
Centre Fédéré en Véri�cation

Technical Report number 2008.102

Alaska Antichains for Logic, Automata and Symbolic
Kripke structures Analysis

Martin De Wulf, Laurent Doyen, Nicolas Maquet, Jean-François Raskin

http://www.ulb.ac.be/di/ssd/cfv

This work was partially supported by a FRFC grant: 2.4530.02
and by the MoVES project. MoVES (P6/39) is part of the IAP-Phase VI Interuniversity

Attraction Poles Programme funded by the Belgian State, Belgian Science Policy



ALASKA
Antichains for Logic, Automata and Symbolic Kripke structures Analysis⋆

M. De Wulf1, L. Doyen2, N. Maquet1⋆⋆ and J.-F. Raskin1

1 Université Libre de Bruxelles (ULB), Belgium
2 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

1 Introduction

ALASKA is a verification tool that implements new algorithms based on antichains

[5, 7, 6] to efficiently solve the emptiness problem for both alternating finite automata

(AFW) and alternating Büchi automata (ABW). Using the well-known translation from

LTL to alternating automata, the tool can decide the satisfiability and validity problems

for LTL over finite or infinite words. Moreover, ALASKA can solve the model-checking

problem for ABW, LTL, AFW and finite-word LTL over symbolic (BDD-encoded)

Kripke structures.

While several tools (notably NUSMV [2], and SPIN [17]) have addressed the sat-

isfiability and model-checking problems for LTL [16], ALASKA uses new algorithms

that are often more efficient, especially when LTL formulas are large. Moreover, to the

best of our knowledge, ALASKA is the first publicly available tool to provide a direct

interface to efficient algorithms to decide the emptiness of ABW and AFW.

Given the promising experimental results obtained recently [6], we have decided to

polish our prototype and make it available to the research community. Our goal with

ALASKA is not to compete with industrial-level tools such as SPIN or NUSMV but

rather provide an open and clearly-documented library of antichain-based verification

algorithms.

2 Classical and new algorithms

A linear-time specification over a set of propositions P is a set of infinite words over Σ =
2P . Linear-time specifications can be expressed using LTL formulas or ABW. An LTL

formula ϕ over P defines the set of words [[ϕ]] = {w ∈ Σω | w |= ϕ} that satisfy ϕ.

The satisfiability problem for LTL asks, given an LTL formula ϕ, if [[ϕ]] is empty. The

model-checking problem for LTL asks, given an effective representation of an omega-

regular language L ⊆ Σω (e.g., the set of all computations of a reactive system) and

a LTL formula ϕ, if L ⊆ [[ϕ]]. The language Lb(A) of an ABW A is the set of words

over which it has an accepting run [15]. The emptiness problem for ABW asks, given an

⋆ This research was supported by the Belgian FNRS grant 2.4530.02 of the FRFC project “Cen-

tre Fédéré en Vérification” and by the project “MoVES”, an Interuniversity Attraction Poles

Programme of the Belgian Federal Government.
⋆⋆ This author is supported by an FNRS-FRIA grant.



ABW A, if Lb(A) = ∅. The model-checking problem for ABW asks, given an omega-

regular language L and an ABW A, if L ⊆ Lb(A). Note that since ABW are closed

under complementation and intersection in polynomial time, the model-checking prob-

lem L ⊆ Lb(A) reduces in polynomial time to the emptiness problem L ∩ Lb(A) = ∅.

All these problems are PSPACE-COMPLETE.

Due to lack of space, the following focuses mainly on the LTL satisfiability and

ABW emptiness problems. Extensions to model-checking and to the finite-word case

are rather straightforward.

Classical approaches The link between LTL and omega-regular languages is at the

heart of the so-called automata-theoretic approach to LTL [23]. Given an LTL for-

mula ϕ, one constructs a nondeterministic Büchi automaton (NBW) Aϕ whose lan-

guage corresponds exactly to the models of ϕ, i.e. Lb(Aϕ) = [[ϕ]]. This reduces the

satisfiability and model-checking problems for LTL to automata-theoretic questions.

This elegant framework has triggered a large body of works (e.g. [22, 3, 21, 4, 13, 19,

10, 9, 11, 18, 1, 12, 20]) that have been implemented in explicit-state model-checking

tools such as SPIN [17] and in symbolic-state model-checking tools such as SMV and

NUSMV [2]. The translation from LTL to NBW is central to the automata-theoretic

approach to model-checking. This construction is however worst-case exponential. An

explicit translation is required for explicit state model-checking, while in the symbolic

approaches [3] the NBW is symbolically encoded using boolean constraints. In [16],

Rozier and Vardi have extensively compared several symbolic and explicit tools for

satisfiability checking of LTL. According to their experiments, the symbolic approach

scales better.

The classical approach to solve ABW emptiness (and therefore LTL satisfiability) is

to transform the ABW into an equivalent NBW. The first construction is due to Miyano

and Hayashi [14], and many other constructions or variants have been proposed [4, 10,

9, 1]. Again, these constructions can be implemented either explicitly or symbolically.

The antichain approach Given an LTL formula, ALASKA constructs an ABW over the

symbolic alphabet Σ = 2P that recognizes the models of the formula. This translation

is very fast, as the number of states of the ABW is linear in the size of the formula. This

construction is well-known and is an intermediate step in several translators from LTL

to explicit NBW [21].

Once the ABW has been constructed, our tool implicitly uses the Miyano-Hayashi

construction (MH for short) to obtain an equivalent NBW (which is not explicitly com-

puted). This NBW is then explored efficiently in an on-the-fly fashion. ALASKA ex-

ploits a simulation relation to prune the search towards the most promising states (i.e.,

minimal for the simulation relation) during the exploration. The crucial point is the

that this simulation relation exists by construction for all NBW defined by the Miyano

Hayashi construction, and does not need to be computed.

The tools which use explicit translation from LTL to NBW typically spend much

effort in minimizing the constructed NBW. The rationale of this approach is that while

the size of the NBW is worst-case exponential, it should often be possible to minimize it

sufficiently in practice. In contrast, ALASKA systematically explores an NBW which is



of exponential size in all cases (MH), but does the exploration efficiently by exploiting

the special structure of the MH state-space (the simulation relation).

To compute the emptiness of the MH NBW, ALASKA begins by computing the

set of reachable accepting states Rα ≡ Post
∗(ιMH) ∩ α

MH, where ι
MH and α

MH are

respectively the initial and accepting states of MH. It then computes the following fix-

point formula3: F ≡ νX · Post
∗(Post(X) ∩ Rα). Analogously to the Emerson-Lei

backward fixpoint formula [8], F contains exactly those states that are reachable from

an accepting state which (1) is reachable from the initial states, and (2) can reach itself

by a non-trivial loop. The set F is thus empty if and only if the NBW is empty.

The computation of the fixpoint F is done efficiently by ALASKA as follows. The

simulation relation that exists by construction on MH is such that ι
MH and α

MH are both

upward closed sets for this relation. Also, the Post operation preserves closedness4 (and

so do ∪ and ∩), which means that all the sets of states that appear in the computation

of F are closed sets. ALASKA achieves its performance because the Post operation of

a set of states that is closed for a simulation relation is easier than for an arbitrary set of

states. Indeed, upward closed sets can be canonically represented by a (generally small)

number of minimal states that are incomparable for the simulation relation (which we

call an antichain), and all operations can be done on those elements only. ALASKA

exploits the fact that antichains are often small in practice by computing the Post op-

eration in the following semi-symbolic manner. Given a set of states X symbolically

encoded using a BDD, ALASKA computes Post(X) by first enumerating the antichain

elements of X (which we note ⌊X⌋) and computing the set X
′ =

⋃
s∈⌊X⌋ Post({s}).

By the simulation relation, we know that X
′ = Post(X). Because the input and output

of this algorithm are symbolic (X and X
′ are BDD) but an explicit representation is

used internally (⌊X⌋ is an explicit list of states), we call this algorithm semi-symbolic.

Interested readers will find all the details of the algorithms and proofs in [6], along

with experimental results comparing the relative performance of an early version of

ALASKA and NUSMV for LTL satisfiability and model-checking. More information is

available at http://www.antichains.be.

3 Implementation

Programming Language

ALASKA is written in Python, except for the BDD package which is written in C. We

use the CUDD BDD library, with its PYCUDD Python binding. There is some perfor-

mance overhead in using Python, but we chose it for enhanced readability and to make

the code easy to change. We believe this is especially important in the context of aca-

demic research, as we expect other research teams to experiment with the tool, tweak

the existing algorithms and add their own.

3 This section details the forward algorithm; a backward algorithm is also implemented.
4 There are some details involved, see [6].



User Interface

ALASKA is made of two components: a library (alaskalib) and an executable script

(alaska). The executable script is a simple command-line interface (See Fig. 1) to the

algorithms provided with the library. The user interface currently provides access to the

following features: finite and infinite-word LTL satisfiability, validity and equivalence

checking, AFW and ABW emptiness, and model-checking of specifications expressed

with finite or infinite-word LTL, AFW or ABW. Human-readable counter-example gen-

eration is available for all the aforementioned features. ALASKA can parse LTL formu-

las in the SPIN or NUSMV syntax and has a custom syntax for alternating automata (see

Fig. 1 for an example). ALASKA uses the NUSMV input syntax for symbolic Kripke

structures.

Fig. 1. On the top: example of an ABW encoded in the ALASKA syntax. On the bottom: example

of a command-line invocation of ALASKA for LTL satisfiability with counter-example generation.

Library Architecture

As a research tool, we believe that the most important contribution of the ALASKA

project is the availability of its source code. As such, we give an overview of its core

library components. The ALASKA library is divided into data packages5, state-space

packages and solver packages. The data packages contain the data-structures with the

associated parsers, pretty-printers and translation modules (e.g., LTL to ABW). The

state-space packages provide intuitive abstractions of on-the-fly-explorable implicit state-

spaces. Finally, the solver packages contain the high-level fixpoint algorithms. Each

problem (ABW emptiness, AFA emptiness, LTL satisfiability, etc.) resides in its own

module which provides several algorithmic variants (backward, forward, hybrid, etc.).

5 A Python package is a directory containing *.py files called modules.



data packages state-space packages solver packages

automata afasubset afaemptiness

bdd miyanohayashi abwemptiness

boolean kripkemiyanohayashi ltlsatisfiability

ltl ltlmodelchecking

nusmv

Fig. 2. Package structure of ALASKA.

Each solver uses a state-space package to evaluate a fixpoint formula and return the

answer, along with a witness or counter-example if appropriate.

The original aspects of ALASKA reside in the state-space packages. They imple-

ment the antichain-based techniques which make ALASKA different from existing tools.

There are currently three available state-space packages: afasubset represents the

NFA state-space obtained from an AFA by a powerset construction, miyanohayashi

represents the NBW state-space obtained from an ABW by the Miyano-Hayashi con-

struction, and kripkemiyanohayashi represents the product state-space of a sym-

bolic Kripke structure and a Miyano-Hayashi NBW. Each state-space package provides

package name input structure explorable state-space

afasubset AFA NFA

miyanohayashi ABW NBW

kripkemiyanohayashi Kripke, ABW Kripke ⊗ NBW

Fig. 3. Available sate-space packages.

functions for converting between the BDD-encoding of sets of states and the antichain

encoding, computing upward/downward closures, converting sets of states and traces to

human-readable output, etc. They also each implement the Pre and Post operations in

both fully-symbolic (using only BDD) and semi-symbolic (with antichains) variants.

Possible Extensions

The ALASKA library can be used to implement various automata-based algorithms.

One possibility of extension would be to mix backward with forward analysis into one

algorithm. Also, as sometimes antichains do blowup in size, it might be interesting to

have heuristics to detect such blowups in advance and proceed fully-symbolically in

that case. For many such purposes, the ALASKA library could be a good starting point.

4 Tool download, examples, and benchmarks

ALASKA is available for download at http://www.antichains.be. The tool is

available for Linux, Macintosh and Windows (by using Cygwin6). For convenience, the

tool can also be tested through a web interface, for which a number of examples and

benchmarks are provided.

6 Cygwin is an open-source Linux-like environment for Windows. See http://www.cygwin.com



References

1. R. Bloem, A. Cimatti, I. Pill, M. Roveri, and S. Semprini. Symbolic implementation of

alternating automata. In Proceedings of CIAA, LNCS 4094, pages 208–218. Springer, 2006.

2. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new symbolic model

checker. STTT, 2(4):410–425, 2000.

3. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. In CAV,

volume 818 of LNCS, pages 415–427. Springer, 1994.

4. M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for linear tem-

poral logic. In CAV, LNCS 1633, pages 249–260. Springer, 1999.

5. M. De Wulf, L. Doyen, T.A. Henzinger, and J-F. Raskin. Antichains: A new algorithm for

checking universality of finite automata. In CAV, LNCS 4144, pages 17–30. Springer, 2006.

6. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative algorithms

for LTL satisfiability and model-checking. In TACAS, LNCS 4963, pages 63–77. Springer,

2008.

7. L. Doyen and J.-F. Raskin. Improved algorithms for the automata-based approach to model-

checking. In TACAS, LNCS 4424, pages 451–465. Springer, 2007.

8. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional

µ-calculus. In LICS, pages 267–278, 1986.

9. C. Fritz. Constructing Büchi automata from LTL using simulation relations for alternating

Büchi automata. In CIAA, LNCS 2759, pages 35–48. Springer, 2003.

10. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV, volume 2102 of

LNCS, pages 53–65. Springer-Verlag, 2001.

11. M. Hammer, A. Knapp, and S. Merz. Truly on-the-fly LTL model checking. In TACAS,

volume 3440 of LNCS, pages 191–205. Springer, 2005.

12. K. Heljanko, T. A. Junttila, M. Keinänen, M. Lange, and T. Latvala. Bounded model check-

ing for weak alternating büchi automata. In Proceedings of CAV, LNCS 4144, pages 95–108.

Springer, 2006.

13. C. Löding and W. Thomas. Alternating automata and logics over infinite words. In IFIP

TCS, pages 521–535, 2000.

14. S. Miyano and T. Hayashi. Alternating finite automata on omega-words. In CAAP, pages

195–210, 1984.

15. D. Muller, A. Saoudi, and P. Schnupp. Alternating automata. the weak monadic theory of

the tree, and its complexity. In ICALP, pages 275–283, 1986.

16. K Rozier and M. Y. Vardi. LTL satisfiability checking. In 14th Int’l SPIN Workshop, volume

4595 of LNCS, pages 149–167. Springer, 2007.

17. T. Ruys and G. Holzmann. Advanced Spin tutorial. In SPIN, volume 2989 of LNCS, pages

304–305. Springer, 2004.

18. R. Sebastiani, S. Tonetta, and M. Y. Vardi. Symbolic systems, explicit properties: On hybrid

approaches for LTL symbolic model checking. In CAV, LNCS 3576, pages 350–363, 2005.

19. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In CAV, volume

1855 of LNCS, pages 248–263. Springer, 2000.

20. Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Wen-Chin Chan, and Chi-Jian Luo. Goal

extended: Towards a research tool for omega automata and temporal logic. In TACAS, pages

346–350, 2008.

21. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In 8th Banff Higher

Order Workshop, LNCS 1043, pages 238–266. Springer, 1995.

22. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-

tion. In LICS, pages 332–344. IEEE CS, 1986.

23. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-

tation, 115(1):1–37, 1994.


