
Centre Fédéré en Véri�cation

Technical Report number 2008.104

E�cient Symbolic Model Checking for Process
Algebras

Charles Pecheur, José Vander Meulen

http://www.ulb.ac.be/di/ssd/cfv

This work was partially supported by a FRFC grant: 2.4530.02
and by the MoVES project. MoVES (P6/39) is part of the IAP-Phase VI Interuniversity

Attraction Poles Programme funded by the Belgian State, Belgian Science Policy

Efficient Symbolic Model Checking

for Process Algebras⋆

José Vander Meulen1 and Charles Pecheur2

1 Université catholique de Louvain, jose.vandermeulen@uclouvain.be
2 Université catholique de Louvain, charles.pecheur@uclouvain.be

Abstract. Different approaches have been developed to mitigate the
state space explosion of model checking techniques. Among them, sym-
bolic verification techniques use efficient representations such as BDDs
to reason over sets of states rather than over individual states. Unfor-
tunately, past experience has shown that these techniques do not work
well for loosely-synchronized models. This paper presents a new algo-
rithm and a new tool that combines BDD-based model checking with
partial order reduction (POR) to allow the verification of models featur-
ing asynchronous processes, with significant performance improvements
over currently available tools. We start from the ImProviso algorithm
(Lerda et al.) for computing reachable states, which combines POR and
symbolic verification. We merge it with the FwdUntil method (Iwashita
et al.) that supports verification of a subset of CTL. Our algorithm has
been implemented in a prototype that is applicable to action-based mod-
els and logics such as process algebras and ACTL. Experimental results
on a model of an industrial application show that our method can ver-
ify properties of a large industrial model which cannot be handled by
conventional model checkers.

1 Introduction

Model checking is a technique used to verify concurrent systems such as sequen-
tial circuit designs and communication protocols, by exhaustively exploring the
state space of a finite-space description of the processes involved. The properties
to be verified on such systems are typically expressed in (linear or branching)
temporal logics such as LTL, CTL or CTL*, with different algorithms and com-
plexities depending on the logic used. In particular, McMillan achieved a break-
through with the use of symbolic representations based on the use of Ordered
Binary Decision Diagrams (BDD) [1] to perform model checking of CTL, making
it possible to verify systems with a very large number of states [2].

Unfortunately, the size of the state space to be explored is frequently pro-
hibitive due, among other causes, to the modeling of concurrency by interleaving.
The aim of partial order reduction (POR) techniques is to reduce the number of
interleaving sequences that must be be considered. When a specification cannot
distinguish between two interleaving sequences that differ only by the order in

⋆ This work is supported by project MoVES under the Interuniversity Attraction Poles
Programme — Belgian State — Belgian Science Policy.

which concurrently executed events are taken, it is sufficient to analyse one of
them [3].

This paper presents a new algorithm and tool that combine BDD-based
model checking with partial order reduction (POR) to allow the verification of
models featuring asynchronous processes, with significant performance improve-
ments over currently available tools. We start from the ImProviso algorithm of
Lerda et al. [4] for computing reachable states, which combines POR and sym-
bolic verification. We merge it with the FwdUntil method of Iwashita et al. [5]
that supports verification of a subset of CTL. Our algorithm has been imple-
mented in a prototype that is applicable to action-based models and logics such
as LOTOS [6] and ACTL [7].

The main contributions of this paper are the FwdUntilPOR algorithm that
combines POR and forward CTL model checking, a new symbolic model checker
which implements this algorithm and is applicable to action-based models and
logics, and an experimental evaluation of this algorithm and tool on a realistic-
sized model.

The remainder of the paper is structured as follows. In Section 2, we introduce
some background concepts, definitions and notations that are used throughout
the paper. In Section 3, we review the Two-Phase algorithm for POR, and its
symbolic incarnation in ImProviso. In Section 4, we discuss a forward approach
to CTL symbolic model-checking, built around the FwdUntil operator. In Sec-
tion 5, we present our own combination of ImProviso and FwdUntil, leading
to the ForwardUntilPOR algorithm. In Section 6, we present a prototype of
a new symbolic model checker implementing the FowardUntilPOR method. In
Section 7, we present the results obtained by applying our method on a case
study. Section 8 reviews related works. In Section 9, we give conclusions as well
as directions for future work.

2 Background

2.1 Transitions Systems

We model the behaviour of a system as a set T of transitions over some state
space S, where each transition is a binary relation over states. Formally, let AP
be a set of atomic propositions. A state transition system is a four tuple M =
(S, T, S0, L) where S is a finite set of states, S0 ⊆ S is the set of initial states,
T is a set of transitions such that for each α ∈ T , α ⊆ S × S and L : S → 2AP

is a function that labels each state with the set of atomic propositions that are
true in that state.

We write s
α

−→ s′ for (s, s′) ∈ α. A transition α is enabled in a state s iff

there is a state s′ such that s
α

−→ s′. We write enabled(s) for the set of enabled
transitions in s. A transition α is deterministic in a state s iff there is at most
one s′ such that s

α
−→ s′.

We define the classical pre- and post-image of a set of states X over a set of
transitions R, used in backward and forward state-space traversal respectively:

pre(R, X) = {s′ ∈ S|∃s ∈ X, α ∈ R · s′
α

−→ s}

post(R, X) = {s′ ∈ S|∃s ∈ X, α ∈ R · s
α

−→ s′}

2.2 Partial-Order Reduction

The goal of the partial-order reduction methods (POR) is to reduce the num-
ber of states explored by model-checking, by not exploring different equivalent
interleavings of concurrent events. Naturally, these methods are best suited for
strongly asynchronous programs. Interleavings which are required to be pre-
served may depend on the property to be checked.

Partial-order reduction is based on the notions of independence between tran-
sitions and invisibility of a transition with respect to a property. Two transitions
are independent if they do not disable one another and executing them in ei-
ther order results in the same state. A transition is invisible with respect to a
property f when its execution from any state does not change the value of the
atomic propositions in f . Intuitively, if two independent transitions α and β are
invisible w.r.t. the property f that one wants to verify, then it does not matter
whether α is executed before or after β, because they lead to the same state and
do not affect the truth of f .

Partial-order reduction consists in identifying such situations and restricting
the exploration to either of these two alternatives. In effect, POR amounts to
exploring a reduced model M ′ = (S′, T ′, S0, L) with S′ ⊆ S and for each α′ ∈ T ′

there is an α ∈ T such that α′ ⊆ α. In practice, classical POR algorithms [3,
8] execute a modified depth-first search (DFS). At each state s, an adequate
subset ample(s) of the transitions enabled in s are explored. To ensure that this
reduction is adequate, that is, that verification results on the reduced model
hold for the full model, ample(s) has to respect a set of conditions, based on
the independence and invisibility notions previously defined. In some cases, all
enabled transitions have to be explored. The following conditions are set forth
in [9]:

C1 Only operations in T − ample(s) that are independent from operations in
ample(s) can be executed before an operation from ample(s) is executed.3

C2 For every cycle in the state graph, there is at least one state s in the cycle
that is fully expanded, i.e. ample(s) = enabled(s).

C3 If ample(s) 6= enabled(s), then all transitions in ample(s) are invisible.
C4 If ample(s) 6= enabled(s), then ample(s) contains only one transition that

is deterministic in s.4

Conditions C1, C2 and C3 are sufficient to guarantee that the reduced model
preserves properties expressed in LTLX, i.e. linear temporal logic without the
next operator (see e.g. [8]). Condition C4 is significantly more restrictive but is
necessary to ensure preservation of branching temporal logics. In that case, [9]
shows that there is a so-called visible bisimulation between the complete and
reduced models, which ensures preservation of both state-based logics such as
CTL∗

X (and thus CTLX) This fits our purpose, since we address action-based
models and logics.

Conditions C1 and C2 depend on the whole state graph and are not directly
exploitable in a verification algorithm. Instead, one uses sufficient conditions,

3 or equivalently in [9], No operation in T−ample(s) that is dependent on an operation
in ample(s) can be executed before an operation from ample(s) is executed.

4 This is more general than [9], which assumes that all transitions are deterministic.

typically derived from the structure of the model description, to safely decide
where reduction can be performed. In our case, we refine the model in terms of
processes, with local and global variables and transitions and base the reduction
on the notion of safe local transition, as developed in next section.

2.3 Process Models

We assume a process-oriented modeling language, where a concurrent system
consists of a finite set of processes P accessing a set of variables V . Each process
p ∈ P maintains a set of local variables V (p) that only it can access. All the
processes also share a set of global variables, given by V −

⋃

p∈P V (p). The global
state s ∈ S consists of the values of all the variables; the local state of p, written
s(p), consists of the values of the local variables V (p) in s. More generally, we
write s(W) for the values of a set of variables W ⊆ V in s. The set of all possible
states of the system is thus the cartesian product of the range of all variables,
which we assume to be finite.

Transitions α ∈ T are characterized by the variables V (α) that they may
modify or depend on: α is reducible to a relation α0 on the range of V (α) such

that s
α

−→ s′ iff s(V (α))
α0−→ s′(V (α)) and s(V − V (α)) = s′(V − V (α)).

We consider that processes participate in all the transitions that affect their
variables, and define the set of transitions of a process p as T (p) = {α ∈ T |V (p)∩
V (α) 6= ∅}, which divides into local transitions Tl(p) = {α ∈ T (p)|V (α) ⊆ V (p)}
and shared transitions Ts(p) = T (p) − Tl(p). The locally offered transitions of p
in s are the transitions of p that are allowed by s(p), that is, trans(p, s) = {α ∈
T (p)|∃s′ · s′(p) = s(p) ∧ α ∈ enabled(s′)}. Note that a locally offered transition
is not necessarily (globally) enabled, i.e. trans(p, s) 6⊆ enabled(p). A transition
is safe iff it is deterministic and invisible (w.r.t. the property f being verified)
in all states. We write safe(p) for the set of safe local transitions of p, where
safe(p) ⊆ Tl(p) ⊆ T (p). It is easily seen that if V (α) ∩ V (β) = ∅, then α an β
are independent. In particular, if α ∈ Tl(p) and α′ /∈ T (p) then α and α′ are
independent.

With this in hand, we can define sufficient conditions to apply partial-order
reduction to our refined process-based models: essentially, as long as some process
offers only safe local transitions, among which only one is enabled, then that
transition can be selected as the ample set while meeting conditions C1 to C4.
More formally, a process p is defined as deterministic in state s if the following
conditions are met: (1) only safe local transitions are locally offered by p in s,
that is, trans(p, s) ⊆ safe(p), and (2) only one transition of p is enabled in s,
that is,

∣

∣T (p) ∩ enabled(s)
∣

∣ = 1.
If p is deterministic in s, then s can be partially expanded by ample(s) =

T (p) ∩ enabled(s) = {α}, where α is a single safe local transition of p, while
maintaining the validity of verification (cf. Section 5).

3 The Two-Phase Approach to Partial Order Reduction

3.1 The Two-Phase Algorithm

The Two-Phase algorithm (presented in [10]) is a variant of the classical DFS
algorithm with POR of [3, 8]. It alternates between two distinct phases:

– Phase 1 expands only deterministic states considering each process at a time,
in a fixed order. As long as a process is deterministic, the single transition
that is enabled for that process is executed. Otherwise, the algorithm moves
on to the next process. After expanding all processes, the last reached state
is passed on to phase 2.

– Phase 2 is simple. It performs a full expansion of the states resulting from
the phase 1, then applies phase 1 to the reached states.

In order not to postpone a transition indefinitely, for each cycle in the reduced
state space, at least one state in this cycle must be fully expanded. Such an
indefinite postponing can only arise within phase 1, and is handled by detecting
cycles within the current phase 1 expansion and switching to a phase 2 expansion
when they occur.

As shown in [10], the Two-Phase algorithm produces a reduced state space
which is stuttering equivalent to the whole one, and therefore preserves CTLX

properties [9].

3.2 ImProviso

[4] proposes ImProviso, a symbolic version for computing the reachable states
of the Two-Phase algorithm. It efficiently combines the advantages of POR and
symbolic methods. Classical symbolic model checking algorithms use a single
transition relation (partitioned or not) to carry out the required computation
on the state space. On the other hand, the ImProviso method defines n + 1
transition relations, where n is the number of processes in the system. One is
the full transition relation T used in phase 2, and the others contain only the
safe local transitions from deterministic states, denoted as T1(p) of each process
p, used in phase 1.

Contrary to the nested DFS preferred by classical POR methods, the sym-
bolic methods amount to a breadth-first search (BFS). It is thus harder to de-
tect cycles within phase 1 in the symbolic case, and that detection is required to
maintain the validity of the algorithm. ImProviso adopts a pessimistic approach:
at each step during phase 1, it is assumed pessimistically that any previously
expanded state that is reached again might close a cycle, although these occur-
rences might actually be on different execution paths. This over-approximation
guarantees that all cycles are correctly identified, but possibly needlessly reduces
the number of states where phase 1 can be applied. This is the key justification
for basing ImProviso on the Two-Phase algorithm, as this limits the need for
cycle detection to each single execution of phase 1, as opposed to the whole
exploration for more traditional POR approaches.

The original ImProviso algorithm is not detailed here but is very similar to
the FwdUntilPOR algorithm of Section 5, which is based on ImProviso.

4 Forward Symbolic Model-Checking of CTL

In [5], Iwashita et al. present a model checking algorithm based on forward state
traversal, which is shown to be more effective than backward state traversal in

many situations. Forward traversal is applicable only to a subset of CTL, but
can be combined with backward traversal for the rest of the formulæ. In the
following sections we combine this algorithm with ImProviso in order to extend
the advantages of partial-order reduction in symbolic methods from reachability
properties to CTL properties.

The semantics of a CTL formula f is defined as a relation s |= f over states
s ∈ S. In this paper we define the language of f as L(f) = {s ∈ S|s |= f}. In
the sequel we assimilate temporal logic formulæ f to the set of states L(f) that
they denote, for the sake of simplifying the notations. In particular, we denote
set-based computations as the formula-based fixpoints that they compute.

Given a formula f and initial conditions h0, conventional BDD-based sym-
bolic model-checking can be described as evaluating L(f) over the sub-formulas
of f in a bottom-up manner, and checking whether L(h0) ⊆ L(f). This can be
expressed as checking whether h0 ⇒ f , or equivalently, whether h0∧¬f = false.
The evaluation of (future) CTL operators in f results in a backward state-space
traversal of the model.

[5] introduces forward exploration by transforming a property h ∧ op(f) =
false into equi-satisfiable one op′(h) ∧ f = false, where a future, backward-
traversal CTL operator op in the right term is transformed into a past, forward-
traversal operator op′ in the left term. In general, h is then a past-CTL formula.
The following (past-temporal) operations over formulæ are defined

FwdUntil(h, f) = µZ.[h ∨ post(Z ∧ f)]

EH(h) = νZ.[h ∧ post(Z)]

FwdGlobal(h, f) = EH(FwdUntil(h, f) ∧ f)

FwdUntil(h, f) computes states s that can be reached from h within f (except
for s itself), and EH(h) computes states reachable from a cycle, all within h.
On this basis, the following equivalences are established:

h ∧ EXf = false ⇐⇒ post(h) ∧ f = false

h ∧ E[g Uf] = false ⇐⇒ FwdUntil(h, g) ∧ f = false

h ∧ EGf = false ⇐⇒ FwdGlobal(h, f) = false

The transformation process starts from h0 ∧ ¬f = false, where h0 is the
initial conditions and ¬f is the (suitably re-written) negation of the property
to be verified. The equivalences above are applied recurrently until the right
part cannot be reduced further, either because all temporal operators have been
eliminated or because no rule applies to those remaining. Disjunctions in f can
also be handled by case-splitting. Given the final h∧f = false, L(h) is evaluated
using forward traversal, and the resulting set of states is used as the new initial
conditions for a classical, backward model-checking of the remaining f .

By using these equivalences, it is possible to replace an outermost EX , EU
or EG operator in f with a forward traversal operator in h. For instance, one
can derive the following equivalence:

h0 ⇒ AG(req → AFack) ⇐⇒

FwdGlobal((FwdUntil(h0, true) ∧ req),¬ack) = false

Unfortunately, it is not possible to achieve the complete conversion of all CTL
properties by applying this method. For instance, the following property is not
fully transformable, because the negation in the right term cannot be eliminated:

p0 ⇒ AG EFa ⇐⇒ FwdUntil(p0, true) ∧ ¬EFa = false

Informally, reduction is possible for a restricted fragment of universal CTL,
where temporal operators do not appear in the context of disjunctions nor on
the left side of Until operators.5

5 Forward Model Checking with Partial Order Reduction

In this section we bring together the POR approach of ImProviso, presented
in Section 3.2, and the forward model checking approach of Section 4. The key
element is to define a new algorithm FwdUntilPOR, which applies ImProviso’s
principles to perform POR during the forward exploration of FwdUntil. The
algorithm for FwdUntilPOR(h, f) is given in Listing 1.1, and is based on Im-
Proviso’s algorithm in [5].

1 global T // total transition relation
2 global T1[1..n] // safe local transitions of each process
3

4 global f // constraints f
5 global frontier // current frontier
6 global visited // visited states
7

8 procedure FwdUntilPOR(inH, inF)
9 frontier := inH

10 f := inF
11 visited := inF
12 while (frontier != {}) {
13 phase1 ()
14 phase2 ()
15 }
16 }
17

18 procedure phase1 () {
19 local cycleApprox := {}
20 local stack := frontier
21

22 foreach (p : Processes) {
23 local dead := {}
24 local image := post(T1[p], frontier and f)
25 while ((image - stack) != {}) {
26 dead := dead or deadStates(T1[p], frontier)
27 cycleApprox := cycleApprox or (image and stack)
28 stack := stack or image
29 frontier := image - stack
30 image := post(T1[p],frontier and f)
31 }
32 frontier := frontier or dead
33 }
34 frontier := frontier or cycleApprox
35 visited := visited or stack
36 }

5
Universal CTL is the fragment of CTL such that negated normal forms contain only
universal path quantifiers (AX,AU, AG, AF). As detailed in [5], if the model has
a single initial state (L(h0) = {s0}), then the validity of f can also be phrased as
h0 ∧ f 6= false, and existential formulæ can be handled as well.

37

38 procedure phase2 () {
39 local image := post(T, frontier and f)
40 frontier := image - visited
41 visited := visited or image
42 }

Listing 1.1. FwdUntilPOR algorithm

Given two visible constraints h and f , the FwdUntilPOR algorithm computes
the set of states of the reduced state space belonging to a path of the form
s0 → s1 → . . . → sn−1 → sn where s0 |= h and ∀i ∈ {0, . . . , n − 1} : si |= f .
T is the global transition relation of the model, and T1[p] contains safe local
transitions of process p, and only from such states where p is deterministic.
The deadState(T, X) function computes the states of X that have no enabled

transition from T , i.e. deadStates(T, X) = {s ∈ X |¬∃s′ ∈ S, α ∈ T · s
α

−→ s′}.
The FwdUntilPOR procedure initializes the global variables and performs the

two phases alternatively until no states to visit remain. The global variable
frontier contains the current frontier, that is, the set of states which have
been reached but not expanded yet. The global variable visited contains all
the reached states.

The phase1 procedure performs the first phase, consisting of partial expan-
sion of deterministic transitions. It is composed of two nested loops. The outer
one (lines 22 – 33) expands all processes in a given order. The inner one (lines
25 – 31) expands all deterministic transitions of the current process, from states
satisfying f , until no more new states can be found.

The stack variable contains all the states which have already been reached
during the current run of phase1. cycleApprox over-approximates the set of
states closing a cycle. It contains all the states which have been reached twice
during the current run of phase 1. The dead variable gathers all the states with
no outgoing deterministic transition for the current process; those states are
added back to the current frontier when moving to the next process (line 32).

The original ImProviso algorithm defines an additional outermost loop in
phase 1, which guarantees that a state is passed from phase 1 to phase 2 only if
it has no enabled deterministic transition for any process. This is useful in the
case where a local transition from one process can activate another process, as
for example posting a message to a channel that can be subsequently received.
In our case, this fixpoint calculation is not needed because by construction our
notions of local transition and deterministic process do not allow this kind of
situation. It would easily be added back if it were to become useful.

The phase2 procedure performs a full expansion of the states of the current
frontier satisfying the constraint f .

Correctness A full formal proof of correctness of the proposed approach is beyond
the scope of this paper. The validity of the overall verification technique depends
on a number of components, a number of which are inherited from existing
techniques and tools. One important point is the validity of the ample sets used
for POR, which we address in more details first, based on the definitions of
Section 2. The following lemma will be useful in the main proof:

Lemma 1. If a process p is deterministic in a state s with enabled(s)∩ T (p) =

{α} and there is a transition α′ 6= α such that s
α′

−→ s′ then s′(p) = s(p) and p
is deterministic in s′ with enabled(s′) ∩ T (p) = {α} .

Proof. We have that α′ ∈ enabled(s). Since enabled(s) ∩ T (p) = {α}, α′ /∈ T (p)
and s(p) = s′(p). trans(p, s) only depends on s(p) so trans(p, s) = trans(p, s′)
and enabled(s′)∩T (p) ⊆ trans(p, s′) ⊆ safe(p) so enabled(s′)∩T (p) = enabled(s)
∩ T (p). ⊓⊔

Then we come to the main result:

Theorem 1 (Correctness of Ample Sets). Given a state s, if trans(p, s) ⊆
safe(p) and

∣

∣T (p) ∩ enabled(s)
∣

∣ = 1, then ample(s) = T (p) ∩ enabled(s) = {α}
is a valid ample set for s.

Proof. This requires checking that ample(s) meets conditions C1 to C4 of Sec-
tion 2.2.
C1 is proved by contradiction. Suppose that there is a path s = s0

α1−→ s1 . . .
αm−→

sm
α′

−→ s′, where all αi are independent from α and α′ is dependent on (but
different from) α. By applying lemma 1 inductively in s, s1, . . . , sm−1, we get
that s(p) = s1(p) = · · · = sm(p), and p is deterministic in sm with T (p) ∩
enabled(sm) = {α}, and therefore α′ /∈ T (p). If α′ /∈ T (p), then since α ∈
safe(p), α and α′ are independent, a contradiction.
C2 is satisfied because in every cycle in the reduced graph, at least one state is
fully expanded in phase 2 of the algorithm. If the cycle contains at least one states
s where no process is deterministic, then that state will not be expanded in phase
1. If the cycle is composed exclusively of states where a process is deterministic,
then the algorithm guarantees conservatively that the loop is detected in phase
1 and one state is deferred to phase 2 (see the cycleApprox variable, line 27).
C3 is satisfied because either ample(s) = enabled(s) or ample(s) ⊆ safe(s) by
construction.
C4 is satisfied by construction of ample(s). ⊓⊔

The validity of the overall technique follows, based on the following argu-
ments:

1. The equivalence relations between backward and forward operators of sec-
tion 4 are valid, in the sense that the transformed formulas, introducing
forward traversal where feasible, are satisfiable if and only if the original
formulas are satisfiable. This result is assumed from [5].

2. Classical backward BDD-based model-checking, and in particular the reduc-
tion of CTL to EX , EU and EG operators, is valid. This is a well-established
result, see e.g. [8].

3. The single enabled transition of a deterministic process p in a state s, as
defined in Section 2.3, is indeed a valid ample set for s (Theorem 1).

4. Assuming § 3, FwdUntilPOR performs a valid exploration of a subset of the
behaviours explored by FwdUntil, reduced through POR. This is verified by
checking that FwdUntilPOR is a valid symbolic implementation of the Two-
Phase algorithm based on deterministic processes as defined in Secton 2.3

in the same way as the original ImProviso, but adapted for adapted for
restricting the exploration to paths of the form s0 → s1 → . . . → sn−1 → sn

where s0 |= h and ∀i ∈ {0, . . . , n − 1} : si |= f .
5. The overall, combined forward and backward exploration is a valid model-

checking technique for CTLX . This combines the validity of the transfor-
mation (§ 1), of classic CTL model-checking (§ 2) and of the POR-reduced
exploration by FwdUntilPOR (§ 4), combined with the observation in Sec-
tion 2.2 that POR reduction respecting conditions C1 to C4 preserves CTLX

properties.

6 Implementation

We have developed the FwdUntilPORmethod in a new symbolic model checker. It
allows to describe concurrent systems and to verify CTL properties, and action-
based extension thereof, on these models.

Our prototype has been implemented with the Scala language [11]. Scala is a
multi-paradigm programming language, fully interoperable with Java, designed
to integrate features of object-oriented programming and functional program-
ming. Scala is a pure object-oriented language in the sense that every value is
an object. Scala is also a functional language in the sense that every function is
a value. To obtain better performance, our model checker uses a BDD package,
named BuDDy[12], written in C.

The model checker defines a language for describing transitions systems. The
design of the language has been influenced on the one hand by process algebras
and on the other hand by the NuSMV language [13]. A model of a concurrent
system declares a set of global variables, a set of shared actions and a set of
processes. A process p declares a set of local variables, a set of local actions
and the set of shared actions which p is synchronized on. Each process has
a distinguished local program counter variable pc. For each value of pc, the
behavior of a process is defined by means of a list of action-labelled guarded

commands of the form [α] c → u, where α is an action, c is a condition on
variables and u is an assignment updating some variables. Shared actions are
used to define synchronization between the processes. A shared action occurs
simultaneously in all the processes that share it, and only when all enable it.

Properties are expressed in an action-based extension of CTL similar to
ACTL [7] 6. These properties can be checked with three techniques: the back-
ward traversal method, the FwdUntil method (Section 4) and the FwdUntilPOR
method (Section 5). If the FwdUntilPOR is applied, some syntactic restrictions
are imposed in order to satisfy the conditions allowing the POR. For instance,
the propositions allowed in the CTLX properties can only concern the global
variables so as to satisfy the visibility condition. For each p, safe commands are
determined at compile time and combined into T 1(p). A guarded command is
considered as safe if it contains only local variables and actions. For each pc, a
list of guarded command gcs is considered as safe, if all elements of gcs are safe
and all of them are mutually exclusive .

6 Specifically, we use Action-Restricted CTL (ARCTL) [14], which associates actions
to path quantifiers rather than temporal operators.

Ordering of the Variables BDDs require a fixed ordering among the boolean
variables used to represent the system. The size of BDDs, and therefore the
performance of BDD-based model-checking, strongly depends on this ordering.
For instance, the size of the BDD representing a n-bit comparator (x1 = x′

1
∧

. . .∧xn = x′

n) can go from 3∗n+2 nodes with the order x1 ≺ x′

1
≺ . . . ≺ xn ≺ x′

n

to 3 ∗ 2n − 1 nodes with the order x1 ≺ . . . ≺ xn ≺ x′

1 ≺ . . . ≺ x′

n. In general,
finding the best variable ordering is a NP-complete problem. The topic has been
intensively studied and several heuristics have been developed for finding a good
ordering between variables.

This research has mostly focused on ordering variables within a state, but
there is also an opportunity for optimizing the order of variables used for the
transitions relation T (s, α, s′), which ranges over sets of boolean variables, s, α,

s′ respectively. If s
α

−→ s′, s is named the source state and s′ is named the target

state. In order to represent the relation T as a boolean function T (s, α, s′), three
sets of boolean variables are used: s = s1, s2, . . . , sm, α = α1, α2, . . . , αn and
s′ = s′1, s

′

2, . . . , s
′

m. An intuitive approach would be to start with α, followed
by s, then s′. In the case of strongly asynchronous systems, this approach leads
to an explosion of the BDD size [15]. A better solution is proposed in [15] for
asynchronous models such as those obtained from process algebra specifications.
The action variables are encoded first, followed by an “interlacing” between the
source variables and the target variables: a1 ≺ a2 ≺ . . . ≺ an ≺ s1 ≺ s′

1
≺ s2 ≺

s′2 ≺ . . . ≺ sm ≺ s′m
Experimental results show that the resulting BDDs only grow linearly in the

number of asynchronous components. Intuitively, the ordering works well due to
the fact that, in the case of asynchronous processes, most of the time a small
number of processes proceed, so only the variables of those processes change
while most variables remains the same (i.e. si = s′i). These constraints are more
efficiently encoded in the BDD, if si and s′i are next to each other in the ordering,
similarly to the n-bit comparator example above.

Table 1 compares the transition relation BDD size and the time between the
intuitive and the interlaced ordering, based on the case study of Section 7. The
size of the model is driven by the parameter #drill, and the time corresponds to
verifying property p6. It confirms the much reduced growth rate of the interlaced
ordering, allowing a much larger number of components to be added.

drills # vars interlaced non-interlaced
size time size time

1 24 1 543 .041 153 056 6.222
2 31 1 913 .070 4 051 081 409.078
3 38 2 307 .114 — —

20 157 12 184 4.436 — —
40 297 31 572 30.884 — —

Table 1. Size of the transition relation BDD (in # nodes) and verification time (in
seconds) for property p6 of the Turntable case study, using interlaced vs. non-interlaced
orderings, — correspond to memory exhausted (2 GB)

7 Case Study

In order to assess the effectiveness of our method, we applied it to a turntable
model which is described in [16, 17]. For initial experiments, we modelled the
system in the NuSMV language. We then converted the language of our pro-
totype. We compared performance of verification using three methods: classical
backward, FwdUntil and FwdUntil with POR, as well as with the NuSMV tool
and with the non-symbolic tool from the CADP toolset: Evaluator [18]. This
section presents the system and the results we obtained. All the test have been
run on a 2,16 GHz Intel Core 2 Duo with 2 GB of RAM memory.

. . .

input

output

test

drilln

drill1

drill2

drill3

Fig. 1. Turntable System

The turntable system consists of a round turntable, n drills and a testing
device, as illustrated in Figure 1. The turntable transports products between
the drills, the testing device and input and output positions. The drills bore
holes in the products. After being drilled, the products are delivered to the
tester, where the depth of the holes is measured, since it is possible that drilling
went wrong. The turntable has n + 3 slots that each can hold a single product.
The original model had only one drill; we extended it to represent an arbitrary
number of drills. Although a turntable with 40 drills is a bit artificial, it gives a
model of a fairly large realistic size.

The original model was described in LOTOS, a formal specification technique
based on process algebras [6]. First we translated the LOTOS model into a
NuSMV model. The difficult part of this task comes from the fact that LOTOS
and NuSMV do not have the same concurrency model. LOTOS has a more
expressive synchronization mechanism. The conversion in the prototype language
was easier because our language is inspired by languages like LOTOS.

We have verified 13 properties from [17] expressed as a regular alternation-
free µ-calculus formulae [19], here labelled p1 to p13. p1 to p6 are safety properties
and p7 to p13 are liveness properties. For instance, the safety property p6 states
that if a piece is well drilled, no alarm will be raised during the next cycle. The
liveness property p11 states that each piece will be removed from the turntable
after it is tested.

P6 :[true*.INF !TESTED !TRUE.(not INF !TURNED)*.INF !TURNED.(not INF !TURNED)*.ERR] false
P11:[true*.INF !TESTED.*]inev(not CMD !TURN,CMD !TURN,inev(not CMD !TURN,REQ !REMOVE.*, true))

For 11 of the 13 properties, the FwdUntilPOR method outperforms the clas-
sical backward CTL algorithm. However for p1 and p2, the classical method is
approximately 30 times faster than the FwdUntilPOR algorithm. Currently, we

do not have an explanation for such a difference which is left for further inves-
tigation. On this model, the FwdUntil method is less efficient than the classical
method, taking exception from the general observation reported in [5].

Table 2 shows the time for the verification of the properties p6 and p11. If the
turntable comprises 40 drills, p6 properties is checked approximately 12 times
faster and p11 is checked approximately 9 times faster with the FwdUntilPOR
method than with the backward method. The causes for the huge increase for
CADP between 3 and 4 drills remain to be investigated.

drill property p6 property p11
NuSMV CADP Bwd Fwd Fwd+POR CADP Bwd Fwd Fwd+POR

1 2.001 2.770 .041 .022 .055 3.640 .037 .076 .097
2 36.400 5.480 .070 .043 .082 19.350 .062 .132 .139
3 578.500 81.260 .114 .074 .106 335.130 .094 .167 .185
4 6617.000 13393.630 .157 .104 .144 19031.340 .132 .244 .245

10 — — .721 .875 .335 — .663 1.064 .589
20 — — 4.436 9.698 .838 — 6.112 9.187 1.496
30 — — 13.842 31.295 1.475 — 19.412 25.520 2.780
40 — — 30.884 80.519 2.499 — 40.304 67.761 4.355

Table 2. Verification times (in seconds) for properties p6 and p11 of the Turntable
model, using NuSMV, CADP and our prototype using standard backward exploration
(Bwd), FwdUntil (Fwd) and FwdUntilPOR (Fwd+POR). — indicates that the com-
putation did not end within 5 hours.

Table 3 compares the time needed for computing the reachable state space
between NuSMV and our prototype. We notice that NuSMV cannot handle a
model beyond 4 drills, while our prototype can still easily handle up to 40 drills.
It is quite interesting to note that while POR increases the number of BDD
nodes for the reduced state space (likely due to breaking some symmetry in
the full state space), it results in substantial speed improvements. One possible
explanation for the huge difference between NuSMV and our prototype is that
the modeling language of NuSMV, as opposed to that of our prototype, does not
support synchronization through shared actions, and so the translation of the
original LOTOS model is more convoluted and less straightforward. This issue
deserves further investigation.

8 Related Work

In [20], Alur et al. transform an explicit model checking algorithm performing
partial order reduction and able to check invariance of local properties. They
start from a DFS algorithm to obtain a modified BFS algorithm. Both expand
an ample set of transitions in each step. In order to detect the cycles, they
assume pessimistically that each previous expanded state might close a cycle. By
contrast, ImProviso makes a smaller over-approximation of such states because
it only needs to consider cycles formed exclusively by deterministic transitions.
Consequently it looks for possible cycles only with respect to states visited during
phase 1.

drills # nodes # states time
NuSMV proto full proto POR NuSMV proto full proto POR NuSMV proto full proto POR

1 2660 131 196 10 068 9 084 5572 1.009 .289 .149
2 12888 274 488 170 058 146 784 7948 32.000 .297 .153
3 64616 428 869 ≈ 106 ≈ 106 10324 553.400 .401 .181
4 244967 582 1286 ≈ 107 ≈ 107 12700 4 784.600 .545 .228

10 — 1506 4709 — ≈ 1011 26956 — 1.892 .528
20 — 3046 14039 — ≈ 1020 50716 — 7.984 1.147
40 — 6126 49649 — ≈ 1037 98236 — 63.721 3.434

Table 3. BDD size (in # nodes), state space size (in # states) and computation time
(in seconds) for the reachable state space of the Turntable model in NuSMV vs. our
prototype, both with full and POR exploration (i.e. using the ImProviso algorithm).
— indicates that the computation did not end within 5 hours.

In [21], Abdulla et al. present a general method for combining POR and
symbolic model checking. Their method can check safety properties either by
backward or forward reachability analysis. So as to perform the reduction, they
employ the notion of commutativity in one direction, a weakening of the depen-
dency relation which is usually used to perform POR. It can be applied either
to finite or infinite state spaces. One difference between this approach and ours
is the checked properties. This approach deals both with backward and forward
reachability analysis, while we are able to check a subset of CTLX properties
using only forward analysis.

In [22], Kurshan et al. introduce a partial order reduction algorithm based
on static analysis. They notice that each cycle in the state space is composed of
some local cycles. The method performs a static analysis of the checked model
so as to discover local cycles and set up all the reductions at compile time. The
reduced state space can be handled with symbolic techniques. Their approach
differs from ours in that it performs the reduction at compile time. On the
contrary our approach performs the reduction at run time. Lerda et al. suggest
that the Improviso method is more efficient than the one introduced by Kurshan
et al.[4]. However, we think that it still would be interesting to see how both
approaches can benefit from each other.

In [23], Fantechi et al. present SAM, a symbolic model checker based on BSP
(Boolean symbolic programming), a programming language aimed at defining
computations on boolean functions. SAM takes as input an LTS s and a (possibly
recursive) µ-ACTL formula p, and transforms both into BSP programs, which
are then compiled into a sequence of calls to BDD primitives. Checking that s
verifies p reduces to checking whether the boolean function ”tr(s) ⇒ tr(p)” is
a tautology. SAM is able to check µ-ACTL formulae which is a richer language
that the one of our prototype, but does not address performance optimizations
such as partial-order reduction.

9 Conclusion and Perspectives

In this paper, we introduced the FwdUntilPOR algorithm that combines two
existing techniques to provide efficient symbolic model checker of CTL on asyn-
chronous models. The first technique is the ImProviso algorithm which efficiently

merges POR and symbolic methods. The second technique is the forward sym-
bolic model checking approach applicable to a subset of CTL.

We also implemented the FwdUntilPOR algorithm in a new symbolic model
checker. Its input syntax supports actions-based models and logics. We show on
a realistic-sized case study that our method achieves a strong improvement in
comparison to the classical backward algorithm, in the majority of cases.

Although it is usually considered that symbolic model checking is inade-
quate for loosely-synchronized models, our results show that with appropriate
optimization this approach might in fact be quite effective to tackle the state
space explosion problem. On this basis, we plan to develop our approach and
our prototype in a number of ways:

– We plan to extend the FwdUntilPOR method for applying POR to a larger
subset of CTL. We will investigate how the approach of [21] can be extended
for combining the classical backward symbolic model checking algorithms
and POR.

– We need to explore how it is possible to compute a better approximation
of the deterministic states. There exists a large body of literature on this
subject.

– We need to extend our prototype by adding generation of counter-examples
for failed properties Another source of improvement can come from apply-
ing traditional partitioning techniques to BDDs representing the transition
relations. Besides, it would be convenient to accept or translate, as input,
a popular language such as LOTOS in order to exploit the numerous case
studies available in this formalism.

– As observed in our case study, for some properties the FwdUntilPOR method
performs much worse than the standard backward model checking. We will
investigate this issue, in order to try to characterize the classes of proper-
ties where this happens and to investigate whether our algorithm can be
improved to better handle those cases.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8) (1986) 677–691

2. Burch, J., Clarke, Jr., E., McMillan, K., Dill, D., Hwang, L.: Symbolic Model
Checking: 1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE
Symposium on Logic in Computer Science, Washington, D.C., IEEE Computer
Society Press (1990) 1–33

3. Godefroid, P.: Partial-order methods for the verification of concurrent systems: an
approach to the state-explosion problem. Volume 1032. Springer-Verlag Inc., New
York, NY, USA (1996)

4. Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of software. In Cook,
B., Stoller, S., Visser, W., eds.: Electronic Notes in Theoretical Computer Science.
Volume 89., Elsevier (2003)

5. Iwashita, H., Nakata, T., Hirose, F.: CTL model checking based on forward state
traversal. In: ICCAD ’96: Proceedings of the 1996 IEEE/ACM international confer-
ence on Computer-aided design, Washington, DC, USA, IEEE Computer Society
(1996) 82–87

6. ISO/IEC: Lotos — a formal description technique based on the temporal ordering
of observational behaviour. International Standard 8807, International Organi-
zation for Standardization — Information Processing Systems — Open Systems
Interconnection, Genève (1988)

7. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition
systems. In Verlag, S., ed.: Proceedings of the LITP spring school on theoretical
computer science on Semantics of systems of concurrent processes. Volume 469 of
LNCS., Springer-Verlag (1990) 407–419

8. Clarke, Jr., E., Grumberg, O., Peled, D.A.: Model Checking. The MIT Presse
(1999)

9. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. Inf. Comput. 150(2) (1999) 132–152

10. R. Nalumasu, G. Gopalakrishnan: A new partial order reduction algorithm for
concurrent systems. In C. Delgado Kloos, E. Cerny, eds.: Hardware Description
Languages and their Applications (CHDL ’97), Toledo, Spain, Chapman and Hall
(1997)

11. Odersky, M., Spoon, L., Venners, B.: Programming in scala, a comprehensive
step-by-step guide. PrePrintTM Edition, Version 3, (May 2008)

12. Lind-Nielsen, J.: Buddy - a binary decision diagram package. http://vlsicad.eecs.
umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/index.html (June 10, 2008)

13. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Proc. of International Conference on Computer-Aided Verification.
(1999)

14. Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In:
MoChArt. (2006) 113–128

15. Enders, R., Filkorn, T., Taubner, D.: Generating bdds for symbolic model checking
in ccs. Distrib. Comput. 6(3) (1993) 155–164

16. Bortnik, E., Trčka, N., Wijs, A.J., Luttik, B., van de Mortel-Fronczak, J., Baeten,
J.C.M., Fokkink, W.J., Rooda, J.: Analyzing a χ model of a turntable system
using Spin, CADP and UPPAAL. Journal of Logic and Algebraic Programming
65(2) (2005) 51–104

17. Mateescu, R.: 5. IC2 treatise. In: Systèmes temps réel 1 - techniques de description
et de vérification. Lavoisier (2006) 151–180

18. Garavel, H.: Open/cæsar: An open software architecture for verification, simula-
tion, and testing. In Steffen, B., ed.: Proceedings of TACAS’98 (Lisbon, Portugal).
Volume 1384., Berlin (1998) 68–84

19. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming 46(3) (2003) 255–
281

20. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
order reduction in symbolic state space exploration. In: Computer Aided Verifica-
tion. (1997) 340–351

21. Abdulla, P.A., Jonsson, B., Kindahl, M., Peled, D.: A general approach to partial
order reductions in symbolic verification (extended abstract). In: Computer Aided
Verification. (1998) 379–390

22. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order
reduction. In: TACAS ’98: Proceedings of the 4th International Conference on
Tools and Algorithms for Construction and Analysis of Systems, London, UK,
Springer-Verlag (1998) 345–357

23. Fantechi, A., Gnesi, S., Mazzanti, F., Pugliese, R., Tronci, E.: A symbolic model
checker for ACTL. In: FM-Trends 98: Proceedings of the International Workshop
on Current Trends in Applied Formal Method, London, UK, Springer-Verlag (1999)
228–242

