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1 Département d’informatique,́Ecole normale suṕerieure
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Abstract. In this paper, we present an abstract fixpoint checking algorithm with
automatic refinement by backward completion in Moore closed abstract domains.
We study the properties of our algorithm and prove it to be more precise than the
counterexample guided abstract refinement algorithm (CEGAR). Contrary to sev-
eral works in the literature, our algorithm does not require the abstract domains
to be partitions of the state space. We also show that our automatic refinement
technique is compatible with so-called acceleration techniques. Furthermore, the
use of Boolean closed domains does not improve the precision of our algorithm.
The algorithm is illustrated by proving properties of programs with nested loops.

1 Introduction

Techniques for the automatic verification of program’s invariants is an active research
subject since the early days of computer science. Invariantverification for a program
P can be reduced to afixpoint checking problem: given a monotone functionpost over
sets of program states, a set of initial statesI, and a setS of states,S is aninvariant of
P if and only if the reachable states

⋃
i>0

post i(I) from I that is the least fixpoint of
λX. I ∪ post(X) is a subset ofS. We call this fixpoint the forward semantics ofP .

For fundamental reasons (undecidability of the invariant checking problem for Tur-
ing complete models of computation), or for practical reasons (limitations of the com-
puting power of computers), the forward semantics is usually not evaluated in the do-
main of the functionλX. I ∪ post(X), the so-calledconcrete domain, but in a simpler
domain of values, a so-calledabstract domain. Abstract interpretation has been pro-
posed in [1] as a general theory to abstract fixpoint checkingproblems. The design of
effective abstract interpretation algorithms relies on the definition of useful abstract do-
mains and semantics. The design of good abstractions for a programming language is a
difficult and time consuming tasks. Recently, research efforts have been devoted to find
automatic techniques that are able to discover and refine abstract domains for a given
program. This work proposes new results in this line.

In this paper, we propose a newabstract algorithmfor fixpoint checking with built-
in abstract domain refinements. The automatic refinement of abstract domains is used
to improve the precision of the algorithm when it is inconclusive. Our algorithm has
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several properties that distinguishes it from the existingalgorithms proposed in the lit-
erature. First, it computes not only overapproximations ofleast fixpoints but alsoover-
approximations of greatest fixpoints. The two analyses improve each other: the current
fixpoint is limited to the values that are computed by the previous fixpoint. Second, it
is not bound to consider refinements related to spurious abstract counterexamples. The
refinement principle that we propose is guided by the abstract fixpoint computations.
Our refinement method is more robust and systematic. Third, our refinement princi-
ple is compatible with acceleration techniques: acceleration techniques can be used to
discover new interesting abstract values which can be used by subsequent abstract com-
putations. This is an important characteristic as this allows us to compute new abstract
values that are useful to capture the behavior of loops. Thishinders the application of the
CEGAR approach. Fourth, in the abstract interpretation framework the subset of con-
crete values given by the abstract domain is a Moore family. Intuitively it means that the
set is closed for the meet operation of the concrete lattice.This property is weaker than
the property enforced by the use of partitions of the state space as in so-calledpredicate
abstractions. In the paper we show that requiring the use of partitions instead of Moore
families does not add power to our algorithm. If it terminates using partitions then it ter-
minates using Moore families. Fifth we show that whenever aninvariant can be proved
using the CEGAR approach then our algorithm is able to prove the invariant as well.
And last we show that the abstract algorithm is guaranteed toterminate under various
conditions like for instance the descending chain condition on the concrete domain or
if the refinement adds a value for which the concrete greatestfixpoint is computable.

Related works. In the following pages we relate our approach with the CEGAR ap-
proach (see [2]) where the refinement is done by a backward traversal of the abstract
counterexample. Recently new refinement techniques based on the proof of unsatisfi-
ability of the counterexample emerged (see [3] and the references given there). Seen
differently, the refinement picks non deterministically the new values to add to the ab-
stract domain among a set of values defined declaratively. Inour case the value is unique
and defined operationally. For this reason we think that an empirical comparison would
make more sense.

The abstract fixpoint checking algorithm we propose is an extension of the classical
combination of forward and backward static analysis in abstract interpretation ([4] as
generalized by [5]) to include abstract domain completion that is the extension of the
abstract domain to avoid loss of precision in abstract fixpoints. This abstract domain
completion is a backward completion in the classical sense of abstract interpretation [6]
but, for efficiency, restricted to reachable states stuck inthe invariant to be checked. In
[7] the authors define a restricted abstract domain completion. However since we reused
all the information computed so far our completion is much more finer than theirs. In [8]
the authors consider a set of proof rules to establish invariant properties of the system
and they propose abstractions to show the premises of some rule hold. Moreover they
give a method to exclude spurious counterexamples based on acceleration techniques.

Structure of the paper. The paper is organized as follows. Sect. 2 introduces some
preliminary results that are useful for the rest of the paper. In Sect. 3, we present our
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algorithm and prove its main properties related to correctness and termination, we also
show that our approach can be easily combined with acceleration techniques. Sect. 4
compares our algorithm to the CEGAR approach and predicate abstraction. Finally in
Sect. 5, we illustrate the behavior of the algorithm on two representative examples.

2 Preliminaries

Notations and notions of lattice theory. We use Church’s lambda notation (so thatF
is λX.F (X)) and use the composition operator◦ on functions given by(f ◦ g)(x) =
f(g(x)). LetX be any set and letf ∈ X 7→ X be a function on this set. We extend the
functionf to subsets inX in a natural way: givenS ⊆ X, f(S) = {f(s) | s ∈ S}.
The transitive and reflexive closuref∗ of a functionf such that its domain and co-
domain coincide is given by

⋃
i≥0

f i wheref0 is the identity andf i+1 = f i ◦ f .
The transitive and reflexive closureR∗ of a relationR is defined in the same way. A
functionf on a complete lattice is said to beadditive(resp.coadditive) if f distributes
the join (resp. the meet) operator. Given two functionsf, g on a poset(L,⊆), we define
the pointwise comparisoṅ⊆ between functions as follows:λx. f(x) ⊆̇ λx. g(x) iff
∀y ∈ (L,⊆) : f(y) ⊆ g(y). Given a setS, ℘(S) denote the set of all subsets ofS.
Sometimes we writes instead of the singleton{s}.

We denote bylfp(f) andgfp(f), respectively, the least and greatest fixpoint, when
they exist, of a functionf on a poset. The well-known Knaster-Tarski’s theorem states
that any monotone functionf ∈ L 7→ L on a complete lattice〈L,6,∧,∨,⊤,⊥〉 admits
a least fixpoint and the following characterization holds:lfp(f) =

∧
{x ∈ L | f(x) 6

x}. Dually, f also admits a greatest fixpoint and the following characterization holds:
gfp(f) =

∨
{x ∈ L | x 6 f(x)}.

Transition systems and predicate transformers.A transition systemis a 3-tupleT =
(C, I, T ) whereC is the set ofstates, I ⊆ C is the subset ofinitial states, andT ⊆
C × C is the transition relation. Often, we writes → s′ if (s, s′) ∈ T , s →∗ s′ if
(s, s′) ∈ T ∗ ands→k s′ if (s, s′) ∈ T k for k ∈ IN.

To manipulate sets of states, we usepredicate transformers. Theforward image op-
erator is a function that given a relationT ′ ⊆ C×C and a set of statesC ′ ⊆ C, returns
the setpost [T ′](C ′) = {c′ ∈ C | ∃c ∈ C ′ : (c, c′) ∈ T ′}. When the forward image
is used with the transition relationT , it is called thepost operatorand it returns, given
a set of statesC ′ all its one step successors in the transition system, we simply write it
post(C ′). Thebackward image operatoris a function given a relationT ′ ⊆ C ×C and
set of statesC ′ ⊆ C, returns the set̃pre[T ′](C ′) =¬pre[T ′](¬C ′) =¬post [T ′−1

](¬C ′)
= {c ∈ C | ∀c′ : (c, c′) ∈ T ′ ⇒ c′ ∈ C ′}. When the backward image operator is used
with the transition relationT , it is called theunavoidable operatorand it returns, given
a set of statesC ′ all the states which have all their successors in the setC ′, we simply
write it p̃re(C ′).

Given a setI of states the set ofreachable statesis given by the following least fix-
point lfp⊆λX. I∪post [T ](X). As shown in [9], this fixpoint coincides withpost [T ∗](I)
also writtenpost∗(I) when the transition relation is clear from the context. So a state
s is said to be reachable ifs ∈ post∗(I). Dually, given a setS of states, the set of
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states thatare stuck inS (or also thatcannot escape fromS) is given by the following
greatest fixpointgfp⊆λX. S ∩ p̃re[T ](X). As shown in [9], this fixpoint coincides with
p̃re[T ∗](S) also writtenp̃re∗

(S) when the transition relation is clear from the context.
Given two setsI, Z of states we calllfp⊆λX. (I∪post(X))∩Z the set ofreachable

states withinZ. Finally given a setS of states, the set ofstates that cannot escape from
S in less than1 stepsis given byS ∩ p̃re(S).

Abstract interpretation. We use abstract interpretation to abstract the semantics of
transition systems. We assume standard abstract interpretation where,concreteandab-
stract domains,L given by℘(C) andA, are Boolean complete lattice〈L,⊆,∩,∪, C, ∅,¬〉
and complete lattice〈A,⊑,⊓,⊔,⊤A,⊥A〉, respectively. The two lattices are related by
abstraction and concretization mapsα andγ forming aGalois connection∀c ∈ L :

∀a ∈ A : α(c) ⊑ a⇔ c ⊆ γ(a) [4]. We write this fact as follows:〈L,⊆〉 −−→←−−α
γ
〈A,⊑〉,

or simply−−→←−−α
γ

when the concrete and abstract domains are clear from the context. In
this paper, we use a family of finite abstract domains that aresubset ofA.

Definition 1 (Family of abstract domains).Let{Ai}i∈I be a family of finite sets such

that: (i) A =
⋃

i∈I Ai, (ii) 〈Ai,⊑〉 is a complete lattice, and(iii) ∃αi : 〈L,⊆〉 −−−→←−−−αi

γ

〈Ai,⊑〉.

Given an abstract domainAi, we writeγ(Ai) for the subset of concrete setsX ∈ L
that can be represented by abstract values inAi.

The setγ(Ai) ⊆ L of concrete values that the abstract domain represents mustbe
closed by intersection if there is a Galois connection betweenAi andL. Our abstract
domains are thus Moore closed. This notion, and the strongernotion of Boolean closure
are defined as follows.

Definition 2 (Moore and Boolean closure).A finite subsetX ⊆ L is said to be:

– Moore closediff ∀x1, x2 ∈ X : x1 ∧ x2 ∈ X andX contains the topmost element
of L. We define the functionλX.M(X) which returns the Moore closure of its
argument, i.e. the smallest setM ⊆ L such thatX ⊆M andM is Moore closed3.

– Boolean closediff ∀x1, x2 ∈ X: (i) x1 ∧ x2 ∈ X, (ii) x1 ∨ x2 ∈ X, and (iii)
C \ x ∈ X. We define the functionλX.B(X) which returns the Boolean closure of
its argument, i.e. the smallest setB such thatX ⊆ B andB is Boolean closed.

Let P = {p1, p2, . . . , pn} be a set of predicates and letJpiK ⊆ C be the subset of
states that satisfy the predicatepi. The set of predicatesP implicitly defines a Boolean
closed abstract domain, notedAP , such thatγ(AP ) ⊆ Lwhich is the smallest set which
is Boolean closed and contains the sets{JpK | p ∈ P}, i.e.AP = B({JpK | p ∈ P}).
The elements ofAP are equivalent to propositional formulas built from the predicates
in P . Elements ofAP can also be viewed as union of equivalence classes of states:
two statesc1, c2 ∈ C are equivalent whenever they satisfy exactly the same subset of
predicates inP .

3 A Moore closed set is also called a Moore family.
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The following Lemma contains well-known results of abstract interpretation that
we recall here so that the paper is self contained. We refer the interested reader to [10]
and the references given there for more details.

Lemma 1. LetI, S, Z ∈ L be sets of states. Given an abstract domainAi, we defineR,
resp.S, to be the abstract forward, resp. backward, semantics onAi aslfp⊑λX.αi((I∪
post(γ(X))) ∩ Z), resp.gfp⊑λX.αi(S ∩ p̃re(γ(X))).

lfp⊆λX. (I ∪ post(X)) ∩ Z ⊆ γ(R)

gfp⊆λX. S ∩ p̃re(X) ⊆ γ(S)

}
We call this inclusion the overapprox-
imation of the abstract semantics.

The Fixed point Checking Problem. Given a transition systemT = (C, I, T ) and
S ⊆ C a set of states. Thefixpoint checking problemasks iflfp⊆λX. I∪post(X) ⊆ S

3 Abstract Fixed-point Checking Algorithm

3.1 The algorithm

Alg. 1 has been inspired and is a generalization of what we have done previously in
[11–13]. We review here its main characteristics.

Algorithm 1 : The algorithm
Data: An instance of the fixpoint checking problem such thatI ⊆ S and an

abstract domainA0 such thatS ∈ γ(A0)
Z0 = S1

for i = 0, 1, 2, 3, . . . do2

ComputeRi given bylfp⊑λX.αi

(
(I ∪ post(γ(X))) ∩ Zi

)
3

if αi(I ∪ post(γ(Ri))) ⊑ αi(Zi) then4

return OK5

else6

ComputeSi given bygfp⊑λX.αi

(
γ(Ri) ∩ p̃re(γ(X))

)
7

if αi(I) ⊑ Si then8

LetZi+1 = γ(Si) ∩ p̃re(γ(Si))9

LetAi+1 be s.t.γ(Ai+1) =M
(
{Zi+1} ∪ γ(Ai)

)
10

else11

return KO12

end13

end14

end15
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It computes overapproximations ofleastandgreatestfixpoints. Line 3 computes an
abstract least fixpoint. As we will see in Prop. 1, when executed on a positive instance of
the fixpoint checking problem, every setγ(Ri) overapproximates the reachable states
of the transition system. Line 7 computes an abstract greatest fixpoint. As we will see in
Lem. 2, and Lem. 3,γ(Si) underapproximates the set of states that cannot escape from
S in less thani+ 1 steps. As we can see from line 3 and line 7, the two fixpoints share
all the information that has been computed so far. In fact theabstract least fixpoint of
line 3 overapproximates the reachable states withinZi which gathers all the information
computed so far. Similarly, the abstract greatest fixpoint of line 7 starts with the least
fixpoint computed previously. Parts of the state space that have already been proved
unreachable withinS or stuck inS are not explored during the next iterations.

The refinement that we propose is applied on the entire abstract fixpoint and is not
bound to individual counterexamples. The valueZi contains states that cannot escape
from γ(Si) in one step, all concrete states that are stuck withinS have this property.
So, this set is interesting as it adds information about concrete states in the abstract
domain, this information will be used by subsequent abstract fixpoint computation. We
will see later in the paper that line 9 can be modified in a way toincorporate informa-
tion computed by acceleration techniques. The results thatwe first prove with line 9 are
still valid when accelerations are used. The possibility ofcombining our algorithm with
acceleration techniques is very interesting as accelerations may allow to discover inter-
esting abstract values related to loops in programs. Loops usually hinder the application
of the CEGAR approach.

In line 10 we see that the new valueZi+1 computed at line 9 is added to the set
of values the current abstract domainAi can represent (this set isγ(Ai)). The new
abstract domain is given byAi+1. It is worth pointing that we actually add more than
the single valueZi+1 to the abstract domain since working in the framework of abstract
interpretation requires thatγ(Ai+1) is a Moore family. We will see later that Moore
closure is sufficiently powerful in the following precise sense: considering the Boolean
closure instead does not improve the precision of our algorithm. This interesting result
is established in Th. 2. This contrasts with several approaches in the literature that use
predicate abstraction which induce more complex Boolean closed domains. The most
precise abstractpost operation is usually more difficult to compute on Boolean closed
domains.

Our algorithm also enjoys nice termination properties. Prop. 6 shows that our algo-
rithm terminates whenever the concrete domain enjoys the descending chain condition.
This result allows us to conclude that our algorithm will always terminate for the im-
portant class of Well-structured transition systems [14, 15], see [12, 13] for the details.
Th. 1 of Sect. 4 also shows that whenever CEGAR terminates, then our algorithm termi-
nates. We also establish in Prop. 5 that whenever our algorithm is submitted a negative
instance, it always terminates.

Finally it is worth pointing out that all the operations in the algorithm, with the
exception of the refinement operation of line 9, are abstractoperations, and the only
concrete operation is used outside of any of the fixpoint computations.

Before giving a formal characterization of Alg. 1, let us give more insights by run-
ning the algorithm on a toy example.
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Example 1.The toy example is a finite state system given at Fig. 1. The setof states
given by the initial abstract domain are given by the boxes. We submit to our algo-
rithm the following positive instance of the fixpoint checking problem whereA0 =
{B1, B2, B3,⊤}, I = {ℓ0}, andS = γ(B3). So note thatZ0 = γ(B3) = S. In the right
side of Fig. 1 the algorithm is executed step by step. Since the fixpoints converge in
very few steps we invite the interested reader to verify themby hand.

B1

B2

ℓ

⊤

ℓ1 ℓ3

B3

ℓ4ℓ2

ℓ0

R0 = B3 line 3

α0(I ∪ post(γ(B3))) 6⊑ Z0 (so not “OK”) line 4

S0 = B3 line 7

α0(I) ⊑ S0 (cannot say “KO”) line 8

Z1 = γ(B3) ∩ p̃re(γ(B3)) line 9

= {ℓ0, ℓ1, ℓ2}

The new domain isA1 = A0 ∪ {B4, B5} line 10

with γ(B4) = Z1 andγ(B5) = Z1 ∩ γ(B2)

= {ℓ0, ℓ1}

R1 = B4 line 3

α1(I ∪ post(γ(B4))) ⊑ Z1 line 4

Alg. 1 terminates saying “OK”

Fig. 1.A finite state system and the result of evaluating Alg. 1 on it.

3.2 Correctness of the algorithm

In what follows we assume that Alg. 1 reaches enough iteration to compute the sets
appearing in the statements. For instance, ifγ(Ri) appears in the statement then the
algorithm has not yet concluded at iterationi − 1 or if Zi+1 appears in the statement
then the algorithm has not yet concluded at iterationi.

We start with a technical lemma that states that our algorithm computes sets of states
that are decreasing.

Lemma 2. In Alg. 1 we have

Zi+1 ⊆ γ(Si) ⊆ γ(Ri) ⊆ Zi ⊆ · · · ⊆ Z1 ⊆ γ(S0) ⊆ γ(R0) ⊆ Z0 ⊆ S .

Proof. First, we prove that

γ(Si+1) ⊆ γ(Si) ∩ p̃re(γ(Si))︸ ︷︷ ︸
Zi+1

⊆ γ(Si) .
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First, consider the caseγ(Si+1) ⊆ Zi+1.

Si+1 = gfp⊑λX.αi+1

(
γ(Ri+1) ∩ p̃re(γ(X))

)
def. ofSi+1

⇒ Si+1 ⊑ αi+1 ◦ γ(Ri+1) prop. ofgfp

⇒ Si+1 ⊑ Ri+1 −−−−→←−−−−
αi+1

γ

⇒ Si+1 ⊑ αi+1(Zi+1) def. ofRi+1

⇒ γ(Si+1) ⊆ γ ◦ αi+1(Zi+1) γ monotonicity

⇒ γ(Si+1) ⊆ Zi+1 Zi+1 ∈ γ(Ai+1) line 10

Second, from line 9,Zi+1 = γ(Si) ∩ p̃re(γ(Si)) ⊆ γ(Si)

Finally the result is obtained by the above reasoning, the definition ofRi, Si andZi,
the fact thatZi ∈ γ(Ai) for anyi and the inclusionZ0 ⊆ S which holds by definition
of Z0. ⊓⊔

The next proposition characterizes the sets of states that are computed by the Algo-
rithm in the presence of positive instances.

Proposition 1. In Alg. 1,∀i ∈ IN if post∗(I) ⊆ S thenpost∗(I) ⊆ γ(Ri).

Proof. Our proof is by induction oni.
Base case.Lem. 1 tells us thatγ(R0) overapproximates the following least fixpoint
lfp⊆λX. (I∪post(X))∩S. Provided the system respects the invariantS (i.e.post∗(I) ⊆
S), this fixpoint is equal tolfp⊆λX. (I ∪ post(X)). So,post∗(I) ⊆ γ(R0).
Inductive case.By induction hypothesis, the property is true fori − 1. Suppose that
there existss ∈ post∗(I) ands 6∈ γ(Ri). We recall Lem. 2 which shows thatγ(Ri−1) ⊇
γ(Si−1) ⊇ Zi ⊇ γ(Ri). We now consider several cases.

1. s /∈ γ(Ri−1). Then by induction hypothesis,post∗(I) 6⊆ S and we are done.
2. s ∈ γ(Ri−1) ands 6∈ γ(Si−1). We conclude from Lem. 1 thatγ(Si−1) overap-

proximates the states stuck inγ(Ri−1). Sinces /∈ γ(Si−1) there exists a states′

such thats→∗ s′ ands′ /∈ γ(Ri−1). First, note that ass ∈ post∗(I), we conclude
thats′ ∈ post∗(I). But ass′ /∈ γ(Ri−1), we know thatpost∗(I) 6⊆ γ(Ri−1) and
by induction hypothesis we conclude thatpost∗(I) * S.

3. s ∈ γ(Ri−1), s ∈ γ(Si−1) ands /∈ Zi. We conclude from the definition ofZi

which is given byγ(Si−1) ∩ p̃re(γ(Si−1)) that there existss′ /∈ γ(Si−1) such
that s → s′. Either s′ /∈ γ(Ri−1) or s′ ∈ γ(Ri−1) and by the previous case,
we know thats′ →∗ s′′ ands′′ /∈ γ(Ri−1). In the two cases, we conclude that
post∗(I) 6⊆ γ(Ri−1) and by induction hypothesis thatpost∗(I) * S.

4. s ∈ γ(Ri−1), s ∈ γ(Si−1), s ∈ Zi, ands /∈ γ(Ri). By overapproximation of the
abstract semantics, we know thats is not reachable fromI within Zi. Otherwise
stated, all paths starting formI and ending ins leavesZi. As s is reachable fromI,
we know that there exists somes′ /∈ Zi which is reachable formI. We can apply
the same reasoning as above and conclude thatpost∗(I) * S. ⊓⊔
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We are now in position to prove that, when the algorithm terminates and returns OK,
it has been submitted a positive instance of the fixpoint checking problem, and when
the algorithm terminates and returns KO, it has been submitted a negative instance of
the fixpoint checking problem.

Proposition 2 (Correctness – positive instances).If Alg. 1 says “OK” then we have
post∗(I) ⊆ S.

Proof.

Algorithm says “OK”

⇔ αi(I ∪ post(γ(Ri))) ⊑ αi(Zi) line 4

⇔ αi(I) ⊑ αi(Zi) N αi ◦ post ◦ γ(Ri) ⊑ αi(Zi) αi additivity

⇔ I ⊑ γ ◦ αi(Zi) N post(γ(Ri)) ⊑ γ ◦ αi(Zi) −−−→←−−−αi

γ

⇔ I ⊆ Zi N post(γ(Ri)) ⊆ Zi Zi ∈ γ(Ai) line 10

Then,

αi((I ∪ post(γ(Ri))) ∩ Zi) ⊑ Ri def. ofRi, prop. oflfp

⇔ (I ∪ post(γ(Ri))) ∩ Zi ⊆ γ(Ri) −−−→←−−−αi

γ

⇒ I ∪ post(γ(Ri)) ⊆ γ(Ri) I ⊆ Zi N post(γ(Ri)) ⊆ Zi

⇒ lfp⊆λX. I ∪ post(X) ⊆ γ(Ri) prop. oflfp

⇒ post∗(I) ⊆ S γ(Ri) ⊆ S by Lem. 2 ⊓⊔

Proposition 3 (Correctness – negative instances).If Alg. 1 says “KO” then we have
post∗(I) * S.

Proof. If at iterationi the algorithm says “KO” then we find thatαi(I) 6⊑ Si (line 8)
which is equivalent toI * γ(Si) by−−−→←−−−αi

γ
. We conclude from Lem. 2 thatγ(Ri+1) ⊆

γ(Si), hence thatI * γ(Ri+1) and finally thatpost∗(I) * S using the contrapositive
of Prop. 1. ⊓⊔

Remark 1.The proofs of the above results remain correct if in line 9 of Alg. 1 instead
of λX. p̃re[T ](X) we takeλX. p̃re[R](X) whereT ⊆ R ⊆ T ∗. This property will
be used later when we propose alternative refinement operations based on acceleration
techniques.

3.3 Termination of the Algorithm

To reason about the termination of the algorithm, we need thefollowing technical
proposition and its corollary.

Proposition 4. In Alg. 1 the following holds:

1. if Zi+1 = Zi thenpost(Zi) ⊆ Zi;
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2. if I * Zi then the algorithm terminates at iterationi and returns “KO”;
3. if I ∪ post(Zi) ⊆ Zi then the algorithm terminates at iterationi and return “OK”.

Proof. (1) By Lem. 2 and line 9,Zi+1 = Zi impliesZi+1 = γ(Si) ∩ p̃re(γ(Si)) ⊆
γ(Si) ⊆ Zi = Zi+1 so γ(Si) ∩ p̃re(γ(Si)) = γ(Si) = Zi provingZi ⊆ p̃re(Zi)
whencepost(Zi) ⊆ Zi by definition of Galois connection.
(2) The hypothesis and the monotonicity ofαi show that the test of line 4 fails and the
algorithm computesSi which is such thatγ(Si) ⊆ Zi by Lem. 2. Then the hypothesis
again shows thatI * γ(Si) which is equivalent toαi(I) 6⊑ Si by the Galois connection

−−−→←−−−αi

γ
and thus the test of line 8 fails and the algorithm terminatesat iterationi returning

“KO”.
(3) Lem. 2 shows thatγ(Ri) ⊆ Zi, so sincepost(Zi) ⊆ Zi we obtain thatpost(γ(Ri)) ⊆
Zi by monotonicity ofpost . Finally monotonicity ofαi shows thatαi(I∪post(γ(Ri))) ⊑
αi(Zi) and thus the test of line 4 succeeds and the algorithm terminates. ⊓⊔

Corollary 1. In Alg. 1 ifZi = Zi+1 then the algorithm terminates.

Proof. The proof falls naturally into two parts. IfI ⊆ Zi then it is a logical consequence
of Prop. 4.1 and 4.3; Otherwise termination follows from Prop. 4.2.

Alg. 1 terminates when submitted a negative instance as proved below in Lem. 3
and Prop. 5.

Lemma 3. In Alg. 1,γ(Ri) underapproximates the set̃pre[
⋃i

j=0
T j ](S) of states which

cannot escape fromS in less thani+ 1 steps.

Proof. The result is shown by induction on the numberi of steps. For the base case,
Lem. 2 shows thatγ(R0) ⊆ S = p̃re[T 0](S). For the inductive case,

p̃re[

i+1⋃

j=0

T j ](S) = p̃re[

i⋃

j=0

T j ∪
i+1⋃

j=1

T j ](S) def.∪

= p̃re[
i⋃

j=0

T j ](S) ∩ p̃re[T ](p̃re[
i⋃

j=0

T j ](S)) def. p̃re

⊇ γ(Ri) ∩ p̃re[T ](γ(Ri)) ind. hyp.

⊇ γ(Si) ∩ p̃re[T ](γ(Si)) by Lem. 2

= Zi+1 by line 9

⊇ γ(Ri+1) by Lem. 2 ⊓⊔

Proposition 5. If post∗(I) * S then Alg. 1 terminates.

Proof. Hypothesis shows that there exists statess, s′ and a valuek ∈ IN such thats ∈ I,
s′ /∈ S ands→k s′. Lem. 3 shows thatγ(Rk−1) ⊆

⋂k
j=0

p̃re[T j ](S). So we conclude

from above thatI *
⋂k

j=0
p̃re[T j ](S), hence thatI * γ(Rk−1) by transitivity and

finally thatI * Zk by Lem. 2. The last step uses Prop. 4.2 to show that the algorithm
terminates. ⊓⊔
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The following proposition states that our algorithm terminates under the descending
chain condition in the concrete domain.

Proposition 6. Assuming the descending chain condition holds on〈L,⊆〉 then Alg. 1
terminates.

Proof. We prove the contrapositive. Assume the algorithm does not terminate. We thus
obtain thatZ0 ⊃ Z1 ⊃ · · · ⊃ Zn ⊃ · · · by Cor. 1 and Lem. 2 which contradicts the
descending chain condition. ⊓⊔

Below Prop. 7 establishes a stronger termination result of our algorithm which states
that if the algorithm computes a valueZi from which the evaluation of the greatest
fixpoint gfp⊆λX.Zi ∩ p̃re(X) terminates after a finite number of iterations then our
algorithm terminates. We use classical fixpoint evaluationtechniques to compute the
setgfp⊆λX.Zi ∩ p̃re(X). First we start with the setZi and then we remove the states
that escape fromZi in 1 step. The set obtained is formally given byZi ∩ p̃re(Zi). Then
we iterate this process until no state is removed.

Lemma 4. If gfp⊆λX.Zi ∩ p̃re(X) is computable ink steps, so isgfp⊆λX. γ(Ri) ∩
p̃re(X). Moreover the following equality holds:

γ(Ri) ∩ gfp⊆λX.Zi ∩ p̃re(X) = gfp⊆λX. γ(Ri) ∩ p̃re(X) .

Proof. Let s be a state such thats ∈ Zi but not in the set of states stuck inZi (recall
that this set is given bygfp⊆λX.Zi ∩ p̃re(X)). We find that there exists a states′ /∈ Zi

and a valuek′ 6 k such thats →k′

s′ for otherwise the set of states stuck inZi is not
computable ink steps.

Now, let s1 be such thats1 ∈ γ(Ri) but not in the set of states stuck inγ(Ri).
Lem. 2 shows thatγ(Ri) ⊆ Zi and hence thats1 ∈ Zi. We conclude frompost(γ(Ri))∩
Zi ⊆ γ(Ri) thats1 escape fromZi and hence that, according to the above reasoning,
there existss′1 /∈ Zi andk′ 6 k such thats1 →k′

s′1, and finally thatgfp⊆λX. γ(Ri)∩
p̃re(X) is computable ink steps.

The proof of the equality follows from the following observation: the states ofγ(Ri)
removed during the computation ofgfp⊆λX. γ(Ri) ∩ p̃re(X) are also removed by the
computation ofgfp⊆λX.Zi ∩ p̃re(X). ⊓⊔

Proposition 7. If in Alg. 1 there is a value fori such thatgfp⊆λX.Zi ∩ p̃re(X) stabi-
lizes after a finite number of steps, then Alg. 1 terminates.

Proof. We conclude from the stabilization ofgfp⊆λX.Zi∩p̃re(X) at stepk (i.e. iterate
k equals iteratek+1 andk ∈ IN) thatgfp⊆λX. γ(Ri)∩ p̃re(X) stabilizes at stepk by
Lem. 4. Then,

Zi+1 = γ(Si) ∩ p̃re(γ(Si)) def. ofZi+1

⊆ γ(Ri) ∩ p̃re(γ(Ri)) γ(Si) ⊆ γ(Ri) by Lem. 2 (1)
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gfp⊆λX. γ(Ri) ∩ p̃re(X) ⊆ γ(Si) def. ofSi, Lem. 1

⇒ gfp⊆λX. γ(Ri) ∩ p̃re(X) ⊆ γ(Si) ∩ p̃re(γ(Si)) prop. ofgfp

⇒ gfp⊆λX. γ(Ri) ∩ p̃re(X) ⊆ Zi+1 def. ofZi+1

⇒ gfp⊆λX. γ(Ri) ∩ p̃re(X) = gfp⊆λX.Zi+1 ∩ p̃re(X) by (1) (2)

We have shown above thatgfp⊆λX. γ(Ri) ∩ p̃re(X) stabilizes at stepk. By (1)
and (2) we find thatgfp⊆λX.Zi+1 ∩ p̃re(X) stabilizes at stepk − 1.

Repeated application of the above reasoning shows thatgfp⊆λX.Zi+k ∩ p̃re(X)
stabilizes at step0. We thus obtain that

gfp⊆λX. γ(Ri+k) ∩ p̃re(X)

= γ(Ri+k) ∩ gfp⊆λX.Zi+k ∩ p̃re(X) Lem. 4

= γ(Ri+k) ∩ Zi+k stabilizes at step 0

= γ(Ri+k) γ(Ri+k) ⊆ Zi+k by Lem. 2

This property allows us to conclude thatγ(Ri+k) = γ(Si+k), hence thatZi+k+1 =
γ(Ri+k) and finally thatγ(Ai+k+1) = γ(Ai+k). So it is routine to check thatZi+k+1 =
Zi+k and so the algorithm terminates by Cor. 1. ⊓⊔

3.4 Termination of the Algorithm Enhanced by Acceleration Techniques

In this section we will study an enhancement of Alg. 1 which relies on acceleration
techniques (see [16] and the references given there). Roughly speaking, acceleration
techniques allow us to compute underapproximations of the transitive closure of some
binary relation as, for instance the transition relation. We refer the interested reader to
the extensive literature on this topic.

Assume we are given some binary relationR such thatT ⊆ R ⊆ T ∗. The en-
hancement we propose replaces line 9 (viz.Zi+1 = γ(Si) ∩ p̃re[T ](γ(Si))) by the
following: Zi+1 = γ(Si) ∩ p̃re[R](γ(Si)). The definition ofR suggests that the value
added usingR should be at least as precise as the one given usingT . A very favorable
situation is whenR equalsT ∗ but Prop. 7 is not applicable at any iteration. We conclude

from Z1 = gfp⊆λX. γ(S0) ∩ p̃re(X) thatpost(Z1) ⊆ Z1 by −−−−→←−−−−
post

gpre

, hence that the

enhanced algorithm terminates at iteration one by Prop. 4 while the normal algorithm
might not since Prop. 7 is never applicable. Below we illustrate this situation using a
toy example.

Example 2.Fig. 2 shows a two counters automaton and its associated semantics. The
domain of the counters is the set of integers. In the automaton x, y refer to the current
value of the counters whilex′, y′ refer to the next value (namely the value after firing
the transition). Transitiont1 is given by a simultaneous assignment. In green are the
reachable states, which are given by{(x, y) | y 6 x N 0 6 x}. We will submit to
Alg. 1 a positive instance of the fixpoint checking problem such thatI andS are given
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by {(0, 0)} and{(x, y) | y 6= x + 1} respectively. Our initial abstract domainA0 is
such thatγ(A0) =M(S).

It is routine to checkR0, computed at line 3, is such thatγ(R0) = S, hence that
the test of line 4 fails. It follows that we have to computeS0 given at line 7. LetXδ, δ
be the sequence of iterates forλX.α0(γ(R0)∩ p̃re[T ](γ(X))) which converges toS0.
First let us compute

S ∩ p̃re[t2](S)

= S ∩ ¬ ◦ pre[t2] ◦ ¬(S) def. of p̃re

= S ∩ ¬ ◦ pre[t2]({(x, y) | y = x+ 1}) def. of¬, S

= S ∩ ¬({(x, y) | y = x+ 2}) see Fig. 3

= S ∩ {(x, y) | y 6= x+ 2}

= {(x, y) | y 6= x+ 1} ∩ {(x, y) | y 6= x+ 2} def. ofS

We now turn to the evaluation of thegfp.

X0 = ⊤

X1 = α0(γ(R0) ∩ p̃re[T ](γ(X0)))

= α0(S) γ(R0) = S,⊤ ⊆ p̃re[T ](⊤)

= S S ∈ γ(A0)

X2 = α0(S ∩ p̃re[T ](γ(X1)))

= α0

(
S ∩ p̃re[t1](γ(X1)) ∩ p̃re[t2](γ(X1))

)
def. p̃re

= α0

(
S ∩ p̃re[t2](γ(X1))

)
S ∩ p̃re[t1](S) = S

By above we find thatα0(S∩p̃re[t2](S)) = S, hence thatγ(S0) = S. Since the test
of line 8 succeeds the next step (line 9) is to computeZ1. We use acceleration techniques
to computeZ1 for otherwise the algorithm does not converge. Without resorting to
acceleration techniques eachZi escapes fromS in i+1 steps by firing transitiont2. This
clearly indicates that the CEGAR approach considers counterexamples of increasing
length and thus fails on this toy example. By considering thelimit instead of theZi’s we
obtain a value that is stuck inS. That value stuck inS can be obtained using acceleration
techniques as shown below.

x = 0, y = 0

t1 : y = 0 → 〈x′, y′〉 = 〈x + 1, x + 1〉;

t2 : y′ = y − 1;
q0

Fig. 2.A two counters automata and its associated semantics.
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Fig. 3.Red dots are{(x, y) | y = x+1} and blue dots arepre[t2]
(
{(x, y) | y = x+1}

)

Our candidate relation to show termination is given byt1 ∪ t
∗
2 which is computable

using acceleration technique. It is routine to check thatT ⊆ t1 ∪ t
∗
2 ⊆ T ∗. Let us

computeZ1 which is given byS ∩ p̃re[t1 ∪ t
∗
2](S).

S ∩ p̃re[t1 ∪ t
∗
2](S) = def. p̃re

S ∩ p̃re[t1](S) ∩ p̃re[t∗2](S) = S ∩ p̃re[t1](S) = S

p̃re[t∗2](S) =

gfp⊆λX. S ∩ p̃re[t2](X)

LetXδ, δ be the sequences of iterates forλX. S ∩ p̃re[t2](X) which converges to
gfp⊆λX. S ∩ p̃re[t2](X) We have:

X0 = ⊤

X1 = S ∩ p̃re[t2](X0) def. of the iterates

= S ⊤ ⊆ p̃re[t2](⊤)

= ⊤ \ {(x, y) | y = x+ 1}

X2 = S ∩ p̃re[t2](X1) def. of the iterates

= S ∩ p̃re[t2](S) X1 = S

= ⊤ \ {(x, y) | y = x+ 1 or y = x+ 2} from above

...

Xδ = {(x, y) | y 6 x}

The new abstract domainA1 is such thatγ(A1) = M(γ(A0) ∪ Z1). At iteration
1, we find at line 3 thatγ(R1) = Z1, hence that the test of line 4 succeeds since there
is no outgoing transition ofZ1 (see Fig. 2), and finally that Alg. 1 terminates with the
right answer.

It is worth pointing that the forward abstract semantics is conclusive. However al-
gorithms using acceleration techniques to compute the forward concrete semantics do
not terminate. Basically acceleration techniques identify regular expressions over the
transition alphabet and then compute underapproximation of the transitive closure of
the transition relation. For the automaton of Fig. 2 acceleration techniques fail because
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there is no finite regular expression that describes all the possible executions of the
counter automaton. Additional examples can be found in the appendix. �

The rest of this section is devoted to establish some termination properties of the
enhanced algorithm. In fact, as we said in Rem. 1 our correctness proofs remains valid
for the enhancement. Thus below we focus on termination properties.

Proposition 8. LetR be such thatT ⊆ R ⊆ T ∗. If gfp⊆λX.Zi ∩ p̃re[R](X) is com-
putable ink steps, so isgfp⊆λX. γ(Ri)∩ p̃re[R](X). Moreover the following equality
holds:

γ(Ri) ∩ gfp⊆λX.Zi ∩ p̃re[R](X) = gfp⊆λX. γ(Ri) ∩ p̃re[R](X) .

Proof. The proof of Prop. 7 can be straightforwardly generalized toany binary relation
R such thatT ⊆ R ⊆ T ∗. ⊓⊔

By definition ofR it is routine to check that

λX. p̃re[T ∗](X) ⊆̇ λX. p̃re[R](X) ⊆̇ λX. p̃re[T ](X) . (3)

Proposition 9. LetR2 such thatT ⊆ R2 ⊆ T ∗ andgfp⊆λX. S ∩ p̃re[R2](X) stabi-
lizes after a finite number of step, then Alg. 1 when using anyR1 such thatR2 ⊆ R1 ⊆
T ∗ at line 9 terminates as well.

Proof. As Z0 = S, by hypothesis we havegfp⊆λX.Z0 ∩ p̃re[R2](X) stabilizes after
at mostk steps (i.e. iteratek equals iteratek + 1 andk ∈ IN), hence we deduce that
gfp⊆λX. γ(R0) ∩ p̃re[R2](X) stabilizes at most afterk steps by Prop. 8. Then,

Z1 = γ(S0) ∩ p̃re[R1](γ(S0)) def. ofZi+1

⊆ γ(R0) ∩ p̃re[R1](γ(R0)) γ(S0) ⊆ γ(R0) by Lem. 2

⊆ γ(R0) ∩ p̃re[R2](γ(R0)) p̃re[R1] ⊆̇ p̃re[R2] (4)

gfp⊆λX. γ(R0) ∩ p̃re(X) ⊆ γ(S0) def. ofS0, Lem. 1

⇒ gfp⊆λX. γ(R0) ∩ p̃re(X) ⊆ γ(S0) ∩ p̃re[R1](γ(S0)) def. (3), prop. ofgfp

⇒ gfp⊆λX. γ(R0) ∩ p̃re(X) ⊆ Z1 def. ofZ1

⇒ gfp⊆λX. γ(R0) ∩ p̃re(X) = gfp⊆λX.Z1 ∩ p̃re(X) by (4)
(5)

We have shown above thatgfp⊆λX. γ(R0) ∩ p̃re[R2](X) stabilizes at stepk, by
(4) and (5) we find thatgfp⊆λX.Z1 ∩ p̃re[R2](X) stabilizes at stepk − 1.
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Repeated application of the above reasoning shows thatgfp⊆λX.Zk ∩ p̃re[R2](X)
stabilizes at step0 and so doesgfp⊆λX.Zk ∩ p̃re(X). We thus obtain that

gfp⊆λX. γ(Rk) ∩ p̃re(X)

= γ(Rk) ∩ gfp⊆λX.Zk ∩ p̃re(X) Lem. 4

= γ(Rk) ∩ Zk stabilizes at step 0

= γ(Rk) γ(Rk) ⊆ Zk by Lem. 2

This property allows us to conclude thatγ(Rk) = γ(Sk), hence thatZk+1 = γ(Rk)
and finally thatγ(Ak+1) = γ(Ak). So it is routine to check thatZk+1 = Zk and so the
algorithm terminates by Cor. 1. ⊓⊔

4 Relationships with Other Approaches

4.1 Counterexample Guided Abstraction Refinement

We first recall here the main ingredients of the CEGAR approach [17, §4.2]. Given a
transition systemT = (C, T, I), called theconcrete transition system, and a partition of
C into a finite number of equivalence classesC = {C1, . . . Ck}, the abstract transition
system is a transition systemT α = (Cα, Tα, Iα) where:

– Cα = C, i.e. abstract states are the equivalence classes;
– Tα = {(Ci, Cj) | ∃c ∈ Ci, c

′ ∈ Cj : (c, c′) ∈ T}, i.e. there is a transition from
an equivalence classCi to an equivalence classCj whenever there is a state ofCi

which has a successor inCj by the transition relation;
– Iα = {Ci ∈ C | Ci ∩ I 6= ∅}, i.e. a class is initial whenever it contains an initial

state.

A path in the abstract transition system is a finite sequence of abstract states related by
Tα that starts in an initial state. An abstract stateCi is reachable if there exists a path in
T α that ends inCi. The set of states within the equivalence classes that are reachable
in the abstract transition system, is an overapproximationof the reachable states in the
concrete transition system.

An abstract counterexample toS ⊆ C is a pathCi1Ci2 . . . Cin
in the abstract tran-

sition system such thatCin
6⊆ S. An abstract counterexample isspuriousif it does not

match a concrete path inT . We define this formally as follows. To an abstract coun-
terexampleCi1 , . . . , Cin

, we associate a sequencet1, t2, . . . , tn−1 of subsets ofT (the
transition relation ofT ) such thattj = T ∩ (Cij

× Cij+1
) (the projection ofT on

successive classes).
An abstract counterexample is anerror trace, only if I * p̃re[t1 ◦ . . . ◦ tn−1](S)

(by monotonicity we haveI * p̃re[T ∗](S)), otherwise it is calledspuriousand, so
I ⊆ p̃re[t1 ◦ . . . ◦ tn−1](S). Eliminating a spurious counterexample is done by splitting
a classCj where1 6 j 6 n. The classCj containsbad states(written bad) that
can reach¬S but which are not reachable fromCj−1. Accordingly the classCj split
in Cj ∩ bad andCj ∩ ¬bad. From the above definition, we can deduce thatbad =
pre[tj ◦ . . . ◦ tn−1](¬S), hence that¬bad = ¬ ◦ pre[tj ◦ . . . ◦ tn−1] ◦ ¬(S),
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and, finally that¬bad = p̃re[tj ◦ . . . ◦ tn−1](S). Hence the splitting ofCj is given
by Cj ∩ p̃re[tj ◦ . . . ◦ tn−1](S) andCj ∩ ¬ ◦ p̃re[tj ◦ . . . ◦ tn−1](S). When the
spurious counterexample has been removed, by splitting an equivalence class, a new
abstract transition system, based on the refined partition,is considered and the method
is iterated.

CEGAR approach concludes when it either finds an error trace (identifying a nega-
tive instance of the fixpoint checking problem) or when it does not find any new abstract
counter example (identifying a positive instance of the fixpoint problem).

We now relate the abstract model used by CEGAR with the abstract interpretation
of the system. The initial abstract domainA0, that our algorithm uses, is such that for
all equivalence classesCi in the initial partition used by the CEGAR algorithm, there
exists an abstract valuea ∈ A0 such thatγ(a) = Ci.

Lemma 5. Assume that CEGAR terminates on a positive instance of the fixpoint check-
ing problem. So CEGAR produced a finite set{wi}i∈I of counterexamples such that the
following holds:

∃A ∈ γ(A0) : I ⊆ gfp⊆λX.A ∩ p̃re(X)︸ ︷︷ ︸
V

⊆ S N V = A ∩
⋂

i∈I

p̃re[wi](S) .

Proof. Let T α = (Cα, Tα, Iα) be the abstract transition system whereCα is the par-
tition that is obtained when the spurious counterexamples from {wi}i∈I has been con-
sidered.

Let Fα ⊆ Cα be subset of reachable classes inT α. Let F be
⋃

Ci∈F α Ci, i.e.
F contains the set of states that are within reachable classesin T α. As the abstract
analysis is conclusive, we know thatI ⊆ F , F ⊆ S, andpost(F ) ⊆ F . As F is
inductive forλX. I ∪ post(X), we know thatF ∩

⋃
i∈I pre[wi](¬S) is emtpy, i.e.

F ⊆
⋂

i∈I p̃re[wi](S). The classes inCα are either classes that were present in the
initial partition (defined byA0) or classes that were refined and does not containbad
states, soF is composed of classes of the initial partition and refined classes of the
initial partition. None of these classes intersect

⋃
i∈I pre[wi](¬S). ⊓⊔

We need one more auxiliary result before presenting Th. 1.

Proposition 10. In Alg. 1,∀k ∈ IN if post∗(γ(Rk)) ⊆ S thenpost(γ(Rk)) ⊆ Zk.

Proof. Our proof is by induction onk.
Base case.The result follows immediately since in Alg. 1 we haveZ0 = S.
Inductive case.We show the contrapositive of the implication. We first relate Zk+1

with the set of states that cannot escape fromγ(Rk) (i.e. gfp⊆λX. γ(Rk) ∩ p̃re(X))
as follows

gfp⊆λX. γ(Rk) ∩ p̃re(X) ⊆ γ(Sk) Lem. 1

⇒ gfp⊆λX. γ(Rk) ∩ p̃re(X) ⊆ γ(Sk) ∩ p̃re(γ(Sk)) fixpoint property

⇔ gfp⊆λX. γ(Rk) ∩ p̃re(X) ⊆ Zk+1 def. ofZk+1
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We conclude from the contrapositive hypothesis given bypost(γ(Rk+1)) * Zk+1 and
by above thatpost(γ(Rk+1)) * gfp⊆λX. γ(Rk)∩ p̃re(X). Intuitively this means that
some states ofpost(γ(Rk+1)) can escapeγ(Rk) or more formally thatpost∗(γ(Rk+1)) *
γ(Rk). So consider the sequences0, s1, . . . , sn such that(si, si+1) ∈ T for 1 6 i < n
ands0 ∈ γ(Rk+1) andsn /∈ γ(Rk). Since, by Lem. 2,γ(Rk+1) ⊆ γ(Rk) the se-
quence can be partitioned into a prefix (from 0 toi) where the states belong toγ(Rk)
and a suffix (fromi + 1 to n) where the states does not belong toγ(Rk). We have
that {si+1} * Zk for otherwisepost(γ(Rk)) ∩ Zk ⊆ γ(Rk) does not hold. Lem. 2
shows thatγ(Rk+1) ⊆ γ(Rk) ⊆ Zk. We conclude fromsi ∈ γ(Rk), si+1 /∈ Zk

andsi → si+1 that post(si) * Zk, hence thatpost(γ(Rk)) * Zk and finally that
post∗(γ(Rk)) * S using the induction hypothesis. Finally since, by definition of the
sequence,si+1 is reachable fromγ(Rk+1) we find thatpost∗(γ(Rk+1)) * S. ⊓⊔

Theorem 1. Assume a positive instance of the fixpoint checking problem,if CEGAR
terminates so does Alg. 1.

Proof. Let k be the size of the longestwi for i ∈ I. Lem. 3 shows thatγ(Rk+1) is an
underapproximation of the states that cannot escapeS in less thank steps. Formally,
we haveγ(Rk+1) ⊆

⋂k
j=0

p̃re[T j ](S). This implies that

γ(Rk+1) ⊆
⋂

i∈I

p̃re[wi](S) (6)

Our next step will be to show thatpost [T ∗](γ(Rk+1)) ⊆ S which intuitively
says thatγ(Rk+1) cannot escapeS. First, note that ifγ(Rk+1) can escape fromS
then it cannot be with the counterexamples produced by CEGARsinceγ(Rk+1) ⊆⋂

i∈I p̃re[wi](S) which is equivalent to
⋃

i∈I post [wi](γ(Rk+1)) ⊆ S by−−−−→←−−−−
post

gpre

. Let

A be defined as in Lem. 5. Our proof falls into two parts:

1. γ(Rk+1)∩A cannot escape fromS, i.e.post [T ∗](γ(Rk+1)∩A) ⊆ S, as shown as
follows. From (6), we know thatγ(Rk+1) ⊆

⋂
i∈I p̃re[wi](S), and by definition

of V , we have thatγ(Rk+1) ∩ A ⊆ V . As V is inductive forpost andV ⊆ S, we
conclude thatpost [T ∗](γ(Rk+1) ∩A) ⊆ S.

2. γ(Rk+1) ∩ ¬A cannot escape fromS. For that, we show thatγ(Rk+1) ∩ ¬A = ∅.
Prop. 1 and definition ofA show thatI ⊆ γ(Rk+1)∩A and soγ(Rk+1)∩A 6= ∅.
We also know that in any states ∈ γ(Rk+1) ∩ A for post [T ∗]({s}) ∩ ¬A 6= ∅
to hold s has to be such thats /∈

⋂
i∈I p̃re[wi](S). However sinceγ(Rk+1) ⊆⋂

i∈I p̃re[wi](S) and sinceRk+1 is given by lfp⊆λX.αk+1(I ∪ post(γ(X)) ∩
Zk+1) overAk+1 (with γ(Ak+1) ⊆ γ(A0)) we find thatγ(Rk+1) ∩ ¬A = ∅. It
follows thatpost [T ∗](γ(Rk+1)) ⊆ S.

We conclude from Prop. 10 thatpost(γ(Rk+1)) ⊆ Zk+1, hence that the test of
line 4 succeeds byαk+1 monotonicity andI ⊆ γ(Rk+1), and finally that Alg. 1 termi-
nates. ⊓⊔

If we consider the converse result, namely that CEGAR terminates if Alg. 1 termi-
nates we find that this does not hold for the enhanced algorithm as shown in Ex. 2.
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4.2 Predicate Abstraction versus Moore Closed Abstract Domains

Moore closure is as strong as Boolean closure.Below we prove that Alg. 1 does not
take any advantage maintaining a Boolean closed abstract domain instead of a Moore
closed one.

The following Lemma shows that every “interesting” value added by the Boolean
closure is added by the Moore closure as well. By extension weobtain that (see Th. 2) if
Alg. 1 extended with the Boolean closure terminates then Alg. 1 terminates. Our result
hold basically because bothRi andSi are such thatγ(Ri) ⊆ Zi andγ(Si) ⊆ Zi by
Lem. 2.

Lemma 6. LetA be a finite subset ofL such thatB(A) = A and letZ0, Z1, . . . , Zk

be elements ofL such thatZk ⊆ · · · ⊆ Z1 ⊆ Z0. Givene ∈ B(A ∪ {Z0, Z1, . . . , Zk})
such thate ⊆ Zk we havee ∈M(A ∪ {Z0, Z1, . . . , Zk}).

Proof. We first notice that the value can be expressed in a form similar to the Conjunc-
tive Normal From (CNF) used in propositional logic. Moreover sincee ⊆ Zk we have
thate ∩ Z0 ∩ Z1 ∩ · · · ∩ Zk = e. Soe can be expressed as follows:

e =
⋂

i∈I

(a1 ∪ · · · ∪ ani
) ∩

k⋂

j=0

Zj

such that theai’s belong toA andI is a finite set sinceA is finite subset ofL.
We now give two syntactic transformations of the abovee that preserves its seman-

tics.

– Remove frome each union of the form(Zj ∪ ψ). This rule does not modify the
value ofe sincee ⊆ Zj ⊆ (Zj ∪ ψ).

– Replace ine any union of the form¬Zj ∪ ψ by ψ. This rule does not modify the
value ofe as shown below.

Zj ∩ (¬Zj ∪ ψ) subexpression ofe

= (Zj ∩ ¬Zj) ∪ (Zj ∩ ψ) set theory

= ∅ ∪ (Zj ∩ ψ) set theory

= Zj ∩ ψ

Sincee has finitely many unions expressions the two rules can be applied finitely many
times because the size ofe decrease after applying any rule. It follows that the repeated
application of these two rules stabilizes after a finite number of steps.

Moreover after stabilization no valueZ0, . . . , Zi appears in a union of2 or more
values which means sinceB(A) = A thate ∈M(A). ⊓⊔

Theorem 2. ProvidedB(γ(A0)) = γ(A0), if Alg. 1 with the Moore closure (viz.M)
replaced by the Boolean closure (vizB) terminates then Alg. 1 terminates as well.

In the context of predicate abstraction, there is no polynomial algorithm to com-
pute the best approximation. In fact the result of applyingα to valueV is given by the
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strongest Boolean combination of predicates approximating V . Moreover the computa-
tion of the best approximation is required at each iterate ofeach fixpoint computation.
So in the worst case the time to compute a fixpoint is given by the height of the abstract
lattice times an exponential in the number of predicates. Itis generally admitted that
this cost is not affordable and this is why approximations intime linear in the number
of predicates are preferred instead. For our algorithm the situation is pretty much better:
as shown in Lem. 6 we can compute the best approximation in time linear in the number
of predicates. However we need the initial set of predicatesto be Boolean closed.

5 Examples

In this section we will show that Alg. 1 terminates on two well-known array sorting
algorithms. The property we prove are safety properties which states that the array to be
sorted is never accessed out of its bound. We do not analyze directly the program code
of those algorithms but an abstraction instead. Our abstraction forgets about the content
of the array and so we replace the tests based on array’s values by non deterministic
choices. Our model is sound in the sense that it contains at least all the behaviors of the
program. So if the abstract model satisfies the safety property so does the program. The
abstract model we use is given by counter automata where eachcounter corresponds to
an array index. The safety property is naturally reduced to areachability property on
the counter automaton. Prop. 5 shows that when submitted a negative instance Alg. 1
terminates. Consequently the instances considered below are positive instances.

At the present time, no implementation of Alg. 1 is availablebut, as shown in the
previous sections, the algorithm is correct and moreover weidentified some conditions
that, if satisfied, guarantee its termination. We thus rely on these conditions to show
that our algorithm is going to conclude with the right answer. These conditions are non
trivial but they can be evaluated using available tools. We choose to rely on the Hytech
model checker (see [18]) to prove that the condition of Prop.7 is satisfied and hence
that Alg. 1 terminates.

Besides Hytech we also rely on the FAST tool (see [19]). FAST is a tool that uses
acceleration techniques. If the FAST tool terminates when evaluatinggfp⊆λX. S ∩
p̃re[T ](X) it returns an acceleration schemeR such thatT ⊆ R ⊆ T ∗. Then Prop. 9 is
used to show that for anyR′ such thatR ⊆ R′ ⊆ T ∗ Alg. 1 terminates provided line 9
is replaced byZi+1 = γ(Si) ∩ p̃re[R′](γ(Si)).

The Heapsort Algorithm. Heapsort is a classical example in static analysis (e.g. [20]
using the polyhedral abstraction). We shall prove that the array to be sorted is never
accessed out of its bound given by1 andn. The counter automaton is given Fig. 4.
The model has been derived manually from the code given in [21]. Since the array
is accessed throughV = {ℓ, i, r,max} we want to prove that each access is legal.
Formally the setS of states representing legal access is given by the following formulas
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j
=

n,
n
≥

1

ℓ4 ℓ0 ℓ1 ℓ2 ℓ3

t5 : i 6= max → i := max

t2
: l :

=
2i

; r
:=

2i
+

1

t3 : max := i

t
′

3
: l ≤

j −
1 →

m
ax

:=
l

t′
4
: r ≤ j − 1 → max := r

t6 : i = max → j := j − 1

t0 : j 6= 1 → i := 1

Fig. 4.Counters automata modeling of the Heapsort algorithm

ψ1 toψ4 associated to the locations with the same index.

ψ1 = ℓ 6 j − 1→ (1 6 ℓ 6 nN 1 6 i 6 n)

ψ2 = r 6 j − 1→ (1 6 r 6 nN 1 6 max 6 n)

ψ3 = i 6= max→ (1 6 i 6 nN 1 6 max 6 n)

ψ4 = 1 6 j 6 n

The setI of initial states is given by

{
j = nN n > 1 at ℓ4
⊥ elsewhere.

Let P0 be the set of predicates appearing in the text of the program.Formally,
P0 is given by{j > 2, j = n, n > 1, i = max, i 6= max, r 6 j − 1, ℓ 6 j −
1, ψ1, ψ2, ψ3, ψ4}. The initial abstract domain is given byA0 =M(P0).

We are going to show that Alg. 1 terminates on the Heapsort algorithm. Hytech
terminates for

ψ′
1 = ℓ 6 j − 1→ (1 6 ℓN 1 6 i 6 n)

ψ′
2 = r 6 j − 1→ (1 6 r N 1 6 max 6 n)

ψ3 = i 6= max→ (1 6 i 6 nN 1 6 max 6 n)

ψ4 = 1 6 j 6 n

and thus Alg. 1 terminates by Prop. 7.

Notice that inψ′
1 andψ′

2 we do not check forℓ 6 n (recall that componentℓ of
the array is accessed). However sincej is not modified in locationsℓ4, ℓ0, ℓ1, ℓ2 and by
ψ4 we can deduce that whenever the array is accessed throughℓ, the inequalityℓ 6 n
holds.

Now assume you do not want this ad hoc reasoning to convince yourself that the
array is never accessed out of its bounds. We can still managethis situation since FAST
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terminates for

ψ1 = ℓ 6 j − 1→ (1 6 ℓ 6 nN 1 6 i 6 n)

ψ2 = r 6 j − 1→ (1 6 r 6 nN 1 6 max 6 n)

ψ3 = i 6= max→ (1 6 i 6 nN 1 6 max 6 n)

ψ4 = 1 6 j 6 n

and thus Alg. 1 terminates by Prop. 9.

The Bubble sort algorithm. The necessary termination conditionn > 0 is found in
[4] by an iterated forward-backward non-relational interval analysis. ASTRÉE proves
the absence of out of array bound error in 0.8 s thanks to the octagonal abstraction [22].

We shall prove that the array to be sorted is never accessed out of its bound given
by 0 andn. Since the array is accessed through variablej only we want to prove that
0 6 j 6 n holds for each reachable state. The counter automaton givenin Fig. 5 has
been extracted from [4].

i = n

t3 : j = i → i′ = i − 1

ℓ0 ℓ1
t1 : i 6= 0 → j′ = 0

t2 : j 6= i → j′ = j + 1

t1 : i 6= 0 → j′ = 0

Fig. 5.Our two counters automata modeling the Bubblesort algorithm

In our model we have variablesi andj and a non negative parametern representing
the array’s size. LetI andS be given by{(i, j, n) | i = n} and{(i, j, n) | 0 6 j 6 n}
respectively. LetP0 be the set of predicates appearing in the text of the program plus
the formula representingS. Formally,P0 is given by{i = n, i = 0, i = j, 0 6 j 6 n}.
The abstract domainA0 is given byM(P0).

Finally we have that since the FAST tool terminates then Alg.1 terminates by
Prop. 9.

6 Conclusion and Future Works

We have presented a new abstract fixpoint refinement algorithm for the fixpoint check-
ing problem. Our systematic refinement uses the informationcomputed so far which
is given by two fixpoints computed in the abstract domain. As afuture work, we can
consider two variants of this algorithm. First, the dual algorithm for the inverted tran-
sition systemT−1 can be used to discover necessary correct termination conditions. A
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second dual algorithm where we use the inverted inclusion order⊇ on states leading to
underapproximation of fixpoints. In this settings thelfp allows to conclude on negative
instances and thegfp on positive instances. Also the refinement step uses thepost pred-
icate transformer instead of̃pre. Finally we will consider more complicated properties
like properties defined by nested fixpoint expressions.
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d’opérateurs monotones sur un treillis, analyse sémantique de programmes (in French).
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