
Centre Fédéré en Véri�ationTehnial Report number 2008.101

Statistial Model Cheking of Mixed-Analog Ciruits
Edmund Clarke, Alexandre Donz�©, Axel Legay

http://www.ulb.a.be/di/ssd/fvThis work was partially supported by a FRFC grant: 2.4530.02

Statistical Model Checking of

Mixed-Analog Circuits⋆

Version of June 20, 2008

Edmund Clarke, Alexandre Donzé, Axel Legay

School of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213

{emc|adonze|alegay@cs.cmu.edu}

Abstract. Model Checking properties for systems involving continuous
state variables is known to be a difficult problem. This holds, in partic-
ular, for mixed-signal circuits, i.e., circuits for which there is an interac-
tion between analog (continuous) and digital (discrete) quantities. In this
paper, we consider the problem of Statistical Model Checking of mixed-
signal circuits. Instead of verifying a property exhaustively with respect
to the behaviors of the model, we evaluate it on a representative subset of
behaviors, generated by simulation, and answer the question of whether
the circuit satisfies the property with a probability greater than or equal
to some value. The answer is correct up to a certain probability of error,
which can be pre-specified. The method automatically determines the
maximal number of simulations needed to achieve the desired accuracy,
thus providing a convenient way to control the trade-off between preci-
sion and computational cost, even for complex systems. We provide a
logic adapted to the specification of properties for mixed-signal circuits,
in the temporal domain as well as in the frequency domain, which is
highly relevant in this specific context. Finally, we demonstrate the ap-
plicability of the method on a model of a ∆ − Σ modulator for which
previous formal verification attempts were too conservative and required
excessive computation time.

1 Introduction

Given a property φ, the Probabilistic Model Checking Problem consists of check-
ing whether a stochastic system satisfies φ with a probability greater than or
equal to a certain threshold θ. It is generally solved with a numerical approach

that consists in computing the exact probability for the system to satisfy φ and by
comparing the result to θ. The way the probability is computed depends on the
nature of the system as well as on the property that is considered. Successful re-
sults (see e.g. [BHHK03,CY95,CG04,BRV04]) and tools (see e.g. [KNP04,CB06])

⋆ This research was sponsored by the Gigascale Systems Research Center (GSRC), the
Semiconductor Research Corporation (SRC), the Office of Naval Research (ONR),
the Naval Research Laboratory (NRL), the Army Research Office (ARO), and the
General Motors Lab at CMU awards to E.M.C., and a B.A.E.F grant.

exist for various classes of systems, including (continuous time) Markov Chains
and Markov Decision Processes. The drawback of these approaches is that they
compute the probability considering all the executions of the system, which may
not scale up for systems of large size. Another way to solve the probabilistic
Model Checking problem is to use a statistical approach based on hypothesis
testing and simulation (e.g., [You05,You06,YS02,YS06] or [SVA04,SVA05]). The
key idea is to deduce whether or not the system satisfies the property by ob-
serving some of its executions. Of course, in contrast to a numerical approach,
a test-based solution does not guarantee a correct result. However, it is pos-
sible to bound the probability of making an error. Statistical approaches are
known to be far less memory and time intensive than numerical ones, and are
sometimes the last resort [YKNP06]. In this paper, we focus on the statistical
procedure proposed by Younes [You05,You06,YS02,YS06] that consists in using
Wald’s sequential probability ratio test [Wal45] to verify bounded-time properties
of discrete-time event systems. Younes’ approach has at least three advantages:
(1) it automatically determines the number of simulations needed to achieve the
desired accuracy, thus providing a convenient way to control the trade-off be-
tween precision and computational cost, even for complex systems, (2) it tries
to minimize this number, and (3) it proposes a general framework that includes
many probabilistic models such as (continuous-time) Markov Chains, and some
models of stochastic hybrid systems.

In this work, we consider applying statistical techniques to verify properties
of mixed-signal circuits, i.e., circuits for which there is an interaction between
analog (continuous) and digital (discrete) quantities. Our first contribution is
to propose a version of stochastic discrete-time event systems that fits into the
framework of [You05,You06,YS02,YS06] with the additional advantage that it
explicitly handles analog and digital signal. We also introduce probabilistic signal

linear temporal logic, a logic adapted to the specification of properties for mixed-
signal circuits in the temporal domain as well as in the frequency domain, which
is highly relevant in this specific context. Our second contribution is the analy-
sis of a ∆ − Σ modulator. A ∆ − Σ modulator is an efficient Analog-to-Digital

Converter circuit. It takes an analog value u ∈ R as input and encodes it into a
digital value v ∈ D. The verification of this circuit is made difficult by its hybrid
(analog-digital) nature. A critical issue in this analysis is the stability of the
modulator, i.e., the possibility that its internal state variables keep increasing
until reaching a maximum value, i.e., a saturation state. Saturation is commonly
assumed to compromise the quality of the analog-to-digital conversion.

In [DDM04] and [GKR04], techniques developed for general hybrid systems
were used to analyze the stability of a third-order modulator. The idea is to ap-
ply exhaustive reachability techniques to guarantee that for every input signal
in a given range, the states of the system remain stable. While this reachability-
based approach is strictly precise, it has important drawbacks such as (1) signals
with large ranges cannot be practically analyzed and (2) there are interesting

properties that cannot be expressed as reachability properties. As an example,
It is unclear whether saturation immediately induces an improper signal conver-
sion or if the system can bear short saturation periods without a major decrease
in quality of the result. The latter cannot be checked with a reachability-based
approach. Here, we propose to analyze a stochastic version of a ∆ − Σ modu-
lator. This allows us to handle more complex temporal properties and signals
with larger ranges. As an example, in our experiments, we have been able to
analyze discrete signals with more than 24000 sampling points in seconds, while
the approach in [DDM04] was limited to 31 points in hours. We were also able
to answer the open question in [DDM04] and showed that it is unlikely for short
saturation periods to imply an improper signal conversion. These results are
correct up to a certain probability, which can be chosen arbitrarily high without
a significant increase of the computation time.

The rest of the paper is organized as follows. Section 2 briefly recalls the es-
sentials of statistical probabilistic Model Checking. Section 3 presents the model
and the logic used. Section 4 recalls some facts about Fourier analysis and in-
troduces frequency-domain predicates that fits into the framework of Section 3.
Section 5 describes ∆−Σ modulators, and Section 6 describes the experiments
that we performed on a third-order ∆ − Σ modulator. We conclude with some
directions for future work.

2 Statistical Probabilistic Model Checking

The following section introduces the concept of Statistical Probabilistic Model

Checking. We assume the reader to be familiar with basic concepts in probability
theory.

2.1 The Problem

We use Pr(E) to denote the probability of event E. We consider a system S
whose executions are observable and a property φ. We assume that one can
decide whether an execution of S, denoted by σ, satisfies φ. The Probabilistic

Model Checking Problem consists in deciding whether the executions of S satisfy
φ with a probability greater than or equal to a given threshold θ. The latter is
denoted by S |= Pr≥θ(φ). This statement only makes sense if one can define
a probability space on the executions of the system as well as on the set of
executions that do satisfy φ. In the rest of this section, we assume that such a
probability space can always be defined, and we present a statistical procedure
to solve this problem.

2.2 Statistical Approach [You05,You06]

A statistical approach to the Probabilistic Model Checking Problem is based
on hypothesis testing. The idea is to check the property φ on a sample set of

simulations and to decide whether the system satisfies Pr≥θ(φ) based on the
number of executions for which φ holds compared to the total number of exe-
cutions in the sample set. With such an approach, we do not need to explore
the set of all the reachable states of the system. Formally, let Bi be a discrete
random variable with a Bernoulli distribution. Such a variable can only take 2
values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p. In our context,
each variable Bi is associated with one simulation of the system. The outcome
for Bi, denoted bi, is 1 if the simulation satisfies φ and 0 otherwise. To deter-
mine whether S satisfies φ with a probability p ≥ θ, we can test the hypothesis
H : p ≥ θ against K : p < θ. A test-based solution does not guarantee a correct
result but it is possible to bound the probability of making an error. The strength

(α, β) of a test is determined by two parameters, α and β, such that the proba-
bility of accepting K (respectively, H) when H (respectively, K) holds, called a
Type-I error (respectively, a Type-II error) is less or equal to α (respectively, β).

A test has ideal performance if the probability of the Type-I error (respec-
tively, Type-II error) is exactly α (respectively, β). However, these requirements
make it impossible to ensure a low probability for both types of errors simulta-
neously (see [You05] for details). A solution to this problem is to relax the test
by working with an indifference region. In this context, we test the hypothesis
H0 : p≥p0 against H1 : p≤p1 instead of H against K. If both the values of p and
θ are between p1 and p0, we say that the probability is sufficiently close to θ so
that we are indifferent with respect to which of the two hypotheses K or H is
accepted.

2.3 Algorithmic Schemes

Fixed size samples We now need to provide a test procedure that satis-
fies the requirements above. We recall two solutions proposed by Younes in
[You05,YS06].The first solution is to decide acceptance with fixed-size samples.
The idea is as follows. A sample of size n consists of n observations, b1, . . . , bn

of the Bernoulli variables B1, . . . , Bn that represent our experiment. To test hy-
pothesis H0 against hypothesis H1, we specify a constant c. If

∑
n

i=1
bi is greater

than c, then H0 is accepted, else H1 is accepted. The difficult part in this ap-
proach is to find values for the pair (n, c), called a single sampling plan, such
that the two error bounds α and β are respected. In practice, one tries to work
with the smallest value of n possible so as to minimize the number of simulations
performed. Clearly, this number has to be greater if α and β are smaller but also
if the size of the indifference region is smaller. This results in an optimization
problem, which generally does not have a closed-form solution except for a few
special cases (see [You05] for a discussion). In his thesis [You05], Younes proposed
a binary search based algorithm (Algorithm 2.1 page 21) SINGLE SAMPLING-
PLAN that, given p0, p1, α, β, computes an approximation of the minimal value
for n.

Sequential sampling test The sample size for a single sampling plan is fixed
in advance and independent of the observations that have been made. However,
taking those observations into account can increase the performance of the test.
As an example, if we use a single plan (n, c) and the m > c first simulations
satisfy the property, then we could (depending on the error bounds) accept H0

without observing the n − m other simulations. It thus seems to be better to
test H0 against H1 after each experiment. This is the purpose of a sequential

acceptance sampling test procedure.
We recall the sequential probability ratio test proposed by Wald [Wal45]. We

first choose two values A and B, with A > B. These two values should be chosen
to ensure that the strength of the test is respected. Let m be the number of
observations that have been made so far. The test is based on the following
quotient:

p1m

p0m

=

m∏

i=1

Pr(Bi = bi | p = p1)

Pr(Bi = bi | p = p0)
=

pdm

1 (1 − p1)
m−dm

pdm

0 (1 − p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m

≤ A, and

H1 if p0m

p1m

≤ B. An algorithm for sequential ratio testing consists in computing
p1m

p0m

for successive values of m until either H0 or H1 is satisfied. In each step
i, the algorithm has to check the property on a single execution of the system,
which is handled with a new Bernoulli variable Bi whose realization is bi. In
his thesis [You05], Younes proposed a logarithmic based algorithm (Algorithm
2.3 page 27) SPRT that given p0, p1, α, β implements the sequential ratio test-
ing procedure. In practice, choosing A and B such that the strength (α, β) is
respected is non-trivial. In his seminal paper [Wal45], Wald showed that if one

defines A = (1−β)
α

and B = β

(1−α) , then we obtain a new test whose strength is

(α′, β′), but such that α′ + β′ ≤ α + β (meaning that at least either α′≤α or
β′ ≤ β).

Boolean Combination of Properties The SPRT algorithm can be extended
to handle Boolean combinations of probabilistic properties. Let ¬, ∨, and ∧ be
the normal logic operators, which are read “not”, “or”, and “and”, respectively.
Consider the case in which ψ is a Boolean combination of properties of the form
Pr≥θ(φ) (note that nested probabilistic operators are not allowed and recall that
φ is defined as a set of executions). We have the two usual cases:

1. Assume that ψ′ = ¬ψ, where ψ is a property of the form Pr≥θ(φ), where φ

is a set of executions. In [You05,YS06], it is proved that if ψ can be verified
with a test of strength (α, β), then ψ′ can be verified with a test of strength
(β, α).

2. Assume that ψ =
∨i=n

i=1 ψi, where each ψi is a property of the form Pr≥θ(φ)
(where φ is a set of executions), which is verified with a test of strength
(αi, βi). In [You05,YS06], it is proved that in such a situation, ψ can be
verified with a strength of (α, β), where α =

∑n

i=1 αi and β = max
1≤i≤n

βi.

Statistical Model Checker The SPRT algorithm can be implemented in order
to solve the probabilistic model checking problem for a specific class of systems
and a specific class of properties. For this, we need:

– A simulator that is able to accurately and efficiently simulate the system
and produce observable executions;

– An execution verifier that decides whether an execution satisfies a given
property.

With these two components, we can implement the realization bi of the Bi

Bernoulli variable used by the SPRT algorithm. The simulator produces the
ith trace and the verifier decides whether it satisfies the property (bi = T) or
not (bi = F).

3 System, Signals and Logics

3.1 Notations and Definitions

Let T be a finite set of non-negative reals {t0, t1, . . . , tN−1}, where N ∈ N. To
simplify the presentation, we assume that ti+1 − ti = δt where δt ∈ R>0 . A
digital set is a set consisting of 2b elements, which can be encoded in terms of
b bits. An analog signal is a mapping ξ : T → R. A digital signal is a mapping
ξ : T → D, where D is a digital set. The value at time t ∈ T of a signal ξ is
denoted by ξ[t]. Let t, t′ ∈ T . The restriction to [t, t′] of a signal ξ, denoted by
ξ|[t,t′]

, is a signal such that:

ξ|[t,t′]
[τ] =

{

ξ[τ] if τ ∈ [t, t′]
0 else.

Our main motivation is to verify properties of mixed-signal circuits. For this
purpose, we propose stochastic signal discrete-time event systems, which are an
extension of the classical model of stochastic discrete-time event systems with
information about signals. During an execution, such systems have to remain in
the same state between the occurence of two events. Thus the signals that we
associate with an execution are restricted to be piecewise-constant.

Definition 1. Let B be a finite set of Boolean propositions. A stochastic signal
discrete-time event system (SSDES) is a tuple S = (T , S, S0,→, πa, πd, L) where

– T is a finite set of non-negative reals {t0, t1, . . . , tN−1}, with ti+1 − ti = δt;

– S is the set of states, defined as S = As × Ds, where As is a subset of
R

na and Ds ⊂ Dnd . We have that na and nd are the number of analog and
digital signals associated with S, respectively. These signals will be denoted
by ξ1

a, . . . , ξna
a and ξ1

d
, . . . , ξnd

d
, respectively;

– S0 is the set of initial states;

– The relation →: S ×S is the transition relation of the system. We assume a

probability distribution on →, i.e.,

∀s ∈ S,
∑

s′∈S

Pr(s → s′) = 1;

– L is a mapping from S to 2B, which assigns to each state the elements in B
that are true in that state;

– πa : S × {1, . . . , na}→As is a projection operator such that for all s =
(s1

a, . . . , sna

a , s1
d, . . . , s

nd

d) and 1 ≤ j ≤ na, πa(s, j) = sj
a;

– πd is defined similarly to πa.

Let ω = s1 . . . sk be a finite sequence of states of S. We use ω(i) and ωi to
denote the i-th state of ω and the sequence si . . . sk, respectively. The length ω,
which is denoted |ω| is the number of states in ω. An execution of an SSDES
S = (T , S, S0,→, πa, πd, L) is a sequence of N states σ = s0s1 . . . sN−1, with
s0 ∈ S0 and such that for each i ∈ 0 . . .N−1, si ∈ S and si → si+1. Each state sk

(with k < N) of σ assigns to each analog signal ξi
a (respectively, digital signal ξi

d)
its constant value between tk and tk+1, i.e., ξi

a[t] = πa(sk, i) (respectively ξi
d[t] =

πd(sk, i)) for t ∈ [tk, tk+1]. The i-th suffix of σ is the sequence si, . . . , sN−1. An
SSDES is thus an infinite-state Markov chain extended with information and
operations on analog and digital signals.

3.2 Probabilistic Signal Linear Temporal Logic

We introduce the probabilistic signal linear temporal logic (SLTL) to reason on
the set of executions of an SSDES. In the rest of the section, we assume a set of
atomic propositions B and an SSDES S = (T , S, S0,→, πa, πd, L) with L being
a mapping from the set of states S to 2B. Before introducing SLTL, we first
recall the syntax and the semantics for linear temporal logic (LTL). The syntax
of LTL is given by the following grammar:

φ ::= T |F |b ∈ B |¬b |© φ |φ1 ∨ φ2 |φ1 ∧ φ2 |φ1Uφ2 |φ1Ũφ2.

We now present the semantics of LTL, which here is defined with respect to
finite sequences of states of S. The fact that a finite sequence of states ω of S
satisfies the LTL property φ is denoted by ω |= φ. We have the following:

– ω |= T and ω *|= F;
– ω |= b with b ∈ B iff b ∈ L(σ(0));
– ω *|= b with b ∈ B iff b *∈ L(σ(0));
– ω |= ©φ if and only if |ω| > 1 and ω1 |= φ;
– ω |= φ1Uφ2 if and only if there exists 0≤i≤|ω| − 1 such that ωi |= φ2, and

for each 0≤j < i, ωj |= φ1;

– ω |= φ1Ũφ2 if and only if for each 0≤i≤|ω|−1 such that ωi *|= φ2 there exists
0≤j < i such that ωj |= φ1.

In the logic defined above, negation can only be applied to atomic propositions.
Negation can be extended to any formula with the help of the following relations:

ω !|= φ1Uφ2 iff ω |= (¬φ1)Ũ(¬φ2);

ω !|= φ1Ũφ2 iff ω |= (¬φ1)U(¬φ2);
ω !|= ©φ1 iff ω |= ©¬φ1.

Two additional temporal operators are used. The first is ♦, where ♦ is read
“eventually”. The eventually operator requires that its argument eventually be-
comes true. Formally, we have ♦ψ = TUψ. The second operator is !, where !

is read “always”. This operator requires that its argument stays true. Formally,
we have !ψ = FŨψ.
We can now focus on the syntax and semantics of SLTL. We use the following
definition.

Definition 2 (Execution Predicate). Let Σ(S) be the set of all the executions

of an SSDES S. An execution predicate p for S is a mapping from Σ(S) to B:

p : σ ∈ Σ(S) %→ p(σ) ∈ {T,F}

This general definition of execution predicates makes it possible to define prop-
erties that apply to complete traces rather than to single states, as is usually the
case with LTL formulas. This is useful, in particular, when we need to apply a
functional to one or several signals associated with an execution and characterize
the properties of the result. Such a functional can be the Fourier transform, e.g.,
as is described in Section 4. We can now give the following definition.

Definition 3 (SLTL Formula). An SLTL formula is a Boolean combination

of formulas of the form ψ = Pr≥θ(φ), where φ is either a linear temporal logic

formula or a Boolean combination of execution predicates for S.

We say that S satisfies ψ, which is denoted by S |= ψ, if and only if the probabil-
ity for an execution of S to satisfy φ is greater than θ. Such a semantics makes
sense since one can always associate a probability with the set of executions that
satisfy an LTL formula or a Boolean Combination of Boolean predicates.

Theorem 1. Let be S be an SSDES and φ be either LTL formula or a Boolean

combination of exectution predicates. One can always associate a probability with

the set of executions of S that satisfy φ.

Proof. Recall that an SSDES is an infinite-state Markov chain whose executions
can be viewed as infinite executions by considering their last state to be an ab-
sorbing state, i.e., a state where the system stays forever. It is known that one can
assign a probability distribution to sets of infinite executions of a Markov chain
using a probability space and the classical notion of basic cylinder (see [CG04] for
a survey). It is also known that this probability distribution is sufficient to assign
a probability to the set of executions that satisfy an LTL formula [Var85]. We are
now left with the case where φ is a Boolean combination of execution predicates.
In such situation, we can derive from S another SSDES S′ that represents the

tree expansion of all possible executions of S, and where each state keeps an
ordered list of its set of predecessors in the execution. Clearly, there is a one-to-
one correspondence between the executions of S and S′. We can now associate
a Boolean variable with each terminal state s of S′. This Boolean variable is
true if the execution, which is recorded in s, satisfies the Boolean combination
of execution predicates. It is false otherwise. We have thus reduced the problem
of assigning a probability to the set of executions of S that satisfy a Boolean
combination of execution predicates to the one of assigning a probability to the
set of executions of S′ that satisfy the Boolean variable in their last state, which
is an LTL formula. Since S and S′ have the same executions, the probabilities
obtained from S′ can be used for S.

3.3 Statistical Model Checking for SLTL

We observe that SSDES and SLTL are in the scope of the class of systems and
logics that can be handled with the SPRT algorithm introduced in Section 2.
Indeed, the simulation of Markov chains, of which an SSDES is an instance, is
common, as well as verifying LTL properties for finite executions (e.g., using off-
line monitoring). Assuming also that we use only execution predicates that we
can compute, an SLTL formula can be then verified for a given execution. One
can thus decide whether an SSDES satisfies an SLTL formula using a statistical
Model Checking approach.

4 Frequency-Domain Properties of Signals

4.1 Fourier Transform and Frequency Domain Signals

The Fourier transform is a widely used mathematical tool in signal processing
[Smi97]. It transforms a time-domain signal ξ : T → R into a frequency-domain

signal F (ξ) : F → C where the frequency set F is a subset of R. For all ν in F ,

F (ξ)[ν] =

∫
T

ξ[t]e−i2πνt
dt. (2)

The inverse Fourier transform makes it possible to “reconstruct” the function
ξ from F (ξ). If we let ξ̂ = F (ξ), we have:

ξ[t] = F
−1(ξ̂) =

∫
F

ξ̂[ν]ei2πνt
dν. (3)

There are many operations that are easier to perform in the Fourier domain
than in the time domain, e.g., convolution and differentiation. For these opera-
tions, it is then convenient to compute Fourier transforms, perform the desired
operation in the frequency domain and use the inverse Fourier transform to get
the desired result. The Fourier transform is also useful when dealing with signals
which are by nature easier to analyze in the frequency domain than in the time

ξ |F (ξ)|

time frequency (Hz)

Fig. 1. Example of a Fourier transform. The signal was obtained by recording a
human voice. Its Fourier transform lies in the interval [0Hz, 1500Hz] (its value
is 0 outside this interval).

domain (e.g., the sound of a voice as shown in Figure 1).

In our context, a signal ξ is sampled on the finite set of time points T =
{t0, t1, . . . , tN−1}, with ti+1 − ti = δt. Assuming that ξ takes the zero value
outside the interval [t0, tN−1] and since it takes constant values on each interval
[ti, ti+1], F (ξ) can be approximated by:

F (ξ)[ν] = δt

N−1∑

k=0

ξ[tk]e−i2πνtk . (4)

An efficient algorithm, known as the Fast Fourier Transform (FFT) algo-
rithm, can compute this quantity. Given the N values of the signal ξ on T ,
the algorithm returns the Fourier transform F (ξ) on a set F = {ν0, . . . , νN−1},
where νi+1 − νi = δν > 0 with a computational complexity of O(N log N) (see,
e.g., [FJ97]).

4.2 Frequency-Domain Predicates

In the previous section, we defined an SLTL formula to be a Boolean combination
of terms of the form Pr≥θ(φ) where φ is either an LTL formula or a Boolean
combination of execution predicates. The latter provides a means to specify and
to verify a wide range of properties involving the values of the signals induced by
σ, including properties in the frequency domain. To explicitly deal with Fourier
transforms of signals in σ, we extend the Fourier Transform functional as follows.
Let

F i

a(σ) = F (πa(σ, i)) (resp. F i

d(σ) = F (πd(σ, i))),

for each i ∈ {1, . . . , na} (respectively for each i ∈ {1, . . . , na}). Each F i
a
(σ) (or

F i

d
(σ)) is a frequency-domain signal on which standard operations (such as the

sum, the product or the maximum) and comparison operators can be applied to
define a Boolean predicate.

5 A Class of Mixed-Signal Circuits: ∆ − Σ Modulators

This section briefly recalls the principles of ∆−Σ modulation and the related de-
sign issues. The reader can consult [MPVRV01] for more details on this advanced
topic in Signal Processing.

A ∆ − Σ modulator is an Analog-to-Digital Converter circuit, i.e., a circuit
that takes an analog value u ∈ R as input and encodes it into a digital value
v ∈ D. Since digital signal processing is more widely used than analog signal
processing, such converters are found everywhere, which motivates their study.

5.1 Analog to Digital Conversion via ∆ − Σ Modulation

The challenge of Analog-to-Digital conversion is to represent the uncountable
set of analog values using the finite set of digital values D. The direct approach,
which is called quantization, consists in assigning each value in D to an interval
in R. The quantization error is given by δ = v − u

Example 1. Assume that D is encoded with 2 bits and contains the values
{−3/4,−1/4, 1/4, 3/4}. The relation between the quantized value v and the ana-
log input u can be given by:

v =

−3/4 if u ∈ [−∞,−1/2]
−1/4 if u ∈ [−1/2, 0]

1/4 if u ∈ [0, 1/2]
3/4 if u ∈ [1/2, +∞]

In this example, if u is inside the interval [−1, 1], then the value of the quanti-
zation error δ never exceeds 1/4.

One way to decrease the quantization error is to increase the number of bits used
to encode D and thus the number of possible digital values. This directly reduces
the error in the time domain. Another approach, which is the one implemented
in ∆ − Σ modulation, is to process the quantization error through a feedback
loop. Basically, a ∆−Σ modulator sums the quantization errors as time evolves
and subtracts the result from the input1. Intuitively, this process reduces the
mean of the quantization error but the benefit of the approach is more apparent
in the frequency domain. Indeed, the Fourier transform of the digital signal is
the Fourier transform of the analog signal composed with some error due to the
quantization. The feedback loop in the ∆ − Σ modulator is designed to “push”
this error towards high frequencies, where it can be isolated and removed, e.g.
by using a low-pass filter. The original signal can then be retrieved by using the
inverse Fourier transform. An illustration of this principle is given in Fig.2. The
plots show the Fourier transform of the digital output of a ∆−Σ modulator for
the signal of Fig. 1. The quantization error is pushed toward frequencies higher

1 Hence the Σ for the summation of errors and the ∆ for the difference in the feedback

loop.

than 1500Hz where it can be safely removed since in this case, the original
signal contains no information in this range. Note that ∆ − Σ modulators can
achieve good performance using a limited number of bits (only one in the case

we consider).

F (x i) F (x i)
ν

ν

quantization error

Fig. 2. Example of the behavior of the ∆−Σ modulator for the signal of Fig.1.
The Fourier transform of the output signal (b) matches the Fourier transform of
the input signal (a) on the interval [0, 1500Hz]. The quantization error is pushed
toward frequencies higher than 1500Hz.

5.2 Verification Issues

The design of a ∆−Σ modulator involves the implementation and the tuning of
its feedback loop2. In particular, it contains integrators that are used to store the
feedback quantization errors. The order of a modulator is given by the number
of integrators it uses. Higher order modulators can exhibit better performance,
but also introduce a stability issue. An integrator memorizes its input and adds it
to the sum of all the previously read inputs during the execution. Consequently,
an important issue is whether the integrators are stable, i.e., whether or not
the values stored in the integrators can grow indefinitely. Because integrators
have a limited capacity, the values of these states would then reach a saturation

level. Saturation can compromise the quality of the analog-to-digital conversion.
The stability analysis of the feedback loop implemented by ∆ − Σ modulators
is made difficult by the nonlinearity (in this case, a discontinuity) induced by
the quantizer. This invalidates the direct application of classical linear stability
theory which makes the stability analysis of high order (greater or equal to three)
∆ − Σ modulators a challenging problem.

In [DDM04] and [GKR04] reachability techniques developed in the area of
hybrid systems were used to guarantee that for every input signal in a given
range, the integrator state would never saturate. While this approach is clearly
sound for proving stability, its computational cost is prohibitive. As an example,

2 The details of this process is outside the scope of this paper since we are only

interested in the verification of a given circuit.

Analog

Digital

Frequency domainTime domain

(a) (b)

(c) (d)

Fig. 3. An example where the ∆−Σ fails. We observe that the Fourier transform
of the digital signal (d) is clearly different from the Fourier transform of the
analog signal (b).

in [DDM04], stability was only proved for a small number of steps (N = 30). To
alleviate this cost, we propose the use of the statistical techniques described in
the previous sections. We first remark that if we combine a ∆ − Σ circuit with
a stochastic input generator, we get a stochastic system for which these tech-
niques apply. Of course, the choice of the probability distribution to generate
input signals will have an influence on the statistical result we obtain. A natural
and neutral possibility is to choose a uniform distribution, i.e., to give the same
probability to every possible input signal to occur. By doing so, we make as few
assumptions as possible on the nature of the input signal and get results that
are comparable to those obtained by the exhaustive verification approach.

In addition to improving the computation time, this approach also makes
possible the verification of more complex properties than those that can be
handled with a reachability-based technique. In particular, by defining execution
predicates involving the Fourier transform, we can check reliably whether an
analog signal was properly converted (as in Figure 2 or not (as in Figure 3). We
can thus also investigate the relation between saturation and wrong behaviors
of the modulator without assuming a priori, as is the case in [DDM04], that the
latter implies the former.

6 Model and Experiments

In this section, we detail some experiments we conducted on a ∆−Σ Modulator.
The model we consider is a discrete-time Simulink model of a third order ∆−Σ

modulator (Fig. 4), the same as in [DDM04]. This model was obtained by using
the standard MATLAB delsig toolbox3 [Sch03].

x 1 (k) x 2 (k) x 3 (k) y (k) v (k)	 K 	c 3	 K 	c 2	 K 	c 1 	 K 	b 4	 K 	b 3	 K 	b 2	 K 	b 1 x 3x 2x 1 Q u a n t i z e r vO u t p u tv (k)
I n p u tu (k) 1z 	 11z 	 11z 	 1 	 K 	 	 a 3	 K 	 	 a 2	 K 	 	 a 1

Fig. 4. Simulink model of a third order ∆−Σ modulator.The three blocks 1

z−1

followed by saturation blocks represent the saturated integrators. The coefficient
gains ai, bi and ci were obtained using the delsig toolbox.

6.1 The SSDES Model

Our modulator can be represented with an SSDES S = (T , S, S0,→, πa, πd, L)
as follows.

– Time. We set T = {t0, t1, .., tN−1} with t0 = 0., tN−1 = 3 and δt =
ti+1 − ti = 1

8000
, thus N = 24000.

– Set of States. The Simulink model contains three integrator blocks which
contain each one real-valued (or analog) variable. A state s ∈ S can thus be
described as a tuple (u, x1, x2, x3, v), where
• x1, x2 and x3 are analog variables storing the integrators states;
• u is an analog variable storing values for the input signal ξu;
• v is a digital variable storing values for the output signal ξv.

The number of analog signals is thus na = 4 and the number of digital sig-
nals nd = 1. The integrator blocks are saturated, meaning that their states
cannot go beyond certain values. In practice, xi ∈ [−1, 1] for i ∈ {1, 2, 3}
and −1, 1 are the saturation values. Assuming also that u ∈ [−umax, umax],

3 This toolbox provides practical models used by actual ∆ − Σ modulator designers.

we get As = [−1, 1]3 × [−umax, umax] and Ds = {−1, 1}. We simplify the
notation and, given an execution σ = s0s1 . . . sN−1, we use u(k) = πa(sk, 1),
x1(k) = πa(sk, 2), x2(k) = πa(sk, 3), x3(k) = πa(sk, 1) and v(k) = πd(sk, 1).
For all k ∈ 0 . . .N − 1, we have ξu[tk] = u(k) and ξv[tk] = v(k);

– Transition relation. When u(k) is given, the model deterministically com-
putes x1(k+1), x2(k+1), x3(k+1) and v(k+1). Thus the probability distri-
bution Pr(sk → sk+1) for all (sk, sk+1) ∈ S×S is induced by the probability
distribution of the input value u(k + 1). For our experiments, we consider
uniform random inputs: for all k, u(k) is chosen in a set [−umax, umax] with
a uniform random distribution;

– Set of initial states. Initially, the value of the integrator states are 0 and
the digital output v(0) is set to 1. The input value u(0) is chosen randomly
with a uniform distribution in [−umax, umax] as specified above;

– Boolean variables. We define a boolean variable Sat which is true iff one
of the analog values, i.e., either the input or an integrator state, saturates.
Formally, L(s) = T iff there exist i in {1, . . . , 4} such that πa(s, i) = 1 or
−1, L(s) = F otherwise.

Following the discussion at the end of Section 5, we chose a uniform distri-
bution for the input signals. Thus the only assumption that we have imposed on
the nature of the input signals was their maximum amplitude umax. The prop-
erties that we verified in our experiments were tested against different values for
this maximum amplitude. As is intuitively expected, the circuits performance
decreases as this amplitude increases. We implemented the SPRT algorithm de-
scribed in Section 2 in the MATLAB environment, as well as the procedure to
verify SLTL properties.

6.2 Experiments on Saturation

We first checked the formula Pr≥θ(♦Sat), i.e., we evaluated the probability that
the system saturates for different values of umax. Note that this corresponds to
the probabilistic version of the exhaustive verification that was performed in
[DDM04] and was successful up to only N = 30. We used an indifference region of
size .02, and α = β = .01. For each experiment, we generated 100 simulations 4 to
get a first coarse approximation of the probability. Then we picked a θ according
to these results and applied the SPRT algorithm to test H0 : p ≥ θ. The results
are summarized in Table 2. In the first column, we report the value of umax. The
second column is the number of executions satisfying ♦Sat over 100 executions.
Column 3 gives the value of θ tested to check Pr≥θ(♦Sat) with the SPRT
algorithm. Column 5 and 6 report the answer obtained with the algorithm and
the number of executions to get the result. More executions means that θ was
closer to the actual probability of ♦Sat.

4 The number 100 was arbitrarily chosen.

umax Number of T Probability SPRT SPRT number Computational
on 100 exec. θ checked result of exec. Time (s).

0.0 0 0. H0 false 459 57
0.1 0 0. H0 false 459 58
0.2 1 0. H0 true 57 7
0.3 56 .5 H0 true 827 102
0.4 100 .99 H0 true 228 28
0.5 100 1. H0 true 463 59

Table 1. Table of results for Pr≥θ(♦Sat).

These results can be compared with those reported in [DDM04]. In particular,
we confirmed the fact that for signals with a maximum amplitude of .1, the
circuit never saturates whereas if umax is .5, the circuit always does. In our case,
though, the length N of the executions considered was much larger (N = 24000
to be compared to N = 30 in [DDM04]).

6.3 Verifying a Frequency Domain Predicate

For the second set of experiments, we checked the formula Pr≥θ(pF) where pF

is a frequency-domain execution predicate defined as follows. Let dF be a metric
on frequency-domain signals such that for two signals ξ̂1 and ξ̂2,

dF (ξ̂1, ξ̂1) =
1

N

∑

0≤k≤N−1

|ξ̂1[νk] − ξ̂2[νk]|. (5)

The truth value for the execution predicate pF for an execution σ is given by

pF (σ) = T iff dF (ξ̂u

|[0,ν]
, ξ̂v

|[0,ν]
) ≤ ǫ.

With ν = 100Hz and ǫ = .05, the predicate efficiently discriminates between
executions for which the digital output has a correct Fourier transform (as in
Figure 2) against executions when this is not the case (as in Figure 3).

These experiments show that, in general, saturation does not imply a wrong
behavior. That the absence of saturation is necessary for pF to be true, which
was assumed in [DDM04], thus seems to be an overly conservative assumption.

Finally, we performed some experiments about computational times with
respect to the strength parameters α and β, and the size of the indifference
region given by p0 − p1. They allow to draw two main observations: the number
of computed trajectories increases logarithmically with respect to the decrease
of α and β and linearly with respect to the decrease of p0−p1 (see Table 3). This
indicates that one can verify that P (S |= φ) ≥ θ with a very low probability
of error whereas it is more difficult to estimate precisely the actual value of
p by narrowing the indifference region. These results experimentally confirm
theoretical and practical results reported in [You05].

umax Number of T Probability SPRT SPRT number Computational
on 100 exec. θ checked result of exec. Time (s).

0.9 96 0.9 H0 true 1280 169
0.92 85 0.8 H0 true 4547 622
0.94 49 0.4 H0 true 277 38
0.96 22 0.2 H0 true 333 47
0.98 6 0.1 H0 false 3818 542
1. 0 .0 H0 true 24 4

Table 2. Table of results for Pr≥θ(pF)

Test strength Number of —— Indifference region Number of
α(= β) executions —— p0 − p1 executions

1e−2 347 —— .1 44
1e−4 496 —— 0.05 117
1e−6 873 —— 0.02 239
1e−8 1322 —— .01 614
1e−10 1449 —— 0.005 1080

Table 3. Number of trajectories against α (β was set equal to α) and against
the size of the indifference region p0 − p1 for umax = 0.94 and the property
Pr≥0.4(pF)

7 Future Work

This paper presents the first attempt to apply the general statistical techniques
introduced in [You05,YS06] to verifying non-trivial properties of mixed-signal
circuits. A direction for future work is to generalize our results to an unbounded
version of SLTL. This would relax the hypothesis that the size of the execu-
tions we consider is bounded. Such an extension would require modification of
Younes’ procedure, which is clearly designed to work with bounded properties.
Our work requires the ability to monitor properties of discrete-time signals,
which can be done easily with existing techniques [LS06,dR]. In a series of re-
cent papers [NM07,MNP08], Nickovic et al. proposed techniques for monitoring
properties of dense-time analog signals. Another interesting direction would be
to adapt Younes’ procedure to work in this latter, more demanding context.
Finally, it would also be of interest to consider extensions of SLTL. As an exam-
ple, one could consider formulas of the form Pr≥θ(φ), where φ is a LTL formula
whose atomic propositions could either be Boolean propositions or execution
predicates.

Acknowledgement

We thank H. Younes for answering many email questions on his work and C. J.
Langmead for fruitful discussions and proof-reading drafts of the paper.

References

BHHK03. Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. Model-checking algorithms for continuous-time markov
chains. IEEE Trans. Software Eng., 29(6):524–541, 2003.

BRV04. Doron Bustan, Sasha Rubin, and Moshe Vardi. Verifying omega-regular
properties of markov chains. In CAV, volume 3114 of Lecture Notes in

Computer Science, pages 189–201. Springer, 2004.

CB06. F. Ciesinski and C. Baier. Liquor: A tool for qualitative and quantitative
linear time analysis of reactive systems. In QEST, pages 131–132. IEEE,
2006.

CG04. F. Ciesinski and M. Größer. On probabilistic computation tree logic. In
Validation of Stochastic Systems, LNCS, 2925, pages 147–188. Springer,
2004.

CY95. Costas Courcoubetis and Mihalis Yannakakis. The complexity of proba-
bilistic verification. Journal of the ACM, 42(4):857–907, 1995.

DDM04. T. Dang, A. Donze, and O. Maler. Verification of analog and mixed-signal
circuits using hybrid systems techniques. In Alan J. Hu and Andrew K.
Martin, editors, FMCAD’04 - Formal Methods for Computer Aided De-

sign, LNCS 3312, pages 21–36. Springer-Verlag, 2004.

dR. Marcelo d’Amorim and Grigore Roşu. Efficient monitoring of ω-languages.
In CAV, LNCS 3576, pages 364 – 378. Springer.

FJ97. Matteo Frigo and Steven G. Johnson. The fastest Fourier transform in
the west. Technical Report MIT-LCS-TR-728, Massachusetts Institute of
Technology, September 1997.

GKR04. Smriti Gupta, Bruce H. Krogh, and Rob A. Rutenbar. Towards formal
verification of analog designs. In ICCAD, pages 210–217, 2004.

KNP04. M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism 2.0: A tool for
probabilistic model checking. In QEST, pages 322–323. IEEE, 2004.

LS06. Andreas Bauer 0002, Martin Leucker, and Christian Schallhart. Moni-
toring of real-time properties. In FSTTCS, volume 4337 of LNCS 4337,
pages 260–272. Springer, 2006.

MNP08. Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal prop-
erties of discrete, timed and continuous behaviors. In Pillars of Computer

Science, pages 475–505, 2008.
MPVRV01. Fernando Medeiro, Belen Pérez-Verdú, and Angel Rodŕıguez-Vázquez.

Top-Down Design of High-Performance Sigma-Delta Modulators, chap-
ter 2. Kluwer Academic Publishers, 2001.

NM07. Dejan Nickovic and Oded Maler. Amt: A property-based monitoring tool
for analog systems. In FORMATS, pages 304–319, 2007.

Sch03. Richard Schreier. The delta-sigma toolbox version 6.0, January 2003.
Smi97. Steven W. Smith. The scientist and engineer’s guide to digital signal

processing. California Technical Publishing, San Diego, CA, USA, 1997.
SVA04. Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model

checking of black-box probabilistic systems. In CAV, LNCS 3114, pages
202–215. Springer, 2004.

SVA05. Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model
checking of stochastic systems. In CAV, LNCS 3576, pages 266–280, 2005.

Var85. Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. In FOCS, pages 327–338, 1985.

Wal45. A. Wald. sequential tests of statistical hypotheses. Annals of Mathematical

Statistics, 16(2):117–186, 1945.
YKNP06. H̊akan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman, and David

Parker. Numerical vs. statistical probabilistic model checking. STTT,
8(3):216–228, 2006.

You05. H̊akan L. S. Younes. Verification and Planning for Stochastic Processes

with Asynchronous Events. PhD thesis, Carnegie Mellon, 2005.
You06. H̊akan L. S. Younes. Error control for probabilistic model checking. In

VMCAI, LNCS 3855, pages 142–156. springer-verlag, 2006.
YS02. H̊akan L. S. Younes and Reid G. Simmons. Probabilistic verification of

discrete event systems using acceptance sampling. In CAV, LNCS 2404,
pages 223–235. Springer, 2002.

YS06. H̊akan L. S. Younes and Reid G. Simmons. Statistical probabilistic model
checking with a focus on time-bounded properties. Information and Com-

putation, 204(9):1368–1409, 2006.

