
Centre Fédéré en Véri�
ationTe
hni
al Report number 2008.100

Visibly Pushdown Transdu
ers
Jean-François Raskin, Frédéri
 Servais

http://www.ulb.a
.be/di/ssd/
fvThis work was partially supported by a FRFC grant: 2.4530.02

Visibly Pushdown Transducers ⋆

Jean-François Raskin1 and Frédéric Servais2

1 Computer Science Department,
2 Department of Computer & Decision Engineering (CoDE),

Université Libre de Bruxelles (U.L.B.)

Abstract. Visibly pushdown automata have been recently introduced by Alur

and Madhusudan as a subclass of pushdown automata. This class enjoys nice

properties such as closure under all Boolean operations and the decidability of

language inclusion. Along the same line, we introduce here visibly pushdown

transducers as a subclass of pushdown transducers. We study properties of those

transducers and identify subclasses with useful properties like decidability of type

checking as well as preservation of regularity of visibly pushdown languages.

1 Introduction

Visibly pushdown languages (VPL) have recently been proposed by Alur and Mad-

husudan in [3] as a subclass of context-free languages (CFL) with interesting closure

and decidability properties. While CFL are not closed under intersection nor under com-

plementation, VPL are closed under all Boolean operations, and the language inclusion

problem is decidable. VPL are expressive enough to model a large number of relevant

problems, for example those related to the analysis of programs with procedure calls or

to the formalization of structured documents (like XML documents). As a consequence,

VPL offer an appropriate theoretical framework to unify many known decidability re-

sults in those fields as well as opportunities to solve new problems. In [3], visibly push-

down automata (VPA) are defined as a subclass of the pushdown automata where stack

operations are restricted by the input word. VPA operate on words over a tagged alpha-

bet Σ̂ = Σ
c ⊎Σ

r ⊎Σ
i where Σ

c are call symbols, Σ
r are return symbols, and Σ

i are

internal symbols. Each time a call symbol is read, the automaton has to push a symbol

on the stack; each time a return symbol is read, the automaton has to pop a symbol from

the stack; and each time an internal symbol is read, the automaton must leave the stack

unchanged. VPA exactly recognize VPL.

Transducers are machines that model relations between words, i.e. they recognize

sets of pairs of words. Transducers transform languages into languages: let L be a set

of words, T a transducer then T (L) = {w | ∃v ∈ L : T accepts the pair (v, w)}.

There are many important applications of transducers. For example, while languages are

useful to formalize sets of XML documents (i.e. XML document types), transducers are

useful to formalize XML document transformations (e.g., XSLT) [9]. Motivated by this

⋆ This research was supported by the Belgian FNRS grant 2.4530.02 of the FRFC project “Cen-

tre Fédéré en Vérification” and by the project “MoVES”, an Interuniversity Attraction Poles

Programme of the Belgian Federal Government.

application, the type checking problem asks if all the words of L1 are translated into

words of L2 under a transducer T , i.e. whether T (L1) ⊆ L2. Transducers have also

been intensively used in the so-called regular model-checking [1, 5]. In that setting, the

states of a system are modeled by words, state sets by languages and state transitions

by transducers. So far, the concept of regular model-checking has only been applied to

regular languages (with the notable exception of [6]). Unfortunately some parametric

systems cannot be modeled in this setting and more powerful classes of transducers

with good decidability and closure properties are needed.

In this paper, we study several subclasses of pushdown transducers. In the spirit

of [3], we define subclasses of pushdown transducers by imposing restrictions on the

use of the stack and the transition relation. We study three main classes of pushdown

transducers. First, visibly pushdown transducers are pushdown transducers that operate

over pairs of words defined on a tagged alphabet Σ̂. Those transducers respect two

restrictions: (i) along the reading of a pair of words, either the head is moved only in one

of the two words (allowing deletion and insertion), or it is moved over a pair of symbols

of the same type (two calls, two returns, or two internals), (ii) when reading internals

the transducer leaves the stack unchanged, when reading calls it pushes a symbol on

the stack, when reading returns it pops a symbol from the stack. We show here that

unfortunately the type checking is undecidable for this class even if L1 and L2 are

VPL. They are not closed under composition and they do not preserve VPL, i.e. the

transduction of a VPL is not necessarily a VPL. Second, synchronized visibly pushdown

transducers are obtained from visibly pushdown transducers by imposing the following

additional restrictions: (i) when a call is deleted then the matching return is deleted, (ii)
when a call is inserted then a matching return is inserted, and (iii) when a call is copied

then the matching return is also copied. We show that this class of pushdown transducers

has a decidable type checking problem for VPL. This result is not trivial as we also

show that the transduction of a VPL with a synchronized visibly pushdown transducer

is not necessarily a VPL. This class of transducers is well suited to formally validate

XML document transformations. Indeed, opening and closing tags are modeled by calls

and returns respectively, and a transformation that inserts (respectively deletes) a new

opening tag will usually also insert (respectively delete) the corresponding closing tag.

The synchronized restriction to our transducer is therefore very natural in that context.

Finally, we define the class of fully synchronized visibly pushdown transducers as a

subclass of synchronized visibly pushdown transducers that, in addition to having a

decidable type checking problem, preserve VPL, and are closed under composition and

inverse. This class of transducers has all the properties required to extend the techniques

used in regular model-checking from regular languages to VPL.

2 Preliminaries

Basics An alphabet Σ is a finite set of symbols1, we note Σǫ for Σ ∪ {ǫ} (the alphabet

Σ together with the empty word symbol ǫ). The tagged alphabet over Σ is an alphabet,

noted Σ̂, which is equal to Σ
c ⊎ Σ

r ⊎ Σ
i, where Σ

c = {a | a ∈ Σ}, Σ
r = {a |

1 For technical reasons, we assume that all alphabets Σ in this paper are such that |Σ| ≥ 2.

a ∈ Σ} and Σi = {a | a ∈ Σ}.2 A word over Σ is a finite sequence of symbols

in Σ. A language over Σ is a set of words over Σ. In the rest of the paper, given

any alphabet Σ, we note RL(Σ), respectively CFL(Σ), the set of regular, respectively

context-free, languages over Σ. Let π be the function from Σ̂ into Σ defined as follows:

π(a) = π(a) = π(a) = a. We extend π to words: for w = a1a2 . . . an, π(w) =
π(a1)π(a2) . . . π(an), and to languages: π(L) = {π(w) | w ∈ L}. Let Σ1 ⊆ Σ2, for

w ∈ Σ∗
2 , ↓Σ1(w) ∈ Σ∗

1 returns the word w where the occurences of symbols in Σ2 \Σ1

have been erased. Finally, a stack alphabet Γ is a finite set of symbols that contains a

special symbol, noted ⊥, called the bottom-of-stack symbol.

Visibly pushdown languages A visibly pushdown automaton (VPA) [3] on finite

words over the tagged alphabet Σ̂ = Σc ⊎ Σr ⊎ Σi is a tuple A = (Q, Q0, Qf , Γ, δ)
where Q is a finite set of states, Q0 ⊆ Q, respectively Qf ⊆ Q, the set of initial

states, respectively final states, Γ the stack alphabet, and δ = δc ⊎ δr ⊎ δi where

δc ⊆ Q × Σc × Q × (Γ \ {⊥}) are the call transitions, δr ⊆ Q × Γ × Σr × Q

are the return transitions, and δi ⊆ Q × Σi × Q are the internal transitions. On a call

transition (q, a, q′, γ) ∈ δc, γ is pushed onto the stack and the control goes from q to

q′. On a return transition (q, γ, a, q′) ∈ δr, γ is popped from the stack (note that if ⊥
is the top of the stack then it is read but not popped). Finally, on an internal transition

(q, a, q′) ∈ δi, there is no stack operation. Accordingly, a run of a visibly pushdown

automaton A over the word w = a1 . . . al is a sequence {(qk, σk)}0≤k≤l, where qk

is the state and σk ∈ Γ ∗ is the stack at step k, such that q0 ∈ Q0, σ0 = ⊥, and

for each k < l, we have either: (i) (qk, ak+1, qk+1, γ) ∈ δc and σk+1 = γσk; (ii)
(qk, γ, ak+1, qk+1) ∈ δr and if γ '= ⊥ then σk = γσk+1 else σk = σk+1 = ⊥; or

(iii) (qk, ak+1, qk+1) ∈ δi and σk = σk+1. A run is accepting if ql ∈ Qf . A word w is

accepted by A if there exists an accepting run of A over w. L(A), the language of A,

is the set of words accepted by A. A language L over a tagged alphabet Σ̂ is a visibly

pushdown language if there is a VPA A over Σ̂ such that L(A) = L. We note VPL(Σ̂)
for the set of VPL over the tagged alphabet Σ̂.

Example 1. V2n = {anbn | n ≥ 0} is a VPL(Σ̂), while C2n = {anbn | n ≥ 0} is not.

Proposition 1 ([3]). Here are the main properties of VPL and VPA.

1. The class of VPL is closed under all Boolean operations.3 In particular, given

A, A1, A2 ∈ VPA we can compute in polynomial time a VPA B such that

L(B) = L(A1)∩L(A2), and in exponential time a VPA C such that L(C) = L(A).

2. Given A1, A2 ∈ VPA, the problem of deciding whether L(A1) ⊆ L(A2)
is EXPTIME-COMPLETE, when A2 is deterministic the problem is PTIME-

COMPLETE.

3. Given A ∈ VPA, we can decide, in polynomial time, whether L(A) = ∅.

4. Let C ∈ CFL(Σ), then there exists V ∈ VPL(Σ̂) such that π(V) = C.

2 We sometimes write a
c for a, a

r for a and a
i for a. We may also write a when the type of a is

clear from the context.
3 This is in sharp contrast with CFL that are not closed under intersection nor complement.

The following result states the undecidability of checking inclusion between a CFL

and VPL. To the best of our knowledge, the direction CFL into VPL is not established

in the literature. We give a full proof in the Appendix.

Theorem 1. Let C ∈ CFL and V ∈ VPL then checking whether C ⊆ V , and checking

whether V ⊆ C are undecidable problems.

Transduction relations and the type-checking problem A relation R ⊆ Σ∗ × Σ∗

is a transduction relation, or simply a transduction, over Σ, i.e. a set of pairs of words

over Σ. When R(v, w) holds, we sometimes call v the input and w the output of the

transduction. The transduction of a word v over Σ by a transduction relation R ⊆ Σ∗×

Σ∗ is the language {w | R(v, w)}, noted R(v). The transduction of a language L over

Σ by a transduction relation R ⊆ Σ∗ × Σ∗ is the language {w | ∃v ∈ L : R(v, w)},

noted R(L). The type checking problem asks, given an effective representation of two

languages L1 and L2, and an effective representation of a transduction relation R, to

establish if R(L1) ⊆ L2.

3 Visibly Pushdown Transducers

VPA are pushdown automata such that the input restrict the stack operations. Similarly

we define visibly pushdown transducers as pushdown transducers such that input and

output restrict the stack operations. Such a transducer will push, respectively pop, onto

the stack when it reads and/or write a call, respectively a return.

Definition 1 (VPT). A visibly pushdown transducer on finite words over Σ̂ is a tuple

T = (Q, Q0, Qf , Γ, δ) where Q is a finite set of states, Q0 ⊆ Q, respectively Qf ⊆ Q,

the set of initial states, respectively final states, Γ the stack alphabet, and δ = δc ⊎

δr ⊎ δi, with δc ⊆ Q × Σc
ǫ
× Σc

ǫ
× Q × (Γ \ {⊥}), δr ⊆ Q × Γ × Σr

ǫ
× Σr

ǫ
× Q,

δi ⊆ Q × Σi
ǫ
× Σi

ǫ
× Q. Moreover if (q, α, β, q′, γ) ∈ δc, (q, γ, α, β, q′) ∈ δr or

(q, α, β, q′) ∈ δi then α '= ǫ or β '= ǫ. The class of visibly pushdown transducer is

noted VPT.4

Definition 2 (Run of a VPT). A run of a VPT T over (v, w), where v = a1 . . . al and

w = b1 . . . bm are words on Σ̂, is a sequence {(qk, ik, jk, σk)}0≤k≤n, where qk is the

state at step k, ik, respectively jk, are the index of the last letter of v, respectively w, the

transducer has reached, and σk ∈ Γ ∗ is the stack, such that q0 ∈ Q0, i0 = 1, j0 = 1,

σ0 = ⊥, and for all k < n, let α = ǫ or α = aik
and β = ǫ or β = bjk

, ik+1 = ik + |α|,
jk+1 = jk + |β|, and we have either: (i) (qk, α, β, qk+1, γ) ∈ δc and σk+1 = γσk, (ii)
(qk, γ, α,β, qk+1) ∈ δr and if γ '= ⊥ then σk = γσk+1, else σk = σk+1 = ⊥, (iii)
(qk, α, β, qk+1) ∈ δi and σk = σk+1. A run is accepting if qn ∈ Qf , in = |v| + 1, and

jn = |w| + 1.

4 Note that we define transducers that operate over pairs of words defined on the same alphabet.

This is not restrictive: a transducer from words on an alphabet Σ1 to words on an alphabet Σ2

can be seen as a transducer from Σ1∪Σ2 to Σ1∪Σ2. In the following, we will abuse notations

and sometimes we will define transducers where the input and output alphabets differ.

We note !T " the transduction induced by T , it is the set of pairs (v, w) ∈ Σ̂∗ × Σ̂∗

such that there exists an accepting run of T on (v, w)5. A transduction relation R ⊆

Σ̂∗×Σ̂∗ is a visibly pushdown transduction if there exists T ∈ VPT such that R = !T ".

Example 2. The transducer Tdel of Fig. 1(a) deletes the calls a, respectively the returns

b, and replaces them with the internals a, respectively b, it further verifies that the num-

ber of deleted calls is equal to the number of deleted returns. Clearly, Tdel is a VPT

that transduces V2n into C2n (defined in Example 1), which is also obtained when Tdel

is applied on Σ̂∗ . The transducer Tins of Fig. 1(b) copies the calls a it encounters and

then inserts the same number of returns b, finally it renames the remaining returns b into

c. Then Tins is a VPT that transduces V2n into the language S3n = {anbncn | n ≥ 0}.

q0 q1 q2 q3 q4 q5 q6

a/ǫ, γ0 ǫ/a γ, b/ǫ ǫ/b γ0, b/ǫ ǫ/b

a/ǫ, γ

γ0, b/ǫ

γ, b/ǫ

(a) Tdel

q0 q1

γ, ǫ/b

a/a, γ γ, ǫ/b

⊥, b/c

(b) Tins

Fig. 1. Examples of VPT

Definition 3 (Inverse transducer). Given a VPT T = (Q, Q0, Qf , Γ, δ), we define its

inverse T−1 = (Q, Q0, Qf , Γ, δ′) with (i) (q1, β, α, q2, γ) ∈ δ′c ⇔ (q1, α, β, q2, γ) ∈

δc, (ii) (q1, γ, β,α, q2) ∈ δ′r ⇔ (q1, γ, α,β, q2) ∈ δr, and (iii) (q1, β, α, q2) ∈ δ′i ⇔

(q1, α, β, q2) ∈ δi.

Proposition 2 (Inverse transduction). Let T ∈ VPT, then !T−1" = !T "−1.

Proof. Any run of T on (v, w) can easily be transformed in a run of T−1 on (w, v) by

interchanging α with β and ik with jk. ⊓⊔

Lemma 1. For all C ∈ CFL(Σ̂), there exist T ∈ VPT(Σ̂) and V ∈ VPL(Σ̂) such that

T (V) = C.

Proof. In this proof we use the alphabet
ˆ̂
Σ which is the set {(ax)y | a ∈ Σ ∧ x, y ∈

{c, r, i}} and we make the hypothesis that Σ contains the letters c, r, and i. This is

without lost of generality as we make the hypothesis that our alphabets always contain

at least two letters.

First, by Proposition 1, there exists V ′ ∈ VPL(
ˆ̂
Σ) such that π(V ′) = C. With the

notations above, π is defined as follows: π((ax)y) = ax. Second, let us consider the

function τ1 :
ˆ̂
Σ → Σ̂ × Σ̂ defined as τ1((a

x)y) = xiay . This function codes any

character of
ˆ̂
Σ into a sequence of two characters of Σ̂. We extend the function τ1 to

words as follows: let w = a1 . . . an ∈
ˆ̂
Σ∗, τ1(w) = τ1(a1) . . . τ1(an). Given A′ a VPA

on
ˆ̂
Σ for V ′, it is easy to construct A a VPA on Σ̂ such that L(A) = τ1(L(A′)), since

5 In the sequel, we sometimes say that the transducer read the input v and write the output w.

τ1 maps a call on an internal followed by a call, maps a return on an internal followed

by a return, and maps an internal on two internals.

Third, let us consider the function τ2 : {ci, ri, ii}×Σ̂ → Σ̂ defined by: τ2(x
iay) =

ax. Clearly, for any word w ∈
ˆ̂
Σ∗, π(w) = τ2(τ1(w)). We are left to show that τ2 can be

defined as a VPT T . Here is the construction. First, T , when in state q, reads an internal

xi which determines the type of the ouput: a call if x = c, a return if x = r, and an

internal if x = i. Accordingly, it goes into qc, qr or qi respectively using the transitions

(q, ci, ǫ, qc) ∈ δi, (q, ri, ǫ, qr) ∈ δi or (q, ii, ǫ, qi) ∈ δi. Note that those transitions do

not move the head on the output (so erasing the internal xi). Then, T reads the next letter

ay and rewrites it into the output type defined by its current state, that is if the state is qc

then it writes (imposes to read) ac on the output, etc. There are nine cases to consider, (i)
read a call write a call, (ii) read a call write a return, (iii) read a call write an internal,

(iv) read a return write a call, and so on. For translation of one type of character to

another, we need to use two transitions that use first epsilon on output and then epsilon

on input. Here are two representative cases over the nine cases: (i) for ac into ac:

(qc, ac, ac, q, γ) ∈ δc, (ii) for ac into ar: (qr, ac, ǫ, qr
a, γ) ∈ δc, (qr

a,⊥, ǫ, ar, q) ∈ δr

and (qr
a, γ, ǫ, ar, q) ∈ δr. Clearly, T is a VPT. To complete the proof, a simple induction

shows that T (V) = τ2(V) = π(V ′) = C. Note that the VPT is not using the stack:

only one character is pushed on the stack and return transitions can always use this

character or the bottom character. As a matter of fact, the transduction τ2 is definable

by a finite state transducer on Σ̂. ⊓⊔

In the next proposition, we establish that the transduction and inverse transduction

of a VPL by a VPT is not necessarily a VPL nor even a CFL, and that the transduction

and inverse transduction of a RL by a VPT is not necessarily a VPL but it is always a

CFL. We note VPT(RL) = {T (R) | T ∈ VPT, R ∈ RL} and VPT(VPL) = {T (V) |
T ∈ VPT, V ∈ VPL}.

Proposition 3. VPL ! VPT(RL) ⊆ CFL ! VPT(VPL).

Proof. First, we know that VPT(RL) ⊆ CFL since it is true for the class of pushdown

transducers (which contains VPT). Second, to show that VPL ⊆ VPT(RL), for any

V ∈ VPL we construct a VPT that first ignores the input (taking only transitions that

are labelled by ǫ for the input), checks that the output is in V by simulating the VPA

that accepts V , and when it reaches the end of the output, it reads the input without

constraining the output using ǫ transitions on the output. When executing this transducer

on Σ̂∗, we get V . Third, to show that VPL (= VPT(RL), we consider Tdel of Example 2:

when executed on Σ̂∗ it returns C2n, a CFL which is not a VPL. Fourth, to prove CFL !

VPT(VPL), first by Lemma 1 we get CFL ⊆ VPT(VPL), second we consider the

transducer Tins of Example 2, it transduces V2n ∈ VPL into S3n (∈ CFL. ⊓⊔

In the next result states that the class of VPT is not closed under composition.

Corollary 1 (Composition). There exists T, T ′ ∈ VPT such that !T " ◦ !T ′" is not a

visibly pushdown transduction.

Proof. From Proposition 3, there are V ∈ VPL and T ∈ VPT such that T (V) /∈ CFL.

Also there exist R ∈ RL and T ′ ∈ VPT such that T ′(R) = V since VPL ⊆ VPT(RL).
So !T " ◦ !T ′"(R) /∈ CFL but then it cannot be a VPT as VPT(RL) ⊆ CFL. ⊓⊔

The next theorem shows that the type checking problem of VPT against VPL is

undecidable.

Theorem 2. For A1, A2 ∈ VPA and T ∈ VPT, it is undecidable whether T (L(A1)) ⊆
L(A2).

Proof. Let C ∈ CFL(Σ̂), by Lemma 1 there exist V ∈ VPL(Σ̂) and T ∈ VPT such

that T (V) = C. Therefore we have that T (V) ⊆ V ′ iff C ⊆ V ′ which is undecidable

as established in Theorem 1. ⊓⊔

4 Synchronized Visibly Pushdown Transducers

We define here a restricted class of transducers that allow typechecking. The idea is to

synchronize the insertion, respectively the deletion, of a call with the insertion, respec-

tively the deletion, of the matching return.

Definition 4 (SVPT). A synchronized visibly pushdown transducer is a VPT such that

Γ = Γcopy ⊎Γdel ⊎Γins ⊎{⊥} and such that if (q,α, β, q′, γ) ∈ δc or (q, γ, α, β, q′) ∈
δr then either: (i) α = ǫ, β '= ǫ and γ ∈ Γins ∪ {⊥}, (ii) α '= ǫ, β = ǫ and γ ∈
Γdel ∪ {⊥}, or (iii) α '= ǫ, β '= ǫ and γ ∈ Γcopy ∪ {⊥}.6 The set of synchronized

visibly pushdown transducer is noted SVPT.

Example 3. Tdel of Example 2 is a SVPT with Γdel = Γ,Γins = ∅ and Γcopy = ∅.

On the other hand, Tins is not a SVPT since γ is used for inserting, see transition

(q0, γ, ǫ, b, q1), and for copying, see transition (q0, a, a, q0, γ).

The next proposition states the class SVPT is closed by inverse.

Proposition 4. Let T ∈ SVPT then T−1 ∈ SVPT.

Proof. T−1 is a VPT (Proposition 2). Moreover, with Γ = Γ ′

copy ⊎ Γ ′

del ⊎ Γ ′

ins ⊎ {⊥}
where Γ ′

copy =Γcopy , Γ ′

del =Γins and Γ ′

ins =Γdel , this transducer is synchronized. ⊓⊔

In the next proposition, we establish that the transduction or inverse transduction

of a VPL by a SVPT is not always a VPL. We note SVPT(RL) = {S(R) | S ∈
SVPT, R ∈ RL} and SVPT(VPL) = {S(V) | S ∈ SVPT, V ∈ VPL}.

Proposition 5. VPL ! SVPT(RL) = SVPT(VPL) ! CFL.

Proof. First, for VPL ! SVPT(RL), consider Tdel of Example 2, it transduces a RL into

a CFL that is not a VPL (see Proposition 3), Tdel is a SVPT. Second, for SVPT(RL) =
SVPT(VPL), consider any S ∈ SVPT and A ∈ VPA. Let V = L(A). We construct

S′ ∈ SVPT such that S′(Σ̂∗) = S(V). More concretely, we impose that, for all w ∈
Σ̂∗ we have that S′(w) = S(w) when w ∈ V and S′(w) = ∅ otherwise. To achieve

that, S′ simulates S and A: it translates w as S does and, in parallel, it simulates A on w.

A run of S′ is accepting if the corresponding runs in S and A are accepting. It is crucial

to note that the parallel simulation of the stacks of S and A is only possible because S

is a SVPT: each time that it copies, respectively deletes or inserts, a call, it will copy,

respectively delete or insert the matching return. As a consequence the content of the

stack of S and A can be represented as pairs of symbols as follows:

6 As SVPT are VPT, call transitions are not allowed to push ⊥.

– call-return copy: when A and S are moving and pushing a symbol γ and γ′ ∈ Γcopy

on their respective stack, S′ pushes the symbol (γ, γ′). As S is a SVPT and γ′ ∈
Γcopy , this ensures that when we reach the matching return, S copies the return,

and the pair (γ, γ′) will be popped from the stack. This simulates the behavior of

the stacks of A and S. From there, S′ continues the parallel simulation of A and S.

– call-return delete: when A and S are moving and pushing a symbol γ and γ′ ∈ Γdel

on their respective stack, S′ pushes the symbol (γ, γ′). As S is a SVPT and γ′ ∈
Γdel , this ensures that when we reach the matching return, S will delete the return,

and the pair (γ, γ′) will be popped from the stack. This simulates the behavior of

the stacks of A and S. From there, S′ continues the parallel simulation of A and S.

– call-return insert: on a call-return insert, only S is moving. It pushes a symbol

γ′ ∈ Γins on its stack. To simulate this, S′ pushes the pair (γǫ, γ
′) on its stack, γǫ

being a new stack symbol that does not belong to the stack symbols of A. As γ′

belongs to Γins , we know that the matching return will be inserted (so no input will

be read and A will not move), at that time S′ will pop the pair (γǫ, γ
′), not moving

on the input. This simulates the behavior of the stacks of A and S. From there, S′

continues the parallel simulation of A and S.

– Other cases are treated similarly.

Third, SVPT(VPL) ⊆ CFL is a consequence of the facts that SVPT(RL) ⊆
VPT(RL) ⊆ CFL and SVPT(RL) = SVPT(VPL). Finally, SVPT(VPL) #= CFL is

a consequence of the fact that typechecking SVPT against VPL is decidable (Theo-

rem 3, see below) and the undecidability of checking the inclusion of a CFL into a VPL

(Theorem 1). ⊓⊔

Non-deleting and non-inserting transducers Two important subclasses of SVPT are

the class of transducers that do not insert and the ones that do not delete.

Definition 5. A non-inserting SVPT T = (Q, Q0, Qf , Γ, δ) is a SVPT such that (i)
δc ⊆ Q × Σc × Σc

ǫ
× Q × Γ , (ii) δr ⊆ Q × Γ × Σr × Σr

ǫ
× Q and (iii) δi ⊆

Q × Σi × Σi
ǫ
× Q (and thus Γins = ∅). This class is noted SVPTni. A non-deleting

SVPT T = (Q, Q0, Qf , Γ, δ) is a SVPT such that (i) δc ⊆ Q × Σc
ǫ
× Σc × Q × Γ ,

(ii) δr ⊆ Q×Γ ×Σr
ǫ
×Σr ×Q and (iii) δi ⊆ Q×Σi

ǫ
×Σi ×Q (and thus Γdel = ∅).

This class is noted SVPTnd.

Proposition 6. Let T ∈ SVPT,

1. T ∈ SVPTnd iff T−1 ∈ SVPTni,

2. if T ∈ SVPTnd and V ∈ VPL then T (V) ∈ VPL,

3. if T ∈ SVPTni and V ∈ VPL then T−1(V) ∈ VPL.

Proof. The first assertion is a direct consequence of Proposition 2 stating that T−1 is

also a VPT and the fact that the inverse transducer of a non-inserting, respectively non-

deleting, transducer is obviously a non-deleting, respectively non-inserting, transducer.

Our proof for the second assertion is constructive. Given the SVPTnd T , and the

VPA Ain for V , we construct a VPA Aout that accepts T (V). We sketch here the main

arguments of the proof, the full detailed proof is given in Appendix. On a word w, Aout

guesses a word v and checks that the pair (v, w) ∈ !T " and v ∈ V . For that, the VPA

Aout simulates in parallel the execution of Ain on v and the execution of T on the

pair (v, w), its run is accepting if the simulated runs in Ain and T are accepting. The

main delicate part of the proof is to show that Aout can simulate the two stacks while

respecting the restrictions imposed to a VPA. The parallel simulation of the stack of Ain

and T is possible because T is a SVPTnd: each time that it copies, respectively inserts, a

call, it will copy, respectively insert, the matching return. As a consequence, the content

of the stacks of Ain and T can be represented as pairs of symbols as follows:

– call-return copy: when Ain and T are moving and pushing a symbol γin and γT ∈

ΓT
copy on their respective stack, Aout pushes the symbol (γin , γT) and reads in w

the same symbol as written by T . As T is a SVPTnd and γT ∈ ΓT
copy , this ensures

that when we reach the matching return in v (and Ain pop γin), T copies the return

in w and pop γT . At that time, Aout pops the pair (γin , γT) from its stack and

reads in w the same symbol as written by T . This simulates the behavior of the

stacks of Ain and T . From there, Aout continues the parallel simulation of Ain and

T .

– call-return insert: on a call-return insert, only T is moving. It pushes a symbol

γT ∈ ΓT
ins on its stack and write β. To simulate this, Aout reads β and pushes

the pair (γǫ, γ
T) on its stack, γǫ being a new stack symbol that does not belong

to the stack symbols of Ain . As γT belongs to ΓT
ins , we know that the matching

return in w, say β′, will be inserted (no letter will be read by T and so Ain will not

move), at that time Aout will pop the pair (γǫ, γ
T) when reading β′. This simulates

the behavior of the stacks of Ain and T . From there, Aout continues the parallel

simulation of Ain and T .

Note that Aout could not simulate a transducer that deletes matching calls and returns

as it would have to modify its stack while not reading any letter, which is not allowed

in a VPA. The last assertion is a direct consequence of the first and the second. ⊓⊔

We can now prove that type checking is decidable for SVPT.

Theorem 3. Let A1, A2 ∈ VPA and T ∈ SVPT, the problem of checking if

T (L(A1)) ⊆ L(A2) is EXPTIME-COMPLETE, the problem is PTIME-COMPLETE

when A2 is deterministic.

Proof. We know that checking inclusion between two VPL is EXPTIME-HARD (Propo-

sition 1), if we choose T to be the identity transducer (which is a SVPT), we obtain the

hardness part. For the easiness part, we first show that T is equivalent to the composi-

tion of two transducers: !T " = !Tni" ◦ !Tnd", which are respectively non-inserting and

non-deleting.

Tnd will behave as T with the essential difference that whenever T deletes a call,

a return, respectively an internal, Tnd replaces it with ǫc, ǫr, respectively ǫi which are

new call, return, respectively internal symbols that do not belong to the alphabet Σ̂.

More formally, let T = (Q, Q0, Qf , Γ, δ) over Σ̂, Tnd is a transducer from Σ̂ into

Σ̂nd = Σc
nd ⊎ Σr

nd ⊎ Σi
nd where Σc

nd = Σc ⊎ {ǫc}, Σr
nd = Σr ⊎ {ǫr}, Σi

nd =
Σi ⊎ {ǫi}. We define Tnd = (Q, Q0, Qf , Γnd , δnd), such that Γ nd = Γ nd

copy ⊎ Γ nd
ins ⊎

{⊥}, where Γ nd
copy = Γcopy ⊎ Γdel , and Γ nd

ins = Γins , δnd = δ′c ∪ δ′r ∪ δ′i, δ′c =

{(q, α, b, q′, γ) ∈ δc | α ∈ Σ̂c
ǫ
, b ∈ Σ̂c} ∪{ (q, a, ǫc, q′, γ) | (q, a, ǫ, q′, γ) ∈ δc, a ∈

Σ̂c}, δ′r = {(q, γ, α, b, q′) ∈ δr | α ∈ Σ̂r
ǫ
, b ∈ Σ̂r}∪ {(q, γ, a, ǫr, q′) | (q, γ, a, ǫ, q′) ∈

δr, a ∈ Σ̂r}, δ′i = {(q, α, b, q′) ∈ δi | α ∈ Σ̂i
ǫ
, b ∈ Σ̂i} ∪ {(q, a, ǫi, q′) | (q, a, ǫ, q′) ∈

δi, a ∈ Σ̂i}. Note that Tnd does not erase and so the partition of the stack symbols

is different from the one for T , and clearly we have Tnd ∈ SVPTnd. Furthermore, by

construction, we have that for all (w1, w2) ∈ !T ", there exists w3 such that (w1, w3) ∈

!Tnd" and w2 = ↓Σ̂(w3), and conversely, for all (w1, w3) ∈ !Tnd", (w1, ↓
Σ̂(w3)) ∈

!T ". As T is a SVPT, for all w ∈ Tnd(Σ̂∗), w is such that the matching return of every

ǫc is an ǫr, and conversely. This property is easily proved by induction on the length of

runs of Tnd . We say that those words are synchronized on the pair (ǫc, ǫr).
We define the transducer Tni. For all w1 that are synchronized on the

pair (ǫc, ǫr), the transducer accepts the pairs (w1, ↓
Σ̂(w1)) ∈ Σ̂nd × Σ̂.

Clearly, this transduction relation is realized by the following transducer Tni =
({q}, {q}, {q}, {γcopy , γdel ,⊥}, δni), on (Σ̂ ∪ {ǫc, ǫr, ǫi}) × Σ̂, such that δni =
δ′′c ∪ δ′′r ∪ δ′′i , δ′′c = {(q, a, a, q, γcopy) | a ∈ Σc} ∪ {(q, ǫc, ǫ, q, γdel)}, δ′′r =
{(q, γcopy , a, a, q) | a ∈ Σr} ∪ {(q, γdel , ǫ

r, ǫ, q)} ∪ δ′′r = {(q,⊥, a, a, q) | a ∈
Σr} ∪{ (q,⊥, ǫr, ǫ, q)}, and δ′′i = {(q, a, a, q) | a ∈ Σi} ∪ {(q, ǫi, ǫ, q)} which is in

the class SVPTni.
7 Clearly, !T " = !Tni" ◦ !Tnd".

To finish the proof, we consider the following equivalence: T (L(A1)) ⊆ L(A2) ⇔
Tnd(L(A1)) ∩ T−1

ni (L(A2)) = ∅. The proof of Proposition 6 tells us that we can con-

struct, in deterministic polynomial time in the size of Tnd and of A1, a VPA B1 that

accepts the language Tnd(L(A1)). Also, Proposition 1 tells us that we can compute, in

deterministic exponential time in the size of A2, an automaton B2 that accepts L(A2)
(in polynomial time if A2 is deterministic), and we can construct, in deterministic poly-

nomial time in the size of B2 and T−1

ni , a VPA B3 that accepts T−1

ni (L(A2)). Finally,

checking emptiness of intersection between two VPA can be done in deterministic

polynomial time (Proposition 1). This concludes our proof of EXPTIME-EASINESS

(PTIME-EASINESS if A2 is deterministic). ⊓⊔

The following proposition states that any CFL can be obtained by applying two

SVPT on a VPL.

Proposition 7. For all C ∈ CFL(Σ̂), there exist V ∈ VPL(Σ̂), T1, T2 ∈ SVPT such

that T2(T1(V)) = C.

Proof. First, the proof of Lemma 1 tells us that there exists V ∈ VPL(Σ̂) such that

τ2(V) = C, where τ2 : {ci, ri, ii} × Σ̂ → Σ̂ is defined as: τ2(x
iay) = ax. We now

show that τ2 can be expressed as the composition of two SVPT. We decompose τ2 into

the following two functions. First, τ3 : {ci, ri, ii} × Σ̂ → {ci, ri, ii} × Σ̂i defined

as: τ3(x
iay) = xiai. Second, τ4 : {ci, ri, ii} × Σ̂i → Σ̂ defined as: τ4(x

iai) = ax.

Clearly, those two functions can be expressed as SVPT and τ2 = τ4 ◦ τ3. ⊓⊔

As a consequence of Proposition 7 and Theorem 1, we cannot type check the composi-

tion of two SVPT against VPL.

7 Note that without the hypothesis of synchronized on the pair (ǫc, ǫr), there is no SVPTni that

realizes ↓Σ̂ , that is the reason why this construction can not be generalized when T is a VPT.

Theorem 4. Let A1, A2 ∈ VPA and T1, T2 ∈ SVPT, it is undecidable whether

T1(T2(L(A1))) ⊆ L(A2).

Fully synchronized visibly pushdown transducers We finish this section by intro-

ducing a class of VPT that maintain regularity, are closed under inverse and under

composition and for which type checking is decidable.

Definition 6 (FSVPT). A fully synchronized visibly pushdown transducer is a synchro-

nized visibly pushdown transducer which is both non-inserting and non-deleting. This

class is noted FSVPT.

Theorem 5. Let T ∈ FSVPT, then:

1. VPL preservation: for any V ∈ VPL, T (V) ∈ VPL;

2. Inverse: T−1 ∈ FSVPT;

3. Composition: for any T1 ∈ FSVPT there exists T2 ∈ FSVPT such that !T2" =
!T1" ◦ !T ";

4. Decidable type-checking: given two VPA A1, A2, deciding T (L(A1)) ⊆ L(A2) is

EXPTIME-COMPLETE.

Note that FSVPT = SVPTnd ∩ SVPTni, this class is exactly the class of VPT that

do not delete nor insert. Moreover, we could define finite state transducers to trans-

duce words on Σ̂, such that calls are mapped on calls, returns on returns, and internals

on internals. This class would be a strict subclass of FSVPT as such automata would

translate languages from RL(Σ̂) into RL(Σ̂) while FSVPT can transduce languages

from RL(Σ̂) into languages that are not in RL(Σ̂). Finally, if T is a FSVPT then it can

be seen as a VPA that works on pairs of symbols (of the same type), and so, equivalence

between FSVPT is EXPTIME-COMPLETE.

5 Conclusion

In this paper, we have identified two interesting sub-classes of pushdown transduc-

ers. SVPT (synchronized visibly pushdown transducer) is a powerful subclass with a

decidable (EXPTIME-COMPLETE) type checking problem against VPL. This positive

result is surprising as we have shown that SVPT do not preserve VPL. Also, the class

of SVPT is not closed under composition. This has triggered the definition of FSVPT

(fully synchronized visibly pushdown transducers), this class of transducers enjoys nice

properties like preservation of VPL, closure to composition and decidable (EXPTIME-

COMPLETE) type checking problem against VPL.8

Alur and Madushudan have shown in [4] that VPL are equivalent to regular lan-

guages of nested words. Our results can be rephrased in this setting as well. In [2], Alur

has studied the relation between VPL and tree languages. In future work, we will study

8 A. Thomo et al. defined in [11] a class of visibly pushdown transducers equivalent to ours.

However, their article does not study this class of transducers per se and they incorrectly states

that VPT maintains VPL in contradiction with our Proposition 3.

in details the relation between the transducers defined on regular tree languages, as de-

fined in [7, 8], and our transducers. It seems pretty clear that their expressive power

are incomparable but a fine comparison requires a large effort of formalization and is

beyond the subject of this paper. As already said, those works on transducers were of-

ten motivated by the application in XML, we will study the practical advantages and

drawbacks of our transducers for that application in future work.

In [6], Fisman and Pnueli use context-free languages for extending regular model-

checking. CFL are used to model the set of initial states of the system, the transition

relation as well as the specification (the set of good states) are given by finite state trans-

ducers and automata, respectively. We conjecture that FSVPT can be used to rephrase

and extend those results by offering an unified framework for regular model-checking

in the context of VPL, as FSVPT are preserving VPL. We will investigate this important

application in future work.

Acknowledgement We want to thank Laurent Van Begin for suggesting the main idea

of the proof for Theorem 1 and Ahmed Bouajjani for pointing us the paper of Fisman

and Pnueli.

References

1. P. Abdulla, A. Legay, J. d’Orso, and A. Rezine. Tree regular model checking: A simulation-

based approach. J. Log. Algebr. Program., 69(1-2):93–121, 2006.

2. R. Alur. Marrying words and trees. In PODS, pages 233–242, 2007.

3. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages 202–211, 2004.

4. R. Alur and P. Madhusudan. Adding nesting structure to words. In DLT, pages 1–13, 2006.

5. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In CAV, pages

403–418, 2000.

6. D. Fisman and A. Pnueli. Beyond regular model checking. In FSTTCS, pages 156–170,

2001.

7. S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro tree transducers.

In PODS, pages 283–294, 2005.

8. W. Martens and F. Neven. Typechecking top-down uniform unranked tree transducers. In

ICDT, pages 64–78, 2003.

9. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In PODS, pages

11–22, 2000.

10. M. Minsky. Finite and Infinite Machines. Englewood Cliffs, N.J., Prentice-Hall, 1967.

11. A. Thomo, S. Venkatesh, and Y. Ying Ye. Visibly pushdown transducers for approximate

validation of streaming XML. In FoIKS, pages 219–238, 2008.

6 Appendix

6.1 Undecidability of inclusion between CFL and VPL

Lemma 2. Let L ∈ CFL and L′ ∈ VPL then L ⊆ L′ and L′ ⊆ L are undecidable.

Proof. The undecidability L′ ⊆ L is a direct consequence of the undecidability of the

universality of context-free languages and the fact that Σ∗ ∈ VPL.

On the other hand, we reduce the reachability problem of a 2CM to L ∩ L′ = φ

for VPL and CFL. Then, we can deduce that L ⊆ L′ is undecidable since VPL can be

complemented.

A two-counter machine C , 2CM for short, is a tuple 〈c1, c2, L, Instr〉 where (i)
c1, c2 are two counters taking their values in N (ii) L = {l1, l2, ..., lu} is a finite non-

empty set of u locations (iii) Instr is a function that labels each location l ∈ L with an

instruction that has one of the three following forms where j ∈ {1, 2} and l′ ∈ L:

– l : cj := cj + 1; goto l′;, is an increment and inst type(l) = incj

– l : cj := cj − 1; goto l′;, is a decrement and inst type(l) = decj

– l : if cj = 0 : goto l′; else goto l′′;, is a zero-test and inst type(l) = jzj.

A configuration of C is a tuple 〈loc, v1, v2〉 where loc ∈ L and v1, v2 are natural

numbers giving the valuation of c1 and c2. A computation, γ, is a finite or infinite se-

quence of configurations 〈loc1, v
1
1 , v2

1〉, 〈loc2, v
1
2 , v2

2〉 . . . such that: (i) loc1 = l1, v
1
1 =

0 and v2
1 = 0 and (ii) for each i ∈ N, i < |γ| we have 〈loci+1, v

1
i+1, v

2
i+1〉 is the con-

figuration obtained by applying Instr(loci) to the configuration 〈loci, v
1
i , v2

i 〉. Minsky

proved the undecidability of the reachability problem for 2CM [10].

Given the above defined 2CM, we define Σc = {inc1, nok1}, Σ
r =

{dec1, jz1}, Σ
i = {ok1, dec2, inc2, jz2, ok2, nok2}, Σ̂ = Σc ∪ Σr ∪ Σi. We as-

sociate to any finite run of C,

ρ = (〈loci, v
1
1 , v2

1〉, . . . , 〈lock, v1
k, v2

k〉), a word on Σ, w(ρ) = w1 · . . . ·wk−1, where wi

is defined as:

wi =







insi if inst type(loci) = insi (= jzj
jzj okj if inst type(loci) = jzj and test is true

jzj nokj if inst type(loci) = jzj and test is false

(1)

where j ∈ {1, 2}.

We construct a VPL, A = 〈Q, Q0, Γ, δ, QF 〉, that accept all words w(ρ) associ-

ated with a run ρ that reaches lf (it may accept other words as well). This VPL on Σ̂

simulates the first counter of C but guesses the outcome of zero tests on the second

counter:

– Γ = {⊥,1}
– Q = L ∪ {(l, a)|l ∈ L, a ∈ {⊥1,⊥2,1,2}} - States (l,⊥1) allows to read the

internal ok1 and (l,1) allow only to push 1 and read the call nok1. States (l,⊥2)
and (l,2) allow only to go to state l when reading the internals ok2 and nok2,

respectively.

– Q0 = {l1}
– QF = {lf}
– δ ⊆ (Q×Σc ×Q× Γ) ∪ (Q× Γ ×Σr ×Q}) ∪ (Q×Σi ×Q) such that for any

l ∈ L if inst type(l) =:

• Inc1 then (l, Inc1, l
′,1) ∈ δc;

• Dec1 then (l,1, Dec1, l
′) ∈ δr;

• jz1 then (l, jz1,⊥, (l′,⊥1)) ∈ δr and ((l′,⊥1), ok1, l
′) ∈ δc (test evaluates to

true iff stack is empty), (l,1, jz1, (l
′′,1)) ∈ δr and ((l′′,1), nok1, l

′′,1) ∈ δc

(test evaluates to false iff stack not empty);

• Inc2 then (l, Inc2, l
′) ∈ δi;

• Dec2 then (l, Dec2, l
′) ∈ δi;

• jz2 then (l, jz2, (l
′,⊥2)) ∈ δi and ((l′,⊥2), ok2, l

′) ∈ δi (guessing test eval-

uates to true), (l, jz2, (l
′′,2)) ∈ δr and ((l′′,2), nok2, l

′′) ∈ δi (guessing test

evaluates to false).

Finally, the second counter is simulated by a PDA B in the same spirit as A simu-

lates the first counter. As the PDA does not have to comply with partition of the alpha-

bet, it pushes when it reads a Inc2, it pops when it reads Dec2, and it leaves the stack

unchanged on all other symbols. The conjunction of the constraints expressed by the

VPA and the PDA encodes exactly the definition of the executions of the two-counter

machine.

6.2 SVPTnd(L) ∈ VPL

Definition 7. Let σ ∈ Γ ∗ and σ′ ∈ (Γ ∪ {γǫ})
∗. We write σ ≡ σ′ iff σ′ =↓Γ (σ).

Definition 8. Let σ = (γ1, γ
′

1
) . . . (γn, γ′

n), then we define π1(σ) = γ1 . . . γn and

π2(σ) = γ′

1
. . . γ′

n.

We can now prove the following property.

Proposition 8. Let T ∈ SVPTnd and L ∈ VPL then T (L) ∈ VPL.

Proof. Let Ain = (Qin, Qin
0

, Qin
f , Γ in, δin) a VPA on Σ̂ = Σc ⊎ Σr ⊎ Σi with

L(Ain) = L, T = (QT , QT
0
, QT

f , ΓT , δT) a SVPTnd, and let us define Aout =

(Qout, Qout
0

, Qout
f , Γ out, δout) as follow:

– Qout = Qin×QT , Qout
0

= Qin
0
×QT

0
, Qout

f = Qin
f ×QT

f , Γ out = ((Γ in \{⊥})×

ΓT
copy) ∪ ({γǫ} × ΓT

ins) ∪ {(⊥,⊥)}, the special bottom-of-stack element is noted

(⊥,⊥).
– Call transitions: ((qin

1
, qT

1
), b, (qin

2
, qT

2
), (γin, γT)) ∈ δout

c iff ∃a ∈ Σc :
(qin

1
, a, qin

2
, γin) ∈ δin

c ∧ (qT
1
, a, b, qT

2
, γT) ∈ δT

c or qin
1

= qin
2

, γin = γǫ and

(qT
1
, ǫ, b, qT

2
, γT) ∈ δT

c . Observe that we always have (γin, γT) ∈ Γ out\{(⊥,⊥)}.

Specially, never (⊥, γT) nor (γin,⊥) are put on the stack.

– Return transitions: ((qin
1

, qT
1
), (γin, γT), b, (qin

2
, qT

2
)) ∈ δout

r iff one of the 3 cases

is true: (i) ∃a ∈ Σr : (qin
1

, γin, a, qin
2

) ∈ δin
r , (qT

1
, γT , a, b, qT

2
) ∈ δT

r and

(γin, γT) ∈ Γ out, (ii) qin
1

= qin
2

, γin = γǫ, (qT
1
, γT , ǫ, b, qT

2
) ∈ δT

r and γT += ⊥,

or (iii) (qT
1
,⊥, ǫ, b, qT

2
) ∈ δT

r and (γin, γT) = (⊥,⊥).

– Internal transitions: ((qin
1 , qT

1), b, (qin
2 , qT

2)) ∈ δout
i iff ∃a ∈ Σi : (qin

1 , a, qin
2) ∈

δin
i ∧ (qT

1 , a, b, qT
2) ∈ δT

i or qin
1 = qin

2 and (qT
1 , ǫ, b, qT

2) ∈ δT
i .

Note that all the (γin, γT) involved in the definition above are in Γ out, that means that

either (γin, γT) ∈ (Γ in × ΓT
copy) or (γin, γT) ∈ ({γǫ}× ΓT

ins).
Now we check that L(Aout) = T (L).

[L(Aout) ⊆ T (L)]. We prove by induction (on the length of a run of Aout) that if we

have a run ρout = (qout
0 , σout

0) . . . (qout
k , σout

k) of Aout on vk (a word of length k) then

there exist

– uk ∈ Σ̂∗ a word of length j,

– ρ = (qin
0 , σin

0) . . . (qin
j , σin

j) a run of Ain on uk,

– ρT = (qT
0 , i0, j0, σ

T
0) . . . (qT

k , ik, jk, σT
k) a run of T on (uk, vk),

such that, (i) qout
k = (qin

j , qT
k), (ii) σin

j ≡ π1(σ
out
k) and (iii) σT

k = π2(σ
out
k). Note that

if the top of the stack σout
k is in ((Γ in \ {⊥}) × ΓT

copy) then (ii) implies that the top of

σin
j is equal to the top of π1(σ

out
k).

[Induction Basis] If |ρout| = 1, then it is of the form ρout = ((qin, qT), (⊥,⊥)),
which is a run on v0 = ǫ, we have:

– u0 = ǫ,

– ρ = (qin,⊥) is a run of Ain on u0,

– ρT = (qT , 1, 1,⊥) is a run of T on (u0, v0).

Moreover, (i) qout
0 = (qin, qT) = (qin

0 , qT
0), (ii) π1(σ

out
0) = π1((⊥,⊥)) ≡ ⊥ = σin

and (iii) π2(σ
out
0) = π2((⊥,⊥)) = ⊥ = σT .

[Inductive Step] We suppose it is true for all |ρout
k | = k and let’s show it is true if

|ρout
k+1

| = k + 1. Let ρout
k+1

= (qout
0 , σout

0) . . . (qout
k , σout

k)(qout
k+1

, σout
k+1

) be a run of Aout

on vk+1 = b1 . . . bk+1.

We know by induction that there are uk = a1 . . . aj ∈ Σ̂∗,

ρin
k = (qin

0 , σin
0) . . . (qin

j , σin
j) a run of Ain on uk, and ρT

k =

(qT
0 , i0, j0, σ

T
0) . . . (qT

k , ik, jk, σT
k) a run of T on (uk, vk) with vk = b1 . . . bk,

such that, (i) qout
k = (qin

j , qT
k), (ii) σin

j ≡ π1(σ
out
k) and (iii) σT

k = π2(σ
out
k).

There are six types of transition to consider:

1. Call transition: σout
k+1

= (γin, γT)σout
k and (qout

k , bk+1, q
out
k+1

, (γin, γT)) ∈ δout
c ,

with qout
k+1

= (qin
j+1, q

T
k+1

), then either:

– Call copy: (γin, γT) ∈ ((Γ in \{⊥})×ΓT
copy), ∃a ∈ Σc : (qin

j , a, qin
j+1, γ

in) ∈

δin
c and (qT

k , a, bk+1, q
T
k+1

, γT) ∈ δT
c , in that case:

• uk+1 = uka,

• ρin
k+1

= ρin
k (qin

j+1, γ
inσin

j) is a run of Ain on uk+1,

• ρT
k+1

= ρT
k (qT

k+1
, ik + 1, jk + 1, γT σT

k) is a run of T on (uk+1, vk+1).

If we note σin
k+1

= γinσin
k , σT

k+1
= γT σT

k , we can check that the required

induction properties are preserved: (i) qout
k+1

= (qin
j+1, q

T
k+1

), (ii) π1(σ
out
k+1

) =

γinπ1(σ
out
k) ≡ γinσin

j = σin
j+1, (iii) π2(σ

out
k+1

) = γπ2(σ
out
k) = γσT

k = σT
k+1

,

or

– Call insert: (γin, γT) ∈ ({γǫ} × ΓT
ins), qin

j = qin
j+1 and

(qT
k , γT , ǫ, bk+1, q

T
k+1

) ∈ δT
r , in that case:

• uk+1 = uk,

• ρin
k+1

= ρin
k is a run of Ain on uk+1,

• ρT
k+1

= ρT
k (qT

k+1
, ik, jk + 1, γT σT

k) is a run of T on (uk+1, vk+1).
If we note σin

j+1 = σin
j , σT

k+1
= γT σT

k , we can check that the required in-

duction properties are preserved: (i) qout
k+1

= (qin
j+1, q

T
k+1

), (ii) π1(σ
out
k+1

) =

π1((γǫ, γ
T)σout

k) = π1(σ
out
k) ≡ σin

j = σin
j+1, (iii) π2(σ

out
k+1

) = γπ2(σ
out
k) =

γσT
k = σT

k+1
.

2. Return transition: σout
k = (γin, γT)σout

k+1
and (qout

k , (γin, γT), bk+1, q
out
k+1

) ∈ δout
r ,

with qout
k+1

= (qin
j+1, q

T
k+1

), then either:

– Matched return copy: (γin, γT) ∈ ((Γ in \ {⊥}) × ΓT
copy), ∃a ∈ Σr :

(qin
j , γin, a, qin

j+1) ∈ δr and (qT
k , γT , a, bk+1, q

T
k+1

) ∈ δT
r , in that case, if we

pose γinσin
j+1 = σin

j and γT σT
k+1

= σT
k then we have:

• uk+1 = uka,

• ρin
k+1

= ρin
k (qin

j+1, σ
in
j+1) is a run of Ain on uk+1 (indeed, by induction

properties (i) and (ii) before the last transition the automaton is in state qin
j

and the stack as a γin on top by induction hypothesis),

• ρT
k+1

= ρT
k (qT

k+1
, ik + 1, jk + 1, σT

k+1
) is a run of T on (uk+1, vk+1)

(indeed, by induction properties (i) and (iii) before the last transition the

transducer is in state qT
k and the stack as a γT on top by induction hypoth-

esis).
We can check that the required induction properties are preserved: (i) qout

k+1
=

(qin
j+1, q

T
k+1

), (ii) γinπ1(σ
out
k+1

) = π1((γ
in, γT)σout

k+1
) = π1(σ

out
k) ≡ σin

j =

γinσin
j+1, and so π1(σ

out
k+1

) ≡ σin
j+1 (iii) γT π2(σ

out
k+1

) = π2((γ, γT)σout
k+1

) =

π2(σ
out
k) = σT

k = γT σT
k+1

, and so π1(σ
out
k+1

) = σT
k+1

.

– Unmatched return copy: (γin, γT) = (⊥,⊥), ∃a ∈ Σr : (qin
j ,⊥, a, qin

j+1) ∈ δr

and (qT
k ,⊥, a, bk+1, q

T
k+1

) ∈ δT
r , in that case, note that by definition of run of

Ain and of T we must have σin
j = ⊥ and σT

k = ⊥, so if we pose σin
j+1 =

σin
j = ⊥ and σT

k+1
= σT

k = ⊥ then we have:
• uk+1 = uka,

• ρin
k+1

= ρin
k (qin

j+1, σ
in
j+1) is a run of Ain on uk+1 (indeed, by induction

properties (i) and (ii) before the last transition the automaton is in state qin
j

and the stack as a ⊥ on top by induction hypothesis),

• ρT
k+1

= ρT
k (qT

k+1
, ik + 1, jk + 1, σT

k+1
) is a run of T on (uk+1, vk+1)

(indeed, by induction properties (i) and (iii) before the last transition the

transducer is in state qT
k and the stack as a ⊥ on top by induction hypothe-

sis).
We can check that the required induction properties are preserved: (i) qout

k+1
=

(qin
j+1, q

T
k+1

), (ii) π1(σ
out
k+1

) = π1((⊥,⊥)) =≡ ⊥ = σin
j+1, (iii) π2(σ

out
k+1

) =

π2((⊥,⊥)) = ⊥ = σT
k+1

.

– Matched return insert: (γin, γT) ∈ ({γǫ} × ΓT
ins), qin

j = qin
j+1 and

(qT
k , γT , ǫ, b, qT

k+1
) ∈ δT

r , in that case, if we pose γT σT
k+1

= σT
k then we

have:

• uk+1 = uk,

• ρin
k+1

= ρin
k is a run of Ain on uk+1,

• ρT
k+1

= ρT
k (qT

k+1
, ik, jk + 1, σT

k+1
) is a run of T on (uk+1, vk+1) (indeed,

by induction properties (i) and (iii) before the last transition the transducer

is in state qT
k and γT is on top of its stack).

We can check that the required induction properties are preserved: (i) qout
k+1

=

(qin
j+1, q

T
k+1

), (ii) π1(σ
out
k+1

) = π1((γǫ, γ
T)σout

k+1
) = π1(σ

out
k) ≡ σin

j =

σin
j+1, and so π1(σ

out
k+1

) ≡ σin
j+1 (iii) γT π2(σ

out
k+1

) = π2((γǫ, γ
T)σout

k+1
) =

π2(σ
out
k) = σT

k = γT σT
k+1

, and so π1(σ
out
k+1

) = σT
k+1

.

– Unmatched return insert: (γin, γT) = (⊥,⊥), qin
j = qin

j+1 and

(qT
k ,⊥, ǫ, b, qT

k+1
) ∈ δT

r , in that case, note that σT
k = ⊥, and if we pose

σT
k+1

= σT
k = ⊥ then we have:

• uk+1 = uk,

• ρin
k+1

= ρin
k is a run of Ain on uk+1,

• ρT
k+1

= ρT
k (qT

k+1
, ik, jk + 1, σT

k+1
) is a run of T on (uk+1, vk+1) (indeed,

by induction properties (i) and (iii) before the last transition the transducer

is in state qT
k and ⊥ is on top of its stack).

We can check that the required induction properties are preserved: (i) qout
k+1

=

(qin
j+1, q

T
k+1

), (ii) π1(σ
out
k+1

) = π1((⊥,⊥)) = ⊥ = σin
j+1 (iii) π2(σ

out
k+1

) =

π2((⊥,⊥)) = ⊥ = σT
k+1

.

3. Internal transition: (qout
k , bk+1, q

out
k+1

) ∈ δout
i , with qout

k+1
= (qin

j+1, q
T
k+1

) then ei-

ther:

– Internal copy: ∃a ∈ Σi : (qin
j , a, qin

j+1) ∈ δin
i ∧ (qT

k , a, bk+1, q
T
k+1

) ∈ δT
i , If

we note σin
j+1 = σin

j , σT
k+1

= σT
k and σout

k+1
= σout

k , in that case:

• uk+1 = uka,

• ρin
k+1

= ρin
k (qin

j+1, σ
in
j) is a run of Ain on uk+1,

• ρT
k+1

= ρT
k (qT

k+1
, ik + 1, jk + 1, σT

k) is a run of T on (uk+1, vk+1).

we can check that the required induction properties are preserved: (i) qout
k+1

=

(qin
j+1, q

T
k+1

), (ii) π1(σ
out
k+1

) = π1(σ
out
k) ≡ σin

j = σin
j+1, (iii) π2(σ

out
k+1

) =

π2(σ
out
k) = σT

k = σT
k+1

.

– Internal insert: qin
j = qin

j+1 and (qT
k , ǫ, b, qT

k+1
) ∈ δT

r , in that case, if we pose

σin
j+1 = σin

j , σT
k+1

= σT
k and σout

k+1
= σout

k , then we have:

• uk+1 = uk,

• ρin
k+1

= ρin
k is a run of Ain on uk+1,

• ρT
k+1

= ρT
k (qT

k+1
, ik, jk + 1, σT

k+1
) is a run of T on (uk+1, vk+1).

We can check that the required induction properties are preserved: (i) qout
k+1

=

(qin
j+1, q

T
k+1

), (ii) π1(σ
out
k+1

) = π1(σ
out
k) ≡ σin

j = σin
j+1, (iii) π2(σ

out
k+1

) =

π2(σ
out
k) = σT

k = σT
k+1

.

So we showed that if we have a run of Aout on v, then v is indeed the result of the

transduction by T of a word u which is accepted by Ain. Let’s prove the reverse is also

true.

[T (L) ⊆ L(Aout)]. If there exist u, v ∈ Σ̂∗, ρin a run of Ain on u, and ρT a

run of T on (u, v), we must have a run ρout of Aout on v. Note that we always have

|ρin| ≤ |ρT |.

We now prove by induction on |ρT | the following assertion. Given u, v ∈

Σ̂∗, ρin = (qin
0 , σin

0) . . . (qin
l , σin

l) a run of Ain on u, and ρT =
(qT

0 , i0, j0, σ
T
0) . . . (qT

m, im, jm, σT
m) a run of T on (u, v), we have a run ρout =

(qout
0 , σout

0) . . . (qout
m , σout

m) of Aout on v such that:

(i) qout
m = (qin

l , qT
m), (ii) π1(σ

out
m) ≡ σin

l , and (iii) π2(σ
out
m) = σT

m.

[Induction Basis] If |ρT | = 1 then ρT = (qT
0 , 1, 1,⊥) is a run of T on (u, v) with

u = v = λ, then |ρin| = 1 and ρin = (qin
0 ,⊥) is the given run on u, we have:

ρout = ((qin
0 , qT

0),⊥) is a run of Aout on v. Moreover the inductive properties are

satisfied: (i) qout
0 = (qin

0 , qT
0), (ii) π1(σ

out
0) = π1((⊥,⊥)) ≡ ⊥ = σin

0 , and (iii)

π2(σ
out
0) = π2((⊥,⊥)) = ⊥ = σT

0 .

[Inductive Step] We suppose it is true for all |ρT
k | = k and let’s show it is true if

|ρT
k+1

| = k + 1.

Let ρT
k+1

= (qT
0 , σT

0) . . . (qT
k , σT

k)(qT
k+1

, σT
k+1

) a run of T on (uk+1, vk+1 with

uk+1 = a1 . . . aj and vk+1 = b1 . . . bk+1 and ρin = (qin
0 , σin

0) . . . (qin
j , σin

j) the given

run of Ain on uk+1. We have several possible cases:

1. Call copy: (qT
k , aj , bk+1, q

T
k+1

, γT) ∈ δc
T with σT

k+1
= γT σT

k then we must

have aj ∈ Σc and thus (qin
j−1, aj , q

in
j , γin) ∈ δin

c for γin such that σin
j =

γinσin
j−1. By definition of Aout, ((qin

j−1, q
T
k), bk+1, (q

in
j , qT

k+1
), (γin, γT)) ∈ δout

c .

Moreover by induction hypothesis we have that there exists a run ρout
k =

(qout
0 , σout

0) . . . (qout
k , σout

k) of Aout on vk = b1 . . . bk with: (i) qout
k = (qin

j−1, q
T
k),

(ii) π1(σ
out
k) ≡ σin

j−1, and (iii) π2(σ
out
k) = σT

k .

But then if we note σout
k+1

= (γin, γT)σout
k , then ρout =

(qout
0 , σout

0) . . . (qout
k , σout

k)((qin
j , qT

k+1
), σout

k+1
) is a run of Aout on vk+1. In-

deed, (qout
0 , σout

0) . . . (qout
k , σout

k) is a run of Aout on vk = b1 . . . bk that finishes in

state qout
k = (qin

j−1, q
T
k) and the last transition is therefore possible by definition of

Aout.

Finally the induction properties are verified: (i) qout
k+1

= (qin
j , qT

k+1
), (ii)

π1(σ
out
k+1

) = π1((γ
in, γT)σout

k) = γinπ1(σ
out
k) ≡ γinσin

j−1 = σin
j ., and (iii)

π2(σ
out
k+1

) = π2((γ
in, γT)σout

k) = γT π2(σ
out
k) = γT σT

k = σT
k+1

.

2. Call insert: (qT
k , ǫ, bk+1, q

T
k+1

, γT) ∈ δc
T with σT

k+1
= γT σT

k . By definition of

Aout, ((qin
j , qT

k), bk+1, (q
in
j , qT

k+1
), (γǫ, γ

T)) ∈ δout
c . Moreover by induction hy-

pothesis we have that there exists a run ρout
k = (qout

0 , σout
0) . . . (qout

k , σout
k) of

Aout on vk = b1 . . . bk with: (i) qout
k = (qin

j , qT
k), (ii)π1(σ

out
k) ≡ σin

j , and (iii)

π2(σ
out
k) = σT

k .

But then if we note σout
k+1

= (γǫ, γ
T)σout

k , then ρout =

(qout
0 , σout

0) . . . (qout
k , σout

k)((qin
j , qT

k+1
), σout

k+1
) is a run of Aout on vk+1. In-

deed, (qout
0 , σout

0) . . . (qout
k , σout

k) is a run of Aout on vk = b1 . . . bk that finishes in

state qout
k = (qin

j , qT
k) and the last transition is therefore possible by definition of

Aout.

Finally the induction properties are verified: (i) qout
k+1

= (qin
j , qT

k+1
), (ii)

π1(σ
out
k+1

) = π1(γǫσ
out
k) = π1(σ

out
k) ≡ σin

j = σin
j+1, and (iii) π2(σ

out
k+1

) =

γT π2(σ
out
k) = γT σT

k = σT
k+1

.

3. Matched return copy: (qT
k , γT , aj , bk+1, q

T
k+1

) ∈ δr
T with γT #= ⊥, σT

k = γT σT
k+1

and γT ∈ ΓT
copy, then we must have aj ∈ Σr and thus (qin

j−1, γ
in, aj , q

in
j) ∈ δin

r

for some γin such that σin
j−1 = γinσin

j or σin
j−1 = γin = ⊥ (definition of run of

Ain). Also, we have

((qin
j−1, q

T
k), (γin, γT), bk+1, (q

in
j , qT

k+1
)) ∈ δout

r by definition of Aout.

Moreover by induction hypothesis there exists a run ρout
k =

(qout
0 , σout

0) . . . (qout
k , σout

k) of Aout on vk = b1 . . . bk with: (i) qout
k = (qin

j−1, q
T
k),

(ii) π1(σ
out
k) ≡ σin

j−1, and (iii) π2(σ
out
k) = σT

k .

This implies that (γ, γT) ∈ Γ out is on top of σout
k for some γ. By definition of

Γ out and the fact that γT ∈ ΓT
copy we have that γ ∈ Γ in \ {⊥}, so γ = γin by

induction property (ii).

But then if we note σout
k+1

defined by σout
k = (γin, γT)σout

k+1
, then

ρout = (qout
0 , σout

0) . . . (qout
k , σout

k)((qin
j , qT

k+1
), σout

k+1
) is a run of Aout on vk+1.

Indeed, by induction property (i), (qout
0 , σout

0) . . . (qout
k , σout

k) is a run of Aout on

vk = b1 . . . bk that finishes in state qout
k = (qin

j−1, q
T
k) and the stack has (γin, γT)

on top.

Finally the induction properties are verified: (i) qout
k+1

= (qin
j , qT

k+1
), (ii)

γinπ1(σ
out
k+1

) = π1((γ
in, γT)σout

k+1
) = π1(σ

out
k) ≡ σin

j−1 = γinσin
j so we have

π1(σ
out
k+1

) ≡ σin
j , and (iii) γT π2(σ

out
k+1

) = π2((γ
in, γT)σout

k+1
) = π2(σ

out
k) =

σT
k = γT σT

k+1
so we have π2(σ

out
k+1

) = σT
k+1

.

4. Unmatched return copy: (qT
k ,⊥, aj , bk+1, q

T
k+1

) ∈ δr
T with σT

k = σT
k+1

= ⊥, We

have aj ∈ Σr.

By induction hypothesis there exists a run ρout
k = (qout

0 , σout
0) . . . (qout

k , σout
k) of

Aout on vk = b1 . . . bk with: (i) qout
k = (qin

j−1, q
T
k), (ii) π1(σ

out
k) ≡ σin

j−1, and

(iii) π2(σ
out
k) = σT

k . Properties (ii) and (iii) and the fact that σT
k = ⊥ implies that

σin
j−1 = ⊥.

Thus (qin
j−1,⊥, aj , q

in
j) ∈ δin

r with σin
j−1 = σin

j = ⊥ (definition of run of Ain).

Also, we have ((qin
j−1, q

T
k), (⊥,⊥), bk+1, (q

in
j , qT

k+1
)) ∈ δout

r by definition of Aout.

But then if we note σout
k+1

= σout
k = (⊥,⊥), then ρout =

(qout
0 , σout

0) . . . (qout
k , σout

k)((qin
j , qT

k+1
), σout

k+1
) is a run of Aout on vk+1. Indeed,

by induction property (i), (qout
0 , σout

0) . . . (qout
k , σout

k) is a run of Aout on vk =
b1 . . . bk that finishes in state qout

k = (qin
j−1, q

T
k) and the stack has (⊥,⊥) on top.

Finally the induction properties are verified: (i) qout
k+1

= (qin
j , qT

k+1
), (ii)

π1(σ
out
k+1

) = π1((⊥,⊥)) ≡ ⊥ = σin
j , and (iii) π2(σ

out
k+1

) = π2((⊥,⊥)) = ⊥ =

σT
k+1

.

5. Matched Return insert: (qT
k , γT , ǫ, bk+1, q

T
k+1

) ∈ δr
T with σT

k = γT σT
k+1

and

γT ∈ Γins. We have ((qin
j , qT

k), (γǫ, γ
T), bk+1, (q

in
j , qT

k+1
)) ∈ δout

r .

Moreover by induction hypothesis there exists a run ρout
k =

(qout
0 , σout

0) . . . (qout
k , σout

k) of Aout on vk = b1 . . . bk with: (i) qout
k = (qin

j , qT
k),

(ii) π1(σ
out
k) ≡ σin

j , and (iii) π2(σ
out
k) = σT

k .

But then if we note σout
k+1

defined by σout
k = (γǫ, γ

T)σout
k+1

, then

ρout = (qout
0 , σout

0) . . . (qout
k , σout

k)((qin
j , qT

k+1
), σout

k+1
) is a run of Aout on vk+1.

Indeed, (qout
0 , σout

0) . . . (qout
k , σout

k) is a run of Aout on vk = b1 . . . bk that finishes

in state qout
k = (qin

j , qT
k) (by induction property (i)) and the stack has (γǫ, γ

T) on

top because by induction property (iii) it has (γ, γT) ∈ Γ out on top, but γT
∈ ΓT

ins

and Γ out = (Γ in
× ΓT

copy) ∪ ({γǫ}× ΓT
ins) thus γ = γǫ.

Finally the induction properties are verified: (i) qout
k+1

= (qin
j , qT

k+1
), (ii)

π1(σ
out
k+1

) = π1((γǫ, γ
T)σout

k+1
) = π1(σ

out
k) ≡ σin

j = σin
j+1, and so π1(σ

out
k+1

) ≡

σin
j+1, and (iii) γT π2(σ

out
k+1

) = π2((γǫ, γ
T)σout

k+1
) = π2(σ

out
k) = σT

k = γT σT
k+1

,

and so π1(σ
out
k+1

) = σT
k+1

.

6. Unmatched return insert: Similar as the previous one.

7. The case of internal transitions is straightforward because the stack is not involved.

