
Centre Fédéré en Véri�cation

Technical Report number 2008.116

Quantitative Model-Checking of One-Clock Timed
Automata under Probabilistic Semantics

Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Nicolas Markey

http://www.ulb.ac.be/di/ssd/cfv

This work was partially supported by a FRFC grant: 2.4530.02
and by the MoVES project. MoVES (P6/39) is part of the IAP-Phase VI Interuniversity

Attraction Poles Programme funded by the Belgian State, Belgian Science Policy

Quantitative Model-Checking of One-Clock Timed Automata
under Probabilistic Semantics

Nathalie Bertrand1 Patricia Bouyer2 Thomas Brihaye3 Nicolas Markey2

1 IRISA, INRIA Rennes, France
nathalie.bertrand@irisa.fr

2 LSV, ENS Cachan & CNRS, France
{bouyer,markey}@lsv.ens-cachan.fr

3 Université de Mons-Hainaut, Belgium
thomas.brihaye@umh.ac.be

Abstract

In [3] a probabilistic semantics for timed automata has
been defined in order to rule out unlikely (sequences of)
events. The qualitative model-checking problem for LTL
properties has been investigated, where the aim is to check
whether a given LTL property holds with probability 1 in
a timed automaton, and solved for the class of single-clock
timed automata.

In this paper, we consider the quantitative model-
checking problem for ω-regular properties: we aim
at computing the exact probability that a given timed
automaton satisfies an ω-regular property. We develop
a framework in which we can compute a closed-form
expression for this probability; we furthermore give an
approximation algorithm, and finally prove that we can
decide the threshold problem in that framework.

1 Introduction

Timed automata [1] are a well-established formalism
for the modelling and analysis of timed systems. A timed
automaton is roughly a finite-state automaton enriched
with clocks and clock constraints. This model has been
extensively studied, and several verification tools have
been developed. However, like many models used in
model-checking, timed automata are an idealized mathe-
matical model, in which many hypotheses are implicitly
made. For instance, a timed automaton can check the
values of clocks with an infinite precision, events are
instantaneous, etc. Recently, a new direction of research
has consisted in proposing alternative semantics for timed
automata that provide more realistic operational models for
real-time systems. We can for instance mention the Almost
ASAP semantics (AASAP for short) introduced in [13]

and further investigated in [12, 2, 7, 8], which somewhat
relaxes constraints on clocks, hence most of the idealization
side-effects for timed automata. However, it induces a
very strong notion of robustness, suitable for really critical
systems, but maybe too strong for less critical systems.
Another ‘robust semantics’, based on the notion of tube
acceptance, has been proposed in [15, 16]: a metric is put
on the set of traces of the timed automaton, and roughly, a
trace is robustly accepted if and only if a tube around that
trace is classically accepted. This language-focused notion
of acceptance is not completely satisfactory because it does
not take into account the structure of the automaton, and
hence is not related to the most-likely behaviours of the
automaton.

In [4, 3], a natural probabilistic semantics has been
given to timed automata, which randomizes both delays
and choices of transitions, and provides a way of measuring
the ‘size’ of sets of behaviours in the timed automaton.
That way, we can measure, for instance, how likely a timed
automaton satisfies a given LTL property. In those two
papers, the almost-sure model-checking problem for LTL is
investigated,1 where the probability of satisfying the prop-
erty is compared to 1. A topological characterization of the
almost-sure satisfaction is given, which helps understand-
ing when a timed automaton almost-surely satisfies an LTL
property. In [3], the almost-sure model-checking problem
is shown decidable for single-clock timed automata, and
an algorithm based on the construction of a (qualitatively
equivalent) finite Markov chain is described. An intriguing
two-clock example is presented, for which the above finite
Markov chain abstraction is not correct.

In this paper, we investigate the quantitative probabilis-
tic model-checking problem, which aims at computing the

1Note that the work developed in [3] can straightforwardly be extended
to the whole class of ω-regular properties.

1

probability of a given ω-regular property in a timed automa-
ton. The finite Markov chain abstraction that has been pro-
posed in [3] is no more correct, and new techniques need
to be developed. For a subclass of single-clock timed au-
tomata2, we define a new abstraction of the timed automa-
ton, which helps solving the quantitative model-checking
problem. Given a timed automaton A and an ω-regular
property ϕ, this abstraction is a finite Markov chain MA,
and there is a computable reachability property ϕ′ such that
the probability that A satisfies ϕ coincides with the proba-
bility that MA satisfies ϕ′. However this probability can
in general not be expressed by a simple closed-form ex-
pression, and we provide a concrete framework (where the
probability distributions over delays are given by exponen-
tial functions), in which we will be able to (i) compute
a closed-form expression for the probability that A satis-
fies ϕ, (ii) approximate this probability, and (iii) decide the
classical threshold problem.

The paper is organized as follows: in Section 2, we re-
call the classical definitions related to timed automata, and
introduce the probabilistic semantics we are considering
and the associated model-checking problem. In Section 3,
we present an abstraction, in the form of a finite Markov
chain, which allows to compute abstract expressions for the
probabilities of ω-regular properties in single-clock timed
automata. In Section 4, we@present a restricted framework
in which closed-form expressions can be computed for the
probabilities of ω-regular properties; we then develop an
approximation scheme, and finally prove the decidability
of the threshold problem.

Technical proofs are postponed to the appendix.

2 Definitions

2.1 The timed automaton model

Let X be a finite set of variables, called clocks. A clock
valuation over X is a mapping ν : X → R+, where R+

is the set of nonnegative reals. We write RX
+ for the set of

clock valuations over X . If ν ∈ RX
+ and τ ∈ R+, ν + τ

is the clock valuation defined by (ν + τ)(x) = ν(x) + τ if
x ∈ X . If Y ⊆ X , the valuation [Y ← 0]ν is the valu-
ation assigning 0 to x ∈ Y and ν(x) to x 6∈ Y . A guard
(or clock constraint) over X is a finite conjunction of ex-
pressions of the form x ∼ c where x ∈ X , c ∈ N, and
∼ ∈ {<,≤,=,≥, >}. We denote by G(X) the set of guards
over X . The satisfaction relation for guards over clock val-
uations is defined in a natural way, and we write ν |= g, if
ν satisfies g.

2Due to the results of [3], the restriction to timed automata with one
clock seems necessary.

Definition 1 A timed automaton is a tuple A = (L,X,E,
I,L) such that: (i) L is a finite set of locations, (ii) X is a
finite set of clocks, (iii) E ⊆ L×G(X)×2X ×L is a finite
set of edges, and (iv) I : L → G(X) assigns an invariant
to each location.

The semantics of a timed automaton A is a timed transi-
tion system whose states are pairs (`, ν) ∈ L × R|X|+ with
ν |= I(`), and whose transitions are of the form (`, ν)

τ,e−−→
(`′, ν′) if there exists an edge e = (`, g, Y, `′) such that
for every 0 ≤ τ ′ ≤ τ , ν + τ ′ |= I(`), ν + τ |= g,
ν′ = [Y ← 0]ν, and ν′ |= I(`′). A finite (resp. infinite)
run % ofA is a finite (resp. infinite) sequence of transitions,
i.e., % = s0

τ1,e1−−−→ s1
τ2,e2−−−→ s2 . . . We write Runsf (A, s0)

(resp. Runs(A, s0)) for the set of finite runs (resp. infinite
runs) of A from state s0.

If s is a state of A and (ei)1≤i≤n is a finite sequence of
edges of A, the (symbolic) path starting from s and deter-
mined by (ei)1≤i≤n is the following set of runs:

π(s, e1 . . . en) = {% = s
τ1,e1−−−→ s1 . . .

τn,en−−−→ sn |
% ∈ Runsf (A, s)}.

Give an n-variable constraint C, the constrained sym-
bolic path πC(s, e1 . . . en) is the subset of π(s, e1 . . . en)
where the delays τ1 to τn satisfy the constraint C. Let
π = π(s, e1 . . . en) be a finite symbolic path, we define the
cylinder generated by π as

Cyl(π) = {% ∈ Runs(A, s) | ∃%′ ∈ Runsf (A, s),
finite prefix of %, s.t. %′ ∈ π}

Also, we will need the notion of infinite symbolic paths de-
fined, given a state s of A and an infinite sequence of edges
(ei)i≥1, as:

π(s, e1 . . .) = {% = s
τ1,e1−−−→ s1 . . . | % ∈ Runs(A, s)} .

Given a state s ofA and an edge e, we define I(s, e) = {τ ∈
R+ | s

τ,e−−→ s′} and I(s) =
⋃

e I(s, e). The automaton A
is non-blocking if, for every state s, I(s) 6= ∅.

2.2 The region automaton abstraction

The well-known region automaton construction is a finite
abstraction of timed automata which can be used for verify-
ing many properties like ω-regular untimed properties [1].
For lack of space, we do not redefine the region equivalence
relation, and we write RA for the set of (clock) regions of
automatonA. Here we use a slight modification of the orig-
inal construction, which is still a timed automaton.

If A = (L,X,E, I,L) be a timed automaton then the
region automaton of A is the timed automaton R(A) =
(Q,X, T, κ, λ) such that Q = L×RA and:

2

• κ((`, r)) = I(`), and λ((`, r)) = L(`) for all (`, r) ∈
L×RA;

• T ⊆ (Q × cell(RA) × E × 2X × Q), and

(`, r)
cell(r′′),e,Y−−−−−−−→ (`′, r′) is in T iff there exists

e = `
g,Y−−→ `′ in E s.t. there exist ν ∈ r, τ ∈ R+ with

(`, ν)
τ,e−−→ (`′, ν′), ν + τ ∈ r′′ and ν′ ∈ r′ (cell(r′′) is

the smallest guard containing r′′).

We recover the usual region automaton of [1] by labelling
the transitions with ‘e’ instead of ‘cell(r′′), e, Y ’, and
by interpreting R(A) as a finite automaton. The above
timed interpretation satisfies strong timed bisimulation
properties that we do not detail here. To every finite path
π((`, ν), e1 . . . en) in A corresponds a finite set of paths
π(((`, [ν]), ν), f1 . . . fn) in R(A), each one corresponding
to a choice in the regions that are visited. If % is a run in A,
we denote ι(%) its unique image in R(A). Note that if A is
non-blocking, then so is R(A).

In the rest of the paper we assume, following [3], that
timed automata are non-blocking.

2.3 The probabilistic semantics

Following [3], we define a probability measure over sets
of infinite runs of timed automata, which measures in some
sense their likelihood. Let A be a timed automaton. We
assume probability distributions are given from every state s
of A both over delays and over enabled moves. For every
state s of A, the probability measure µs over delays in R+

(equipped with the standard Borel σ-algebra) must satisfy
several requirements:

• µs(I(s)) = µs(R+) = 1,3

• Denoting λ the Lebesgue measure, if λ(I(s)) > 0, µs

is equivalent4 to λ on I(s); Otherwise, µs is equivalent
on I(s) to the uniform distribution over points of I(s).

• We also assume technical hypotheses which we do not
detail here (see [3] for details) but that are natural and
satisfied in all our further developments.

The second condition is a fairness condition w.r.t. enabled
transitions, in that we cannot disallow one transition by as-
signing probability 0 to delays enabling that transition.

Example 2 Examples of possible distributions are uniform
(resp. exponential) distributions over bounded (resp. un-
bounded) intervals.

3Note that this is possible, as we assume A is non-blocking, hence
I(s) 6= ∅ for every state s ofA.

4Two measures ν and ν′ are equivalent whenever for each measurable
set A, ν(A) = 0 ⇔ ν′(A) = 0.

For every state s of A, we also assume a probability
distribution ps over edges, such that for every edge e,
we have ps(e) > 0 iff e is enabled in s. Moreover,
for the sake of simplicity, we assume that ps is given
by weights on transitions, as it is classically done for
resolving non-determinism: we associate with each
edge e a weight w(e) > 0, and for every state s and
every edge e, ps(e) = 0 if e is not enabled in s, and
ps(e) = w(e)/(

∑
e′ enabled in s w(e′)) otherwise. As a

consequence, if s and s′ are region equivalent, then for
every edge e, ps(e) = ps′(e). We then inductively define a
measure over finite symbolic paths from state s as

PA(π(s, e1 . . . en)) =∫
t∈I(s,e1)

ps+t(e1) PA(π(st, e2 . . . en)) dµs(t)

where s
t−→ (s + t) e1−→ st, and we initialize with

PA(π(s)) = 1. The formula for PA relies on the fact that
the probability of taking transition e1 at time t coincides
with the probability of waiting t time units and then choos-
ing e1 among the enabled transitions, i.e., ps+t(e1)dµs(t).
Note that time passage and actions are independent events.

The value PA(π(s, e1 . . . en)) is the result of n succes-
sive one-dimensional integrals, but it can also be viewed as
the result of an n-dimensional integral. Hence, we can eas-
ily extend the above definition to finite constrained paths
πC(s, e1 . . . en) when C is Borel-measurable. This exten-
sion to constrained paths will allow to express (and later,
measure) various and rather complex sets of paths, for in-
stance Zeno runs.5 The measure PA can then be defined on
cylinders, letting PA(Cyl(π)) = PA(π) if π is a finite (con-
strained) symbolic path. Finally we extend PA in a standard
and unique way to the σ-algebra generated by these cylin-
ders, which we note Ωs

A (see [3] for details).

Proposition 3 ([3]) Let A be a timed automaton. For ev-
ery state s, the function PA is a probability measure over
(Runs(A, s),Ωs

A).

For instance, the set Zeno(s) of all the Zeno runs starting
from s belongs to Ωs

A. Indeed, it can be defined as:⋃
M∈N

⋂
n∈N

⋃
(e1,...,en)∈En

Cyl(πΣi≤nτi≤M (s, e1 . . . en))

Example 4 Consider the timed automaton A depicted on
Fig. 1, and assume that we assign the uniform distribu-
tion over delays to all locations except `1 and over discrete
moves, and that we put the distribution with density func-
tion t 7→ e−t over R+ in `1. If s0 = (`0, 0) is the initial

5An infinite run % : s0
τ1,e1−−−−→ s1

τ2,e2−−−−→ · · · is said Zeno whenever∑∞
i=1 τi is bounded.

3

`0

x≤1

`1

{p1}

`2

x≤2

{p2}

`3

{p1}e2, x≤1

e3, x≤2, x:=0

e4, x≥2, x:=0

e5, x≤2

e6, x=0
e1, x≤1, x:=0 e7, x≤1, x:=0

Fig. 1. A running example

state, then

PA(Cyl(π(s0, e2e3))) =
1
2
· (1− e−1 + e−2)

The details of the computation are displayed in Ap-
pendix ??.

In [3], it is explained how to transfer probabilities
from A to R(A), thus allowing to prove results on R(A)
and to recover them on the original automaton A. We as-
sume that, for every state s in A, µAs = µ

R(A)
ι(s) , and for

every t ∈ R+, pAs+t = p
R(A)
ι(s)+t. Under those assumptions,

we have the following correctness result.

Lemma 5 ([3]) Assume measures in A and in R(A) are
related as above. Then, for every set S of runs in A we
have: S ∈ Ωs

A iff ι(S) ∈ Ωι(s)
R(A), and in this case PA(S) =

PR(A)(ι(S)).

Therefore, in the sequel, we assume w.l.o.g. that timed
automata are given as region automata, i.e., A = R(A).

2.4 The quantitative model-checking problem

In this paper we consider ω-regular properties. We as-
sume that an ω-regular property is given by a determin-
istic finite automaton B with a Streett acceptance condi-
tion of the form ψB =

∧n
i=1(23Qi ⇒ 23Q′i), where

(Q1, Q
′
1), · · · , (Qn, Q

′
n) are pairs of subsets of states in B.

The linear-time temporal logic LTL [18] defines a subclass
of ω-regular properties.

In [3], the qualitative LTL model-checking problem
is investigated: given a timed automaton A and an LTL
formula ϕ, this problem consists in deciding whether
PA(s0 |= ϕ) = 1, i.e., whether the automaton A almost-
surely satisfies the property ϕ. It has been proved that
for single-clock timed automata, under some technical
and reasonable conditions on the various distributions, the
almost-sure model-checking problem for LTL is decidable,
that it does not depend on the distributions that are used
in the automaton, and that the introduction of probabilities
does not increase the theoretical complexity of the problem
(which is PSPACE-complete). Though the results are
stated for LTL properties, the decidability result carries

over to ω-regular properties. It relies on the construction
of a finite Markov chain abstraction, based on the region
automaton R(A), which preserves the qualitative properties
of A.

In this paper we consider the quantitative model-
checking problem: given a single-clock timed automaton A
with initial state s0 and an ω-regular property ϕ, we want
to compute PA(s0 |= ϕ). Unfortunately, the abstraction
developed in [3] for solving the qualitative model-checking
problem is of no interest here, as it does not preserve any
precise information about the values of the probabilities.

We first notice that, contrary to the qualitative model-
checking problem, the answer to the quantitative model-
checking problem does depend on the choice of the dis-
tributions that are assigned to delays and edges. This is
no surprise since it is already the case for finite discrete-
time Markov chains. Furthermore, the probabilities that
we compute (when we manage to) are not always satisfac-
tory, as they crucially depend on the possible representation
and evaluation of non-rational numbers. As a consequence,
we also investigate the approximate model-checking prob-
lem, where, given a positive real ε, we will aim at comput-
ing two rationals P+

ε and P−ε such that:ß
P−ε ≤ PA(s0 |= ϕ) ≤ P+

ε

P+
ε − P−ε < ε

It is quite natural to consider this approximate variant in our
framework since we show that even for reachability proper-
ties, the probability isn’t rational (and even not algebraic)
in general, and hence cannot be represented easily.

Remark 6 Algorithms for the approximate quantitative
model-checking of probabilistic systems have for instance
been proposed for infinite-state systems represented as
infinite-state discrete Markov chains (e.g. probabilistic
lossy channel systems [19] or probabilistic pushdown
automata [14]).

Finally, we also focus on the threshold problem, which
asks, given a timed automaton A with its initial state s0, an
ω-regular property ϕ, and a threshold ∼ c with ∼ ∈ {<,≤,
=,≥, >} and c ∈ Q, whether PA(s0 |= ϕ) ∼ c.

For all the problems we consider (quantitative model-
checking, approximate quantitative model-checking and
threshold problem), following [3], we restrict our study to

4



p`(x) = 1 if ` ∈ B

p`(x) =
∑

e resetting edge

∫
t∈I((`,x),e)

ps+t(e) · p`′(0) dµs(t) otherwise

+
∑

e non resetting edge

∫
t∈I((`,x),e)

ps+t(e) · p`′(x+ t) dµs(t)

Table 1. Integral equations for reachability properties

single-clock timed automata (because the decidability of
the qualitative model-checking is already an open problem
for multi-clock timed automata).

2.5 Methodology

We first solve the quantitative model-checking problem
for prefix-independent location-based properties.6 Given a
single-clock timed automaton A and a prefix-independent
location-based property ϕ, the method follow the two steps
below:

• we first abstract the timed automaton A into a finite
Markov chainMA;

• we then compute inMA the probability of property ϕ.

Following techniques of Courcoubetis and Yannakakis [11],
computing the probability of a prefix-independent prop-
erty ϕ in MA amounts to computing the probability of
reaching the BSCCs ofMA that are ‘good’ w.r.t. ϕ.

The result for general ω-regular properties will then be
derived, applying a classical product approach, which we
shortly describe now. We assume that ϕ is an ω-regular
property, and we build Bϕ a deterministic Streett automaton
for ϕ. Now, given the timed automaton A, we consider the
product automaton Aϕ = A × Bϕ. Under the assumption
that the distributions over delays and actions are naturally
transferred from A to Aϕ (i.e., for all state q of Bϕ, for
all state s of A, we set µAϕ

(s,q) = µAs and for all edges e,

p
Aϕ

(s,q) = pAs), we have that

PA(s0 |= ϕ) = PAϕ((s0, q0) |= ψBϕ)

where q0 is the initial state of Bϕ, and ψBϕ
is the acceptance

condition induced by automaton Bϕ.
Hence this product construction allows to lift com-

putability (and decidability) results for prefix-independent
location-based properties to general ω-regular properties.

6Formally a property L ⊆ Σω is prefix-independent if for all w ∈ Σω

and u ∈ Σ∗, uw ∈ L iff w ∈ L. In other words, the satisfaction of a
prefix-independent property by a word only depends on the set of atomic
proposition true in infinitely many positions of that word. Note that this
kind of property is commonly used for games objectives (see e.g.[6, 17] or
[10] where they are referred to as “tail objectives”.)

In the sequel, we only consider prefix-independent
location-based properties, but all result hold for general
ω-regular properties.

Remark 7 Consider that we want to compute the proba-
bility of reaching a set B of locations in A. One is easily
convinced that it can be defined by the integral equations
of Table 1, where p`(x) is the probability of reaching B
from (`, x). However, these integral equations can a priori
not be solved, in the sense that in general the p`’s cannot be
expressed as functions in closed-form. It is true that most
of the time, we will be able to solve numerically this kind of
equations, but what we aim at is to obtain closed-form ex-
pressions, in order to approximate the values and this way
decide the threshold problem, which cannot be done by only
applying numerical methods.

3 Abstraction into a Finite Markov Chain

In this section, we present an abstraction of a timed au-
tomaton into a finite Markov chain which we prove is sound
and complete for the quantitative model-checking problem
for a slight restriction of single-clock timed automata. Let
A = (L, {x}, E, I) be a single-clock timed automaton with
initial state s0 = (`0, 0) and assume that M is the maxi-
mal constant that appears in a guard of A. W.l.o.g. (thanks
to Lemma 5), we assume that A = R(A), and we assume
moreover that (i) if s = (`, α) and s′ = (`, α′) are two states
s.t. α, α′ > M , then µs = µs′ , and (ii) any bounded cycle
of R(A) contains at least one resetting edge. We write (†)
for these restrictions.

Remark 8 The first restriction is such that it will not be
possible to distinguish between region-equivalent states
which are in the unbounded region.

The second restriction (no bounded cycle without reset)
is a common assumption when one wants to get rid of some
Zeno behaviours. Indeed Alur and Dill introduced in [1] the
progress condition, which ensures the existence of accepted
non-Zeno behaviours. This condition is the existence of a
reachable SCC in R(A) which is unbounded or which resets
a clock.

From A, we will derive a finite Markov chainMA such
that for every location-based prefix-independent property ϕ,

5

`0,0 `2,0 `3,0
e6e7 0

e2e4

1
2 ·(e−1−e−2

)

e5e3

1
2 ·(1+e−2)

e1
1
2

e
2
e
3

1
2 ·(1−e−1+e−2)

e
5
e
4

1
2 ·(1−e−2)

e7
1

Fig. 2. The finite Markov chainMA for the running example

there is a set Fϕ of states in MA, s.t. PA(s0 |= ϕ) =
PMA(q0 |= 3Fϕ), where q0 is a distinguished state ofMA
and PMA is the classical probability measure on sets of runs
in MA. The value PMA(q0 |= 3Fϕ), which is the prob-
ability of a reachability property in a finite Markov chain,
can be computed as the solution of a system of linear equa-
tions [11]. Hence the probability of the set of runs satisfy-
ing a location-based property in A will be expressible us-
ing the probability distributions put on edges of the Markov
chainMA.

We now detail the construction of the finite Markov
chain MA. The idea is that, thanks to hypotheses (†),
a run in R(A) will either often visit an unbounded state
of R(A), or often reset clock x. The set of states of MA
is then {(`, 0) | (`, x = 0) state of R(A)} ∪ {(`,∞) |
(`, x > M) state of R(A)}. We note E:=0 the set of edges
of A which reset clock x, and E>M the set of edges of A
guarded by the constraint x > M . The set of transitions
ofMA is defined as follows.

1. Let π((`, 0), e1 . . . ep) be a non-empty loop-free (i.e.,
the ei’s are all distinct) symbolic path such that for ev-
ery 1 ≤ i < p, ei 6∈ E:=0 ∪ E>M , and ep ∈ E:=0 ∪
E>M . If ep ∈ E:=0, we add a transition (`, 0)

e1 ... ep−−−−→
(`′, 0) inMA. If ep ∈ E>M \ E:=0, we add a transi-
tion (`, 0)

e1 ... ep−−−−→ (`′,∞) inMA. In both cases, we
label the transition with PA(Cyl(π));

2. For each edge e ∈ E>M leaving a state (`, x > M)
of R(A), we add a transition (`,∞) e−→ (`′, 0) if
e ∈ E:=0 and (`′, x = 0) is the target state of e in
R(A), and we add a transition (`,∞) e−→ (`′,∞)
if e 6∈ E:=0 and (`′, x > M) is the target state of
e in R(A). In both cases, we label the edge with
w(e)/

Ä∑
e′ enabled from (`,x>M) w(e′)

ä
.

Example 9 We illustrate the construction on the automaton
depicted on Figure 1. To locations `0, `2 and `3, we assign
the uniform distribution over delays, whereas the density of
the distribution over delays in location `1 is supposed to be
t 7→ e−t over R+. We assume that the weight of each edge

is 1, so that the discrete choices are uniform. In that case,7

we have E:=0 = {e1, e3, e4, e6, e7}, and E>2 = {e4}.
Note that as E>2 ⊆ E:=0, there won’t be any transition
of the second type, and no state of the form (`,∞) will be
reachable. The construction is depicted on Figure 2, where
each transition is labelled with the corresponding sequence
of edges together with its probability. An edge ofMA cor-
responds to a (finite) sequence of edges inA, hence is some-
how a macro-edge, explaining the use of double arrows in
the figure.

The first property we have to check is thatMA is indeed
a finite Markov chain, which is not obvious from the above
construction. This result is however true as stated in the
following lemma whose proof can be found in the appendix.

Lemma 10 MA is a finite Markov chain.

We can now state the correctness of our abstraction into
a finite Markov chain, under assumption (†):

Theorem 11 Let ϕ be a location-based prefix-independent
property on A. We can compute a set Fϕ of states ofMA
that is SCC-closed8and s.t.

PA
(
(`0, 0) |= ϕ

)
= PMA

(
(`0, 0) |= 3Fϕ

)
.

We have reduced the quantitative model-checking prob-
lem for location-based prefix-independent properties in A
to a quantitative reachability question in a finite Markov
chain. However we are still not done, because the values
labelling the edges ofMA may not have closed-form rep-
resentations in general, even for very simple distributions
over the time (see Example 12 below). In the next section,
we will further restrict our model, and provide a framework
in which the probabilities can effectively be computed.

Example 12 Consider the automatonA of Fig. 3, on which
we assume uniform distributions over delays, and assign

7Note that formally, A 6= R(A), in that case, but the construction can
still be done.

8Which means that for any q ∈ Fϕ and any q′ in the same SCC of
R(A) as q, we have q′ ∈ Fϕ.

6

`0 `1 `2 `3 `4
e1, x≤1 e2, x≤2 e3, x≤3 e4, x≤4

1≤x≤2 2≤x≤3 3≤x≤4 4≤x≤5 x≥4

Fig. 3. Automaton A

weight 1 to every edge. We can easily compute the following
probability:

PA
(

Cyl(π((`0, 0), e1e2e3))
)

=

1
2
(
1 + (ln(2)− ln(3))(1− ln(2))+

dilog(3)− dilog(4)
)
≈ 0.69

where x 7→ dilog(x) is the primitive of x 7→ − ln(x)
1−x .

Note that there does not seem to exist a closed-form so-
lution for PA

(
Cyl(π((`0, 0), e1e2e3e4))

)
.

4 Quantitative Model-Checking Made De-
cidable

We have seen in the previous section a correct abstrac-
tion for computing the probabilities of prefix-independent
location-based properties. However we have also seen that
we could not always obtain a closed-form expression for
those probabilities, hence we cannot really compute values.
In this section, on top of hypotheses (†) made in the previ-
ous section, we assume that for every state s of A, it holds
I(s) = R+, and that we have exponential distributions over
delays which are “uniform by location”: for every location `
of A, there is a positive constant λ` ∈ Q>0 (called the rate
of `) such that for every state s = (`, u), the measure µs

has density t 7→ λ` · exp(−λ` · t). We write (‡) for these
additional restrictions.

Remark 13 Note that single-clock timed automata, even
under restrictions (†) and (‡), are still a generalization of
continuous-time Markov chains [5]. Indeed continuous-
time Markov chains can be seen as single-clock timed au-
tomata without guards, that reset the clock after each transi-
tion, and for which the probabilistic distribution over delays
is a decreasing exponential.

4.1 Expressing the Probability

We assume that A = R(A) is a single-clock timed au-
tomaton satisfying hypotheses (†) and (‡). We let s0 =
(`0, 0) be the initial state of A. For every location ` of A,
we write λ` for the speed rate of `.

Proposition 14 Let ϕ be a prefix-independent location-
based property. Then, PA(s0 |= ϕ) can be expressed as
f
Ä
e−

1
q

ä
for some positive integer q, where f ∈ Q(X) is a

rational function.

To prove this result, we first show that any value labelling
a transition ofMA, the finite Markov chain constructed in
the previous section, is the evaluation of some polynomial
at e−

1
q (for some q ∈ N>0).

Lemma 15 Let e1, . . . , en be edges of A and let (`, r) be a
state of R(A). Then the function

r → [0, 1]
t 7→ PA

(
Cyl

(
π((`, t), e1 . . . en)

))
can be written as a function of the form:

t ∈ r 7→
∑
`∈L

exp(λ`t) · P`

(
(eλ`′)`′∈L, (e−λ`′)`′∈L

)
+ P

(
(eλ`′)`′∈L, (e−λ`′)`′∈L

)
where (P`)`∈L, P ∈ Q[(X`)`∈L, (Y`)`∈L].

The proof of this lemma is by induction on the length of
unconstrained symbolic paths. It consists in a simple but
tedious case inspection and is therefore postponed to Ap-
pendix ??.

We now come to the proof of Proposition 14.

Proof. By Theorem 11 we know that computing the proba-
bility of satisfying ϕ inA can be converted into the compu-
tation of the probability of a reachability property inMA.
We then use the following two facts:

• Computing the probability to reach a set of states in a
finite Markov chain amounts to solving a system of lin-
ear equations, whose coefficients are probability val-
ues labelling the transitions of the Markov chain [9].

• By construction, values labelling transitions leaving
a state of the form (`,∞) are rational. According to
Lemma 15, the value labelling a transition leaving a
state (`, 0) is of the form P

(
(eλ`)`, (e−λ`)`

)
for some

polynomial P ∈ Q[(X`)`∈L, (Y`)`∈L]. Hence the
transition probabilities inMA can all be written in the
previous form.

7

` `′

x≤1 x≤1

x≤1

x≥1

x≤1

x≥1

Fig. 4. An example with a non-resetting bounded cycle

We now prove that solving the linear equation system yields
a solution of the desired form. Since the λ`’s are all as-
sumed to be positive rational numbers, there exists q ∈ N>0

and integers (p`)` such that for every `, λ` = p`

q . As
a consequence, and using the property of the exponential
function that e−a/b = (e−1/b)a, each transition probability
P ((eλ`)`, (e−λ`)`) can be rewritten as (e1/q)k · Q(e−1/q)
where k ∈ N, and Q ∈ Q[X]. With such coefficients, the
solution of the linear equations system has the desired form
f(e−1/q), with f ∈ Q(X) a rational function. �

Example 16 We illustrate on an example why Proposi-
tion 14 really relies on hypothesis (†), and more precisely
on the hypothesis that any bounded cycle of R(A) contains
at least one resetting edge. Consider the automaton in
Figure 4, in which we assume a weight 1 per edge, and an
exponential distribution of density t 7→ λ · e−λt in locations
` and `′. The probability of reaching the black location is 1
from the black location, and 0 from the grey location. Now
we write p` (resp. p`′) the function which associate to every
x ∈ R+ the probability of reaching the black location from
(`, x) (resp. (`′, x)). It is not hard to be convinced that for
every x ≥ 1, p`(x) = p`′(x) = 0, and that for every x ≤ 1,

p`(x) =
∫ 1−x

t=0

λ

2
· e−λt · p`′(x+ t) dt

+
∫ 1−x

t=0

λ

2
· e−λt · p`(x+ t) dt

p`′(x)=
∫ 1−x

t=0

λ

2
· e−λtp`(x+ t) dt

+
∫ 1−x

t=0

λ

2
· e−λt dt

Deriving the above integral equations, we get differential
equations that we can solve, and we get the following solu-
tions for all x ≤ 1:

p`(x) =1− 5+3
√

5
10 exp(λ

4 (3−
√

5)(x− 1))
+ 3

√
5−5
10 exp(λ

4 (3 +
√

5)(x− 1))
p`′(x)=1− 5+

√
5

10 exp(λ
4 (3−

√
5)(x− 1))

− 5−
√

5
10 exp(λ

4 (3 +
√

5)(x− 1))

We immediately notice that these expressions do not match
the general form described in Proposition 14.

4.2 Approximating the Probability

From the previous subsection, given a timed automa-
ton A with initial state s0 = (`0, 0), and a location-based
prefix-independent property ϕ, we can effectively compute
a rational function f ∈ Q(X) and a positive integer
q ∈ N>0 such that PA((`0, 0) |= ϕ) = f

(
e−1/q

)
.

We now explain how to approximate this quantity with a
precision ε > 0.

First we notice that we can compute two approximat-
ing sequences (ai)i∈N and (bi)i∈N of rational numbers such
that:

• ∀i, ai ≤ ai+1 ≤ e−
1
q ≤ bi+1 ≤ bi, and

• limi→∞ ai = limi→∞ bi = e−
1
q .

These two sequences (ai)i∈N and (bi)i∈N can be obtained
using the Maclaurin series of the exponential function. In-
deed, for all x ∈ R>0, e−x =

∑∞
k=0

(−x)k

k! . Hence, in

order to approximate e−
1
q , one can set bi =

∑2i
k=0

(−1/q)k

k!

and ai =
∑2i+1

k=0
(−1/q)k

k! .
Then, we remark that e−1/q is a transcendental number

(because e is), and we prove that, on a sufficiently small
(computable) interval (a, b) containing a transcendental
real ζ, a rational function f ∈ Q(X) is monotonic.

Lemma 17 Let f ∈ Q(X) be a rational function, and
ζ ∈ R be a transcendental number. There exist two ra-
tional numbers α, β ∈ Q such that ζ ∈ (α, β), and f is
monotonic over the interval (α, β). Moreover, if ζ has two
approximating sequences as described above, then α and β
can be effectively computed.

Proof. Let P,Q ∈ Q[X] such that f = P/Q. Since
f ′ = P ′Q− PQ′/Q2 it is sufficient to prove that the poly-
nomial R def= P ′Q − PQ′ has a constant sign over some
interval (α, β) containing ζ. The reason for that is that ζ is

8

transcendental, hence R(ζ) 6= 0 (provided R 6= 0) and by
continuity, R has a constant sign over some neighbourhood
of ζ.

To show the effectiveness of the construction of (α, β),
provided that ζ can be approximated by two sequences
(one increasing and one decreasing) (ai), (bi) ∈ QN, one
first prove that given a polynomial R ∈ Q[X], there exist
(α, β) ∈ Q2 such that ζ ∈ (α, β) and R has a constant sign
over (α, β) (see Lemma 18 below). Applying this result to
R yields an interval (α, β) that contains ζ and over which
f is monotonic. �

Lemma 18 Let P ∈ Q[X] be a non-zero polynomial and
ζ ∈ R be a transcendental number. Then, there exist α, β ∈
Q such that ζ ∈ (α, β) and P has constant sign over (α, β).
Moreover, if there are approximating sequences (ai)i∈N and
(bi)i∈N in QN as described above, then α and β can be
effectively computed.

Proof. The existence of α, β is due both to the fact that
R(ζ) 6= 0 (since ζ is transcendental) and to the continuity
of R.

The computability of some α, β requires assumptions
on ζ. We assume that there are two approximating se-
quences (ai)i∈N and (bi)i∈N in QN as described before.
Under this assumption, we now prove that we can com-
pute such values α and β by induction on the degree of
polynomial R.

degree 0: Assume R has degree 0, or equivalently R is a
constant function over R. Letting, e.g., α = a1 and
β = b1 works.

degree n+1: Assume now that the degree of R is n + 1
for n ∈ N. The induction hypothesis applied to R′

yields the existence and computability of αn, βn ∈ Q
such that ζ ∈ (αn, βn) and R′ is of constant sign
over the interval (αn, βn). Hence R is monotonic over
(αn, βn). Since R(ζ) 6= 0 and R is continuous, the
monotonicity of R over (αn, βn) implies the existence
of an interval I ⊆ (αn, βn) containing ζ and over
which R has a constant sign. Now, starting from ai, bi
with i large enough to have (ai, bi) ⊆ (αn, βn), it suf-
fices to find some index j ≥ i with R(aj) ·R(bj) > 0.
Letting (αn+1, βn+1) = (aj , bj) yields the expected
result.

This ends the proof of Lemma 18. �

Approximation scheme. Let ε > 0 be an approximant.
To approximate f

(
e−1/q

)
ε-closely, the idea is to eval-

uate f at (ai)i≥N and (bi)i≥N for some N ∈ N large
enough so that f is monotonic over the interval (aN , bN).
These evaluations lead to two sequences (f(ai))i≥N and
(f(bi))i≥N , one of which is increasing and the other

decreasing, both converging towards f(e−1/q) (because
f is continuous). The difference (|f(ai) − f(bi)|)i≥N

decreases to 0, hence eventually, for some index i, we will
have that |f(ai)− f(bi)| < ε. Hence one of f(ai) or f(bi)
will be an over-approximation for f

(
e−1/q

)
, and the other

will be an under-approximation of f
(
e−1/q

)
. We thus get

the following result:

Theorem 19 Let A be a single-clock timed automaton sat-
isfying the hypotheses (†) and (‡), let ϕ be a location-based
prefix-independent property. Assume that s0 is the initial
state of A. We can decide if PA(s0 |= ϕ) is a rational,
compute it if it is rational, and if not, for every ε > 0, we
can compute two rationals P−ε and P+

ε such that:ß
P−ε ≤ PA(s0 |= ϕ) ≤ P+

ε

P+
ε − P−ε < ε

4.3 Deciding the Threshold Problem

We recall that the threshold problem asks, given a timed
automatonAwith its initial state s0, an omega-regular prop-
erty ϕ, and a threshold ∼ c with ∼ ∈ {<,≤,=,≥, >} and
c ∈ Q, whether PA(s0 |= ϕ) ∼ c.

As a consequence of the previous subsection, we get the
decidability of the threshold problem.

Theorem 20 The threshold problem is decidable for
single-clock timed automata satisfying hypotheses (†)
and (‡).

Proof. Thanks to Theorem 19, we can decide whether
PA(s0 |= ϕ) is rational or not, and compute it (and answer
the threshold problem) if it is rational.

Now assume that PA(s0 |= ϕ) is not rational. Then the
answer to the threshold problem is negative when ∼ is =
(since c is rational), and the answer to the problem coincide
when∼ is< and≤ (similarly for> and≥). Hence we need
only be able to solve the problem when ∼ is < or >.

We have seen that we could compute ε-close upper
and lower approximations of PA(s0 |= ϕ) for arbitrarily
small ε > 0. Hence, it suffices to obtain ε-approximations
for ε ≤ |c− PA(s0 |= ϕ)|. This is achieved as follows: for
every n ∈ N, compute 1

2n -approximations γ1 and γ2, and
stop when both are on the same side of c. �

5 Conclusion

In this paper we have studied the probabilistic (and quan-
titative) model-checking problem for single-clock timed au-
tomata, in which choices for delays and discrete events are
probabilized. We have defined an abstraction, which takes
the form of a finite Markov chain, which is correct for a
subclass of automata for computing the probability that an

9

ω-regular property holds in the system. However, the prob-
ability that is computed might not be a closed-form expres-
sion. Hence we have described a more restricted frame-
work, where distributions over delays are given as expo-
nential distributions, and in which we can compute closed-
form expressions for the probability of ω-regular properties,
we can approximate these values, and decide the threshold
problem.

Further work includes approximation schemes for more
general frameworks than the one described here, for in-
stance for bounded automata, when distributions over de-
lays are given as uniform distributions, since this also con-
stitutes a natural framework.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[2] R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed
automata. In Proc. 8th International Workshop on Hybrid
Systems: Computation and Control (HSCC’05), Lecture
Notes in Computer Science 3414, p. 70–85. Springer, 2005.

[3] C. Baier, N. Bertrand, P. Bouyer, T. Brihaye, and M. Größer.
Almost-sure model checking of infinite paths in one-clock
timed automata. In Proc. 23rd Annual Symposium on Logic
in Computer Science (LICS’08). IEEE Computer Society
Press, 2008. To appear.

[4] C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and
M. Größer. Probabilistic and topological semantics for
timed automata. In Proc. 27th Conference on Foundations
of Software Technology and Theoretical Computer Science
(FSTTCS’07), Lecture Notes in Computer Science 4855, p.
179–191. Springer, 2007.

[5] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen.
Model-checking algorithms for continuous-time Markov
chains. IEEE Transactions on Software Engineering,
29(7):524–541, 2003.

[6] D. Berwanger. Admissibility in infinite games. In Proc. 24th
Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’07), Lecture Notes in Computer Science 4393,
p. 188–199. Springer, 2007.

[7] P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-
checking of timed automata. In Proc. 7th Latin American
Symposium on Theoretical Informatics (LATIN’06), Lecture
Notes in Computer Science 3887, p. 238–249. Springer,
2006.

[8] P. Bouyer, N. Markey, and P.-A. Reynier. Robust analysis
of timed automata via channel machines. In Proc. 11th In-
ternational Conference on Foundations of Software Science
and Computation Structures (FoSSaCS’08), Lecture Notes
in Computer Science. Springer, 2008. To appear.

[9] P. Brémaud. Markov Chains: Gibbs Fields, Monte Carlo
Simulation, and Queues. Springer, 1999.

[10] K. Chatterjee. Concurrent games with tail objectives. Theo-
retical Computer Science, 388(1-3):181–198, 2007.

[11] C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification. Journal of the ACM, 42(4):857–
907, 1995.

[12] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust-
ness and implementability of timed automata. In Proc. Joint
Conference on Formal Modelling and Analysis of Timed Sys-
tems and Formal Techniques in Real-Time and Fault Tol-
erant System (FORMATS+FTRTFT’04), Lecture Notes in
Computer Science 3253, p. 118–133. Springer, 2004.

[13] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP se-
mantics: From timed models to timed implementations. In
Proc. 7th International Workshop on Hybrid Systems: Com-
putation and Control (HSCC’04), Lecture Notes in Com-
puter Science 2993, p. 296–310. Springer, 2004.

[14] J. Esparza, A. Kučera, and R. Mayr. Model checking prob-
abilistic pushdown automata. Logical Methods in Computer
Science, 2006.

[15] V. Gupta, Th. A. Henzinger, and R. Jagadeesan. Robust
timed automata. In Proc. International Workshop on Hy-
brid and Real-Time Systems (HART’97), Lecture Notes in
Computer Science 1201, p. 331–345. Springer, 1997.

[16] Th. A. Henzinger and J.-F. Raskin. Robust undecidability
of timed and hybrid systems. In Proc. 3rd International
Workshop on Hybrid Systems: Computation and Control
(HSCC’00), Lecture Notes in Computer Science 1790, p.
145–159. Springer, 2000.

[17] E. Kopczynski. Omega-regular half-positional winning con-
ditions. In Proc. 21th International Workshop on Computer
Science Logic (CSL’07), Lecture Notes in Computer Science
4646, p. 41–53. Springer, 2007.

[18] A. Pnueli. The temporal logic of programs. In Proc. 18th
Annual Symposium on Foundations of Computer Science
(FoCS’77), p. 46–57. IEEE Computer Society Press, 1977.

[19] A. Rabinovich. Quantitative analysis of probabilistic lossy
channel systems. In Proc. 30th International Colloquium
on Automata, Languages and Programming (ICALP’03),
Lecture Notes in Computer Science 2719, p. 1008–1021.
Springer, 2003.

10

Technical Appendix
Lemmas numbered with letters do not appear in the core of the paper.

A Details for Section 2

`0

x≤1

`1

{p1}

`2

x≤2

{p2}

`3

{p1}e2, x≤1

e3, x≤2, x:=0

e4, x≥2, x:=0

e5, x≤2

e6, x=0
e1, x≤1, x:=0 e7, x≤1, x:=0

Fig. 5. A running example

Example 4 Consider the timed automaton A depicted on Fig. 5, and assume that we put the uniform
distribution over delays in all locations except `1 and discrete moves, and that we put the distribution
t 7→ e−t over R+ in `1. If s0 = (`0, 0) is the initial state, then we have that:

P(π(s0, e2e3)) =
∫

t∈I(s0,e2)

ps0+t(e2) · P(π((`1, t), e3)) dt

=
∫ 1

t=0

1
2
·
Ç∫ 2−t

t′=0

e−tdt′
å

dt

=
1
2

∫ 1

t=0

(1− et−2) dt

=
1
2

[
t− et−2

]1
t=0

=
1
2
(1− e−1 + e−2)

B Details for Section 3

In this section, we prove the correctness ofMA for computing the probability of prefix-independent
location-based properties.

We recall that E:=0 is the set of edges of A which reset clock x, and E>M is the set of edges which
are guarded by the constraint x > M . We also write E = E:=0 ∪ E>M . For every e ∈ E, we write
(`e, re) the target location (in R(A)) of edge e. We have either re = (x = 0) (in case e ∈ E:=0), or
re = (x > M) (in case e ∈ E>M \ E:=0). Moreover, we write r̃e = 0 if re = (x = 0), and r̃e =∞ if
re = (x > M). We also write qe = (`e, r̃e).

We first prove a technical lemma, which links probabilities computed in A, and probabilities com-
puted inMA.

i

Lemma A Let π = π((`, α), e1 . . . ep) be a symbolic path such that α = 0 or α > M , ep ∈ E,
and write I = {1 ≤ i ≤ p | ei ∈ E}. We let i0 = 0, and i1 < i2 < . . . < ik be such that
I = {ij | 1 ≤ j ≤ k}. Then,

PA
(

Cyl(π)
)

=
k∏

h=1

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
.

Proof. We prove this lemma by induction on the cardinal k of the set I , and strengthen the induction
hypothesis by assuming that if α > M , the value of PA(Cyl(π)) is independent of the value α.

The case k = 1 is by definition of the transitions of MA (for transitions leaving the region x >
M , this is due to the fact that the distribution over delays does not depend on the state, thanks to
hypothesis (†)).

We assume now that k > 1, and that we have proved the result for k− 1. We assume that α = 0 and
we write si0 = (`, 0). The probability of Cyl(π) can be expressed as:

PA(Cyl(π)) =
∫

t1∈I(si0 ,e1)

psi0+t1(e1) · · ·
∫

ti1∈I(si1−1,ei1)

psi1−1+ti1
(ei−1)·

PA(π(si1 , ei1+1 . . . ep)) dµsi1−1+ti1
(ti1) . . . dµsi0

(t1)

where for every 1 ≤ i ≤ i1, si is the image of si−1 + ti by transition ei. The edge ei1 either resets
clock x, or it checks that x > M . In particular, PA(π(si1 , ei1+1 . . . ep)) is independent of si1 (the case
when ei1 does not reset clock x is a consequence of the reinforcement of the induction hypothesis), i.e.,
it is equal to PA(π((`i1 , αi1), ei1+1 . . . ep)), where αi1 = 0 if ei1 resets clock x, and αi1 = M + 1
otherwise. We can then make the following computation, which concludes the case.

PA(Cyl(π)) = PA(Cyl(π(si0 , e1 . . . ei1))) ·
k∏

h=2

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
(by induction hypothesis)

= PMA

(
qei0

ei0+1 ... ei1−−−−−−−→ qei1

)
·

k∏
h=2

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
(by construction ofMA)

=
k∏

h=1

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
.

We now assume that α > M , and we write s = (`, α). In that case, i1 = 1. We have that:

PA(Cyl(π)) =
∫

t∈I(s,e1)

ps+t(e1) · PA(Cyl(π(s′, e2 . . . ep))) dµs(t)

where s′ is the image of s + t by transition e1. As previously, the value PA(Cyl(π(s′, e2 . . . ep))) is

ii

independent of the choice of s′ —we pick a representative s′, and we get the following computation:

PA(Cyl(π)) =

Ç∫
t∈I(s,e1)

ps+t(e1) · dµs(t)

å
· PA(Cyl(π(α′, e2 . . . ep)))

= w(e1)/

Ñ ∑
e′ enabled from (`,x>M)

w(e′)

é
·

k∏
h=2

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
(by induction hypothesis)

=
k∏

h=1

PMA

(
qeih−1

eih−1+1 ... eih−−−−−−−−−→ qeih

)
(by definition ofMA)

Note that the computed value is independent of the initial value of α, which concludes the proof of the
inductive case. �

Lemma 10 MA is a finite Markov chain.

Proof. Take (`, 0) a state ofMA. We have to prove that the sum of the values labelling edges leaving
(`, 0) is 1. We do that by proving that this sum is equal to PA(Runs(A, (`, 0))) (which is 1, because
PA is a probability measure over Runs(A, (`, 0)), see [3]).

Pick a run % ∈ Runs(A, (`, 0)). We can uniquely decompose % as %1 · %2 such that
%1 ∈ π((`, 0), e1, . . . , ep) for some edges (ei)1≤i≤p such that for every 1 ≤ i < p, ei 6∈ E
and ep ∈ E. Hence,

Runs(A, (`, 0)) ⊆
⋃

(e1,...,ep)∈(Ec)∗E

Cyl(π((`, 0), e1, . . . ep))

where Ec denotes the complement of E. The converse inclusion is trivial, hence the equality. Now
it is not hard to be convinced that two such cylinders are disjoint (the choice of the first transition in
E is unique), and that there are finitely many such cylinders (thanks to hypothesis (†)). Hence, we
have finitely many transitions leaving (`, 0), and the sum of their values, each corresponding to the
probability of the cylinder (because of Lemma A), is equal to PA(Runs(A, (`, 0))) = 1.

Take (`,∞) a state of MA. This case is even simpler, because for each edge leaving the region
(`, x > M) inA = R(A), we have a corresponding edge inMA labelled with the probability of taking
the original edge e in A, hence the sum is 1. �

Before proving Theorem 11, we prove the following lemma, which considers BSCCs.

Lemma B Let B be a set of states of R(A) that is closed by the transition relation (if ` ∈ B and there
is an edge from ` to `′ in R(A), then `′ ∈ B), and write FB = {(`, 0) | (`, x = 0) ∈ B} ∪ {(`,∞) |
(`, x > M) ∈ B}. Then,

PA
(
(`0, 0) |= 3B

)
= PMA

(
(`0, 0) |= 3FB

)
.

Proof. Let R = {% ∈ Runs(A, (`0, 0)) | % |= 3B}. Let % ∈ R. There is a unique symbolic infinite
path π% = π((`0, 0), e1, . . . , ei, . . .) in R(A) such that % ∈ π%. We write (`i, ri) for the state of R(A)
that is reached after transition ei along π%. We then write I = {0} ∪ {i | ei ∈ E}. Note that for every
i ∈ I , ri is either x = 0 or x > M . As previously, if ri is x = 0 (resp. x > M), we write r̃i for

iii

0 (resp. ∞). Furthermore note that I is infinite (by hypothesis (†) on A), and there exists i ∈ I such
that (`i, r̃i) ∈ FB (because B is closed by the transition relation). Define i% as the smallest element
in I such that (`i%

, r̃i%
) ∈ FB . Then we have that % ∈ Cyl(π((`0, 0), e1, . . . , ei%

)), and for every
%′ ∈ Cyl(π((`0, 0), e1, . . . , ei%)), %′ |= 3B. We write EB for the set of edges that end up in FB , and
E¬B for the complement of EB . Applying the previous analysis we get that:

PA(R) =
∑

p

∑
(ei)1≤i≤p∈E

p
¬B

e∈EB

PA
(

Cyl(π((`0, 0), e1, . . . , ep, e))
)

Thanks to Lemma A, we get that this is precisely equal to PMA((`0, 0) |= 3FB). �

We can now prove Theorem 11.

Theorem 11 Let ϕ be a location-based prefix-independent property on A. We can compute a set of
states Fϕ ofMA which is SCC-closed such that

PA
(
(`0, 0) |= ϕ

)
= PMA

(
(`0, 0) |= 3Fϕ

)
.

Proof. Thanks to [3], we know that in A, almost-surely we will end up in a BSCC of Gb(A) (this is
R(A) where all small transitions have been removed, see [3] for details), and that we will almost-surely
visit all states of this BSCC. Hence, the probability of verifying ϕ coincides with the probability of
reaching BSCC of Gb(A) that are ’good for ϕ’, i.e., such that property ϕ is satisfied with probability
1 from any state in these BSCC (this is possible thanks to [11]). We write Bϕ for the set of states of
Gb(A) such that

PA
(
(`0, 0) |= ϕ

)
= PA

(
(`0, 0) |= 3Bϕ

)
.

We close the set Bϕ by the transition relation of R(A) (all added states will be reachable with probabil-
ity 0 — this is due to the property of Gb(A) which removes transitions that happen with probability 0),
and call ‹Bϕ this new set of states. We have that

PA
(
(`0, 0) |= ϕ

)
= PA

(
(`0, 0) |= 3‹Bϕ

)
.

Then, applying Lemma B, we get that

PA
(
(`0, 0) |= ϕ

)
= PMA

(
(`0, 0) |= 3F

B̃ϕ

)
.

Setting Fϕ = F
B̃ϕ

, we get the expected result. �

C Details for Section 4

Lemma 15 Let e1, . . . , en be edges of A and let (`, r) be a state of R(A). Then the function

r → [0, 1]
t 7→ PA

(
Cyl

(
π((`, t), e1 . . . en)

))
can be written as a function of the form:

t ∈ r 7→
∑
`∈L

exp(λ`t) · P`

(
(eλ`′)`′∈L, (e−λ`′)`′∈L

)
+ P

(
(eλ`′)`′∈L, (e−λ`′)`′∈L

)
where (P`)`∈L, P ∈ Q[(X`)`∈L, (Y`)`∈L].

iv

Proof. In this proof, given an edge ei we denote by pi the relative weight of ei (compared to other
edges) in the region where ei is enabled. As A = R(A), pi is correctly defined.

If e1 cannot be fired from (`, t) for t ∈ g, the result is trivial. The proof otherwise proceeds by
induction on the number of edges.

Assume the lemma holds for any i ≤ n, and let r0 be a region, e1 · · · en+1 a sequence of edges
firable from r0. Let us first get rid of the case where the guard in e1 is an equality: x = c. In this case,
either the probability to fire e1 from r0 is a rational number. Indeed, it is either 0 if some transition
enabled in r0 has a non-equality guard, or it is a ratio of the distinct equality-guarded transition enabled
in r0. Coming back to the (most interesting) case when e1 can be fired in a non-trivial interval, we need
to distinguish between several cases: e1 is a resetting edge or not ; e1 is enabled in r0 or only later ; the
guard in e1 is x > M or not.

(1) Let us first consider the case where the guard in e1 is not x > M , i.e. e1 can only be fired in a
bounded interval. Let (`0, t0) ∈ r0 be an initial state. The probability P((`0, t0), e1 · · · en) has different
expressions depending on whether e1 is enabled in (`0, t0) (i.e., 0 ∈ I((`0, t0), e1)) or not, and whether
e1 is a resetting edge or not.

(1.1) If e1 can be fired in (`0, t0):

P(π((`0, t0), e1 · · · en)) =
∫ c0+1

t=t0

p1 · P(π(st, e2 · · · en)) · λ`0 · exp(−λ`0(t− t0)) dt

where e1 is guarded by c0 < x < c0 + 1 and (`0, t0)
t,e1−−→ st.

(1.1.1) Now, if e1 is a resetting edge, for all t, st = (`1, 0) for some location `1. By induction hypoth-
esis, P(π((`1, 0), e2 · · · en)) = R

(
(eλ`)`∈L, (e−λ`)`∈L

)
with R ∈ Q[(X`)`∈L, (Y`)`∈L]. Hence,

P(π((`0, t0), e1 · · · en)) =
∫ c0+1

t=t0

p1 ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
· λ`0 · exp(−λ`0(t− t0)) dt

= p1 ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
·
∫ c0+1

t=t0

λ`0 · exp(−λ`0(t− t0)) dt

= p1 ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
·
(
1− e−λ`0 (c0+1) · exp(λ`0t0)

)
= exp(λ`0t0) · P`0

(
(eλ`)`∈L, (e−λ`)`∈L

)
+ P

(
(eλ`)`∈L, (e−λ`)`∈L

)
for some polynomials P`0 , P ∈ Q[(X`)`∈L, (Y`)`∈L].

(1.1.2) If e1 is not a resetting edge:

P(π((`0, t0), e1 · · · en)) =
∫ c0+1

t=t0

p1 · P(π((`1, t), e2 · · · en)) · λ`0 · exp(−λ`0(t− t0)) dt

for some location `1. By induction hypothesis, there are |L| + 1 polynomials (P`)`∈L, P ∈
Q[(X`)`∈L, (Y`)`∈L] such that, if r is the target region of edge e1, for every t ∈ r,

P(π((`1, t), e2 · · · en)) =
∑
`∈L

exp(λ`t) · P`((eλ`′)`′∈L, (e−λ`′)`′∈L) + P ((eλ`′)`′∈L, (e−λ`′)`′∈L)

v

Hence,

P(π((`0, t0), e1 · · · en))

= p1 ·
∫ c0+1

t=t0

(∑
`∈L

exp(λ`t) · P`((eλ`′)`′∈L, (e−λ`′)`′∈L) + P ((eλ`′)`′∈L, (e−λ`′)`′∈L)
)
· λ`0 · exp(−λ`0(t− t0)) dt

= p1 · exp(λ`0t0) · λ`0 ·
[∑

`∈L

P`((eλ`′)`′∈L, (e−λ`′)`′∈L) ·
∫ c0+1

t=t0

exp((λ` − λ`0)t) dt
]

+ p1 · P ((eλ`′)`′∈L, (e−λ`′)`′∈L) ·
∫ c0+1

t=t0

λ`0 · exp(−λ`0(t− t0)) dt

= p1 · exp(λ`0t0) · λ`0 ·
[∑

`∈L

P`((eλ`′)`′∈L, (e−λ`′)`′∈L) · 1
λ` − λ`0

· (exp((λ` − λ`0)(c0 + 1))− exp((λ` − λ`0)t0))
]

+ p1P ((eλ`′)`′∈L, (e−λ`′)`′∈L)(1− exp(−λ`0(c0 + 1)) exp(λ`0t0))

= p1 · λ`0 ·
[∑

`∈L

P`((eλ`′)`′∈L, (e−λ`′)`′∈L) · 1
λ` − λ`0

· (− exp(λ`t0) + exp((λ` − λ`0)(c0 + 1)) · exp(λ`0t0))
]

+ p1 · P ((eλ`′)`′∈L, (e−λ`′)`′∈L) · (1− exp(−λ`0(c0 + 1)) · exp(λ`0t0))

=
∑
`∈L

[
exp(λ`t0) · P 1

` ((eλ`′)`′∈L, (e−λ`′)`′∈L) + exp(λ`0t0) · P 2
` ((eλ`′)`′∈L, (e−λ`′)`′∈L)

]
+ P1((eλ`′)`′∈L, (e−λ`′)`′∈L) + exp(λ`0t0) · P2((eλ`′)`′∈L, (e−λ`′)`′∈L)

=
∑
`∈L

Q`((eλ`′)`′∈L, (e−λ`′) +Q((eλ`′)`′∈L, (e−λ`′)`′∈L)

with appropriate polynomials P1, P2, P
1
` , P

2
` , Q,Q` ∈ Q[(X`)`∈L, (X`)`∈L].

(1.2) If e1 cannot be fired in (`0, t0) but only in some future region (c0, c0 + 1):

P(π((`0, t0), e1 · · · en)) =
∫ c0+1

t=c0

p1 · P(π(st, e2 · · · en)) · λ`0 · exp(−λ`0(t− t0)) dt

where (`0, t0)
t,e1−−→ st.

(1.2.1) Now, if e1 is a resetting edge, for all t, st = (`1, 0) for some location `1. By induction hypoth-
esis, P(π((`1, 0), e2 · · · en)) = R

(
(eλ`)`∈L, (e−λ`)`∈L

)
where R ∈ Q[(X`)`∈L, (Y`)`∈L]. Hence

P(π((`0, t0), e1 · · · en)) =
∫ c0+1

t=c0

p1 ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
· λ`0 · exp(−λ`0(t− t0)) dt

= p1 ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
· exp(λ`0t0) ·

∫ c0+1

t=c0

λ`0 · exp(−λ`0t) dt

= p1 ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
· exp(λ`0t0) · (e−λ`0c0 − e−λ`0 (c0+1))

= exp(λ`0t0) · P`0

(
(eλ`)`∈L, (e−λ`)`∈L

)
with P`0 ∈ Q[(X`)`∈L, (Y`)`∈L]
(1.2.2) If e1 is not a resetting edge:

P(π((`0, t0), e1 · · · en)) =
∫ c0+1

t=c0

p1 · P(π((`1, t), e2 · · · en)) · λ`0 · exp(−λ`0(t− t0)) dt

vi

for some location `1. By induction hypothesis, there are |L| + 1 polynomials P, (P`)`∈L ∈
Q[(X`)`∈L, (Y`)`∈L] such that

P(π((`1, t), e2 · · · en)) =
∑
`∈L

exp(λ`t) · P`((eλ`′)`′∈L, (e−λ`′)`′∈L) + P ((eλ`′)`′∈L, (e−λ`′)`′∈L)

Hence,

P(π((`0, t0), e1 · · · en))

= p1 ·
∫ c0+1

t=c0

[∑
`∈L

exp(λ`t) · P`((eλ`′)`′∈L, (e−λ`′)`′∈L) + P ((eλ`′)`′∈L, (e−λ`′)`′∈L)
]
· λ`0 · exp(−λ`0(t− t0)) dt

A similar computation to that of case (1.1.2) yields:

P(π((`0, t0), e1 · · · en))

= exp(λ`0t0) ·
∑
`∈L

R`((eλ`′)`′∈L, (e−λ`′)`′∈L) + exp(λ`0t0) ·R((eλ`′)`′∈L, (e−λ`′)`′∈L)

= exp(λ`0`0) ·Q((eλ`′)`′∈L, (e−λ`′)`′∈L)

with R`, R,Q ∈ Q[(X`)`∈L, (Y`)`∈L].
(2) We now consider the case when e1 is guarded by x > M . In this situation, either all edges e1 to en

share this same guard, or there is an edge, say ei which resets the clock x.
(2.1) Let us assume that e1 · · · en have x > M has guard.
(2.1.1) If e1 is enabled in (`0, t0) (i.e., t0 > M), a simple calculation gives:

P(π((`0, t0), e1 · · · en)) =
n∏

i=1

pi.

(2.1.2) If e1 is not enabled in (`0, t0) but only later on:

P(π((`0, t0), e1 · · · en)) =
∫ ∞

t1=M

p1 · P((`1, t1), e2 · · · en) · λ`0 · exp(−λ`0(t1 − t0)) dt1

And by case (2.1.1), P((`1, t1), e2 · · · en) =
∏n

i=2 pi. Hence:

P(π((`0, t0), e1 · · · en)) =
n∏

i=1

pi · exp(λ`0t0) ·
∫ ∞

t1=M

λ`0 · exp(−λ`0t1) dt1

= (
n∏

i=1

pi) · exp(λ`0t0) · exp(−λ`0)
M

= exp(λ`0t0) · P ((eλ`′)`′∈L, (e−λ`′)`′∈L).

(2.2) Assume now ei is the first resetting edge of the sequence e1 · · · en.

P(π((`0, t0), e1 · · · en)) =
∫

t1∈I((`0,t0),e1)

p1 · λ`0 · exp(−λ`0t1) · · ·∫ ∞

ti=0

pi · λ`i−1 · exp(−λ`i−1ti) · P((`i, 0), ei+1 · · · en) dti · · ·dt1.

vii

By induction hypothesis,

P((`i, 0), ei+1 · · · en) = R
(
(eλ`)`∈L, (e−λ`)`∈L

)
with R ∈ Q[(X`)`∈L, (Y`)`∈L]. Hence:

P(π((`0, t0), e1 · · · en))

=
∫

t1∈I((`0,t0),e1)

p1 · λ`0 · exp(−λ`0t1) · · ·
∫ ∞

ti=0

pi · λ`i−1 · exp(−λ`i−1ti) ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
dti · · ·dt1

= (
i∏

j=1

pj) ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
·
∫

t1∈I((`0,t0),e1)

λ`0 · exp(−λ`0t1) dt1.

The latter integral evaluates differently if t0 < M or t0 ≥M .
(2.2.1) Assume t0 < M . Then, e1 is not enabled in (`0, t0), I((`0, t0), e1) = (M − t0,∞) and

P(π((`0, t0), e1 · · · en)) = (
i∏

j=1

pj) ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
·
∫ ∞

t1=M

exp(−λ`0(t1 − t0)) dt1

= (
i∏

j=1

pj) ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
· exp(−λ`0)

M · exp(λ`0t0)

= exp(λ0t0) · P
(
(eλ`)`∈L, (e−λ`)`∈L

)
.

(2.2.2) In the case t0 ≥M , I((`0, t0), e1) = R+ and

P(π((`0, t0), e1 · · · en)) = (
i∏

j=1

pj) ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
·
∫ ∞

t=0

λ`0 · exp(−λ`0t) dt

= (
i∏

j=1

pj) ·R
(
(eλ`)`∈L, (e−λ`)`∈L

)
= P

(
(eλ`)`∈L, (e−λ`)`∈L

)
.

This concludes the cases inspection of the induction proof. �

viii

