
Centre Fédéré en Véri�cation

Technical Report number 2008.103

Control of In�nite Symbolic Transitions Systems
under Partial Observation

Gabriel Kalyon, Tristan Le Gall, Hervé Marchand, Thierry Massart

http://www.ulb.ac.be/di/ssd/cfv

This work was partially supported by a FRFC grant: 2.4530.02
and by the MoVES project. MoVES (P6/39) is part of the IAP-Phase VI Interuniversity

Attraction Poles Programme funded by the Belgian State, Belgian Science Policy

Control of Infinite Symbolic Transition

Systems under Partial Observation

Gabriel Kalyon1,? , Tristan Le Gall1, Hervé Marchand2, and Thierry
Massart1,??

1 Université Libre de Bruxelles (U.L.B.), First.Last@ulb.ac.be
2 IRISA/INRIA, Campus de Beaulieu, Rennes, France, First.Last@irisa.fr

Abstract. We propose algorithms for the synthesis of memoryless con-
trollers through partial observation of infinite state systems modelled by
Symbolic Transition Systems. We provide models of safe controllers both
for potentially blocking and non blocking controlled systems. To obtain
algorithms for these problems, we use abstract interpretation techniques
which provide over-approximations of the transitions set to be disabled.
To our knowledge, with the hypotheses taken, the improved version of
our algorithm provides a better solution than what was previously pro-
posed in the literature. Our tool SMACS allowed us to make an empirical
validation of our methods to show their feasibility and usability.

Keywords: Symbolic Transition Systems, Control Synthesis, Partial
Observation, Abstract Interpretation.
AMS Classification: 93C65 Discrete event systems, 93C83 Control
problems involving computers, 03C95 Abstract model theory.

1 Introduction

Discrete event systems control theory provides synthesis methods for a controller
that usually has a full observation of the plant, modelled by a finite state system
and can disable controllable actions. This simple and optimistic view of the
problem is not always satisfactory. Indeed, in practice, the controller interacts
with the plant through sensors and actuators, and an extended model with
variables may be better suited to specify the plant. In that case, to provide
an homogeneous treatment of these models, it is convenient to consider infinite
variables domains. Moreover, the hypothesis of full observation can generally not
be made either because the sensors only have finite precision or because some
parts of the plant are not observed by the controller.

In this paper, we address the controller synthesis of partially observed infinite
state systems to solve the state avoidance problem, where the controller’s goal
? Supported by the Belgian National Science Foundation (FNRS) under a FRIA grant.

?? This work has been done in the MoVES project (P6/39) which is part of the IAP-
Phase VI Interuniversity Attraction Poles Programme funded by the Belgian State,
Belgian Science Policy.

consists in preventing the system from reaching a specified set of states Bad. We
use Symbolic Transition Systems (STS) [9] to model the plant, where an STS is
a transition system defined over a set of variables whose domain can be infinite,
each transition is guarded on the system variables, and has an update function
which indicates the variables changes when the transition is fired. Furthermore,
transitions are labelled with symbols taken from a finite alphabet. The semantics
of an STS is therefore given by a potentially infinite state labelled transition
system where the states are valuations of the variables.

When control specifications are defined on the system states, it is more nat-
ural and more useful to consider a controller observing the system through its
states [21]. Moreover, the controller gets in general only partial observation, be-
cause of the imprecision of the observing material. So, we follow the approach
taken by [13], where the partial observation is modelled by a mask, corresponding
to a mapping from the state space to an (infinite) observation space.

Related works The controller synthesis of finite state systems with partial ob-
servation of the actions has been widely studied in various works. The problem
with partial observation on the states (mask) has been introduced by Kumar
et al in [13]. In [20] properties of M-controllability give sufficient conditions to
ensure controllability. To synthesize the controlled system, they use a forward
approach with a post operator. Hill et al. extend this work in [10] and provide
a method which synthesizes more permissive controllers, but with a different
hypothesis on the masks. Since we take infinite state systems and use abstract
interpretation techniques, we have preferred a backward approach. In game the-
ory, the controller synthesis problem can be stated as the synthesis of a winning
strategy in a two players game between the plant and the controller. The cases
of imperfect and incomplete information games have been studied for finite state
systems (see e.g. [4]).

Controller synthesis of infinite state systems modelled by STS in the case of
full observation has been examined in a previous work [15]. We used abstract
interpretation techniques to ensure that the controlled system can be effectively
computed. We showed that, since these abstract interpretation techniques induce
an over-approximation of the computations, this implies that the computed con-
trolled system in not always the most permissive. In [14], Kumar and Garg
extend their previous work [13] to consider infinite systems. They prove that, in
that case, the state avoidance control problem is undecidable. They also show
that the problem can be solved in the case of Petri nets, when the set Bad
is upward-closed. The controller synthesis of infinite state systems modelled by
Petri nets has also been considered in [11].

In order to deal with the infiniteness of state space, the algorithms presented
in this paper are symbolic: they do not enumerate individual states, but deal
with the system variables by means of symbolic computations and the use of
predicate transformers. Moreover, since the problem is undecidable, we use ab-
stract interpretation techniques (see e.g. [5, 8, 12]) to get effective algorithms. It
is worth noticing that both concrete and abstract domains can be infinite (the
abstract domain is a simpler domain, which substitutes the concrete domain

in abstract interpretation techniques). Those algorithms were implemented in a
tool named SMACS.

In section 2, we introduce our model for infinite systems to control. In section
3, we define the control mechanisms we can use and we define the state avoidance
control problem. In section 4, we present a semi-algorithm, which attempts to
solve our problem. In section 5, we explain how to obtain an algorithm using
abstract interpretation techniques. In section 6, we experimentally validate our
method on various examples.

2 Symbolic Transition Systems

The (infinite) domain of a variable v is denoted Dv. If V = 〈v1, . . . , vn〉 is a
tuple of variables, we note DV =

∏
i∈[1,n]Dvi . A valuation ν of V is a tuple

〈ν1, . . . ,νn〉 ∈ DV . A predicate over a tuple V is defined as a subset P ⊆ DV (a
states set for which the predicate holds). The complement of a set H ⊆ DV is
denoted by H. The preimage function of f : D1 → D2 is denoted by f−1 : D2 →
2D1 .

Definition 1 (Symbolic Transition System). A symbolic transition system
(STS) is a tuple T = 〈V,Θ,Σ,∆〉 where:

– V = 〈v1, . . . , vn〉 is a tuple of variables
– Θ ⊆ DV is a predicate on V defining the initial condition on the variables
– Σ is a finite alphabet of actions
– ∆ is a finite set of symbolic transitions δ = 〈σδ, Gδ, Aδ〉 where:
• σδ ∈ Σ is the action of δ,
• Gδ ⊆ DV is a predicate on V guarding δ,
• Aδ : DV 7→ DV is the update function of δ.

Given an action σ ∈ Σ, we define the set of transitions labelled by σ as
Trans(σ) = {δ ∈ ∆ | σδ = σ}. The semantics of an STS is a possibly infinite
Labelled Transition System (LTS) where states are valuations of its variables:

Definition 2 (STS’s Semantics). The semantics of an STS T = 〈V,Θ,Σ,∆〉
is an LTS [[T]] = 〈Q, Qo, Σ,→〉 where:

– Q = DV is the set of states
– Q0 = Θ is the set of initial states
– Σ is the set of labels
– →⊆ Q × Σ × Q is the transition relation defined as {〈ν, σ, ν′〉 | ∃δ ∈ ∆ :

(σδ = σ) ∧ (ν ∈ Gδ) ∧ (ν′ = Aδ(ν))}.

Initially, an STS is in one of its initial states. A transition can only be fired
if its guard is satisfied and when fired, the variables are updated according to
its update function. If no transition can be fired from a state ν ∈ DV , i.e.
∀δ ∈ ∆ : ν 6∈ Gδ, we say that this state is blocking.

Given an STS T = 〈V,Θ,Σ,∆〉, reachable(T) ⊆ DV is defined as the set of
states that are reachable from an initial state in [[T]].

Awake

Sleep

Hope
Chee-

se
Mouse
Dead

Tired

δ1 = 〈runaway,", x := x + 1〉

δ2 = 〈up2room, G2, x := x + 2〉
δ7 = 〈smellcheese,

x ≤ 1000, x := x− 1〉
δ3 = 〈wakeup,G3, Id〉

δ6 = 〈sleep,", Id〉

δ5 = 〈cateat, x = y, Id〉 δ8 = 〈trapped, x = 0, Id〉

δ4 = 〈up2rooms,

x "= y,

y := y + 2〉

Fig. 1. The cat and mouse example

An STS may be defined with explicit locations. This is equivalent to having
a finite variable of enumerated type, which encodes the locations. Therefore, in
our examples, we generally represent STS using locations.

Example 1. The STS of Fig. 1 illustrates a modified version of the cat and mouse
example given in [18]. Id denotes the identity function. Fig. 1 will be used in
this paper, with different values for the guards G2 and G3 (initially >). The STS
has explicit locations ` and two variables: x (resp. y) identifies the room number
occupied by the mouse (resp. the cat). A system state is a triple 〈`, x, y〉. The
initial condition is given by the state 〈Sleep, 1, 0〉. When the cat wakes up, she
can eat the mouse if both are in the same room, or move and sleep again. In the
location HopeCheese, if the mouse is in one of the first 1000 rooms, he can smell
the cheese and moves to the room 0, where he is killed by a trap.

3 State avoidance control problem

In this section, we define the state avoidance control problem w.r.t. the kind of
information and the available control mechanisms.

3.1 Means of Observation

We consider systems with partial observation, where there is an uncertainty
about the real state of the system. This partial observation is formally defined
by a mask M : DV → Y , which corresponds to a mapping from the state space
DV to the (possibly infinite) observation space Y . So, Y can be seen as a partition
of DV , where each equivalence class contains the states with the same mask.

Example 2. For the system of Fig. 1, the localization of the cat is unknown. So,
the mask M : Loc×N×N→ Loc×N is defined as follows: M(〈`, x, y〉) = 〈`, x〉.

In the sequel, we consider three kinds of partial observation:

1. two locations (or more) give the same observation: in this case, the controller
is not sure about the exact location of the system.

T

S

M

M(!ν) ∈ Y

S(M(!ν)) ⊆ Σc

!ν ∈ DV

Fig. 2. Control under partial information

2. some variables are hidden: the controller cannot determine the value of those
variables.

3. the value of a numerical variable is unknown if this value belongs to a spec-
ified interval. This mask implements variables that are partially hidden.

3.2 Means of Control

The control mechanism is similar to the one defined in [19, 3] : the alphabet
Σ = Σc ·∪Σuc is partitioned into Σc , the set of controllable actions, and Σuc , the
set of uncontrollable ones. As a consequence, the set ∆ is partitioned accordingly
to ∆c and ∆uc .

3.3 Controller and controlled system

The controller aims to restrict the system’s behavior and to prevent it from
reaching some bad states. The controller with partial observation (see Fig. 2) is
formally defined as follows:

Definition 3 (Controller). Given an STS T = 〈V,Θ,Σ,∆〉, and a mask M :
DV 7→ Y , a controller for T is a pair C = 〈S, E〉, where:

– S : Y → 2Σc is a supervisory function which defines, for an observation
y ∈ Y , a set S(y) of controllable actions to forbid in any state ν such that
y = M(ν)

– E ⊆ DV is a set of states to forbid, which restricts the set of initial states.

The behavior of the controlled system is defined as follows:

Definition 4 (Controlled STS). Given an STS T = 〈V,Θ,Σ,∆〉, a mask
M : DV 7→ Y , and a controller C = 〈S, E〉, the system T controlled by C, is an
STS T/C = 〈V,Θ/C , Σ,∆/C〉, where:

– Θ/C = Θ \ E
– ∆/C is defined using the following rule:

〈σ,G, A〉 ∈ ∆ G/C = G \ {ν ∈ DV |σ ∈ S(M(ν))}
〈σ,G/C , A〉 ∈ ∆/C

The supervisory function S allows us to restrict the guards of the controlled
system. Indeed, a transition δ can no longer be fired in T/C from a state ν, if
its action σδ ∈ S(M(ν)). This function satisfies the S-observability condition
meaning that if ν and ν′ have the same observation, then S will have the same
control decision for both states.

3.4 Definition of the problems

We focus on two variants of the state avoidance control problem :

Problem 1 (Basic state avoidance control problem) For an STS T =
〈V,Θ,Σ,∆〉, a mask M : DV 7→ Y and a predicate Bad, i.e. a set of forbidden
states, the basic state avoidance control problem consists in building a controller
C = 〈S, E〉 such that reachable(T/C) ∩Bad = ∅.

A solution to this first problem does not ensure that the controlled system
is dead-lock free (i.e. it is not ensured that the controlled system has always
the possibility to make a move). To ensure this important property, we define a
second problem. Note that in this paper, we use the term non-blocking instead
of dead-lock free (generally, in the literature the non-blocking property means
that the controller has to ensure the reachability of some states).

Problem 2 (Non-blocking state avoidance control problem) This prob-
lem consists in defining a controller C = 〈S, E〉 such that (i) reachable(T/C) ∩
Bad = ∅, and (ii) ∀ν ∈ reachable(T/C),∃δ ∈ ∆/C : ν ∈ (G/C)δ.

We can immediately notice that a trivially correct controller (for both prob-
lems) is one where E = DV . Therefore, the notion of permissiveness has been
introduced to compare the quality of different controllers for a given STS.

Definition 5 (Permissiveness3). Given an STS T = 〈V,Θ,Σ,∆〉, and a
mask M : DV 7→ Y , a controller C1 = 〈S1, E1〉 is more permissive than a
controller C2 = 〈S2, E2〉, iff reachable(T/C1) ⊇ reachable(T/C2).

Unfortunately, we cannot get a optimal result in terms of permissiveness.

Proposition 1. As solution of Problem 1 or 2, in general, no controller is the
most permissive.

Proof. To prove this property, we consider the following example
For the LTS of Fig. 3, the set of initial states Q0 = {x1, x2} and all transitions

are controllable. The set Bad = {x5, x6} and the mask M is defined as follows:

M(x) =

y1 if x ∈ {x1, x4}
y2 if x ∈ {x2, x3}
y3 if x ∈ {x5, x6}

There are three possibilities to avoid the set Bad:
3 Other kinds of permissiveness like language or execution can be conbsidered to com-

pare the quality of controllers

a b

b a

x1

x2

x3

x4

x5

x6

e

e

e

e

Fig. 3. System without a most permissive controller

– to forbid the transition a in the observation state y1: reachable(T/C1) =
{x1, x2, x4}.

– to forbid the transition b in the observation state y2: reachable(T/C2) =
{x1, x2, x3}.

– to forbid the transitions a and b everywhere: reachable(T/C3) = {x1, x2}.

C1 and C2 are both more permissive than C3 but are not comparable. Thus, there
does not exist a most permissive controller. �

Proposition 2. If we restrict the problem in finding a controller C such that no
more permissive controller C′ exists, the basic and non-blocking state avoidance
control problems are undecidable.

Proof. Under full observation, the computation of the maximally permissive con-
troller solving the state avoidance control problem is undecidable [14]. The re-
striction of this problem to the basic state avoidance control problem is trivial
using the identity function as mask and gives the most permissive controller.

The restriction of the restricted non-blocking state avoidance control problem
to the restricted basic state avoidance control problem is also trivial. �

Hence, our aim is to find correct controllers that, are permissive enough to
be of good practical value. Our experiments will validate our solutions.

4 Symbolic Computation of the controller (An exact
Computation)

We present a theoretical framework to synthesize a controller which attempts
to solve Problem 1; we then extend this result to the non-blocking case. From
Proposition 2, it is clear that this framework, where no approximation is done,
can only provide semi-algorithms.

The general idea of the control is to compute, using fixpoint computation,
the set I(Bad) of states that can lead to Bad triggering only uncontrollable
transitions or that can be blocking after control (for the non-blocking case).
Then, based on this set of states, we compute the controller, whose aim is to
disable, for each observation y ∈ Y , all the controllable actions that may lead

to a state in I(Bad). Our algorithms are symbolic in the sense that they do not
enumerate the state space; the feasibility of their computations is discussed in
section 5.

4.1 The basic state avoidance control problem

We describe here a symbolic method to compute a controller C = 〈S, E〉 that
solves Problem 1.

Computation of I(Bad) This set of states and more generally I(.) is given by
the function Coreachuc : 2DV → 2DV defined below. This set corresponds to the
set of states that lead to Bad firing only uncontrollable transitions.

Classically, we first define the function Preuc(B), which computes the set of
states from which a state of B is reachable by triggering exactly one uncontrol-
lable transition.

Preuc(B) =
⋃

δ∈∆uc

Pre(δ,B) , where (1)

Pre(δ,B) = Gδ ∩A−1
δ (B) (2)

We recall that Gδ is the set of states from which δ can be fired and A−1
δ (B) is

the set of states that lead to B by δ.
Further, Coreachuc(Bad) is obtained by computing the following fixpoint

equation:
Coreachuc(Bad) = lfp(λB.Bad ∪ Preuc(B)) (3)

Note that the limit of the fixpoint Coreachuc(Bad) actually exists as the
function Coreachuc is monotonic (but may be uncomputable).

Computation of the controller C and of the controlled system T/C We first define
a function F : Σ × 2DV → 2Y : for an action σ ∈ Σ and a set B ⊆ DV of states
to forbid, F(σ,B) specifies the set of observation states for which the action σ
has to be forbidden, i.e. the set of observations y ∈ Y such that there exists
ν ∈ DV with M(ν) = y, from which a transition labelled by σ leads to B.

F(σ,B) =
{⋃

δ∈Trans(σ) M(Pre(δ,B) \B) if σ ∈ Σc

∅ otherwise
(4)

The controller C = 〈S, E〉 is defined as follows:

– the supervisory function S is:

∀y ∈ Y, S(y) = {σ ∈ Σ | y ∈ F(σ, I(Bad))} (5)

– the set E is:

E = I(Bad) (6)

The controlled system T/C is computed using definition 4 with the system T and
the controller C = 〈S, E〉 defined as above.

Proposition 3. Given a system T = 〈V,Θ,Σ,∆〉, a mask M : DV → Y and a
predicate Bad, i.e. a set of forbidden states, the controller C = 〈S, E〉, where S
and E are computed at (5) and (6), solves Problem 1.

Proof. We prove by induction on the length n of the executions that
reachable(T/C) ∩ I(Bad) = ∅. This implies that reachable(T/C) ∩Bad = ∅.

– Base (n = 0): the initial states of the controlled system T/C are defined by
Θ/C = Θ \E = Θ \ I(Bad). Thus, the execution of T/C starts in a state that
does not belong to I(Bad).

– Induction: suppose the proposition holds for paths of transitions of length
less or equal to n. We show that no transition δ ∈ ∆ can be fired from a
state ν 6∈ I(Bad) to a state ν′ ∈ I(Bad). Two cases are a priori possible.
Both are a posteriori impossible:

• either δ ∈ ∆c , then this transition cannot be fired since σδ ∈ S(M(ν))
by (4) and (5).

• or δ ∈ ∆uc , then ν ∈ I(Bad), which is impossible by hypothesis.

�

Example 3. For the STS of Fig. 1 and the mask of Example 2, we define Bad
as {〈MouseDead, k1, k2〉|k1, k2 ∈ N}. The controllable (resp. uncontrollable)
transitions are those drawn in plain (resp. dashed) lines. Then, I(Bad) =
{〈HopeCheese, k1, k2〉|k1 ∈ [0, 1000] ∧ k2 ∈ N} ∪ {〈Awake, k1, k1〉|k1 ∈ N} ∪
{〈MouseDead, k1, k2〉|k1, k2 ∈ N}. The computation of F gives:

F(σ, I(Bad)) =

{〈Sleep, k1〉|k1 ∈ N} if σ = wakeup
{〈Sleep, k1〉|k1 ∈ [0, 998]} if σ = up2rooms
∅ otherwise

Then, the supervisory function S is defined as follows:

S(y) =

{wakeup, up2rooms} if y ∈ {〈Sleep, k1〉|k1 ∈ [0, 998]}
{wakeup} if y ∈ {〈Sleep, k1〉|k1 ≥ 999}
∅ otherwise

The controlled system is given by Fig. 1, with the guards G2 = (x ≥ 999) and
G3 = ⊥. �

4.2 The non-blocking state avoidance control problem

We describe here a symbolic method to compute a controller C = 〈S, E〉 that
solves Problem 2.

Computation of I(Bad) (first method) This set of states and more generally
I(.) is given by the function Coreachnb

uc : 2DV → 2DV defined below. This set
corresponds to the set of states that would be blocking in the controlled system
and of states that lead to a forbidden state firing only uncontrollable transitions.

To compute Coreachnb
uc(Bad), we first compute Coreachuc(Bad) (defined

by (3)). Then, if we make unreachable the forbidden states by cutting all the
controllable transitions that lead to a bad state, the corresponding controlled
system T/C could have new blocking states. We must add these blocking states
to the set of forbidden states. The function Prebl(B) computes, for a set B ⊆ DV

of states to forbid, the set of states, that would be blocking in the controlled sys-
tem, if the states of B were no longer reachable. The computation of the blocking
states is based on the function F defined at (4). To ensure the convergence in
the computation of Coreachnb

uc(Bad), Prebl , and therefore F , must be monotonic.
Thus, we use the monotonic function F̂ instead of F in the computation of the
controller for the non-blocking case.

F̂(σ,B) =
{⋃

δ∈Trans(σ) M(Pre(δ,B)) if σ ∈ Σc

∅ otherwise

Remark 1. Note that F̂ is more restrictive than F and thus a controller com-
puted w.r.t. F is more permissive than a controller computed w.r.t. F̂ .

We now explain how to compute the blocking states in the controlled system
T/C . A state ν ∈ DV is blocking in T/C , if the two following conditions are
satisfied in the system T :

1. the state ν has no outgoing uncontrollable transition.
2. every outgoing controllable transition δ of ν is forbidden by control in the

observation state M(ν), i.e. M(ν) ∈ F̂(σδ, B)

Proposition 4. Formally, a state ν is blocking whenever:

1. ∀δ ∈ ∆uc : ν 6∈ Gδ

2. ∀δ ∈ ∆c : (ν 6∈ Gδ) ∨ (M(ν) ∈ F̂(σδ, B))

Because F̂(σ,B)) = ∅ (∀σ ∈ Σuc), the function Prebl , which computes the
states that would be blocking in the controlled system, can be expressed as
follows:

Prebl(B) = B ∪

[⋂
δ∈∆

(
Gδ ∪ (M−1(F̂(σδ, B)))

)]

Adding the blocking states to the forbidden states can provide new states
leading uncontrollably to a forbidden state. Consequently, to compute the set
Coreachnb

uc(Bad), we define the following fixpoint equation:

Coreachnb
uc(Bad) = lfp(λB.Bad ∪ Prebl(Coreachuc(B))) (7)

The controller and the controlled system are defined similarly to what is done
at the point 4.1.

Proposition 5. Given a system T = 〈V,Θ,Σ,∆〉, a mask M : DV → Y and a
predicate Bad, i.e. a set of forbidden states, the controller C = 〈S, E〉, computed
according to definition 3 w.r.t. (7) solves Problem 2.

Proof. Since Coreachuc(Bad) ⊆ Coreachnb
uc(Bad), it can be proved in a similar

way as the proof of Prop. 3 that Bad is not reachable in this more restrictive
controlled system.

Let us suppose that the controlled system does not satisfy the non-blocking
property. Then, there exists at least a blocking state ν ∈ DV , which is reachable
in the controlled system. By definition of the fixpoint, ν ∈ Coreachnb

uc(Bad), and
so is any state ν′ ∈ DV such that there is a sequence of uncontrollable transitions
from ν′ to ν. According to definition 3, ν and ν′ are both non reachable.

�

Computation of I(Bad) (second method). This set of states and more generally
I(.) is given by the function Coreachnb′

uc : 2DV → 2DV defined below.

Coreachnb′

uc (Bad) = lfp(λB.Bad ∪ Prebl(Preuc(B))) (8)

This equation computes first the set of states that lead to a forbidden state
by firing only an uncontrollable transition, and then it computes the blocking
states. The processing continues until the set is stabilized.

The controller can be computed as for the first method.

Proposition 6 (Avoidance states). Given a system T = 〈V,Θ,Σ,∆〉, a par-
tial observation mask M : DV → Y and a predicate Bad, i.e. a set of forbidden
states, the controller C = 〈S, E〉, computed according to definition 4 w.r.t. (8)
solves Problem. 2.

Proof. The proof is similar to the one of Proposition 5.
�

Proposition 7. If the computation of the fixpoint equations at (7) and (8) fin-
ishes, then the set defined at (7) (noted I1(Bad) in the proof that follows) is
equal to the set defined at (8) (noted I2(Bad) in the proof that follows).

Proof. We first prove that I2(Bad) ⊆ I1(Bad) as follows:

Bad ⊆ Bad

⇔ Preuc(Bad) ⊆ Coreachuc(Bad), by (3)
⇔ Prebl(Preuc(Bad)) ⊆ Prebl(Coreachuc(Bad)), because Prebl is monotonic
⇔ (Prebl(Preuc(Bad)))2 ⊆ (Prebl(Coreachuc(Bad)))2, by repeating the two

preceding steps
⇔ (Prebl(Preuc(Bad)))max{k,k′} ⊆ (Prebl(Coreachuc(Bad)))max{k,k′}

We then prove that I1(Bad) ⊆ I2(Bad) as follows:

Preuc(Bad) ⊆ Preuc(Bad)
⇔ Preuc(Bad) ⊆ Prebl(Preuc(Bad)), because ∀X ⊆ DV : X ⊆ Prebl(X)
⇔ (Preuc(Bad))2 ⊆ Preuc(Prebl(Preuc(Bad))), because Preuc is monotonic
⇔ (Preuc(Bad))2 ⊆ (Prebl(Preuc(Bad)))2, because ∀X ⊆ DV : X ⊆ Prebl(X)
⇔ (Preuc(Bad))i ⊆ (Prebl(Preuc(Bad)))i, ∀i ∈ N
⇔ (Preuc(Bad))i ⊆ Prebl [(Prebl(Preuc(Bad)))i], because ∀X ⊆ DV :

X ⊆ Prebl(X)
⇔ Prebl [(Preuc(Bad))i] ⊆ (Prebl(Preuc(Bad)))i+1, because Prebl is monotonic

⇔ Prebl(Coreachuc(Bad)) ⊆ (Prebl(Preuc(Bad)))k′′+1, where k”
is the number of iterations to compute the fixpoint Coreachuc(Bad)

⇔ [Prebl(Coreachuc(Bad))]max{k,k′} ⊆ [Prebl(Preuc(Bad))]max{k,k′}.(k1+1),
by repeating the preceding steps. k1 is the maximum between k′′ and the
number of iterations to compute the fixpoint
Coreachuc([Prebl(Coreachuc(Bad))]i),∀i ∈ [1,max{k, k′} − 1].

�

4.3 Improvement of the control algorithm

In [20], the authors define a controller which, to our knowledge, is the most
permissive controller satisfying the S-observability condition known in the liter-
ature for finite systems; However, this algorithm is only defined for finite LTS.
We prove the following property.

Proposition 8. For finite systems, our algorithm solving Problem 1 gives a
controller that is at least as permissive as the one obtained in [20].

Proof. When we refer to the algorithm in [20], we use their notations.
In [20], the system to control is modelled by a finite LTS G = 〈X, x0, Σ, δ〉,

where X is the set of states, x0 is the initial state, Σ is the set of actions and
δ : Σ ×X → X is the transition relation. The control specification is given by
a set Q of allowable states, i.e. Q = Bad. The partial observation is formalized
by a mask M : X → Y , where Y is the finite observation space. The algorithm
is composed of two steps:

1. to compute Q↑ ⊆ Q. The set Q↑ is defined by
⋂∞

j=0 Qj , where Qj is recur-
sively defined as follows:

Qj =
{

Q if j = 0
Q ∩ (

⋂
σ∈Σuc

{x ∈ X|((σ, x) ∈ δ)⇒ δ(σ, x) ∈ Qj−1}) otherwise

c b

b a

a

Bad = I(Bad)

x1

x2

x3

x4

x5

x6

x7

e

Fig. 4. Improvement of the control algorithm

2. to compute the function A, where ∀y ∈ Y : A(Q↑, y) = {σ ∈ Σc |∃x ∈ Q↑ :
M(x) = y ∧ ((σ, x) ∈ δ) ∧ (δ(σ, x) 6∈ Q↑)}. The forbidden actions in a state
x ∈ X are given by A(Q↑,M(x)).

We remark that Q↑ = Coreachuc(Bad), because ∀j ≥ 0,
⋂

i≤j Qi =⋂
i≤j Prei

uc(Bad), where Pre0
uc(Bad) denotes Bad.

Moreover, to prevent from reaching Coreachuc(Bad), the function S is defined
by S(y) = {σ ∈ Σc |∃x 6∈ Coreachuc(Bad),∃x′ ∈ Coreachuc(Bad) : M(x) =
y ∧ ((x, σ, x′) ∈→)}. Thus, A(Q↑, y) = S(y), ∀y ∈ Y .

�

Let us now explain how to improve it, based on the observations got from
the following example.

Example 4. For the LTS of Fig. 4, the set of initial states X0 = {x1, x2} and
all transitions are controllable. The set Bad = {x5, x6} and the mask M is
defined as follows: M(x) = y1, ∀x ∈ {x1, x4, x7}, M(x) = y2, ∀x ∈ {x2, x3} and
M(x) = y3, ∀x ∈ {x5, x6}.

Our algorithm forbids the transition b in the observation state M(x3) and
the transition a in the observation state M(x4). However, it is sufficient to forbid
b in M(x3) which makes state x4 no longer reachable.

Based on this remark, we give an improved algorithm to compute a controller
solving Problem 1 for finite systems.

Algorithm 1: Improved algorithm for finite systems
data : An STS T = 〈V, Θ, Σ, ∆〉 such that [[T]] is finite, a set of states

I(Bad) and a mask M : X → Y .
returns: A controller C such that reachable(T/C) ∩ I(Bad) = ∅.
begin1

∀y ∈ Y , S(y)← ∅ and C ← 〈S, I(Bad)〉2

while reachable(T/C) ∩ I(Bad) 6= ∅ do3

Let ν ∈ ((Prec(I(Bad)) \ I(Bad)) ∩ reachable(T/C)) and δ ∈ ∆c such4

that (ν ∈ Gδ) ∧ (Aδ(ν) ∈ I(Bad))
S(M(x))← S(M(x)) ∪ {σδ}5

C ← 〈S, I(Bad)〉6

return (C)7

end8

where Prec(B) =
⋃

δ∈∆c
Pre(δ,B), for B ⊆ DV .

The idea of this algorithm is to choose a state ν 6∈ I(Bad), which is reachable
in the current controlled system, and a transition δ leading to I(Bad) from ν,
and to forbid σδ in the observation state M(ν). This operation is repeated until
the set I(Bad) is no longer reachable in the current controlled system. So, the
main difference with the algorithm of section 4 is that we are more precise when
we forbid actions. Indeed, we verify that a state is still reachable in the cur-
rent controlled system, before deciding to forbid an action in the corresponding
observation state.

Algorithm 1 solves Problem 1 and it always outperforms or gives the same
result than the one defined in section 4 (and thus the one in [20]).

4.3.1 Adaptation for infinite systems The algorithm of the preceding
section may not terminate for infinite systems. So, we define an adapted version
of this algorithm, which is less better but which terminates.

Algorithm 2: Improved algorithm for infinite systems
data : STS T = 〈DV , Θ,Σ,∆〉, a set of states I(Bad) and a mask

M : X → Y .
returns: A controller C such that reachable(T/C) ∩ I(Bad) = ∅.
begin1

forall σ ∈ Σ do2

Compute F(σ, I(Bad))3

Compute S from F4

C = 〈S, I(Bad)〉5

if reachable(T/C) ∩ I(Bad) = ∅ then6

break7

return (C)8

end9

The algorithm 1 does not terminate for infinite systems, because we enumer-
ate a possibly infinite set of states (see line 4). To overcome this problem, we
forbid an action σ for all the states for which it is necessary (i.e. computation
of F(σ, I(Bad))). And we repeat this operation until the set I(Bad) is no more
reachable in the current controlled system. This algorithm is at most even better
as the algorithm 1 and it is at least even better as the one of the section 4. And
this algorithm solves the problem 1.

4.4 Improvement of the control algorithm using memory

To improve the controlled system’s permissiveness, we can use a controller with
memory. In fact, we consider an 1-order memory for the controller, which allows
to retain the possible current states of T . When the controller gets the observa-
tion yi from the system, it computes the possible current states Pi at the step i
according to the possible current states Pi−1 at the step i− 1 (which is retained
in the memory) and the control action at the step i−1. Then, the control action
is computed to prevent from reaching I(Bad) from the possible current states
Pi. Formally:

– initial step: P1 = M−1(y1) ∩Θ and S is defined by:

∀σ ∈ Σc : (σ ∈ S(P1)⇔ Postσ(P1) ∩ I(Bad) 6= ∅) (9)

– inductive step (∀i > 0): Pi = M−1(yi) ∩ PostS (Pi−1) and S is defined by:

∀σ ∈ Σc : (σ ∈ S(Pi)⇔ Postσ(Pi) ∩ I(Bad) 6= ∅) (10)

where PostS (B) =
⋃

σ∈Σ

⋃
δ∈Trans(σ) PostS (δ,B) with:

PostS (δ,B) =
{

Post(δ,B) if σδ 6∈ S(B)
∅ otherwise

Note that this algorithm solves only Problem 1.

5 Effective Computation by Means of Abstract
Interpretation

As seen in the previous section, the effective computation of the controller, which
is based on a fixpoint equation to compute I(Bad), is generally not possible for
undecidability (or complexity) reasons. To overcome the undecidability problem,
we use abstract interpretation techniques (see e.g. [5, 8, 12]), to compute an over-
approximation of the fixpoint I(Bad). This over-approximation ensures that the
forbidden states Bad are not reachable in the controlled system, but at the price
of forbidding more states than needed. Thus, we obtain a valid controller, but a
stricter one.

5.1 Outline of the abstract interpretation techniques

Abstract interpretation gives a theoretical framework to the approximate solving
of fixpoint equations of the form c = F (c), for c ∈ 2DV , where DV is the state
space of the system, 2DV is a complete lattice of sets of states ordered by inclusion
and F is a monotonic function. We want to compute the least fixpoint (lfp) of
a monotonic function F : 2DV → 2DV . Since 2DV is a complete lattice, Tarski’s
theorem sentences that lfp(F) = ∩{c ∈ 2DV | c ⊇ F (c)}. So, any post fixpoint is
an over-approximation of lfp(F).

Our aim is to compute a post fixpoint of F , according to the following
method:

1. the concrete domain, i.e. the sets of states 2DV is substituted by a sim-
pler abstract domain Λ (static approximation), both domains having lattice
structure. The concrete lattice (2DV ,⊆,∪,∩,∅,DV) and the abstract lattice
(Λ,v,t,u,⊥,>) are linked by a Galois connection 2DV −−−→←−−−α

γ
Λ, which ensures

the correctness of the method [5].
2. the fixpoint equation is transposed into the abstract domain. So, the equation

to solve has the form: l = F](l), with l ∈ Λ and F] w α ◦ F ◦ γ
3. a widening operator ∇ (dynamic approximation) ensures that the fix-

point computation converges after a finite number of steps to some upper-
approximation l∞.

4. the concretization c∞ = γ(l∞) is an over-approximation of the least fixpoint
of the function F .

For our experiments, we chose the abstract lattice of convex polyhedra [6]. A
convex polyhedron on the tuple of variables 〈v1, . . . , vn〉 is defined as a conjunc-
tion of k linear constraints; for example, v1 ≥ 0 ∧ v2 ≥ 0 ∧ v1 + v2 ≤ 1 defines a
square triangle.

In this lattice, u is the classical intersection, t is the convex hull and v is the
inclusion. The widening operator [6] P1∇P2 roughly consists in removing from
P1 all the constraints not satisfied by P2. In other words, its principle is: if the
value of a variable or a linear expression grows between two steps of the fixpoint
computation, then one guesses that it can grow indefinitely.

We assume in the sequel that the abstract lattice Λ(v,t,u,>,⊥), the func-
tions α : ℘(S) → Λ, γ : Λ → ℘(S) and the widening operator ∇ : Λ → Λ are
defined, with ℘(S) −−−→←−−−α

γ
Λ.

5.2 Computation of the controlled system using abstract
interpretation

The function corresponding to Preuc : 2DV 7→ 2DV is named Pre]
uc : Λ 7→ Λ, and

is defined in the following way. For l ∈ Λ, we have:

Pre]
uc(l) =

⊔
δ∈∆uc

Pre](δ, l) , where (11)

Pre](δ, l) = α(Gδ ∩A−1
δ (γ(l))) (12)

Coreach]
uc(Bad) is the least fixpoint of the function λl.α(Bad) t Pre]

uc(l) and
we compute l∞, defined as the limit of the sequence defined by l1 = α(Bad)
and li+1 = li∇Pre]

uc(li). The abstract interpretation theory ensures that this
sequence stabilizes after a finite number of steps, and that γ(l∞) is an over-
approximation of I(Bad). So we obtain I ′(Bad) = γ(l∞). Finally, we define
the controller as in section 4.1, using I ′(Bad) instead of I(Bad). We do not
detail the effective computation of the other fixpoint, since the same kind of
transformations are involved.

Quality of the approximations The method presented here always computes a
safe controller, but without any guarantee that this controller is the most permis-
sive one. The less approximation we make during the computation, the more pre-
cise approximation of I(Bad) we obtain. Even if a better approximation I(Bad)
does not always mean we get a better controller, generally it is the case. There
are classical techniques to improve the quality of the approximations:

– the choice of the abstract lattice is the main issue: if it is not adapted to the
kind of guards or assignments of the STS, the over-approximations are too
rough. The practice shows that if the guards are linear constraints, and if
the assignments functions are also linear, the lattice of convex polyhedra [6]
works quite well.

– the computation of the fixpoint with the widening operator may be improved
by several means: we can use a widening “up to” instead of the standard
widening operator [8], we can use one of the fixpoint computation strategies
defined in [2] and we can refine our abstract lattice (See [12] for more details).

There are however few theoretical results on the quality of the abstraction.
We can only show, on some examples, that our abstractions enable the compu-
tation of a useful controller.

6 Implementation and experiments

We implemented the algorithms of sections 4 and 5. Our tool, named
SMACS (Symbolic MAsked Controller Synthesis), is written in Objective
CAML [17], uses the APRON library [1] and a generic fixpoint solver [7].

6.1 Description of SMACS

Variables and control structure. Unlike the model of definition 1, SMACS con-
siders STS with explicit locations. There are two types of variables: integer or
real. Events are declared controllable or uncontrollable.

Note that this model of STS allows the user to encode any tuple of variables
of finite domain as locations. In particular, after a transformation of the model,
we can deal with boolean variables.

Guards and assignments. The assignments are given by linear expressions;
the guards are boolean combinations (and, or, not) of linear constraints. The
APRON library implements several numerical abstract lattices as: intervals [5],
octagons [16] and convex polyhedra [6]. Those abstract lattices work well when
the guards are linear constraints and the assignments are also linear.

Bad states. In each location, the user can define a combination of linear con-
straints representing the bad states.

Masks. The user can define three kinds of masks:

1. two locations (or more) give the same observation: in this case, the controller
is not sure about the exact location of the system.

2. some variables are hidden: the controller cannot determine the values of
those variables

3. the value of a numerical variable is unknown if this value belongs to a spec-
ified interval. This mask implements variables that are partially hidden.

Masks are optional. If there is not any mask specified, then the analysis is per-
formed on a system under full observation.

Non-blocking. SMACS does not ensure that the resulting STS is non-blocking
by default; the user must call the program with the option -ensure nonblocking
to be effective. We implemented the first method of section 4.2, the one which
computes the fixpoint of equation 7:

Coreachnb
uc(Bad) = lfp(λB.Bad ∪ Prebl(Coreachuc(B))) (13)

Output. The result of SMACS is a description of the controlled system, written
in the same syntax as its input.

6.2 Experiments

We experimented our tool on some examples:

– a toy example that illustrates the application of algorithms given in sections 4
and 5; in this example, the mask is defined by a set of locations.

– an example of a cat and a mouse, which was already presented in this paper;
in this example, the mask is defined by an hidden variable.

– an example of a shared resource with multiple readers and writers, presented
in section6; in this example, there is no mask, i.e. the system is under full
observation.

– an example with three trains that must not collide; in this example, the mask
is defined by intervals.

In all those examples, there exists a most permissive controller and SMACS finds
all of them, in less than 20 ms.

Toy example This example is a system with two variables, x and y (see Fig. 5).
Location 6 represents the set of bad states. This example features:

– a loop of uncontrollable events, which implies that a naive exact computation
of the fixpoint is inefficient;

– two controllable events that must be both disabled because of a masking
issue;

– a loop of controllable events that will be disabled when we ensure that the
controlled system is non-blocking.

In the easiest case (we observe everything and do not care about blocking), the
computation of I(Bad) first detects that x must not be equal to 0 in location
2 because of the uncontrollable event u0, and this computation terminates by
finding that the set I(Bad) is given by:

– 0 ≤ x ≤ 1000 in location 2;
– every value of x and y in location 6.

The controller thus disables the transition between locations 3 and 2 when 0 ≤
x ≤ 1000.

If the controller must ensure that the system is non-blocking, location 2
becomes “bad” without any condition on x. The controller thus totally disables
the event c0 in location 3.

The partial observation, on this example, is that locations 3 and 4 return
the same observations. When the controller must ensure that the system is non-
blocking, it also disables the event c0 in location 4, and thus the whole sequence
0 c2→ 1 u1→ 4 c0→ 5 c2→ 3. SMACS obtained this result in 16 ms.

Cat and Mouse We already presented this example on Fig. 1: a cat and a mouse
are in a very big house with more than 1000 rooms, with doors between rooms
i and i + 1. The cat sometimes sleeps and when she is awake, either she is in
the same room than the mouse and eats him, or she moves to the next room.
The mouse can only run away. We also put a trap, with cheese, in room 0. If the
mouse smells cheese (it is only possible if the mouse is in rooms 0 to 1000), he
runs to the room 0 and dies. Controllable transitions are those drawn in plain
lines.

The positions of the mouse and of the cat are respectively given by the
variables x and y. The bad states correspond to those where the mouse is dead.
The controller thus prevents the cat to wake up when she is in the same room
than the mouse, and it also disables the event ”up2rooms” when x ≤ 1000.

This example also shows the restrictions made by the controller when we
must deal with blocking states and partial observation. When we want to ensure
that the controlled system is non-blocking, we disable the event ”up2rooms”
without any condition. When we ignore the position of the cat (y is an hidden
variable), the controller simply prevents the cat to wake up. SMACS obtained
this result in 12 ms.

Readers and writers A file is shared between several readers and writers (there
is no bound on the number of readers and writers). Several readers can ac-
cess the file at the same time if no one is writing, and several writers can-
not work simultaneously. The set of bad states is expressed by the formula:
(nw = 1 ∧ nr ≥ 1)

∨
(nw ≥ 2), where nw is the number of writers, and nr

the number of readers. The system can add a writer or a reader (actions
startW,startR), or remove a writer, resp. a reader, if nw ≥ 1 (action endW),
resp. nr ≥ 1 (action endR). All actions are controllable and the controller
observes everything. The controller automatically finds the best solution, pre-
venting to add a reader or a writer when there is already a writer, and preventing
to add a writer when there is already a reader. SMACS obtained this result in
16 ms. Note that we obtain the best solution only when we compute the fixpoint
within the lattice of convex polyhedra. If we employ the lattice of intervals,
the over-approximations are too rough and we obtain a controlled system that
cannot add readers nor writers.

Trains Three trains move on three different railroads. They move at the same
speed (1 ”position” per second) and the first train crosses the path of the two
other trains. Before these crossings, there are two stops where one can ask the
first train to stay. Other moves are uncontrollable.

This system is modelled by the STS depicted on Fig. 6: the three variables
T1,T2 and T3 represent the position of the three trains. The first train can stop
at positions 5 and 15. The crossroads are respectively:

– when the first two trains are at position 8,
– when the first train is at position 23 and the third at position 26.

In order to avoid any collision, the controller must stop the first train when
the second crosses its road. If the position of the second train is partially un-
known, because of a mask defined by the interval (T2,[6, 10]), i.e. T2 is not
observable when 6 ≤ T2 ≤ 10, then the controller forces the first train to wait 3
seconds longer. SMACS obtained this result in 8 ms.

7 Conclusion and Future Works

We have proposed algorithms for the synthesis of memoryless controllers through
partial observation of infinite state systems modelled by STS. One can notice
that our algorithm can be used to verify safety properties, because a safety prob-
lem can be reduced to a state avoidance control problem (see [15] for details).
To our knowledge, the improved version of our algorithm provides a better so-
lution than what was previously proposed in the literature with the hypothesis
taken. Our tool SMACS implements our algorithms and allowed us to make
an empirical validation of our methods and shows its feasibility and usability.
For infinite systems, our algorithms use abstract interpretation techniques that
provide an over-approximation of the set I(Bad). Further works will look at

possible refinements in the abstract domain to obtain, when needed, more per-
missive controllers. We will study the synthesis of controllers with memory to
provide even more permissive controllers. We also want to study the problem
when liveness properties must be fulfilled.

References

1. The APRON library. http://apron.cri.ensmp.fr/.
2. F. Bourdoncle. Sémantiques des Langages Impératifs d’Ordre Supérieur et In-

terprétation Abstraite. PhD thesis, Ecole Polytechnique, 1992.
3. C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer

Academic Publishers, 1999.
4. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-

regular games of incomplete information. Logical Methods in Computer Science,
3(3:4), 2007.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 84–96, New
York, NY, USA, 1978. ACM Press.

7. Fixpoint: an OCaml library implementing a generic fix-point engine. http://pop-
art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/.

8. N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
August 1997.

9. T.A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic
transition systems. ACM Trans. Comput. Logic, 6(1):1–32, 2005.

10. R.C. Hill, D.M. Tilbury, and S. Lafortune. Covering-based supervisory control of
partially observed discrete event systems for state avoidance. In 9th International
Workshop on Discrete Event Systems, May 2008.

11. L.E. Holloway, B.H. Krogh, and A. Giua. A survey of Petri net methods for
controlled discrete event systems. Discrete Event Dynamic Systems: Theory and
Application, 7:151–190, 1997.

12. B. Jeannet. Dynamic partitioning in linear relation analysis. Application to the
verification of reactive systems. Formal Methods in System Design, 23(1):5–37,
July 2003.

13. R. Kumar, V. Garg, and S.I. Marcus. Predicates and predicate transformers for
supervisory control of discrete event dynamical systems. IEEE Trans. Autom.
Control, 38(2):232–247, 1993.

14. R. Kumar and V.K. Garg. On computation of state avoidance control for infinite
state systems in assignment program model. IEEE Transactions on Automation
Science and Engineering, 2(2):87–91, 2005.

15. T. Le Gall, B. Jeannet, and H. Marchand. Supervisory control of infinite sym-
bolic systems using abstract interpretation. In 44nd IEEE Conference on Decision
and Control (CDC’05) and Control and European Control Conference ECC 2005,
December 2005.

16. A. Miné. The octagon abstract domain. In Proc. of the Workshop on Analysis,
Slicing, and Transformation (AST’01), IEEE, pages 310–319, Stuttgart, Gernamy,
October 2001. IEEE CS Press.

17. The programming language Objective CAML. http://caml.inria.fr/.
18. P.J. Ramadge and W.M. Wonham. Modular feedback logic for discrete event

systems. SIAM J. Control Optim., 25(5):1202–1218, September 1987.
19. P.J. Ramadge and W.M. Wonham. The control of discrete event systems. Proceed-

ings of the IEEE; Special issue on Dynamics of Discrete Event Systems, 77(1):81–
98, 1989.

20. S. Takai and S. Kodama. Characterization of all m-controllable subpredicates of a
given predicate. International Journal of Control, 70:541–549(9), 10 July 1998.

21. Wonham W.M. and P.J. Ramadge. Modular supervisory control of discret-event
systems. Mathematics of Control, Signals, and Systems, 1(1):13–30, 1988.

2 6

3 5 4

0 1

8 7

 〈c3,", x := x + 1〉 〈c3,", y := y + 2〉

〈u0,", x := 2 ∗ y + 4〉

 〈c1,", x := 5; y := 2〉〈u1,", x := y; y := x〉

 〈u1,", x := y − 5〉

〈c0,", x := 4 ∗ x〉〈c2,", y := x + 2〉

 〈c0, x ≤ y,−〉

〈u0, x = 0,−〉

〈u1, x ≤ 1000, x := x− 1〉

x := 0; y := 0 〈c2,", y := 5〉

Fig. 5. Toy example

seg 1

stop 1

seg 2

stop 2

seg 3

〈run, T1 < 5, {T1 := T1 + 1, T2 := T2 + 1, T3 := T3 + 1}〉

〈run, T1 < 15, {T1 := T1 + 1, T2 := T2 + 1, T3 := T3 + 1}〉

〈run,", {T1 := T1 + 1, T2 := T2 + 1, T3 := T3 + 1}〉

〈run,", {T2 := T2 + 1, T3 := T3 + 1}〉

〈run,", {T2 := T2 + 1, T3 := T3 + 1}〉

〈stop, T1 = 6, Id〉

〈stop, T1 = 16, Id〉

〈start,", Id〉

〈start,", Id〉

| T1 := 0, T2 := 0, T3 := 0

Fig. 6. The Trains Example

