theθ transformation usingPi (line 4), and by
computing a forward abstract fixpoint (line 7). IfRi does not contain a cell which can
leaveZi, we know (as we will formally prove later in this section) that the automaton
is empty (line 8). If on the other hand, an initial cell (i.e.,a cell containingq0) is no
longer inZi then we know that it can lead to an accepting cell ini steps or less (as it is
obviously reachable) and we conclude that the automaton is non-empty (line 11). In the
case where both tests failed, werefinethe information contained inZi by removing all
the cells which can leaveRi in one step, as we know that these cells are either surely
unreachable or can lead to an accepting cell ini + 1 steps or less. Finally, the current
abstract domain is changed to be able to represent the newZi (line 13), using the neigh-
bour list algorithm of Corollary 2. It is important to note that this refinement operation
is not the traditional refinement used in counter-example guided abstraction refinement.
Note also that our algorithm does not necessarily choose a new abstract domain that
is strictly more precise than the previous one as in [5]. Instead, the algorithm uses the
most abstract domain possible at all times. As we cannot relyon the termination proof
from [5], we provide a new one at the end of this section.

Completness and correctness of the forward abstract algorithm. Correctness and com-
pletness relies on the properties formalized in the following lemma.

Lemma 9. LetReach = µx · Jq0K∪post [A](x) be the reachable cells ofA, letBadk =

∪j=k
j=0pre

j [A](Cells(F)) be the cells that can reach an accepting cell ink steps or less,

and let us noteSafek = Cells(Loc) \ Badk, i.e. the set of cells that cannot reach an
accepting cell ink steps or less. The following four properties hold:

1. ∀i ≥ 0: µPi
(Zi) = Zi, i.e.Zi is representable in the successive abstract domains;

2. ∀i ≥ 0: Zi+1 ⊆ Zi, i.e. the setsZi are decreasing;
3. ∀i ≥ 0: Reach ∩ Safei ⊆ Zi, i.e.Zi over-approximates the reachable cells that

cannot reach an accepting cell ini steps or less;
4. if Zi = Zi+1 thenpost [Aα](Ri) ⊆ αPi

(Zi).

Proof. We prove each point in turn. Point1 is straightforward asP0 is chosen in line1
to be able to representZ0, andPi+1 is chosen in line13 to be able to representZi+1.
Point2 follows directly from the fact thatRi ⊆ αi(Zi),Zi is representable inPi by the
previous point, and the definition ofZi+1 in line 12. Point3 is established by induction.
The property is clearly true forZ0. Let us establish it forZi+1 using the induction
hypothesis that it is true forZi. By soundness of the theory of abstract interpretation,
we know that in line7 we compute a setRi which over-approximates the setReach ∩
Safei. In line 12 we remove cells that can leave this set in one step, soZi+1 is an over-
approximation of the reachable cells that cannot reach an accepting cell ini + 1 steps
or less, i.e.Reach ∩ Safei+1 ⊆ Zi+1, which concludes the proof. Point4 is established
as follows. IfZi = Zi+1, then clearlypost [A](γi(Ri)) ⊆ γi(Ri) as no cell can leave
γi(Ri) in one step (from line12). Thenγi(Ri) ⊆ Zi shows thatpost [A](γi(Ri)) ⊆
Zi. Finally we conclude from monotonicity ofαi (itself a consequence of the Galois
connection, see lemma 4) thatαi(post [A](γi(Ri))) ⊆ αi(Zi) which is equivalent to
post [Aα](Ri) ⊆ αi(Zi) by theorem 3.

We can now establish the soundness and completeness of our algorithm with the fol-
lowing theorem.

Theorem 4. The forward abstract algorithm with refinement is sound and complete to
decide the emptiness ofAFA.

Proof. Let A be theAFA on which the algorithm is executed. First, let us show
that the algorithm is sound. Assume that the algorithm returns “True”. In this case,
the test of line8 evaluates to true which implies thatpost [Aα](Ri) ⊆ Ri and so
post [A](γi(Ri)) ⊆ γi(Ri). Becauseγi(Ri) is an over-approximation of the concrete
reachable cells and asγi(Ri) ⊆ Zi we know that all the accepting cells are unreach-
able. Now, assume that the algorithm returns “False”. ThenJq0K 6⊆ Zi which means that
q0 is able to reach an accepting cell ini steps or less. Sinceq0 is obviously reachable,
we can conclude that the language ofA is non-empty. To prove the completeness of
the algorithm, we only need to establish its termination. This is a direct consequence of
point2 and point4 of the previous lemma.

6 Experimental Evaluation

In this section, we evaluate the practical performance of our techniques with three series
of benchmarks. Each benchmark is composed of a pair ofLTL formulas〈ψ, φ〉 inter-
preted on finite words, and for which we want to know ifφ is a logical consequence

of ψ, i.e. if ψ |= φ holds. To solve this problem, we translate the formulaψ ∧ ¬φ into
anAFA and check that the language of theAFA is empty. This translation is linear in
the size of the formula and creates a location in theAFA for each subformula. As we
will see, ourψ formulas are constructed as large conjunctions of constraints and model
the behavior of finite-state systems, while theφ formulas model properties of those sys-
tems. We defined properties with varying degrees oflocality. Intuitively, a propertyφ
is local when only a small number of subformulas ofψ are needed to establishψ |= φ.
This is not a formal notion but it will be clear from the examples. We will show in
this section that our abstract algorithms are able to automatically identify subformulas
which are not needed to establish the property. Due to lack ofspace, we only report
results whereψ |= φ holds. Positive instances are clearly the most difficult, asmust be
prove that the correspondingAFA is empty, which requires to compute the entire fixed
point (See Theorem 2). We now briefly recall the definitions ofLTL interpreted over
finite words and we follow by presenting each benchmark in turn.

Finite-WordLTL. Let Prop be a finite set of propositions. ALTL formulaφ overProp

is of the form:φ ::= p ∈ Prop | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | φ1Uφ2. LetΣ = 2Prop.
The semantics of a finite-wordLTL formulaφ, which we noteJφK, is a subset ofΣ∗ as
defined by the following semantic rules. Letω ∈ Σ∗. We use the following notations :
ωi is the letter inω at the positioni, starting at zero;|ω| is the length ofω; andωi→ is
the suffix ofω starting at positioni.

ω ∈ JpK iff p ∈ ω0 ; ω ∈ J¬φK iff ω 6∈ JφK
ω ∈ Jφ1 ∧ φ2K iff ω ∈ Jφ1K andω ∈ Jφ2K
ω ∈ Jφ1 ∨ φ2K iff ω ∈ Jφ1K or ω ∈ Jφ2K
ω 6∈ JXφK if |ω| < 2, otherwiseω ∈ JXφK iff ω1→ ∈ JφK
ω ∈ Jφ1Uφ2K iff ∃ i, 0 ≤ i < |ω| : ωi→ ∈ Jφ2K and∀ j, 0 ≤ j ≤ i : ωj→ ∈ Jφ1K

We define the syntactic shortcutstrue andfalse in the usual way, as well asFφ ≡
trueUφ andGφ ≡ ¬F¬φ. Notice that no word of length 0 or 1 can satisfyXtrue,
which is convenient to detect the end of the word. The formulaF¬Xtrue is thus valid
in finite-wordLTL, andGXtrue is not satisfiable.

Benchmark 1.The first benchmark takes 2 parametersn > 0 and 0 < k ≤ n :
Bench1(n, k) = 〈

∧n−1
i=0 G(pi → (F (¬pi) ∧ F (pi+1))), Fp0 → Fpk〉. Clearly we

have thatψ |= φ holds for all values ofk and also that the subformulas ofψ for i > k

are not needed to establishψ |= φ.

Benchmark 2.This second benchmark is used to demonstrate how our algorithms can
automatically detect less obvious versions of locality than forBench1. It uses 2 parame-
tersk andnwith 0 < k ≤ n and is built using the following recursive nesting definition:
Sub(n, 1) = Fpn; for odd values ofk > 1 Sub(n, k) = F (pn ∧ X(Sub(n, k − 1)));
and for even values ofk > 1 Sub(n, k) = F (¬pn ∧ X(Sub(n, k − 1))). Our second
benchmark is :Bench2(n, k) = 〈

∧n−1
i=0 G(pi → Sub(i + 1, k)), Fp0 → Fpn〉. It is

relatively easy to see thatψ |= φ holds for any value ofk, and that for odd values ofk,
the nested subformulas beyond the first level are not needed to establish the property.

Benchmark 3.This third and final benchmark aims to demonstrate the usefulness of our
abstraction algorithms in a more realistic setting. We specified the behavior of a lift with
n floors with a parametricLTL formula. An example of such formulas can be found in
the appendix. Forn floors,Prop = {f1, . . . , fn, b1, . . . , bn, open}. Thefi propositions
represent the current floor. Only one of thefi’s can be true at any time, which is initially
f1. Thebi propositions represent the state (lit or unlit) of the call-buttons of each floor
and there is only one button per floor. The additionalopen proposition is true when the
doors of the lift are open. The constraints on the dynamics ofthis system are as follows :
(i) initially the lift is at the first floor and the doors are open,(ii) the lift must close its
doors when changing floors, (iii) the lift must go through floors in the correct order,
(iv) when a button is lit, the lift eventually reaches the corresponding floor and opens
its doors, and finally (v) when the lift reaches a floor, the corresponding button becomes
unlit. Let n be the number of floors. We apply our algorithms to check two properties
which depend on a parameterk with 1 < k ≤ n, namelySpec1(k) = G((f1 ∧ bk) →
(¬fkUfk−1)), andSpec2(k) = G((f1 ∧ bk ∧ bk−1)→ (bkU¬bk−1)).

Experimental results.All the results of our experiments are found in Fig. 2, and were
performed on a quad-core 3,2 Ghz Intel CPU with 12 Gb of memory. Due to lack of
space, we only report results for the concrete forward and reverse backward algorithms
which were the fastest (by a large factor) in all our experiments. The columns of the
table are as follows.ATC is the size of the largest antichain encountered,iters is the
number of iterations of the fixpoint,ATCα andATC γ are respectively the sizes of the
largest abstract and concrete antichains encountered,stepsis the number of execution
of the refinement steps and|P| is the maximum number of blocks in the partitions.
Benchmark 1.The partition sizes of the first benchmark illustrate how ouralgorithm
exploits the locality of the property to abstract away the irrelevant parts of the system.
For local properties, i.e. for small values ofk, |P| is small compared to|Loc| mean-
ing that the algorithm automatically ignores many subformulas which are irrelevant to
the property. For larger values ofk, the abstraction overhead becomes larger, but that
overhead becomes less important as the system grows.Benchmark 2.On the second
benchmark, our abstract algorithm largely outperforms theconcrete algorithm. Notice
how for k ≥ 3 the partition sizes do not continue to grow (it also holds forvalues of
k beyond 5). This means that contrary to the concrete algorithm, FGAR does not get
trapped in the intricate nesting of theF modalities (which are not necessary to prove the
property) and abstracts it completely with a constant number of partition blocks. The
speed improvement is considerable.Benchmark 3.On this final benchmark, the abstract
algorithm outperforms the concrete algorithm when the locality of the property spans
less than 5 floors. Beyond that value, the abstract algorithmstarts to take longer than
the concrete version. From theATCcolumn, one can see that the antichain sizes remain
constant in the concrete algorithm, when the number of floorsincreases. This strongly
indicates that the difficulty of this benchmark comes mainlyfrom the exponential size
of the alphabet rather than the state-space itself. Becauseour algorithms only abstracts
the locations and not the alphabet, these results are not surprising. But again, for local
properties, the gains are very significant.

concrete forward abstract backward
n k |Loc| |Prop| time ATC iters time ATCα ATCγ iters steps|P|

B
e
n
c
h
1

11 5 50 12 0,10 6 3 0,23 55 2 5 3 27
15 5 66 16 1,60 6 3 0,56 55 2 5 3 31
19 5 82 20 76,62 6 3 8,64 55 2 5 3 35
11 7 50 12 0,13 8 3 0,87 201 2 5 3 31
15 7 66 16 2,04 8 3 1,21 201 2 5 3 35
19 7 82 20 95,79 8 3 9,99 201 2 5 3 39
11 9 50 12 0,16 10 3 12,60 779 2 5 3 35
15 9 66 16 2,69 10 3 13,42 779 2 5 3 39
19 9 82 20 125,85 10 3 46,47 779 2 5 3 43

B
e
n
c
h
2

7 1 19 8 0,06 8 2 0,10 11 2 4 3 14
10 1 25 11 0,06 10 2 0,10 14 2 4 3 17
13 1 31 14 0,08 14 2 0,12 17 2 4 3 20
7 3 33 8 0,78 201 14 0,13 11 2 4 3 26
10 3 45 11 802,17 4339 20 0,30 14 2 4 3 35
13 3 57 14 > 1000 - - 1,26 17 2 4 3 44
7 5 47 8 88,15 2122 26 0,14 11 2 4 3 26
10 5 65 11 > 1000 - - 0,37 14 2 4 3 35
13 5 83 14 > 1000 - - 1,47 17 2 4 3 44

L
ift

:
S
p
e
c
1

8 3 84 17 0,30 10 17 0,51 23 40 7 4 21
12 3 116 25 17,45 10 25 1,63 23 40 7 4 21
16 3 148 33 498,65 10 33 26,65 23 40 7 4 21
8 4 84 17 0,26 10 17 1,29 37 72 10 6 24
12 4 116 25 17,81 10 25 5,02 37 72 10 6 24
16 4 148 33 555,44 10 33 78,75 37 72 10 6 24
8 5 84 17 0,32 10 17 3,70 42 141 12 8 27
12 5 116 25 20,24 10 25 47,45 42 141 12 8 27
16 5 148 33 543,27 10 33 > 1000 - - - - -

L
ift

:
S
p
e
c
2

8 3 84 17 0,46 10 17 1,18 58 72 8 4 22
12 3 116 25 17,98 10 25 3,64 58 72 8 4 22
16 3 148 33 557,75 10 33 48,90 58 72 8 4 22
8 4 84 17 0,29 10 17 3,04 124 126 11 6 25
12 4 116 25 19,29 10 25 10,63 124 126 11 6 25
16 4 148 33 576,56 10 33 128,40 124 126 11 6 25
8 5 84 17 0,31 10 17 15,88 131 266 14 8 28
12 5 116 25 19,47 10 25 283,90 131 266 14 8 28
16 5 148 33 568,83 10 33 > 1000 - - - - -

Fig. 2. Experimental results. Times are in seconds.

7 Discussion

We have proposed in this paper two new abstract algorithms with refinement for decid-
ing language emptiness forAFA. Our algorithm is based on an abstraction-refinement
scheme inspired from [5], which is different from the usual refinement techniques based
on counter-example elimination [4]. Our algorithm also builds on the successful tech-
nique of antichains, that we have introduced in [6], to symbolically manipulate closed
sets of cells (sets of sets of locations). We have demonstrated with a set of benchmarks
that our algorithm is able to find coarse abstractions for complex automata constructed
from largeLTL formulas. For a large number of instances of those benchmarks, the ab-
stract algorithms outperform by several order of magnitudethe concrete algorithms. We
believe that this clearly shows the interest of our new algorithms and their potential fu-
ture developments. Several lines of future works can be envisioned. First, we should try
to design a version of our algorithms where refinements are based on counter-examples
and compare the relative performance of the two methods. Second, we have developed
our technique for automata on finite words. We need to developmore theory to be able
to apply our ideas to automata on infinite words. The fixed points involved in deciding
emptiness for the infinite word case are more complicated (usually nested fixed points)
and our theory must be extended to handle this case. Finally,it would be interesting to
enrich our abstraction framework to deal with very large alphabets, possibly by parti-
tioning the set of alphabet symbols.

References

1. A. Bouajjani, P. Habermehl, L. Holı́k, T. Touili, and T. Vojnar. Antichain-based universality
and inclusion testing over nondeterministic finite tree automata. InCIAA, pages 57–67, 2008.

2. S. Burris and H. P. Sankappanavar.A Course in Universal Algebra. Springer, 1981.
3. A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement for symbolic model checking.J. ACM, 50(5):752–794, 2003.
5. P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guided abstraction refinements. InSAS ’07,

volume 4634 ofLNCS, pages 333–348. Springer, 2007.
6. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm for

checking universality of finite automata. InCAV 2006, volume 4144 ofLNCS, pages 17–30.
Springer, 2006.

7. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Alaska. In ATVA, pages 240–245, 2008.
8. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative algorithms for

LTL satisfiability and model-checking. InTACAS, volume 4963 ofLNCS, 2008.
9. L. Doyen and J.-F. Raskin. Improved algorithms for the automata-based approach to model-

checking. InTACAS, volume 4424 ofLNCS, pages 451–465. Springer, 2007.
10. S. Fogarty and M. Vardi. Buechi complementation and size-change termination, 2009. to

appear in TACAS.
11. P. Ganty. The Fixpoint Checking Problem: An Abstraction Refinement Perspective. PhD

thesis, Université Libre de Bruxelles, 2007.
12. P. Ganty, J.-F. Raskin, and L. Van Begin. From many placesto few: automatic abstraction

refinement for petri nets.Fundamenta Informaticae, 88(3):275–305, 2008.
13. J.-F. Raskin, K. Chatterjee, L. Doyen, and T. A. Henzinger. Algorithms for omega-regular

games with imperfect information.Logical Methods in Computer Science, 3(3), 2007.

8 Appendix

This is the formula for the lift system with 2 floors :

f1∧ ¬f2∧ open∧G(((b1→ (b1 U (f1∧ open))) ∧ (b2→ (b2 U (f2∧ open)))))∧
G((open→ (f1 ∨ f2))) ∧G(((f1→ (¬f2)) ∧ (f2→ (¬f1))))∧
G((f1→ ¬Xf2) ∧ (f2→ ¬(Xf1)))∧
G((((f1∧X2(true))→ X2((f1∨ f2)))∧ ((f2∧X2(true))→ X2((f1∨ f2)))))∧
G(((f1→ ¬b1) ∧ (f2→ ¬b2)))

