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Abstract. In this paper, we present an abstract fixpoint checking algorithm with
automatic refinement by backward completion in Moore closed abstatids.

We study the properties of our algorithm and prove it to be more precisdliea
counterexample guided abstract refinement algorithm (CEGAR). &yritr sev-

eral works in the literature, our algorithm does not require the abstomoaihs

to be partitions of the state space. We also show that our automatic refinemen
technique is compatible with so-called acceleration techniques. Furtresrther

use of Boolean closed domains does not improve the precision of aurithlg.

The algorithm is illustrated by proving properties of programs with nestgusloo

1 Introduction

Techniques for the automatic verification of program’s iraats is an active research
subject since the early days of computer science. Invaviaritication for a program
P can be reduced tofapoint checking problengiven a monotone functiopost over
sets of program states, a set of initial stateand a seb of states,S is aninvariant of
P if and only if the reachable statég; ., post’(I) from I that is the least fixpoint of
AX. T U post(X) is a subset of. We call this fixpoint the forward semantics Bf

For fundamental reasons (undecidability of the invaridrgtoking problem for Tur-
ing complete models of computation), or for practical ress@imitations of the com-
puting power of computers), the forward semantics is ugusdt evaluated in the do-
main of the functiom X. I U post(X), the so-calleadtoncrete domainbut in a simpler
domain of values, a so-calleabstract domainAbstract interpretation has been pro-
posed in [1] as a general theory to abstract fixpoint checgiofplems. The design of
effective abstract interpretation algorithms relies andefinition of useful abstract do-
mains and semantics. The design of good abstractions fargganming language is a
difficult and time consuming tasks. Recently, researchrisfioave been devoted to find
automatic techniques that are able to discover and refirteagbslomains for a given
program. This work proposes new results in this line.

In this paper, we propose a n@lstract algorithnfor fixpoint checking with built-
in abstract domain refinementShe automatic refinement of abstract domains is used
to improve the precision of the algorithm when it is incorsile. Our algorithm has
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several properties that distinguishes it from the existilygprithms proposed in the lit-
erature. First, it computes not only overapproximationkast fixpoints but alsover-
approximations of greatest fixpoinfBhe two analyses improve each other: the current
fixpoint is limited to the values that are computed by the jmes fixpoint. Second, it
is not bound to consider refinements related to spuriousatistounterexamples. The
refinement principle that we propose is guided by the abistbgmint computations.
Our refinement method is more robust and systematic. Thirdyefinement princi-
ple is compatible with acceleration techniques: accat@rdaechniques can be used to
discover new interesting abstract values which can be ugediisequent abstract com-
putations. This is an important characteristic as thisaglas to compute new abstract
values that are useful to capture the behavior of loops.fiihers the application of the
CEGAR approach. Fourth, in the abstract interpretatioméwaork the subset of con-
crete values given by the abstract domain is a Moore fanmtyitively it means that the
set is closed for the meet operation of the concrete laffiois. property is weaker than
the property enforced by the use of partitions of the stadespas in so-callegredicate
abstractionsIn the paper we show that requiring the use of partitiontams of Moore
families does not add power to our algorithm. If it termirsatising partitions then it ter-
minates using Moore families. Fifth we show that wheneveinaariant can be proved
using the CEGAR approach then our algorithm is able to prbeerivariant as well.
And last we show that the abstract algorithm is guarantee€riinate under various
conditions like for instance the descending chain condlitin the concrete domain or
if the refinement adds a value for which the concrete greéifgstint is computable.

Related works. In the following pages we relate our approach with the CEGAR a
proach (see [2]) where the refinement is done by a backwardrgal of the abstract
counterexample. Recently new refinement techniques bas#itegoroof of unsatisfi-
ability of the counterexample emerged (see [3] and the eafas given there). Seen
differently, the refinement picks non deterministicallg thew values to add to the ab-
stract domain among a set of values defined declarativebyiigase the value is unique
and defined operationally. For this reason we think that apigcal comparison would
make more sense.

The abstract fixpoint checking algorithm we propose is aaresibn of the classical
combination of forward and backward static analysis in r@gstinterpretation ([4] as
generalized by [5]) to include abstract domain complettuat is the extension of the
abstract domain to avoid loss of precision in abstract fix{goiThis abstract domain
completion is a backward completion in the classical sehabsgiract interpretation [6]
but, for efficiency, restricted to reachable states stud¢kéninvariant to be checked. In
[7] the authors define a restricted abstract domain congpletiowever since we reused
all the information computed so far our completion is muchiefmer than theirs. In [8]
the authors consider a set of proof rules to establish iamaproperties of the system
and they propose abstractions to show the premises of sdmbald. Moreover they
give a method to exclude spurious counterexamples basectefeeation techniques.

Structure of the paper. The paper is organized as follows. Sect. 2 introduces some
preliminary results that are useful for the rest of the palpeSect. 3, we present our
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algorithm and prove its main properties related to corresdrand termination, we also
show that our approach can be easily combined with accilaregchniques. Sect. 4
compares our algorithm to the CEGAR approach and preditetieation. Finally in
Sect. 5, we illustrate the behavior of the algorithm on twaresentative examples.

2 Preliminaries

Notations and notions of lattice theory. We use Church’s lambda notation (so tiat
is AX. F(X)) and use the composition operatoon functions given by f < g)(x) =
f(g(x)). Let X be any set and let € X — X be a function on this set. We extend the
function f to subsets inX in a natural way: givert C X, f(S) = {f(s) | s € S}.
The transitive and reflexive closuig of a function f such that its domain and co-
domain coincide is given by, f* where f° is the identity andf**! = f?o f.
The transitive and reflexive closui¢* of a relationR is defined in the same way. A
function f on a complete lattice is said to beditive (resp.coadditivg if f distributes
the join (resp. the meet) operator. Given two functigng on a posetL, C), we define
the pointwise compariso@ between functions as followskz. f(z) € Az. g(z) iff
Vy € (L,Q): f(y) C g(y). Given a setS, p(S) denote the set of all subsets &f
Sometimes we write instead of the singletofis}.

We denote byifp(f) andgfp(f), respectively, the least and greatest fixpoint, when
they exist, of a functiorf on a poset. The well-known Knaster-Tarski’s theorem states
that any monotone functiofie L — L on a complete latticéL, <, A, V, T, L) admits
a least fixpoint and the following characterization holtis(f) = A{z € L | f(z) <
x}. Dually, f also admits a greatest fixpoint and the following charaz#gion holds:

afp(f) =V{z e Lz < f(z)}.

Transition systems and predicate transformers.A transition systens a 3-tuple7 =
(C,1,T) whereC is the set ofstates I C C' is the subset oinitial states and7T C
C x C is thetransition relation Often, we writes — s’ if (s,5") € T, s —* §'if
(s,s") € T* ands —* &' if (s,s") € T* for k € IN.

To manipulate sets of states, we gsedicate transformersTheforward image op-
eratoris a function that given a relaticgi’ C C' x C' and a set of states’ C C, returns
the setpost[T"](C") = {¢' € C' | ¢ € C" : (¢, ) € T'}. When the forward image
is used with the transition relatidh, it is called thepost operatorand it returns, given
a set of state€” all its one step successors in the transition system, welsiwrnie it
post(C"). Thebackward image operatds a function given a relatiofi’ C C' x C and
set of state§” C C, returns the sefre[T”](C") = —pre[T"])(—~C") = —post[T' ' ](-C")
={ce C|V: (¢,d) € T = ¢ € C'}. When the backward image operator is used
with the transition relatiof’, it is called theunavoidable operatoand it returns, given
a set of state§"” all the states which have all their successors in th&€$etve simply
write it pre(C").

Given a sefl of states the set séachable stateis given by the following least fix-
pointifpS AX. IUpost|[T](X). As shown in [9], this fixpoint coincides withost[T*](I)
also writtenpost* (I) when the transition relation is clear from the context. States
s is said to be reachable ¥ € post*(I). Dually, given a sefS of states, the set of
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states thaare stuck inS (or also thacannot escape frorfi) is given by the following
greatest fixpoingfp=AX. SN pre[T](X). As shown in [9], this fixpoint coincides with
pre[T*](S) also writtenpre™ (S) when the transition relation is clear from the context.

Given two setd, Z of states we callfpS\X. (IUpost(X))NZ the set ofeachable
states withinZ. Finally given a seb of states, the set aftates that cannot escape from
S in less thanl stepsis given byS N pre(.S).

Abstract interpretation. We use abstract interpretation to abstract the semantics of
transition systems. We assume standard abstract intetipretvhereconcreteandab-
stract domainsL given byp(C) andA, are Boolean complete latti¢é&, C, N, U, C, (0, —)
and complete latticéA, C, M, L, T 4, L 4), respectively. The two lattices are related by
abstraction and concretization mapsand~ forming aGalois connectiorve € L :

Va € A:a(c) Ca cC vy(a) [4]. We write this fact as follows{L, C) <= (4, ),

or simply<%> when the concrete and abstract domains are clear from thiextom
this paper, we use a family of finite abstract domains thasabset ofA.

Definition 1 (Family of abstract domains).Let{A;},_; be a family of finite sets such
that: (i) A = (U, 4, (i1) (A4, C) is a complete lattice, angiii) Ja;: (L, C) %
(4, E).

Given an abstract domaid;, we write v(.A;) for the subset of concrete se¥s € L
that can be represented by abstract values;in

The sety(A;) C L of concrete values that the abstract domain representshaust
closed by intersection if there is a Galois connection betwé; and L. Our abstract
domains are thus Moore closed. This notion, and the strarg&m of Boolean closure
are defined as follows.

Definition 2 (Moore and Boolean closure)A finite subseX’ C L is said to be:

— Moore closedff V1,22 € X : 21 A z2 € X and X contains the topmost element
of L. We define the functionX. M (X) which returns the Moore closure of its
argument, i.e. the smallest skf C L such thatX C M and M is Moore closegl

— Boolean closedff Va1,20 € X: (i) 1 Axo € X, (i) 21 V 22 € X, and (iii)
C'\ z € X. We define the functiohX. B(X') which returns the Boolean closure of
its argument, i.e. the smallest setsuch thatX C B and B is Boolean closed.

Let P = {p1,p2,...,pn} be a set of predicates and [et] C C be the subset of
states that satisfy the predicate The set of predicateB implicitly defines a Boolean
closed abstract domain, notgld, such thaty(Ap) C L which is the smallest set which
is Boolean closed and contains the sgg] | p € P}, i.e.Ap = B({[p] | p € P}).

The elements ofd p are equivalent to propositional formulas built from thedicates

in P. Elements of4p can also be viewed as union of equivalence classes of states:
two statesc;, co € C are equivalent whenever they satisfy exactly the same sobse
predicates inP.

3 A Moore closed set is also called a Moore family.
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The following Lemma contains well-known results of abstriaterpretation that
we recall here so that the paper is self contained. We reéeinterested reader to [10]
and the references given there for more details.

Lemma 1. Let], S, Z € L be sets of states. Given an abstract dom&jnwe definer,
resp.S, to be the abstract forward, resp. backward, semanticd pasfp= A X. a; ((TU
post(v(X))) N Z), resp.gfp=AX. a; (S N pre(y(X))).

IfpSAX.(IUpost(X))NZ C~y(R)|  We call this inclusion the overapprox-
afpSAX. S N pre(X) C (S) imation of the abstract semantics.

The Fixed point Checking Problem. Given a transition systerd = (C,I,7T) and
S C C aset of states. THexpoint checking problerasks ififpSAX. IUpost(X) C S

3 Abstract Fixed-point Checking Algorithm

3.1 The algorithm

Alg. 1 has been inspired and is a generalization of what we ld@ne previously in
[11-13]. We review here its main characteristics.

Algorithm 1: The algorithm

Data: An instance of the fixpoint checking problem such that S and an
abstract domaitd, such thatS € v(.Ay)

Zy=S

fori=0,1,2,3,... do

N

, | computer, given byIpEAX. a; ((I U post(7(X))) N Zi)
4 if o;(I'Upost(v(R;))) C «i(Z;) then
5 | return OK
6 else
ComputeS; given by gfp=AX. a; (V(R,») N ﬁvre(’y(X)))
if Oéi(l) CS; then
5 Let Zii1 = 7(S:) N pre(+(Sy))
10 Let Ai 1 be s.ty(Aip1) = M({Zip1} Ur(A))
11 else
12 | return KO
13 end
14 end

15 end
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It computes overapproximations lefastandgreatesftixpoints. Line 3 computes an
abstract least fixpoint. As we will see in Prop. 1, when exegon a positive instance of
the fixpoint checking problem, every sefR;) overapproximates the reachable states
of the transition system. Line 7 computes an abstract ggeftpoint. As we will see in
Lem. 2, and Lem. 3y(S;) underapproximates the set of states that cannot escape from
S'in less than + 1 steps. As we can see from line 3 and line 7, the two fixpointsesha
all the information that has been computed so far. In factthstract least fixpoint of
line 3 overapproximates the reachable states withiwhich gathers all the information
computed so far. Similarly, the abstract greatest fixpoidine 7 starts with the least
fixpoint computed previously. Parts of the state space tha¢ lalready been proved
unreachable withi$ or stuck inS are not explored during the next iterations.

The refinement that we propose is applied on the entire abdixpoint and is not
bound to individual counterexamples. The valiecontains states that cannot escape
from ~(S;) in one step, all concrete states that are stuck withimave this property.
So, this set is interesting as it adds information about &incstates in the abstract
domain, this information will be used by subsequent absfrgmoint computation. We
will see later in the paper that line 9 can be modified in a waiptorporate informa-
tion computed by acceleration techniques. The resultsabdirst prove with line 9 are
still valid when accelerations are used. The possibilitgafbining our algorithm with
acceleration techniques is very interesting as accebastnay allow to discover inter-
esting abstract values related to loops in programs. Lospally hinder the application
of the CEGAR approach.

In line 10 we see that the new valug,; computed at line 9 is added to the set
of values the current abstract domaify can represent (this set 4§.4;)). The new
abstract domain is given by; ;. It is worth pointing that we actually add more than
the single valueZ, . ; to the abstract domain since working in the framework of ralost
interpretation requires that(4;,1) is a Moore family. We will see later that Moore
closure is sufficiently powerful in the following precisense: considering the Boolean
closure instead does not improve the precision of our dlyori This interesting result
is established in Th. 2. This contrasts with several appresin the literature that use
predicate abstraction which induce more complex Booleased domains. The most
precise abstragiost operation is usually more difficult to compute on Boolearselb
domains.

Our algorithm also enjoys nice termination propertiespPshows that our algo-
rithm terminates whenever the concrete domain enjoys tbeetheling chain condition.
This result allows us to conclude that our algorithm will ajyg terminate for the im-
portant class of Well-structured transition systems [54, 4ee [12, 13] for the detalils.
Th. 1 of Sect. 4 also shows that whenever CEGAR terminates,dbr algorithm termi-
nates. We also establish in Prop. 5 that whenever our aigoiig submitted a negative
instance, it always terminates.

Finally it is worth pointing out that all the operations inetlalgorithm, with the
exception of the refinement operation of line 9, are abstpetations, and the only
concrete operation is used outside of any of the fixpoint agatns.

Before giving a formal characterization of Alg. 1, let us@iwore insights by run-
ning the algorithm on a toy example.
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Example 1.The toy example is a finite state system given at Fig. 1. Thefsetates
given by the initial abstract domain are given by the boxes.3bmit to our algo-
rithm the following positive instance of the fixpoint cheegi problem whered, =
{By,Bs, B3, T}, I =14y}, andS = v(Bs). So note thaZZ, = v(B3) = S. In the right
side of Fig. 1 the algorithm is executed step by step. Sinedi¥points converge in
very few steps we invite the interested reader to verify thgrhand.

Ro = B3 line 3

. ao(I U post(v(Bs))) £ Zo (sonot“OK”)  line 4
B So = B3 line 7
ao(I) C Sy (cannot say “KO] line 8

()| Zi=n(Bs) N pre(y(Bs)) line 9

B, . = {507£1a€2}
@ e The new domain isA; = Ay U {By, B5} line 10
with y(By) = Z1 andvy(Bs) = Z1 N ~y(Ba)

={ly, ¢
@] © P .
Ri1 = By line 3

a1 (I'Upost(y(Bs))) E Z4 line 4
Alg. 1 terminates saying “OK”

Fig. 1. A finite state system and the result of evaluating Alg. 1 on it.

3.2 Correctness of the algorithm

In what follows we assume that Alg. 1 reaches enough itaratiocompute the sets
appearing in the statements. For instance,(iR;) appears in the statement then the
algorithm has not yet concluded at iteration 1 or if Z;,; appears in the statement
then the algorithm has not yet concluded at iteration

We start with a technical lemma that states that our algordbmputes sets of states
that are decreasing.

Lemma 2. In Alg. 1 we have

Zit1 CY(S) CY(R) CZ; C--- CZ1 CTH(So) CY(Ro) S ZpC S .

Proof. First, we prove that

V(Sit1) € A(Si) Npre(v(Si)) S(Si) -

Zit1




8 P. Cousot, P. Ganty, J.-F. Raskin

First, consider the casgS;+1) C Z; 1.

Sip1 = gfp=AX. aip (V(Riﬂ) n Z%(V(X))> def. ofS; 11
= Sit1 C ait1 0 Y(Rit1) prop. of gfp
= Sit1 T Riy (%’T
= Sit1 C iy1(Zit) def. of R; 41
= Y(Sit1) €y o air1(Ziy1) ~ monotonicity
= v(Sit1) € Zis1 Zi1 € v(Aiq1) line 10

Second, from line 97,1 = v(S;) N pre(v(S;)) € v(S;)

Finally the result is obtained by the above reasoning, tfieitien of R;, S; andZ;,
the fact thatZ; € ~(.A;) for anyi and the inclusiorZ, C .S which holds by definition
of Zo. O

The next proposition characterizes the sets of statesthabmputed by the Algo-
rithm in the presence of positive instances.

Proposition 1. In Alg. 1,Vi € IN if post*(I) C S thenpost*(I) C v(R;).

Proof. Our proof is by induction on.

Base caselLem. 1 tells us thaty(R,) overapproximates the following least fixpoint
IfpSAX. (IUpost(X))NS. Provided the system respects the invarf(ite. post* (1) C
S), this fixpoint is equal tdfpSAX. (I U post(X)). So,post*(I) C v(Ro).

Inductive case.By induction hypothesis, the property is true for 1. Suppose that
there exists € post*(I)ands ¢ ~(R;). We recall Lem. 2 which shows thatR,;_1) 2
¥(Si—1) 2 Z; 2 v(R;). We now consider several cases.

1. s ¢ v(R,;-1). Then by induction hypothesigpst*(I) € S and we are done.

2. s € y(R;—1) ands & ~v(S;—1). We conclude from Lem. 1 that(S;_,) overap-
proximates the states stuckitiR;_1). Sinces ¢ ~v(S;—1) there exists a stat€
such thats —* s’ ands’ ¢ v(R,_1). First, note that as € post*(I), we conclude
thats’ € post*(I). Butass’ ¢ v(R;—1), we know thatpost*(1) € v(R;—1) and
by induction hypothesis we conclude thatt* (1) ¢ S.

3.5 € Y(Ri—1), s € y(Si—1) ands ¢ Z;. We conclude from the definition of;
which is given by~(S;_1) N pre(y(S;—1)) that there exists’ ¢ ~(S;—1) such
thats — s'. Eithers’ ¢ ~v(R,_1) or s’ € y(R;_1) and by the previous case,
we know thats’ —* s” ands” ¢ ~(R;—1). In the two cases, we conclude that
post*(I) € v(R;—1) and by induction hypothesis thatst*(I) ¢ S.

4. s € y(Ri—1), s € v(Si—1), s € Z;, ands ¢ ~(R;). By overapproximation of the
abstract semantics, we know thais not reachable frond within Z;. Otherwise
stated, all paths starting forfnand ending irs leavesZ;. As s is reachable frond,
we know that there exists somé ¢ Z; which is reachable forni. We can apply
the same reasoning as above and concludepthat (1) Z S. O
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We are now in position to prove that, when the algorithm teateés and returns OK,
it has been submitted a positive instance of the fixpoint kingcproblem, and when
the algorithm terminates and returns KO, it has been subthétnegative instance of
the fixpoint checking problem.

Proposition 2 (Correctness — positive instancesl)f Alg. 1 says “OK” then we have
post™(I) C S.

Proof.

Algorithm says “OK”

< a;(IUpost(v(Ry))) C ai(Z;) line 4

< a;(I) C a;(Z;) &y o post o v(R;) C oy (Z;) o; additivity

& TE 7o ai(Z:) & post(v(Ry)) £ 7 ° ai(Z) —

< I CZ; &post(v(Ri)) C Z; Z; € v(A;) line 10

Then,

a; (I Upost(v(R:)))NZ;) TR, def. of R;, prop. ofifp

& (IUpost(v(R)) N Zi € 7(Ry) =

= T U post(v(R;)) C v(Ry) I C Z; &post(v(Ry)) € Z;

= IfpSAX. T U post(X) C ~(R;) prop. ofifp

= post™(I) C S Y(Ri) € SbylLem.2 O

Proposition 3 (Correctness — negative instancedy. Alg. 1 says “KO” then we have
post*(I) € S.

Proof. If at iteration: the algorithm says “KO” then we find that;(1) Z S; (line 8)
which is equivalent td ¢ ~(S;) by % We conclude from Lem. 2 that(R; 1) C

v(Si), hence thaf ¢ v(R;4+1) and finally thatpost*(I) ¢ S using the contrapositive
of Prop. 1. ad

Remark 1.The proofs of the above results remain correct if in line 9 &f. A instead
of AX. pre[T](X) we takeAX. pre[R](X) whereT C R C T*. This property will
be used later when we propose alternative refinement opesadbased on acceleration
techniques.

3.3 Termination of the Algorithm

To reason about the termination of the algorithm, we needfdiewing technical
proposition and its corollary.

Proposition 4. In Alg. 1 the following holds:
1. if Zi+1 =17; thenpost(Zi) C Z;;
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2. if I ¢ Z; then the algorithm terminates at iteratiorand returns “KO”;
3. ifITUpost(Z;) C Z; then the algorithm terminates at iteratierand return “OK”.

Proof. (1) By Lem. 2 and line 97,1 = Z,; implies Z; 11 = ~(S;) N pre(v(S;)) C
Y(Si) € Zi = Ziy1 s0y(S;) Npre(v(Si)) = ¥(Si) = Z; proving Z; C pre(Z;)
whencepost(Z;) C Z; by definition of Galois connection.

(2) The hypothesis and the monotonicityafshow that the test of line 4 fails and the
algorithm computess; which is such that(S;) C Z; by Lem. 2. Then the hypothesis
again shows that ¢ +(S;) which is equivalent tay; (1) IZ S; by the Galois connection
% and thus the test of line 8 fails and the algorithm terminaté®ration: returning
“KO".

(3) Lem. 2 shows that(R;) C Z;, sosincepost(Z;) C Z; we obtain thapost(vy(R;)) C
Z; by monotonicity ofpost. Finally monotonicity ofy; shows thaty; (IUpost(y(R;))) E
«;(Z;) and thus the test of line 4 succeeds and the algorithm tetesina O

Corollary 1. In Alg. 1if Z; = Z;1; then the algorithm terminates.

Proof. The proof falls naturally into two parts. IfC Z; then itis a logical consequence
of Prop. 4.1 and 4.3; Otherwise termination follows fromRr.2.

Alg. 1 terminates when submitted a negative instance asegrbelow in Lem. 3
and Prop. 5.

Lemma 3. In Alg. 1,7(R;) underapproximates the sﬁfe[U;:O T7](9) of states which
cannot escape frorfi in less than + 1 steps.

Proof. The result is shown by induction on the numbesf steps. For the base case,
Lem. 2 shows that(Ro) C S = pre[T°](S). For the inductive case,

i+1 i i+1
pre[J T9)(S) = pre[|J 77 U [ T71(S) def.U
Jj=0 Jj=0 j=1
= el 79)(8) n gre () (el 7)(S)) def. pre
=0 =0
2 (R:) N prelT)(v(Ry) ind. hyp.
2 (Si) N prelT)(1(S))) by Lem. 2
= Zit1 by line 9
2 7(Riv1) by Lem. 2 o

Proposition 5. If post*(I) ¢ S then Alg. 1 terminates.

Proof. Hypothesis shows that there exists state$and a valué € IN such thak € I,

s' ¢ Sands —* s'. Lem. 3 shows that(Ry_1) C ;_, pre[T7](S). So we conclude
from above that ¢ ﬂff:OﬁFe[Tj](S), hence thatl ¢ ~(Ry_1) by transitivity and
finally that! ¢ Z; by Lem. 2. The last step uses Prop. 4.2 to show that the digorit
terminates. 0
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The following proposition states that our algorithm terates under the descending
chain condition in the concrete domain.

Proposition 6. Assuming the descending chain condition holdgbnC) then Alg. 1
terminates.

Proof. We prove the contrapositive. Assume the algorithm doesamptihate. We thus
obtainthatZy, > 7, > --- D Z, D --- by Cor. 1 and Lem. 2 which contradicts the
descending chain condition. O

Below Prop. 7 establishes a stronger termination resulicélgorithm which states
that if the algorithm computes a valug from which the evaluation of the greatest
fixpoint gfpSAX. Z; N pre(X) terminates after a finite number of iterations then our
algorithm terminates. We use classical fixpoint evaluaterhniques to compute the
setgfpSAX. Z; N pre(X). First we start with the seff; and then we remove the states
that escape fron%; in 1 step. The set obtained is formally given Byn pre(Z;). Then
we iterate this process until no state is removed.

Lemma 4. If gfpSAX. Z; N pre(X) is computable irk steps, so igfpSAX. v(R;) N
pre(X). Moreover the following equality holds:

Y(Ri) N gfpSAX. Z; N pre(X) = gfp“AX.4(R;) N pre(X) .

Proof. Let s be a state such thate Z; but not in the set of states stuck i) (recall
that this set is given byfpSAX. Z; N pre(X)). We find that there exists a state¢ Z;
and a values’ < k such thats —*" s’ for otherwise the set of states stuck4nis not
computable irk steps.

Now, let s; be such that; € v(R;) but not in the set of states stuck #{R;).
Lem. 2 shows that(R;) C Z; and hence that; € Z;. We conclude frompost(~(R;))N
Z; € v(R;) thats; escape fronZ; and hence that, according to the above reasoning,
there exists’|, ¢ Z; andk’ < k such thats; —* s/, and finally thatyfpSAX. y(R;) N
pre(X) is computable irk steps.

The proof of the equality follows from the following obsetigm: the states of (R ;)
removed during the computation gfpS A X. ~v(R;) N pre(X) are also removed by the
computation ofyfpSA\X. Z; N pre(X). 0

Proposition 7. Ifin Alg. 1 there is a value fof such thatgfp=\X. Z; N pre(X) stabi-
lizes after a finite number of steps, then Alg. 1 terminates.

Proof. We conclude from the stabilization gfpS \X. Z;Npre(X) at stepk (i.e. iterate
k equals iterat& + 1 andk € IN) thatgfpS A\ X. v(R;) N pre(X) stabilizes at step by
Lem. 4. Then,

Zi+1 = ’}/(81) N ]%(7(87)) def. OfZH_l
€ y(Ri) N pre(v(Ri)) v(8;) € v(Ri) by Lem. 2 @
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gfpEAX.Y(R;) N pre(X) C 4(S;) def. of S;, Lem. 1
= gfpSAX. Y (Ri) N pre(X) C y(Si) N pre(v(Si)) prop. of gfp
= gfpSAX.~v(R;) N pre(X) C Ziy def. of Z, 4
= gfp=AX.y(R:) N pre(X) = gfp CAX Zis1 0 pie(X) by (1) (2)

We have shown above thafpSAX.~(R;) N pre(X) stabilizes at step. By (1)
and (2) we find thayfpSAX. Z; 11 N pre(X) stabilizes at step — 1.

Repeated application of the above reasoning showsgfp&i\X. Z; 1, N pre(X)
stabilizes at step. We thus obtain that

afpSAX. Y (Rigx) N pre(X)

= v(Ritr) N gfpSAX. Zipp N pre(X) Lem. 4
=Y(Ritx) N Zitk stabilizes at step 0
=7(Ritk) Y(Riyr) € Ziyr by Lem. 2

This property allows us to conclude thafR; ;) = v(S;+x), hence thatZ; ;11 =
Y(R;+r) andfinally thaty(A; 4 k+1) = v(A;4x). Soitis routine to check that; 11 =
Z;+1 and so the algorithm terminates by Cor. 1. |

3.4 Termination of the Algorithm Enhanced by Acceleration Techniques

In this section we will study an enhancement of Alg. 1 whiclieseon acceleration
techniques (see [16] and the references given there). Roggkaking, acceleration
techniques allow us to compute underapproximations ofréesitive closure of some
binary relation as, for instance the transition relatiore #fer the interested reader to
the extensive literature on this topic.

Assume we are given some binary relatiinsuch thatl’ C R C T*. The en-
hancement we propose replaces line 9 (Viz,1 = v(S;) N pre[T](v(S;))) by the
following: Z, 11 = v(S;) N pre[R](v(S;)). The definition ofR suggests that the value
added using? should be at least as precise as the one given Usifgvery favorable
situation is wherk equals’™ but Prop. 7 is not applicable at any iteration We conclude

from Z, = gfpSAX.~(So) N pre(X) that post(Z,) € Z; by =——, hence that the

enhanced algorithm terminates at iteration one by Prop. |¥tavthle normal algorithm
might not since Prop. 7 is never applicable. Below we illatgtrthis situation using a
toy example.

Example 2.Fig. 2 shows a two counters automaton and its associatechtiemal he
domain of the counters is the set of integers. In the autamatg refer to the current
value of the counters whilg’, v’ refer to the next value (namely the value after firing
the transition). Transitiom; is given by a simultaneous assignment. In green are the
reachable states, which are given fiy,y) | v < & 0 < x}. We will submit to

Alg. 1 a positive instance of the fixpoint checking problerofsthat/ and S are given
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by {(0,0)} and{(z,y) | v # « + 1} respectively. Our initial abstract domaidy is
such thaty(Ag) = M(S).

It is routine to checkRr,, computed at line 3, is such thatR,) = S, hence that
the test of line 4 fails. It follows that we have to comp&ggiven at line 7. LetX?, §
be the sequence of iterates faK. a(7(Ro) N pre[T](v(X))) which converges t&,.
First let us compute

S N opre[ta](S)

= SN-oprefts] o —(S) def. of pre

= SN=oprefts]({(x,y) |y =2+ 1}) def. of =, S

=SN-({(z,y) |y=2+2}) see Fig. 3
=SN{(z,y) |y #z+2}

={(z,y) |ly#x+1}n{(x,y) |y #x+ 2} def. of S

We now turn to the evaluation of thgp.

X=T

X' = ao(7(Ro) N pre[T](v(Xo)))
= ao(9) Y(Ro) = S, T C pre[T|(T)
SyS S € v(Ao)

X2 = ao($ N re[T)((X1))
— a0 (S N relts](7(X1)) N prefta] (1(X1)) def. pre
= ao (S N relta] (7(X1)) S 0 pre[ta](5) = S

By above we find that, (SN pre[ts](S)) = S, hence that(Sy) = S. Since the test
of line 8 succeeds the next step (line 9) is to compgtéVe use acceleration techniques
to computeZ; for otherwise the algorithm does not converge. Without ntasg to
acceleration techniques eazhescapes frony in i+ 1 steps by firing transitior,. This
clearly indicates that the CEGAR approach considers coexdenples of increasing
length and thus fails on this toy example. By considerindithi instead of theZ;’s we
obtain a value that is stuck 5. That value stuck ir$’ can be obtained using acceleration
techniques as shown below.

tiry=0—(2y) =(z+Lao+1)

z—oyy—ol_ylz

Fig. 2. A two counters automata and its associated semantics.
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Fig. 3.Red dots aré(xz,y) | y = z+1} and blue dots argre[to] ({(z,y) | y = z+1})

Our candidate relation to show termination is given:py ¢ which is computable
using acceleration technique. It is routine to check thaC ¢, U t; C T*. Let us
computeZ; which is given byS N pre[t; U t5](.5).

SN oprelt; US](S) = def. pre
S0 pre[ta](S) N pre(ts](S) = SN pre[ti](S) =5
pref[ts](S) =
It

afpSAX. S N prefts] (X)

Let X°,§ be the sequences of iterates foX. S N pre|t2](X) which converges to
C —_—
afp=AX.S N preltz:](X) We have:

X'=T
= 5N pre[ta](Xo) def. of the iterates
=S T C preft2](T)
—T\{(w y)ly=xz+1}
= SN pre[ta](X1) def. of the iterates
—Sﬂpre[g](S) X1=5
=T\ {(z,y)|ly=z+1lory=xa+2} from above

X ={(z,y) |y <=z}

The new abstract domaid; is such thaty(A;) = M(v(Ap) U Z;). At iteration
1, we find at line 3 that(R;) = Zi, hence that the test of line 4 succeeds since there
is no outgoing transition of; (see Fig. 2), and finally that Alg. 1 terminates with the
right answer.

It is worth pointing that the forward abstract semanticsasatusive. However al-
gorithms using acceleration techniques to compute thediahwoncrete semantics do
not terminate. Basically acceleration techniques idgm8fjular expressions over the
transition alphabet and then compute underapproximatigheotransitive closure of
the transition relation. For the automaton of Fig. 2 acegien techniques fail because
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there is no finite regular expression that describes all tissiple executions of the
counter automaton. Additional examples can be found in pipeadix. [ ]

The rest of this section is devoted to establish some tetiomaroperties of the
enhanced algorithm. In fact, as we said in Rem. 1 our coresstproofs remains valid
for the enhancement. Thus below we focus on terminationgutigs.

Proposition 8. Let R be such thal’ C R C T*. If gfpSAX. Z; N pre[R](X) is com-
putable ink steps, so igfp=\X.~v(R;) N pre[R](X). Moreover the following equality
holds:

Y(R:) N gfp“AX. Z; N pre[R|(X) = gfp“AX.4(R;) N pre[R)(X) .

Proof. The proof of Prop. 7 can be straightforwardly generalizeay binary relation
Rsuchthatt’ C R C T*. O

By definition of R it is routine to check that
AX. pre[T*)(X) E AX. pre[R](X) € AX. pre[T](X) . (3)
Proposition 9. Let R, such thatl’ C R, C T* and gfpSAX. S N pre[Ry](X) stabi-
lizes after a finite number of step, then Alg. 1 when usingfanguch thatR, C R; C
T* at line 9 terminates as well.
Proof. As Z, = S, by hypothesis we havgpS\X. Z, N pre[Ry](X) stabilizes after

at mostk steps (i.e. iteraté equals iteraté: + 1 andk € IN), hence we deduce that
afpSAX. v(Ro) N pie[R,](X) stabilizes at most aftér steps by Prop. 8. Then,

Zy = (So) N pre[R1](v(So)) def. of Z; 4
C 7(Ro) N pre[R1](v(Ro)) 7(So) € 7(Ro) by Lem. 2
€ 7(Ro) N pre[Ra](v(Ro)) pre[Ri] C pre[Ry)] 4)
gfpSAX.4(Ro) N pre(X) C 4(So) def. of Sp, Lem. 1
= gfp“AX.7(Ro) N pre(X) € 7(So) N pre[R1)(v(So))  def. (3), prop. ofyfp
= gfpSAX.v(Ro) N pre(X) C Z4 def. of 7,
= gfpSAX.v(Ro) N pre(X) = gfp“AX. Zy N pre(X) by (4)

()

We have shown above thafpSAX.~(Rg) N pre[R,](X) stabilizes at step, by
(4) and (5) we find thagfpS\X. Z; N pre[R,](X) stabilizes at step — 1.
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Repeated application of the above reasoning showgthat\ X. Z;, N pre[R,](X)
stabilizes at step and so doegfpS\X. Z;, N pre(X). We thus obtain that

afpSAX. Y (Ry) N pre(X)

= ~v(Ry) N gfpSAX. Zi, N pre(X) Lem. 4
=v(Rg) N Zk stabilizes at step 0

This property allows us to conclude tha{R:) = ~(Sk), hence thatZ, 1 = v(Ry)
and finally thaty(Ay+1) = v(Ax). So itis routine to check th&f,; = Z; and so the
algorithm terminates by Cor. 1. ad

4 Relationships with Other Approaches

4.1 Counterexample Guided Abstraction Refinement

We first recall here the main ingredients of the CEGAR appidage, §4.2]. Given a

transition systerf = (C, T, I), called theconcrete transition systerand a partition of

C'into a finite number of equivalence classes- {C1, ... C}}, the abstract transition
system is a transition systef = (C*, 7%, I*) where:

— C% = (, i.e. abstract states are the equivalence classes;

- T* = {(C;,Cj) | Fc € C;,¢ € C;j: (¢,d) € T}, i.e. there is a transition from
an equivalence clags; to an equivalence clags; whenever there is a state ©f
which has a successor @ by the transition relation;

—I*={C; € C| C;NI # 0}, i.e. aclass is initial whenever it contains an initial
state.

A path in the abstract transition system is a finite sequeheabsiract states related by
T that starts in an initial state. An abstract statas reachable if there exists a path in
T that ends inC;. The set of states within the equivalence classes that achable
in the abstract transition system, is an overapproximaifadhe reachable states in the
concrete transition system.

An abstract counterexample $6C C'is a pathC;, C,, ... C;  in the abstract tran-
sition system such that; ¢ S. An abstract counterexamplespuriousif it does not
match a concrete path . We define this formally as follows. To an abstract coun-
terexampleC;, , ..., C;, , we associate a sequenget,, .. ., t,—1 of subsets of" (the
transition relation of7’) such thatt; = 7'N (C;; x Cy,,,) (the projection ofl’ on
successive classes).

An abstract counterexample is arror trace only if I & pre[ty o ... o t,,_1](S)
(by monotonicity we havd ¢ pre[T*|(S)), otherwise it is calledspuriousand, so
I Cpre[ty o...ot,—1](S). Eliminating a spurious counterexample is done by spgttin
a classC; wherel < j < n. The classC; containsbad stategwritten bad) that
can reach~S but which are not reachable froa;_,. Accordingly the clasg’; split
in C; N bad andC; N —bad. From the above definition, we can deduce thad =
pre[t; o ... o t,_1](—S), hence that-bad = — o preft; o ... o t,_1] o =(S),
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and, finally that-bad = pre[t; o ... o t,_1](S5). Hence the splitting o’; is given
by Oj n ﬁi[t] o ... o0 tn_l](S) andOj N=o ﬁv’l’e[t] o ... 0 tn_l](S). When the
spurious counterexample has been removed, by splittingjaivaence class, a new
abstract transition system, based on the refined partisagnsidered and the method
is iterated.

CEGAR approach concludes when it either finds an error tideatifying a nega-
tive instance of the fixpoint checking problem) or when itsloet find any new abstract
counter example (identifying a positive instance of thedirp problem).

We now relate the abstract model used by CEGAR with the atistreerpretation
of the system. The initial abstract domadg, that our algorithm uses, is such that for
all equivalence classés; in the initial partition used by the CEGAR algorithm, there
exists an abstract valuee A, such thaty(a) = C;.

Lemma 5. Assume that CEGAR terminates on a positive instance of tharibcheck-
ing problem. So CEGAR produced a finite 8t } ;< ; of counterexamples such that the
following holds:

JA € y(Ao): I C gfp AX. ANpre(X) C S&V = An() pre[wi](S) .
el

|4

Proof. Let 7% = (C,T<, I*) be the abstract transition system whéfe is the par-
tition that is obtained when the spurious counterexamptes {w; };<; has been con-
sidered.

Let /'* C C“ be subset of reachable classes7if. Let I be (Jq, cpo Ci, 1.€.
F' contains the set of states that are within reachable classg§. As the abstract
analysis is conclusive, we know thatC F, FF C S, andpost(F) C F. As F' is
inductive for AX. I U post(X), we know thatF" N (J;; pre[w;](=S) is emtpy, i.e.
F C ;e; pre[ws](S). The classes il are either classes that were present in the
initial partition (defined byAq) or classes that were refined and does not contaih
states, saF' is composed of classes of the initial partition and refinests of the
initial partition. None of these classes intersglt ; prefw;](=S). 0

We need one more auxiliary result before presenting Th. 1.
Proposition 10. In Alg. 1,Vk € IN if post*(v(Ry)) C S thenpost(y(Ry)) C Z.

Proof. Our proof is by induction of#.

Base caseThe result follows immediately since in Alg. 1 we ha¥g = S.

Inductive case.We show the contrapositive of the implication. We first rel&, , |
with the set of states that cannot escape frdiRy) (i.e. gfpENX. v(Ry) N pre(X))
as follows

afp=AX. Y (Ri) N pre(X) € y(Sk) Lem. 1
= gfpSAX.y(Ry) N pre(X) C y(Sk) N pre(v(Sk))  fixpoint property
& gfpSAX.y(Ry) N pre(X) C Zpya def. of Zj, 1
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We conclude from the contrapositive hypothesis givemdy (y(Ri+1)) € Zi+1 and
by above thapost (v(Ry11)) € gfpSAX.~v(Rx) N pre(X). Intuitively this means that
some states qfost(y(Ry+1)) can escapg(Ry) or more formally thapost* (y(Ry+1)) €
~v(Ry). So consider the sequengg sy, . . ., s, such thafs;, s;11) e Tforl <i<n
andsg € v(Ryr41) ands, ¢ v(Rx). Since, by Lem. 2y(Ri+1) € v(Ry) the se-
quence can be partitioned into a prefix (from Q}aevhere the states belong 1dR )
and a suffix (fromi + 1 to n) where the states does not belonghtdR). We have
that{s;+1} ¢ Z; for otherwisepost(y(R)) N Zr C v(R) does not hold. Lem. 2
shows thaty(Ri+1) C V(Rk) C Zy. We conclude froms; € v(Ry), Si+1 ¢ Zk
ands; — sz+1 that post(s;) ¢ Zj, hence thapost(v(Rx)) € Zx and finally that
post*(v(Rx)) ¢ S using the induction hypothesis. Finally since, by defimitaf the
sequenc&siﬂ is reachable fromy(R 1) we find thatpost* (v(Ry41)) € S. O

Theorem 1. Assume a positive instance of the fixpoint checking probile@EGAR
terminates so does Alg. 1.

Proof. Let k be the size of the longest; for i € I. Lem. 3 shows thaf(R+1) is an
underapproximation of the states that cannot esépeless thark steps. Formally,

we havey(Ry41) € j_ p7e[T7](S). This implies that

Y(Ri+1) € ﬂﬁ?@[wl}(S) (6)

el

Our next step will be to show thaiost[T*](v(Rk+1)) € S which intuitively
says thaty(Ry+1) cannot escapé. First, note that ify(Ry.1) can escape frony
then it cannot be with the counterexamples produced by CE@iABEy(RkH) -

;s pre[w;](S) which is equivalent tq J, . ; post[w;|(7(Ri+1)) € S by ——. Let
A be defined as in Lem. 5. Our proof falls into two parts:

1. v(Rk+1) N A cannot escape froifi, i.e. post[T*](v(Ri+1) NA) C S, as shown as
follows. From (6), we know that(Ry1) € (;c; prefw:](S), and by definition
of V, we have that(R;+1) N A C V. AsV is inductive forpost andV C S, we
conclude thapost[T*](v(Ri+1) N A) C S.

2. v(Ry+1) N —A cannot escape froifi. For that, we show that(R+1) N = 0.
Prop. 1 and definition oft show that/ C v(Ry4+1) N A and sm(Rk+1) ;é 0.
We also know that in any statee ~v(Ry+1) N A for post[T*]({s}) N —A # 0
to hold s has to be such that ¢ 0, pre[wJ(S) However smcey(RkH) -
Mics pre[w;](S) and sinceRy 1 is given by IfpSAX. cy1 (I U post( (X)) n
Zi+1) over Agq (with v(Agk41) € v(Ap)) we find thaty(Ri41) N —A = 0. It
follows thatpost[T*](v(Rk+1)) € S.

We conclude from Prop. 10 thabst(v(Rk+1)) € Zi+1, hence that the test of
line 4 succeeds byy,; monotonicity and’ C v(Rx+1), and finally that Alg. 1 termi-
nates. |

If we consider the converse result, namely that CEGAR teatemif Alg. 1 termi-
nates we find that this does not hold for the enhanced algo@dthshown in Ex. 2.
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4.2 Predicate Abstraction versus Moore Closed Abstract Domias

Moore closure is as strong as Boolean closureBelow we prove that Alg. 1 does not
take any advantage maintaining a Boolean closed abstrataidanstead of a Moore
closed one.

The following Lemma shows that every “interesting” valueled by the Boolean
closure is added by the Moore closure as well. By extensioobten that (see Th. 2) if
Alg. 1 extended with the Boolean closure terminates then Akgrminates. Our result
hold basically because bofR; andS; are such that/(R,;) C Z, and~(S;) C Z; by
Lem. 2.

Lemma 6. Let A be a finite subset af such thatB(A) = A and letZy, Z1, ..., Zy
be elements af such thatZ, C --- C Z; C Z,. Givene € B(AU{Zy, Z1,..., Zx})
such thate C Z;, we havee € M(AU{Zy, Z1,..., Zr}).

Proof. We first notice that the value can be expressed in a form gitaifdne Conjunc-
tive Normal From (CNF) used in propositional logic. Morepsencee C 7, we have
thateNZoN Z1 N---N Z;, = e. Soe can be expressed as follows:

k
e:ﬂ(a1U-~Uam)ﬂﬂZj
=0

iel J

such that the;'s belong toA and! is a finite set sincel is finite subset of..
We now give two syntactic transformations of the abevtkat preserves its seman-
tics.

— Remove frome each union of the forniZ; U «). This rule does not modify the
value ofe sincee C Z; C (Z; U1).

— Replace ire any union of the form~Z; U« by +. This rule does not modify the
value ofe as shown below.

Zi N (=Z;Uap) subexpression af

=(Z;N=Z;)U(Z; N) set theory
=0uU(Z;nvy) set theory
=Ziny

Sincee has finitely many unions expressions the two rules can baeapfhitely many
times because the size ©flecrease after applying any rule. It follows that the repeat
application of these two rules stabilizes after a finite nantf steps.

Moreover after stabilization no valug,, ..., Z; appears in a union df or more
values which means siné{ A) = A thate € M(A). O

Theorem 2. ProvidedB(v(Ag)) = v(Aop), if Alg. 1 with the Moore closure (viz\1)
replaced by the Boolean closure (82 terminates then Alg. 1 terminates as well.

In the context of predicate abstraction, there is no polyiabalgorithm to com-
pute the best approximation. In fact the result of applyin valuel’ is given by the
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strongest Boolean combination of predicates approxirgdfinMoreover the computa-
tion of the best approximation is required at each iterateach fixpoint computation.
So in the worst case the time to compute a fixpoint is given byhtight of the abstract
lattice times an exponential in the number of predicates dtenerally admitted that
this cost is not affordable and this is why approximationsrme linear in the number
of predicates are preferred instead. For our algorithmitbatson is pretty much better:
as shown in Lem. 6 we can compute the best approximation eltirear in the number
of predicates. However we need the initial set of prediceté® Boolean closed.

5 Examples

In this section we will show that Alg. 1 terminates on two wiallown array sorting
algorithms. The property we prove are safety propertieskvbiates that the array to be
sorted is never accessed out of its bound. We do not analyeetlglithe program code
of those algorithms but an abstraction instead. Our aligireforgets about the content
of the array and so we replace the tests based on array’ssviajuron deterministic
choices. Our model is sound in the sense that it containgstt & the behaviors of the
program. So if the abstract model satisfies the safety ptypperdoes the program. The
abstract model we use is given by counter automata whereceacher corresponds to
an array index. The safety property is naturally reduced teaghability property on
the counter automaton. Prop. 5 shows that when submittedatine instance Alg. 1
terminates. Consequently the instances considered bedpoaitive instances.

At the present time, no implementation of Alg. 1 is availablg, as shown in the
previous sections, the algorithm is correct and moreoveidestified some conditions
that, if satisfied, guarantee its termination. We thus relytleese conditions to show
that our algorithm is going to conclude with the right answWérese conditions are non
trivial but they can be evaluated using available tools. Weose to rely on the Hytech
model checker (see [18]) to prove that the condition of Piojs. satisfied and hence
that Alg. 1 terminates.

Besides Hytech we also rely on the FAST tool (see [19]). FASa fool that uses
acceleration techniques. If the FAST tool terminates whealuating gfpS\X. S N
pre[T](X) it returns an acceleration schelesuch thal” C R C T*. Then Prop. 9 is
used to show that for ani’ such thatk C R’ C T* Alg. 1 terminates provided line 9
is replaced byZ; 1 = v(S;) N pre[R'](v(S:)).

The Heapsort Algorithm. Heapsort is a classical example in static analysis (e.g. [20
using the polyhedral abstraction). We shall prove that tin@yato be sorted is never
accessed out of its bound given byandn. The counter automaton is given Fig. 4.
The model has been derived manually from the code given ih Rihce the array

is accessed throughh = {¢,i,r, max} we want to prove that each access is legal.
Formally the seb of states representing legal access is given by the follpfdarmulas
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te:i=max — j:=j—1

torj A1l —i=1

t3: max =1

t5: i # max — i ;= max

Fig. 4. Counters automata modeling of the Heapsort algorithm

11 to ¢, associated to the locations with the same index.

Pr=0<j—1-(1<l<n&l1<i<n)
Yo=r<j—1->(1<r<n&l<max < n)
P3=1#max — (1 <i<n &1 <max < n)
Ya=1<j<n
The setl of initial states is given b>{‘j =na&nz1 atl
1 elsewhere.

Let Py be the set of predicates appearing in the text of the progFanmally,
Poisgivenby{j > 2,7 = n,n > 1,4 = max,i # max,r < j— 1,{ < j —
1,41,19, 13,14 }. The initial abstract domain is given by = M(Py).

We are going to show that Alg. 1 terminates on the Heapsodridthgn. Hytech
terminates for

P =0<j—1—(1<L&1<i<n)
Ph=r<j—1—(1<r&l<max<n)
Y3 =i#max — (1 <i<n&1<max < n)
Pp=1<j<n

and thus Alg. 1 terminates by Prop. 7.

Notice that iny; andt, we do not check fof < n (recall that component of
the array is accessed). However sirigs not modified in locationg,, ¢y, ¢1, > and by
14 we can deduce that whenever the array is accessed thfotighinequality! < n
holds.

Now assume you do not want this ad hoc reasoning to convinaesgth that the
array is never accessed out of its bounds. We can still mathégsituation since FAST
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terminates for

P1=0<j—-1-(1<l<n&1<i<n)

Yo=r<j—1->(1<r<n&l<max < n)

P3=1#max — (1 <i<n &1 <max < n)
<

and thus Alg. 1 terminates by Prop. 9.

The Bubble sort algorithm. The necessary termination conditien> 0 is found in
[4] by an iterated forward-backward non-relational intranalysis. ATREE proves
the absence of out of array bound error in 0.8 s thanks to ttagonal abstraction [22].

We shall prove that the array to be sorted is never accesgenf ds bound given
by 0 andn. Since the array is accessed through varightaly we want to prove that
0 < j < n holds for each reachable state. The counter automaton givieiy. 5 has
been extracted from [4].

torjAi—j =541

t3:j:i—>i':i—l

Fig. 5. Our two counters automata modeling the Bubblesort algorith

In our model we have variablégnd; and a non negative parameterepresenting
the array’s size. Lef andS be given by{(¢,j,n) | i = n} and{(¢,j,n) | 0 < j < n}
respectively. LetP, be the set of predicates appearing in the text of the progtam p
the formula representing. Formally, P, is given by{i = n,i =0,i = 5,0 < j < n}.
The abstract domaid, is given by M (7).

Finally we have that since the FAST tool terminates then Algerminates by
Prop. 9.

6 Conclusion and Future Works

We have presented a new abstract fixpoint refinement algofith the fixpoint check-
ing problem. Our systematic refinement uses the informat@nputed so far which
is given by two fixpoints computed in the abstract domain. Astare work, we can
consider two variants of this algorithm. First, the dualoaithm for the inverted tran-
sition systenil’~! can be used to discover necessary correct termination tommsli A



Fixpoint-Guided Abstraction Refinements 23

second dual algorithm where we use the inverted inclusidaray on states leading to
underapproximation of fixpoints. In this settings fiieallows to conclude on negative
instances and thgfp on positive instances. Also the refinement step usegdhepred-
icate transformer instead p¥e. Finally we will consider more complicated properties
like properties defined by nested fixpoint expressions.
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