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Abstract

This paper introduces the notionwéll-structured languageA well-structured
language can be defined byadelled well-structured transition systeequipped
with an upward-closed setf accepting states. That peculiar class of transition
systems has been extensively studied in the fieldoofiputer-aided verificatign
where it has direct an important applications. Petri natd, their monotonic ex-
tensions (like Petri nets with non-blocking arcs or Pettséth transfer arcs), for
instance, are special subclasses of well-structurediti@amsystems.

We show that the class of well-structured languages enjegrabimportant
closure properties. We propose several pumping lemmatatbaapplicable re-
spectively to the whole class of well-structured languaged to the classes of
languages recognized by Petri nets or Petri nets with nockbig arcs. These
pumping lemmata allow us to characterize the limits in theregsiveness of these
classes of language. Furthermore, we exploit the pumpimgiata to strictly sep-
arate the expressive power of Petri nets, Petri nets witHahoeking arcs and Petri
nets with transfer arcs.

1 Introduction

In this paper, we study the family of languages definedveyi-structured (labelled)
transition system§WSTS for short). WSTS [10] are transition systems whose state
space is infinite but equipped with a well-quasi ordering dvior short) and whose
transition relation is monotonic w.r.t. this wq@VSTS have recently attracted a large
interest in the community ahodel-checkingpecause they enjoy nice decidability re-
sults and are useful to model important classes of systekesp@rametric systems [8]
and communication protocols [2]). In particular, th@verability problen(a variation
of the reachability problem) has been shown decidable fmthole class o¥WSTS
[1,10]. A large number of popular models defiMSTS: Petri nets [16], monotonic ex-
tensions of Petri nets (e.g., Petri nets with transfer atpslpssy channel systems [2],
broadcast protocols [8].

While the decidability properties of those models have bstedied extensively
(see, for example [10]), there are few known results abaeit #xpressive power in
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term ofrecognized language&or example, several extensions of Petri nets have been
proposed but their expressive power has not been studiedcamplared so far.

In a previous paper [9], we have started to study the exmepsiwer of monotonic
extensions of Petri nets w.r.t. their ability to define sdtmfinite words (omega lan-
guages). Unfortunately, the techniques that we had degdlopthat work were only
applicable to omega languages. In the present paper, wediereehose techniques
to make them applicable to the study of the expressive poW&¥STS measured in
term of definable sets of finite words. This classical measllosvs us to compare
the expressive power &¥STS with other well-studied formalisms like finite automata
(defining regular languages), push-down automata (defioimgext free languages)
or Turing machines (defining recursively enumerable laggaa We propose proof
techniques that intensively use basic properties of wqo.b@leve that those proof
techniques are interesting on their own.

The main contributions of our paper can be summarized asAsll(i) we define
a natural class of languages recognizedMyTS for which the emptiness problem is
decidable i) we show that this class has important closure properties@mts an
Abstract Family of LanguagdaFL for short),(iii ) to show the limits of the expressive
power of WSTS, we introduce a general pumping lemma and show some examples
of its possible applicationgjv) we study the relative expressive power of Petri nets
and two important monotonic extensions of theirs. Thisyiadnade possible by two
stronger pumping lemmata for these models.

The rest of this paper is structured as follows. In sectiow® recall some pre-
liminaries about wqoWSTS and (monotonic extensions of) Petri nets. In section 3,
by considering different kinds of accepting conditions, dedine three classes of lan-
guages recognized BYSTS, and we show that one of them has several interesting
properties. That class is called thvell-structured language@VSL for short). In sec-
tion 4, we propose a general pumping lemma applicable to amydlism that defines
WSL. Two stronger versions of this lemma are defined and showiicapfe to mono-
tonic extensions of Petri nets. In section 5, we use the pogipimmata to show the
limits of WSL, some non-closure properties, and a strict hierarchy ofesgive power
among the monotonic extensions of Petri nets that we havadened.

2 Preliminaries

In this first section, we recall the main basic results thdlt lvd useful in the sequel.
More precisely, we recall the classical notionslarfiguagesand Abstract Family of
Languageg12, 18]. Then, we definavell-quasi orderingsandwell-structured tran-
sitions systemthat form the basis of our definition of well-structured laages. We
close the section by recalling the (monotonic extensiopBetfi nets whose languages
are actually well-structured.

Throughout this paper, we denote Nythe set{0,1,2,...} of natural numberg0
included), and byzt the set{1,2,...} of strictly positive natural numbers

Languages and abstract family of languages Given a (finite) alphabéf, a (finite)
word onZ is either the empty word (we assume that ¢ X) or a finite concatenation of
symbols inz. Given a wordwv on the alphabei, thelengthof w, denotedw] is defined

1Some partial results are known about Petri nets, see for grei6].



as follows. Ifw = ¢, then|w| = 0. Otherwisew = ajay - --an, where{as,...an} C Z,
and|w| = n. A language ort is a (possibly infinite) set of words cn

Let - denote the word concatenation. As uswak = £ -w = w. The concatenation
of two languaget i andL is the languagé; - Ly = {w1-w, | w1 € L1,wp € Lp}. The
iteration of a languagkeis the language™ = {wy-...-w, |n > 1AV1<i<n:w € L}.
Given a finite alphabef, ahomomorphisns a functionh: 2* — Z* s.t. Vwy,Wp € Z* ;
h(wy -w2) = h(wy) - h(wz). The inverse oh is the functionh™ : =* —— 2" such that
h=l(w) = {W | h(wW) = w}. If L is a language o&, thenh(L) = {h(w) |we L} and
h™1(L) = UweLh™ 1(w).

Definition 1 ([12, 18]) A full abstract family of languagéfull AFL for short) is a set
of languages closed undéin union, (i) concatenation(iii ) intersection with regular
languages(iv) iteration, (v) homomorphism anVi) inverse homomorphism. H

Well-quasi orderings Well-quasi orderings are special cases of quasi ordersithat
the cornerstone of the definition BfSTS.

Definition 2 A well quasi ordering< on C (wqo for short) is aeflexiveandtransitive
relation s.t. for any infinite sequencg, ¢y, ... of elements in C, there argjic N, with
i<jandg <c;j. [ |

In the sequel, we write; < c;j iff ¢; < ¢ butcj £ ¢i. When a se€ of elements is
equipped with an ordering, one can define the notion opward-closed sefThat no-
tion will be useful in the sequel to defimecepting conditionsef languages ofVSTS.

Definition 3 % C C is a<-upward-closed set if and only if: for anye %, for any
¢ eCsuchthate<c: ¢’ e 7. [ |

Given a<-upward closed se¥, letmin (% ) be a maximal set such that:

e forallc,c’ € min(%):c#c impliesc £ ¢ andc’ £ ¢, i.e., all the elements of
min (% ) are incomparable to each other;

e Vcemin(%):—3c € % :c <c,i.e. all the elements imin (%) are<-minimal
in%.

The following lemma is well-known and is a direct consequeoicthe definitions
of min and of a wqo:

Lemma 1 Given a set C and awggC C x C: for any <-upward-closed seZ C C:
the setmin (%) is finite and% = {c| 3¢ € min (%) : ¢’ <c}.

Well-structured transition systems These transition systems have the characteristic
that their set of configurations is ordered by a wgpand their transition relation is
<-monotonic, as stated by the following definition:

Definition 4 A (labelled) well-structured transition syst€ivSTS for short) is a tuple
(C,co,%,=,<) where:

e Cis a (possibly infinite) set of configurations;
e Cp € Cis the initial configuration;

e 2 is afinite alphabet;



e =C CxXZU{¢e} xCis the transition relation;
e <is awgqo for the elements of C.

Moreover,=- is monotoniow.r.t. to<, thatis, forany ¢, c;cand g in C: forany ac >uU
{e}: if (c1,a,C2) €= and g < cg, then, there exist a finite sequermet,,...,t € C
(with k> 2) and1 < ¢ < k, such that:

e C; =Cg;

e foranyl<i</{: (T, €,Tit1) €=

o (Cr,a,Cpy1) €=

e forany/+1<i<k: (G,é&,Tiy1) €=

e Cp < Tk |

In the sequel we often write 2 ¢y instead of(cy,a,¢) €=-. When the character
labelling the transition is not relevant, we might omit idanrite ¢c; = ¢, to mean that
there existe € U {€} s.t.c; = .

. w . .. . .

We also writec =* ¢/ to mean that there exists a (finite) sequence of configurstion
C1,Cy,...,Cn such thati) cX C1 & Co---Cp & and(ii)w=ag-a;z - --an (thus, some
of the gi's may bee). Remark that, for any pair of configuratioosandc,, and any

a . . a . . .
charactem, ¢c; = Cp impliesc; =* ¢y, but that the reverse implication does not hold.
When two configurations; andc; are such that; ﬁ% , for some wordw, se say that
c, isreachablefrom c;.

For any configuration € C, let PreUp(c) be the set of all configurations whose one-
step successors by are larger (w.r.t<) thanci.e.,PreUp(c) = {c' | ¢ = c",c < c"}.
When both=- and< are decidable, and when we can effectively comgiutd)p(c),
for anyc € C, theWSTS is called areffectiveWSTS (EWSTS for short).

Remark 1 We assume that, for a®§WSTS S= (C,cp,Z,=, <), we are provided with
the procedures that allow us to comp®eUp(c) for any ce C, and to decide whether
cp<coandg 2 Cy, for any pair of configurationsicand @ in C, and any &e U {¢}.
This also implies that there is an effective representdiomny configuration & C.

Remark 2 Several well-studied models of computation such as ExteRd&i Nets
(defined hereunder) and Lossy Channel Systems (see [SEVaETS.

The following lemma is a direct consequence of the definitibwqo:

Lemma 2 Given a set C with the well-quasi orderingC C x C and an infinite se-
quence $=cy,Cy,... With Vi > 1:¢; € C, there exists an infinite subsequengecc,2), - - -
of S such thap : N — N is a striclty monotonic function andj > 1 : ¢, j) < Cp(j;1)-

Extended Petri nets In the sequel, we study in particular a subclas&WSTS de-
fined by Extended Petri Nets. Intuitively, an Extended Pmttiis a Petri net model
where transitions are extended with a special arc that a@isesource place to a des-
tination place, and whose semantics is different from theasgics of classical Petri
net arcs. We distinguish three subclasses of Extended i the (regular) Petri
nets, the Petri nets with non-blocking arcs and the Petsi wéh transfer arcs. Those
models are classically used to model parameterized sy$gtms1].



A (labelled)Extended Petri Ne(EPN) ./ is a tuple(4?, 7,3, mg), where 2 is
a finite set{p1, p2,..., pn} Of places,7 is a finite set of transitions ard is a finite
alphabet. Amarkingof the places is a functiom : &7 — N. A marking can also be
seen as a vectarsuch thav™ = [m(py),m(pz2),...,m(pn)]. Mo : & — Nis the initial
marking. Given a set of placei, p2,. .., pk}, we denote bym ({p1,p2,...,Px})
the valuey;.j«m(p;). Each transition is of the fornil,O,s,d,b,A), wherel and
O: # — N are multi-sets of input and output places respectively. @wentionO(p)
(resp. I(p)) denotes the number of occurrencespah O (resp.1). s,de ZU{Ll}
are the source and the destination places respectivelspéaial arg b € NU {4}
is the bound associated to the special arcam> U {e} is the label of the transition.
Let us partition into .%; and % such that7 = % U % and Z; N Z = 0. Without
loss of generality, we assume that for each transitio®, s d,b,A) € .7, eitherb=0
ands= | =d (regular Petri transitions, grouped inf§); orb > 0,s# d, s# 1 and
d # L (extended transitions, grouped inf@). We identify several non-disjoint classes
of EPN, depending orte:

1. Petri nets(PN for short): anEPN is aPN iff Z = 0;

2. Petri nets with non-blocking arq®N+NBA): anEPN is aPN-+NBA iff for any
t=(1,0,s,d,b,A)in Je: b=1,;

3. Petri nets with transfer arc@N-+T): anEPN is aPN+T if and only if for any
t=(,0,sd,b,A)in & b= +oco.

Places are graphically depicted by circles; transitionfilled rectangles. For any
transitiont = (I,0,s,d,b,A), we draw an arrow from any plagec | to transitiort and
fromt to any placep € O. Whenl (p) (resp.O(p)) is strictly greater than 1, we label
the corresponding arrow by p) (O(p)). For aPN+NBA (resp. PN+T), we draw a
dotted (grey) arrow fronstot and fromt to d (provided thats,d = 1).

Given an extended Petri net” = (42, .7 ,%, mg), and a markingn of .4, a tran-
sitiont = (1,0,s,d,b,A) is said to beenabled inm (notation: m L) iff Vpe &7
m(p) > I(p). An enabled transitioh= (I,0,s,d,b,A) canoccur, which determinis-
tically transforms the markinm into a new markingn’ (we denote this byn AR m’).
m’ is computed as follows:

1. First computen; such thatvp € &2 : my(p) =m(p) — 1 (p).

2. Then computen;, as follows. Ifs=d = 1, thenmy = m;. Otherwise:

[0 if my(s) <b f mid)+my(s) ifmy(s)<b
Ma(s) = { ma(s)—b othelrwise 2(d) = { mi(d) +b ' othelrwise

Vpe Z\{d,s}:mz(p) = my(p)
3. Finally, computen’, such that/p € O : m’(p) = mz(p) + O(p).

Let o =tit,...t, be a sequence of transitions. We writeZs m’ to mean that there
. tho

existmy,...,mp_1 such thatm h, my B, D Mn_1 LN Moreover, we let

N(O) = A1-Az--- A, whereV1 <i < n: A is the label ofti. We sometimes write

m = m’ to mean that there exists a sequence of transiiossch tham = m'.
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Figure 1: The four steps to compute the effect of a transfer ar

Example 1 Fig. 1 presents a transition+ (1,0, s,d, +,a) equipped with a transfer
arc. | and O are such that : (Ip;) =1(s) =1, I(pz) =1(d) =0, O(p2) =1 and
O(py) = O(s) = O(d) = 0.

The successive steps to compute the effect of the firing efshanwwn. Namely, (a)
presents a markinm before the firing of t; (b) presents the markimg obtained by re-
moving [ p) tokens in every place p; (c) presemts obtained fronm; by transferring
to d the two tokens present in s; and (d) presents the reguttiarkingm’ obtained
after producing @p) tokens in every place p.

Ift had been equipped with a non-blocking arc (heneg(t,O,s,d, 1,a)), only one
token would have been transfered from s to d at step (c). Ih tates, t would have
been firable even ih;(s) had beert. <&

Let < denote the wqo on markings, defined as followsmeandm’ be two mark-
ings on the set of place®, thenm < m' iff Vpe 22 : m(p) < m’(p). By Dickson’s
Lemma [7] we know thak is a wgo. Hence, we obtain the following property, which
can be regarded as a consequence of Lemma 2:

Lemma 3 Given an infinite sequence of markings (ranging on the setaufeg &)
my, My, ... we can always extract an infinite subsequemgg,), my2),... (0 : N— N
is strictly monotonic function) s.t. for any placesp?, eitherm,j,(p) < My (j11)(P)
forall j > 1 ormyjy(p) = my(j1)(p) forall j > 1.

An EPN (2, 7,5, mg), defines aEWSTS S= (N¥| mg, 2, =, <); where= is
such tham, 2 m, iff there is a transition € .7 with labela andm, 1 mo.

3 Well-structured languages

This section is mainly devoted to the definitions of langusag@/NSTS (and the mo-
tivations of these definitions). In accordance to previdassical works on the ex-
pressive power of Petri nets, we distinguish several ckae$déanguages o¥WSTS,
depending on the form of the setafcepting statesThen, we study several properties
of these different classes of languages. As we will see,ltgs ©ne obtains when con-
sidering<-upward-closed@ets of accepting states enjoys nice properties (the eegstin
is decidable, that class forms a fllFL, closed under intersection) that do not hold if



we choose, for instance, a finite set of accepting states wWitlimotivate our choice
for the definition ofwell-structured language&nfortunately, the universality problem
is undecidable foEWSTS, even when the accepting set of configuratiod ispward-
closed. That resultis proved by reducing the place boursgeioroblem foPN-+NBA
(which has been proved undecidable in [17]) to the univéygaloblem forPN-+NBA.

3.1 Languages ofVSTS
We first define the notion of language of¥STS:

Definition 5 Given aWSTS S= (C,cy,%,=,<), and a set CC C of accepting con-
figurations thelanguagef S, noted [S,C’) is the set of all the finite words w such that
Co %« ¢ for some & C. [ ]

By imposing some well-chosen restrictions about the setcoépting configura-
tions, one can obtain different classes of languages. Ineteicted case dPN, this
approach has already been followed in classical works ofititure such as [16],
[19] or [14]. Namely, if.7 is a set oWSTS, thenL- (), LT (.) andL®(.%”) are the
classes of languages defined bW&TS in ., and where the set of accepting config-
urations is (resp.) finite setof configurations; the set of evedgadlockconfiguration
or; a<-upward-closed saif configurations.

Remark 3 It is worth recalling that a fourth kind of accepting conditi has been
routinely studied in the literature. In our context, it isetlelass F(WSTS) of prefix
languages one obtains by taking the whole set of configuratés accepting set. By
definition, such a set is upward-closed. Since a languagedbatains no words of
length< 2 cannot be in E(WSTS), we have: E(WSTS) ¢ L6(WSTS). Most of the
results about the classe€’lwe are about to present can easily be adapted to their
corresponding classes’L

Not surprisingly, these different classes of languagesyedjfferent properties,
as shown by the following propositions. Proposition 1 stateatL(EWSTS) and
LT (EWSTS) are both equal to the set of recursively enumerable langu@E.). This
proposition stems from the fact thiat(PN+T) = RE. (see [4]).

Proposition 1 ([4]) L~(EWSTS) = LT (EWSTS) = RE.

Since many problems are undecidable on the class’Rilfis result is a strong
indication that other accepting conditions should be atersid to obtain positive de-
cidability results. As a matter of fact, the emptiness isidigale for EWSTS with
<-upward-closed accepting sets. That result stems fromatttettiat thecoverability
problemis decidable on that class:

Problem 1 Given anEWSTS S and an upward-closed sét of configurations of S,
the coverability problemasks whether there exists a configuration c that is reachable
in S and that belongs t@ .

Theorem 1 ([10]) The coverability problem foEWSTS is decidable.

2Remark that the aforementioned proof works by translatimgaacounter machine [15], which are as
expressive as Turing machines, t8+T that accepts the same language.



From the definition of the problem, it is not difficult to seathgiven arEWSTS S
and an upward-closed s&t of configurations of§, we have (S, %) = 0 iff the answer
to the coverability problem isegativeon Sand% . This provides us with an effective
procedure to test the emptiness of the language &6 TS when an upward-closed
set of accepting configurations is considered. Hence, tmell@oy to Theorem 1.:

Corollary 1 The emptiness problem is decidable for the clasEWSTS, when we
consider<-upward-closed accepting sets.

We will prove in section 5.1 (see Proposition 5) that sometE&xdriree Languages
(C.F.L.) are not irL$(EWSTS). This implies thal.5(EWSTS) # R.E., which is not
surprising since the emptiness problem is decidable.

Finally, one can prove thdt®(WSTS) is a full AFL closed under intersection,
which is a strong indication that it is a class worth of ati@mt The proof consists
in showing that, given two languagés andL; in LS(WSTS), there aréWVSTS that
accept respectively; NLy, Ly ULy, L1 - Lo, LI, L1 NLg (whereLg is any regular lan-
guage)h(L;) andh~%(L;) (wherehis any arbitrary homomorphism). Remark that we
only prove theexistenceof theseWSTS, and these constructions are timet effective
in general, since we have not fixed any formalism to desdMsa'S. However, we
will present in section 5.4 effective constructions forsb®perations when thSTS
considered ar€N+T.

In order to show that$(WSTS) is a full AFL closed under intersection, we first
introduce a construction that turns W6 TS Sinto anotheWSTS S that accepts the
same language &does (for any set of accepting configurations) and thatrigply
monotonic

Definition 6 A labelledWSTS S= (C,cy,=,<,Z) is simply monotonidff for any
€1,C2,c3 €C, forany ac Zu{e}: ¢1 2 ¢ and g < c3 implies that there exists,e= C
sttg 2 ¢4 and ¢ < cg.

The construction works as follows. First, givemM&TS S= (C,cy,=, <,Z), and
a configuratiorc € C, we lete—closure™ (c) = {c' | ¢ S c'}. Remark that, for any
ce C: ce€ g—closure™ (c). Then, for anyWSTS S= (C,co,=,<,Z), we build the
WSTS S = (C,Cp, =5, <,Z) S.t.:

Cy € e—closure™ (C) A
=s=1{ (c,ac) |3Jc,ceC: L= A U{(c,e,c)|ceC}
¢ € e—closure™ (Cp)

We can now show that this new transition relation enjoys #srdd monotonicity
property:
Lemma 4 Let S= (C,cp,=,<,%) be aWSTS and let = (C,cy,=s,<,Z) be ob-

tained from S by the above construction. Then, for ang.xccs € C, for any ac
sU{e}: c1 < czand g 2 ¢y implies that there exist;s.t. ¢ < ¢z and & = ca.

Proof. Let cy,Cp,c3 be three configurations & and letae ZU {e} be a letter s.t.
C1 =2 c; andc; < c3. Remark that, by definitiong; 2 ¢, implies thatc; B Co.

Hence, by monotonicity of>, there existg, s.t. c3 B ¢4 andc; < c4. By definition
of =*, and sincea is a single character, this means either ttyaﬁ»s C4, Or that there



are two configurations andc’ s.t. c3 SrcR S 4. Hencec € e—closure™ (c3),
¢4 € e—closure™ (¢), and we conclude thag 2 c,. O

Thus, S is indeed a simply monotoni&/STS. Let us show that for any set of
accepting configuratior®, bothSandS; accept the same language.

Proposition 2 Let S= (C,cy,=,<,Z) be aWSTS and let 3= (C,cp, =5, <,Z) be the
simply monotoni®VSTS obtained from S. Then, forany C C: L(SC') = L(S;,C).

Proof. First remark that==C=-s. Hence,L(SC') C L(S;,C'). Let us show that
L(S;,C') CL(S,C). Letus considew € L(S;,C’) and let us show that € L(S,C').

By definition ofL, there isc € C' s.t. ¢o &; c. Hence, by definition of=-{ there is
k > 1s.t. there arey, Cy,...,ck € Candby,by,.. . b 1 € ZU{e} withc; = ¢y, ek =,

by-by---by_1 =wandc; 2%5 C 2%5 . béSls ck- Without loss of generality, we assume
that thereis no X i <k—1s.t.ci =cj;1 andb; = €. Indeed, if such transitions appear
in the sequence, they can be removed because they do not waathaacter to the
words, and are not necessary to re@th

By definition of =, there ar&,,Ty,...T_1 and€y, &, ..., 1IN Cs.t.:

€ . by . ¢ € o bp € €, b1 &
a=>"u=30=>"0=3"02 02" 2 0 = G =" &

Sincecy € C', this implies that

£-bi-e-gbre-gbq1-E€=by-bp---b1=we L(S’C/)

Theorem 2 LS(WSTS) is a full AFL, closed under intersection.

Proof. According to Definition 1, one has to show seven closure ptgse(the
six properties that define akFL, plus the closure under intersection) in order to es-
tablish this result. In the sequel, we assume Bat (Cy,i1,21,=1,<1) andS, =
(Cy,iz,22,=2,<2) are twoWSTS (with C; NC, = 0), and thatZ; and%5 are their as-
sociated upward-closed sets of accepting states. In ayaeake the proofs easier, we
further assume that bof andS; are simply monotonic. According to Proposition 2,
this is not restrictive since, for any labell®dSTS S, there exists a simply monotonic
WSTS & that accepts the same language. We finally assumehthai — 2] is a
homomorphism s.th(¢) = &, according to the definition from [12, 18]. We prove the
closure of the seven operations by showing the existenc®§ES S= (C,i,Z, =, <)
and a set of accepting stat@s, s.t. L(S,%) is the result of the operation in question.
We ensure that(S,%) € LS(WSTS) by proving that< is a wgqo,= is <-monotonic
and% is upward-closed.

Intersection Let us show that there a@and?% s.t.L(S %) =L(S1, %) NL(S, %).
Sis built as follows:C = Cy x Cy; i = (i1,i2); £=Z1NZp. The wqo is obtained as
follows: <= {((c1,¢2),(c},¢5)) | €1 <1 ¢ Acz <2 C5}. The transition relatiors is
defined as:

= = {((c1,&2),a,(¢},&)) |[c1 214 A 2 B2, Nae T} U
{((c1,€2),6,(61,6)) | (c1 Z1E ACa=C) or (1 =CjACr =2 )}
Finally, ZZ = {(c1,c;) | €1 € 24N Cp € U}

Clearly,L(S,%) = L(S1,%1) NL(S,%>). Let us prove that, = and% have the
desired properties:



e <isawqolet¢=(c}c?),(clc3),...,(ckc?),... be an infinite sequence of
elements ofC. Since<; is a wgo onCy, following Lemma 2, one can extract
from ¢ an infinite subsequence

¢ = (C51): 1)) (Co2) Co2))»+ -+ (Cp(ry Coimy )+

such that for any > 1: ¢t 500) <;ct o(j+1)" Since< is a wgo on the elements of
C,, there are, irg’, two positionsk and? s.t. k < ¢ andcfmo <5 C12?<f>' Hence,
(_cil)(k),cg(k)) < (c}w,c’z}(@), which proves thak is a wqo, according to Defini-
tion 2.

= is <-monotonic Let (cl,c3), (c},c3), and(c},c3) be three configurations of
C. We consider two cases. Either thereais > s.t. (c}, %) = (c,¢3) and
(c%,cz) (03,02) By definition of=- and <, this implies that} 31 c}, ¢ 3,
c3, cf <y clandc? <, c3. Since=-; and=, are resp.gl- and <,- simply
monotonic, there are € C; andc € C; s.t.: ¢} :31 c,3=2,¢, cd<icand
3 <. The first two point imply thatc},c3) 2 (c,¢/). The last two points
imply that(c},c3) < (c,c)).

On the other hand, i¢c1,cl) £ (c},c3) then either(i) ¢t =1 ¢} andc} =3 o

(i) & 5163 andc1 = c}. In the first case, since-1 is simply monotonic, and
sincect <1 ¢, there existe}; s t.c} =£4 ¢} andc} < c}. Thus,(c},3) < (c3cd)
by definition of< and(c},c}) = (c},c2) by definition of=. The second case is
similar.

% is <-upward-closedLet (cl,c?) and (cz,cz) both inC, be s.t. (c,c2) <
(c3,69) and(cl,cz) € % Let us show thafc}, c3) € % too. Since(c},c?) € %,
we havect € 24 andcs € %, by definition of . Since(cl,c?) < (c},c3),
cl < ¢} andc? <, ¢, by definition of<. But %3 and%; are resp<1- and<j-
upward-closed, which implies the} € %1 andc € %. Hence(c},c3) € % .

Union Let us show that there a@and% such thal.(S, %) = L(S1, %) UL(S, %).
We letC = {I} WCLWCy;, Z=21U3p; <=1 U<y U{(I,I)}, U = U \J% and
=>= {(i,E, il), (i,E,iz)}U =1 U=,

Clearly,L(S%) = L(S1,%1) UL(S,%). Let us show thaB has the desired prop-
erties. By definition=- is <-monotonic (remark thatis <-incomparable to any other
element ofC). Thus, it remains to prove that:

e <isawqolet¢=cp,Cy,...,Cn, ... be an infinite sequence of elementsf
Because itis infinite, one can extract, from that sequenciefaite subsequence
¢’ =Cj;,Cj,,Cjs- -, S.t. eithewvk>1:¢cj, eCiorvk>1:¢cj, €Coorvk>1:
Cj, = i. Inthe case wherek > 1 :cj, =, there are clearly two positiorks< ¢
s.t. ¢j, <c¢j,, sincei <i. Otherwise, sinced; and<; are both wqo, there exist
two positionsk and/ s.t. k < £ and eithec;j, <3 ¢j, orcj, <z cj,. In either cases,
this implies that;, < c;,, which proves that is a wqo following Definition 2.

7 is <-upward-closedLet ¢;,c, be two configurations i€ s.t. ¢c; € 7 and

c1 < cp. Let us show that, € . We consider two cases: either € %4 or

c1 € %. In the former case, sinag andc, are<-comparable, we deduce that
C; € C; and thusg; <1 ¢y, by definition of<. Hence, € 24, since?; is <i-
upward-closed. This implies thet € . The same reasoning can be applied to
the latter case.
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ConcatenationLet us show that there a®and % such thatL(S, %) = L(S1, %) -
L(S,%). WeletC=CUCy;i=i1; 2=21U2p;, == {(C,E, i2) | ce 62/1}U =2 U=>1;
<=3 U< and% = %.

Clearly, L(S,%) is the concatenation df(S;,%4) andL(S,%2). The transition
relation=- is <-monotonic from its definition. Indeed, let, c, andcz be three con-
figurations fromC anda € ZU {€} be a character s.tc; 2 Cy andc; < c3. Inthe
case whergcy, Cp,c3} C Cp or {c1,C2,¢3} C Cy, there existxy > ¢, inC=CL UG
S.t. c3 2 ¢4, by monotonicity of=-1 and=-,. In the case where, € C; andc; € Cy,
we havec; € 74, ¢, = i anda = &, by construction. Hencegz € 2 andcs £ i
by construction again. Remark that it is not possible that C, andc, € C;. Since
U = U is <y-upward-closed<=<1 U <, andC; NC, = 0, we conclude tha¥/ is
<-upward-closed. Finally, one can show tkais a wqo by reusing the same reasoning
as for the union.

Iteration Let us show that there a®such that_(S %) = L(S;,%4)". We consider
a new configurationg ¢ C; and letC = C; U {ig}; i = io; <=<1 U{(io,i0)}; ==
{(io,&,11)} U{(c,&,ip) | c€ 24}U =1 and¥ = %A.

From these definitions, it is trivial to see tHaiS %) = L(S1,%4)", < is a wqo,
= is <-monotonic, and” is <-upward-closed.

Intersection with regular languageslt is not difficult to see that any deterministic
finite-state automaton isS\WSTS, when we choose the equality between states as wqo.
Hence, any regular language is\6L. SinceWSL are closed under intersection (see
above), the closure with regular languages holds too.

Arbitrary homomorphism Let us show that there aand?% such thal.(S %) =
h(L(S1,71)). We extend the set of stat€ with elements fronCy x Z x N in the
followingway:C=Cyw{(c,a, j)|ceCinac TU{e}A0< < |h(a)| A3 :c 2, Y.
Intuitively, these extra states are the intermediate sttat have to appear along the
path fromc to ¢’ when readingh(a). More precisely,(c,a, j) is the state reached
after having read th¢ first characters oh(a) from c. We also let =i; and<=<;
U{((c1,a,]),(c2,a,))) | (c1,a,]),(c2,a,j) € CAcy <1 Cp}. The transition relation is
built according to the intuition we have sketched when idtrtingC:

c.&,(c,a,0)),
(c,a,0),wy, (c,a,1)), aczu{e}:

== : c2,c and
((c;a [h(a)] — 1), Wi, (c,a,[h(@)])) | h(a) = Wiwz ... Wi,
((c,a|h(a)]),e,c)

Finally, Z = %4.
By construction,L(S,%) = h(L(S1,%1)), and% is a <-upward-closed set. It
remains to show that:

e < is awgolet us suppose it is not the case. Then, there exists a segjoénc
elements o€C: ¢ =c1,Cp,...,Cp,... S.t. foranyk > 1, forany 1< n< k: ¢, £ ¢
(each configuration isc-incomparable to all the previous ones). Remark that,
since<; is awqo on the elements 6f and sincee <; ¢’ impliesc < ¢’ (by defi-
nition of <), one cannot find irg, infinitely many elements fror@;. Otherwise,
the infinite subsequence gfmade of all the elements € C; would be an infi-
nite sequence of 1-incomparable elements fro@) . But this cannot exist since
<1isawqo. Thus, there is, ig, an infinite subsequeneg = c;,,Cj,,...Cj,,. .-

s.t. for anyk > 1: (i) cj, & Cy and(ii) for any 1< n < k: ¢j, £ Cj,.
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By definition of a homomorphism, the valdie= max,s ¢} {|h(a)|} is a finite
value. Hence, there exists0¢' < ¢ and a charactexrof ZU{e} s.t. the sequence
(cj;,a,0),(cj,,al),....(cj,,al),... is an infinite subsequence qf and for
anyn<k: (cj,,a/) £ (cj,ar). However, this implies that for any < k:
Cj, £1 Cj,,» which contradicts the fact that, is a wgo.

e = is <-monotonicLet us show that, for ang;, cy,c3 € C, and for anya € 2 s.t.
. a .
C1 2 ¢ andc; < cg, there existg, s.t. ¢c3 =* ¢4 andc, < c4. We consider two
cases.

1. Eithercy; € C;. In that case, by definition of-, we havea = € andc; =
(c1,b,0) for someb. By construction, there is thug € C; s.t. ¢1 ébl c.
Moreover,c; < cz implies thatcs € Cq, and thus that;; <; ¢c3. Since=
is <1-simply monotonic, there is} s.t. c3 ébl c;. Hence, by construction,
the configuratiort, = (c3,b,0) > (c1,b,0) is inC, and satisfiess £

2. Or,c; ¢ Cy. Inthat cases; = (c/,b,i) andcz = (¢, b,i) with ¢’ <3 ¢”, for
someb. Again, we have to consider two subcases.

(@) In the case wherie< |h(b)|, c; = (¢, b,i + 1), by construction. We
can choose, = (¢”,b,i+ 1), which satisfies the conditions.

(b) In the case where= |h(b)|, c; is a configuration ofZ; s.t. ¢/ 2,
co. By definition of =, we have:c; = (¢, b, |h(b)|) = c,. By <i-
simple monotonicity ofs;, there exists a configuratian s.t. ¢” :91
¢4 andc; <3 ¢4. Thus,cy < ¢4, and, by definition of=, we have
cs = (¢, b, |h(b)|) = c4. Hence g, satisfies the conditions.

In any case, we conclude that is <-monotonic.

Inverse homomorphismLet us buildSand% s.t.L(S %) =h1(L(S1,%)). We let
C=Cyi=ip<=<p;=>={(c1,a,c2) |acZU{e}ATwe Z*:h(a)=wACy gi co}
and% = 4.

Clearly,L(S,%) =h"1(L(S,%1)). By definition, % is <-upward-closed and is
awgqo. Itremains to show that is <-monotonic. Lety, ¢y, c3 be three configurations
inCs.t.c; 2 ¢, for somea, andc; < c3. By definition of=, there existsv € >* s.t.
h(a) =w andc; gj C2. Moreover,cz € C; andc; <; c3, by definition. By using
an inductive reasoning on the lengthwfone can show that there existsc C; s.t.
C3 gj ¢4 andc, <1 ¢4. Hencegy € C andcs 2 C4, by definition of=-. O

Remark 4 LP(WSTS) is not a full AFL. Indeed, let us consider the alphal®t=
{a,b}. Clearly, the language?, = {a,&} is in LP(WSTS). Let h: 3+~ 3* be an
homomorphism s.t.(a) = bb. Then, {.%,) = {(bb), €} is notin L°(WSTS) because
it is not prefix-closed (the wordis missing).

It should now be clear that the clas§(WSTS) enjoys interesting properties: the
emptiness is decidable on this class, under reasonabtdiedieess assumptions (The-
orem 1), and it forms a ful\FL closed under intersection (Theorem 2). Moreover, the
transition relation oMWSTS is, by definition,<-monotonic. Thus<-upward-closed
sets are perfectly suited accepting conditions for thesterys. For all these reasons,
we will henceforth restrict ourselves to the study§{ WSTS). The languages in this
class are calledell-structured languages

12



Definition 7 A language L is avell-structured languag@VSL for short) if and only if
L € LS(WSTS). [ |

3.2 Undecidability of universality

Unfortunately, the universality problem is undecidableEONSTS. This problem is
defined as follows:

Problem 2 Given anEWSTS S= (C,cp,=, <,Z), and an upward-closed set of ac-
cepting marking%/;, theuniversality problemasks whether (S, 7%;) = Z*.

The proof consists in showing that the universality problisnundecidable on
PN--NBA. In order to prove the undecidability of universality feN+NBA, we re-
duce the place boundedness problemPiH-NBA (which is know to be undecidable
— see[17]) to the universality problem fBN+NBA. The place-boundedness problem
for PN+NBA asks whether there Boundon the number of tokens that any reachable
marking assigns to a given plapeMore precisely, it is defined as follows:

Problem 3 Given aPN+NBA (#,.7,Z,mp) and pe &, the place-boundedness

problemasks whether there existsskN such that for anyn-NI’I: if mg = m then
m(p) <k.

Given aPN+NBA ./ = (£,.7,%,mp) and a place € &, the reduction consists
in building a newPN+NBA 4 = (2,77, {a},mp) s.t. 4" accepts (withNl?| as
accepting set) the universal language (&é),if and only if the placep is unbounded
in 4. The construction works as follows:

o P'=2U{run,stop}, provided that?? N {run,stop} = 0;

e 7'isthe smallest set of transitions that contains the triamsit, andt; with t; =
({stop p},{stop}, L, L,0,a); t;y = ({run},{stop}, L, L,0,¢&); and such that if
(1,0,5,d,b,A) € .7 then(lU{run},OU{run},s,d,b,&) € 7/,

e mp(run) =1, my(stop =0andvp € & :my(p') = mo(p).

In other words, 4}, is similar to.4” except that its transitions (apart frag) may
fire only if the placerun is marked. Besides this, the transitions ¢f that have been
adapted from transitions of” have the same effect in”’ than in.#". Remark that all
the transitions in7” \ {ta} are labelled by. The transitiort; moves the unique token
fromrunto stop This has the effect to prevent the transitionszin\ {ta} from firing.
Hencet, only (labelled bya) can be fired aftet; has been fired. Sindgconsumes one
token from placep, that transition can be fired at mdstimes wherek is the number
of tokens inp when firingt;.

The following lemma states that the the construction we haseintroduced is
correct:

Lemma 5 Given aPN+NBA 4 = (£, 7,2, mp) with pe £, the place bounded-
ness problem for4” and p has a negative answer if?L/Vp,N“@‘) =a’".

Proof. If the place-boundedness problem has a negative answeftfandp, then,

for anyk € N, there is a sequence of transitiomss.t. mg = m with m(p) > k. Let
o’ be the sequence of transitions.df, obtained by replacing iw each sequence of

/
transitions by its corresponding transition.if,. Letm’ be the marking s.tmy z,
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m’. By construction, we havem’(run) = 1 and for anyp € Z2: m’(p) = m(p). In
particular, this implies that'(p) > k. Hence, the sequentgX is firable fromm’.
Since the accepting upward-closed selig’l, the sequena@t;tX is accepting, with
A(0'tstX) = ak. This holds for ank € N, and we conclude that}, accepts*, and is
thus universal because the alphabet/fis {a}.

On the other hand, if#;, accepts®, then, for anyk € N, there exists a sequence of
transitionso’ s.t. o’tstX is firable frommyg. This holds becausg is the only transition
of #; that is labelled by, and becausg has to be fired beforg can fire. Moreover,
no ¢-labelled transition can be fired ontehas fired because it removes the token

from placerun. Letm’ be the marking s.t.mj L Clearly, m’(run) = 1 and

m’(p) > k. Hence, the sequencg contains transitions fron¥’\ {ts,ta} only. Thus,

by construction of 4y, there exists a sequence of transitionsf .4 s.t. mg 2, m with

m(p) > k. Since this is true for anly € N, it implies thatp is unboundedn .. O
This allows us to obtain the following proposition:

Proposition 3 The universality problem fd?PN+NBA is undecidable.

Proof. From [17], we know that the place boundedness problem isaiddkele for

PN+NBA. Lemma 5 reduces this problem to the universality problerend¢, the

latter is undecidable. O
SincePN+NBA form a syntactic subclass &WVSTS, we immediately obtain:

Theorem 3 The universality problem fdEWSTS is undecidable.

4 Pumping lemmata

This section presents three lemmata that show the limitgiiio the expressiveness of
WSTS (for the first one) PN (for the second one), arRIN+NBA (for the third one).
All these lemmata have a similar statement: if a givVE&TS (resp. PN, PN+NBA)
accepts an infinite set of wordsv;, w», ...} with a given structure, then it must also ac-
cept other words that are built upon the wowgdsws,, ... In some sense, these lemmata
allow to “inflate” the set of accepted words. For that reasem,have chosen to call
thempumping lemmataowing to their similarities to the classical pumping lenaa
for regular and context-free languages (see for instar@j.[1

The proof techniques rely on properties of infinite sequermfeconfigurations
(equipped with a wgo), and monotonicity properties. Thdulsess of these pumping
lemmata will be demonstrated in Section 5, where we applynthe obtain several
results aboutVSL.

4.1 A pumping lemma for WSL
Our first pumping lemma deals with'SL, and is very easy to prove:

Lemma 6 Let L be aWSL, and let w,w»,... be an infinite sequence of words s.t.
vk > 1:wy € Land w = By Ex. Then, there exist& js.t. Bj-Ej € L.

Proof. LetS= (C,cp,%,=,<) be aWSTS s.t. L(S,%) = L for some<-upward-
closed setZ. For anyk > 1, letck € C be a configuration s.tcg B:k>* Cxk Ii&* C, With

C € % . Since< is a wqo, there i$ < j s.t. ¢ < ¢j. Hence,co i&* Cj i* ¢, with
¢/ < c’ by monotonicity. Thus¢’ € % andB; - E; € L. O
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4.2 A pumping lemma for PN

Our second pumping lemma states properties of languagesgrohBts (more precisely,

languages in the clag$®(PN)). This lemma will be exploited mainly in section 5.2,
to strictly separate the expressive powePdf andPN+NBA. Other results of interest

that one can obtain thanks to this lemma are mentioned ifogee.

The proof of the pumping lemma ONSL (see Lemma 6 above) exploited the prop-
erties of wqo and the monotonicity property in a rather gtrdiorward fashion: from
a well-chosen infinite sequence of configurations, we hataebed two comparable
elements (property of wgo). Thanks to these two compardblaents, and by the
monotonicity property, we have devised a new execution®f¥3$TS that allows to
prove the lemma.

We follow the same pattern in the proof of the present pumpéngma forPN.
Thus, starting from some well-chosen executions oftNewe buildinfinite sequences
of comparable markings that are reached along these sezpieftis construction
exploits the properties of wgo. However, it is much moreidatte in the present case
than in the case of Lemma 6 and deserves some attention. St ipurpose of
lemma 7, that we introduce now.

Intuitively, Lemma 7 shows that, given a matri# with infinitely many lines and
columns containing tuples of natural numbers and givenaraetumben, it is possi-
ble to buildn infinite increasing sequences of elementsAsfthat enjoy some proper-
ties which are necessary to prove the pumping lemma. Thesgquences are obtained
by the means ofi functionsfy, 5, ..., f, which take their values i@+ x Z*, and are
thus meant teelectelements from# . Thus the first infinite sequence to consider will
be. #(f1(1)), #(f1(2)),...; the second# (f2(1)), #(f2(2)),... and so forth. The
lemma is as follows:

Lemma 7 Let.# be a matrix with an infinite number of lines and columns, andseh
elements are numbered by pairsZn x Zt and take their values ik (for k > 1).

For any n> 1, there are n functiong€ " — Z* x Z*, denoted by, f,,..., f, such
that the following holds (where fx) and ¢ (x) denote respectively the first and second
coordinate of f{(x)):

1. Foranyl <i<n,forany x> 1: f¢(x) <i- fi' (x) ;
2. Foranyl<i<nandl<j<n,foranyx> 1 fl (x)= fJ’ (X);

3. Foranyl <i<n, foranyl < p < k: either for any x> 1, .Z(fi(x))(p) <
A (fi(x+1))(p) or, forany x> 1,7 (fi(x))(p) = . (fi(x+1))(p) ;

4. Foranyl<i<j<n,foranyx>1: 0< f{(x)— ff(x) < ff (x+1)— f¢(x+1);
5. Foranyl <i<n, forany x> 1: f! (x) < f! (x+1).

Proof. The proofis constructive and by induction on
Base casen = 1. Let us consider the sequence:

S=.#(1,1),.#(2,1),.#(3,1),...

By lemma 3, the exists a strictly increasing funct@nZ* — Z* s.t. the following is
a subsequence &

A (p(1),1),2(p(2),1),#(p(3),1),..
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with the following property: for any X p < k: either foranyi > 1: . (p(i),1)(p) <
A(p(i+1),1)(p) or, foranyi > 1: .#(p(i),1)(p) = A (p(i+1),1)(p). We define
f1 as follows:

foranyx>1: f1(x) = (p(x), 1) (1)
Let us check that the lemma holds on this function:

1. We have to show that for amy> 1: f£(x) < 1- f] (x). By (1), this is equivalent
tovx>1:1< p(x), which is true by definition op.

. Trivial forn=1.
. This holds by (1) and definition @f.

. Trivial forn=1.

gaa A W N

. We have to show that for amy> 1: ] (x) < fl (x+ 1). By (1), this is equivalent
toVx > 1:p(X) < p(x+ 1), which is true by definition op.

Inductive case: n> 1 Let us suppose there ame- 1 functionsgs,gs,...,0,_1 that
respect the lemma and let us show how to builidinctionsfy, fo, ..., f, that respect
the lemma.

We first define a function, as follows:

for anyx > 1:gn(X) = (gh1(x), 85 1 (x) +%) 2
Let us now consider the sequence:

A (On(1)), A (Gn(2)), 4 (Gn(3)), -

By Lemma 3, there exists a strictly increasing functonZ* — Z* s.t.:

A (On(p(1))), - (Gn(P(2))), - (an(P(3))),- -

has the following property:

[ either Vi>1:.7(gn(p(i)))(p) <4 (gn(p(i+1)))(p)
mspsk | O i iy ©
We can now defind,, fo, ..., f, as follows:
Forany 1<i <n:foranyx>1: fi(x) = gi(p(x)) 4)

Let us show that they satisfy the lemma. We prove each poitiisoiemma by consid-
ering several subcases:

1. (a) Inthe case wherel <i<n-1:
x> 1:f8(x) <i-fl(x)

= Wx21:¢(p(x) <i-g(p(x)) by(4)
and the latter is true by induction hypothesis (point 1).
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(b) In the case where = n:
Wx>1:f5(x) <

<n-fh(x)
— VX21:gﬁ(p(x))§n d, (p(x) by (4)
= Wx>1:65 5 (p(X)+pX) <n-g, 4 (p(X) by (2)
= szl:gﬁ,l( (X)) —(n—1)-g;, 1(P(X))

< Gh1(P(X) — p(X)

We show that the last point is valid by establishing that,dioyx > 1, (i)

the left-hand side of the inequati@§ ; (p(x)) — (n—1)-g, 4 (p(x)) is
< 0 and(ii) the right-hand side of the inequatigh ; (p(x)) —p(X) is > 0.
The first point stems from the induction hypothesis, pointThe latter,
holds since, by induction hypothesis (point 5)<@}, , (1) < g\ ;(2) <

g, ;(3),... Hence, forany > 1:gl ,(x) > x, and thus for anyx > 1 :
g, (x)—x>0.

2. Without loss of generality, we assume that i.

(@) Inthecasewherel < j<i<n-—1
vx>1: f'( )_f'( )
— wx>1:g{(p(¥) =d\(p(x) by (4)
The last point is true by induction hypothesis (point 2).
(b) Inthe case wherd =nand1<j<n-1
Vx>1: f'( )_f'( )
—  Wx>1:gh(p(X) =] (p( X))  by(4)
— Wx>1:g,(p(x)=d|(p(¥) by(2)
The last point is true by induction hypothesis (point 2).
(c) Inthe case where = j: the pointis trivially true.

3. First remark that:
vVi<i<n:vi<p<k:

either x> 1:.2(fi(x))(p

or Vx>1:.(fi(x)(p)

— Vi<i<n:Vli<p<k: by (4)
{ either Vx> 1:.2(gi(p(x))(p) <.Z(gi(P(x+1)))(p)
or Vx>1:.4(g(p(x))(p) =4 (gi(p(x+1)))(p)

(a) Inthe case wherel <i < n-—1, this last point is true by induction hypoth-
esis (point 3).
(b) In the case wherée = n, this last point is true by (3).

4. (a)Inthecasewherel<i<j<n-1
Vx> 1:0< (%) — f¢(x) < 7 (x4+1) — f¢(x+1)
= Wx>1:0<gf(p(x)—9of (p(x)
<gf(p(x+1)) —of (p(x+1)) by (4)
This last point is true by induction hypothesis (point 4) dhe fact that
pP(x) < p(x+1).
(b) Inthe case wherel <i<n—-1landj=n:
Vx>1:0< f5(x)— f( )< f$(x+1)—ff(x+1)
= Wx=1:0<gi(p(X)—gf(p (X))
<gn(p(><+1)) g (p(x+1)) by (4)
= W=1:0<04(P()+ ()~ g (p(X))
<G 1(P(X+1))+p(x+1) —gf(p(x+1)) by (2)
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This can be proved by showing two points. Fitgt>1:0< g5 ; (p(x))+
p(X) —gf (p(x)). This holds becausg) Vx> 1 : p(x) > 0 (by definition of
p)and(ii) Vx>1:95 ; (p(x)) —of (p(x)) >0 (in the case wherie£ n—1,
we havegS_; (p(x)) — gF (p(x)) > 0 by induction hypothesis, point 4. In
the case where=n—1, we havey$_; (p(x)) —of (p(x)) = 0). Second:
Vx> 1:g5 1 (p(¥)+p(X) —gf(p(x)
<5 1(P(x+1))+p(x+1)—gf (p(x+1))
= Wx>1:g7 4 (p(x)—of (P(X) — (g5 1 (P(x+1)) —gF (p(x+1)))
<p(x+1)—p(x)
The last point holds becausg) the left-hand sidef_, (0(x)) —gf (p(x)) —
(851 (p(x+1))—9df (p(x+ 1)) of the inequation is< 0 (wheni #n—1, it
is < 0 by induction hypothesis (point 4), and whiea n—1, it is= 0) and
(i) the right-hand sid@(x+ 1) — p(x) is > 0, by definition ofp.

5. (a) Inthe casewherel <i<n-1
vx>1:fl(x) < fl (x+1)
= Wx>1:g(p(x) <g(p(x+1)) by(4)
This last point is true by induction hypothesis (point 5) dhd fact that
p(X) < p(x+1).
(b) In the case where = n:
Vx> 1:fl(x) < fl(x+1)
= Wx>1:gy(p(x) <gh(p(x+1)) by (4)
— Wx>1:g, 1(p() <dh 1(P(x+1)) by(2)
This last point is true by induction hypothesis (point 5) dhd fact that
p(X) < p(x+1). O

Equipped with this lemma, we can state and prove our pumpgimgria forPN.

Lemma 8 Let .4 be aPN and % be an=<-upward-closed set of markings of".
If there exists an infinite sequence of wordsws, ... such that for any &> 1, there
exist two words B E with BW/E; C L(4",%), then there existO < n; < nz < ng
such that for any K> 0, there exists K> K and i, > 0,i, > 0 such that the word
By Wiy WA Wi, En, i in L(A, % ).

The proof of the lemma is quite tedious and technical. Howewe believe that
the technique at work in this proof is interesting by itsalfice it directly exploits
the monotonicity and well-quasi ordering properties thateharacteristic ofVSTS.

It also relies in great part on the fact that Petri net tramsét have a constant effect.
Before giving the proof, we provide the reader with a sketdt presents the main
arguments in order to make the task of reading the proof eaBieoughout this ex-

planation, we refer to peculiar markings using the sametioot®as in the proof. The
reader is advised to refer to Fig. 2, 3 and 4 to get the intuitibthe meaning of these
notations.

The proof is constructive. From the fact that Pl accepts the wordB;w; E; for
anyi > 1, we build, by applying Lemma 7, infinite sequences of may&ithat are
ordered (this is the purpose of the two first steps of the pradfen, at the third step,
we exploit these ordering properties, as well as the monatgrof the PN and the
fact that their transitions have constant effect, to shoat thsequence of transitions
with the desirable form is firable, and leads to the acceptngpward-closed set of
markings.
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Figure 2: An illustration of the construction of.

Step 1 LetN denote the valuelZ! + 1. For alli > 1, we consider the infinite sequence
of wordsBiwNE;, BiwNE;, BwWSVE;,. . ., BiwiJN E;,...For each of these words, we
select an accepting sequence of transitions and considenghnkings that are
reached along this sequence. For instance, when congidegrsequence that
acceptBw/E;, we selecN + 1 markingsm (1 <k < jN+1)s.t.:

LW 2 W N

For anyi > 1, we build an infinite matrix#;. The jth line of . contains all the
markings that have been selected along the run acceBM,‘g E; (in the same
order as in the run). Hence, we obtain a matrix with infinitelgny lines. In
order to obtain infinitely many elements on each line, we pedmatrix with
07l = (0,0,...,0) markings. Fig. 2 presents an example of such a matrix.

Then, we apply lemma 7 on# and buildN functions f; 1), f; 2),.. ., fin)-
These functions allow us to select elements in the ma#jx The selected ele-
ments are arranged into a new matm'ﬁ with N columns and infinitely many
lines (see Fig. 3 for an informal illustration of the constian). ///ﬁ is built
column by column: thg-th column contains the elements selectedpy;, i.e.,
the first element of thg-th columns is the element o#; whose coordinate are
given byf (1), the second element is the elemény) (2) in ., and so on.

The new matrix#~ has interesting properties upon with we rely in the rest of
the proof. All these properties are direct consequence®nfrha 7. The most
important are:

1. Each column of//lﬁ forms an infinitely increasing sequence of markings
(according to point 3 of Lemma 7);

2. Each line ot///ﬁ is actually a subsequence of one of the lines#f (by
point 2 of Lemma 7). Thus, ifn andm’ are two markings taken from
the same line oj///ﬁ (with m appearing before’), we are sure that there
exists a sequence of transitions that is firable frarand produces’. For
that reason, we will sometimes refer to lines 4f~ asruns

3. Let us consider two lineg, and/, of ///ﬁ s.t. /1 < fy. Letmq, my be
two markings of line/; that appear respectively in columns numker
andky with k; < ko. Letmj andm/, be two markings of liné; that appear

respectively in columnis; andk;. Let o ando’ be the sequences sm; g,
/!
my andm/ g, m,. Then, the number of; that labelso” is strictly larger
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Figure 3: An illustration of the construction o~ for N = 3. Eachx represent a marking reached in . Lemma 7 has been applied in order to
obtain three function$;; 1), f; 2 andf; 3).
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that the number ofy; that labelso (this stems from point 4 of Lemma 7).
This property is_impgrt_ant since we want to be able to coessaquences
of the formBu,wi,wh Wit En, with K arbitrarily large.

Step 2 The second step consists to select an infinite subsé{.#~ |i > 1}. We do
this by building a sequence of runs such that jtierun in the sequence is the
first run appearing in%/ﬁ. Again, we extract the sub-sequei®ghere markings
appearing in different runs arg-ordered by applying successively Lemma 3. In
this case, only markings appearing along thé&l2- 1 first “columns” are<-
ordered.

Step 3 Finally, we show how to split and combine parts of runs appeén the.#j's
andSto obtain a run that allows theN to accept a word of the desired form.
This is shown in Fig. 4.

In order to build this sequence, we rely on several variabl@sely:cs, cp, nand

X. At the present step of the proof, we introduce some comsgr#at relate,
andntocy, ¢, andK. These constraints are meant to produce a sequence of tran-
sitions that accepts a word of the desired form. The main (aost technical)

part of step 3 consists to show that these constraints dséiaale.

The first part of the sequence is the prefiwrﬁ(n) (X), up to the “column’t; (see
Fig. 4). At that point, we are guaranteed that the markingbtaia is larger than
///;j(l)(K’Cl)' This allows us to continue the sequence with a paWK;jm(K)
starting at “column’c; and ending at “column€,. Again, by exploiting the
properties of the sequences built at steps 1 and 2, as wekaehstant effect of
PN transitions, we are ensured that the marking we have redsHayer than
//[;(2)(1, cz). This allow us to finish the sequence with the suffiméfj(z)(l).
The word accepted by this sequence is of the desired forroe sire have cor-
rectly chosen the values @fandn (in particular, the central part of the word is
longer tharK times|wy, |).

We are now ready to present the proof of Lemma 8.

Proof. Let.#" be aPN with set of places?” and initial markingmiy;;, such that
Bw'Ei C L(4,%) for all i > 1. For technical reason, we assume without loss of
generality that/” has a transitiote = (0,0, L, 1,0, ¢), i.e. a transition labelled by
that can be fired from any marking and has no effect.\Leéenote the value!Z! + 1.

Foranyi > 1, letS be the infinite sequence of all the runs accepting the words
of the formBiwij'NEi, with j > 1. That is,§ is the sequence of runs:

i 2 Ioh
Minit A, m% ! m2 LR N mT*l —Nj1
G ¢ I
mlnlt—’m%_z’mz CRITIREE £ mZN+1—’n|2
1 2 N /
v; S ¢ g CNiy Y
Minic —> m} = m? . oo

i i .. i

where for anyﬂ >1:ni€ %, Nue) =B andA(uv)) = Ej. Moreovery/ > 1:Y1 <
k</?¢-N: /\(c/) wi. Remark that these executions exist even wies €, because
" contains thé, transition.
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Figure 4: The firable sequence (along ths) that accepts a word of the forB, ﬁlawr'ﬁl/vxfﬁz En,.



Let 07! denote the marking that ranges oy&?| places and assigns 0 token to
each place. For any> 1, we build, an infinite matrix#;, whose values are either
markings met along the runs & or 0. More precisely, for anyj > 1,k > 1 we
have:

mk  if1<Kk<j-N+1
i =4 M .
A(],K) { 02! otherwise ®

For anyi > 1, we can apply Lemma 7 te7;, and obtairN functions that respect the
five points of the lemma. We denote these functiongpy, fi 2), ... fin). Thanks to
these functions, we build infinitely many sequencel afiarkings. We represent these
sequences under the form of a new maMSﬁ, with N columns and infinitely many
lines (each line corresponds to a sequen@éﬁ is defined as follows (wherEgi‘k) (0
and f(Ci’k) () denote respectively the first and second coordinafe of(j)): '

Vi>1:Vj>1:V1<k<N:.Z7(j,k) Z///i(f(li,k)(j)af(ci,k) (i) (6)

For anyi,j > 1, let .#7(j) denote.#~(j,1),.#(j,2),....#7(j,N), i.e. the se-
guence of markings that appears on ké line of///ﬁ. Let us expose several proper-
ties of these sequences that will be useful in the sequekdgbithof:

1. Foranyi > 1, j > 1, the sequenc%*(j) corresponds to a run &. More
precisely,///ﬁ(j) is a subsequence of the markings in ﬂbg) (j) —thrun ofS.

According to the definitions of# and.#;~ (see (5) and (6)), this can be proved
by establishing three points:

(@) The markings of#~(j) have all been taken in the same rurSpff('i‘l) ()=
f(li,z) (== f('iw (j). This s true by point 2 of Lemma 7.

(b) The ordering of the markings along the run has been preder This
amounts to show that the sequemgg) 0, f(Ci.Z) (§)yeees f(Ci.N) () is strictly
increasing. This follows directly from point 4 of Lemma 7.

(c) All the selected markings inZ~(j) exist in thef('w (j)-thrun ofg, i.e.,

they are all different from thel&! markings we have added when building
;. Since the ordering of the markings has been preservediiffisient

to show that the last marking oﬁ/ﬁ(j) corresponds to a marking of the
f('i’l) (i)-th run of §, i.e., thatfs (j) <N- f('i’l) (j)+1. By point (a)
above, this is equivalent tb(CLN) (j) <N- f('i‘N) (j) +1, which is true by
point 1 of Lemma 7. ' '

2. Since//lﬁ (j) is a subsequence of markings that appear in a r& dfere exists,
foranyi > 1, j>1and 1< k; < ky <N a sequence of transitior(p§,J (k1,kp) s.t.:

0 (ka, ko)
_

A (k) M (] k)

Moreover, forany > 1, j > 1 and 1< k < N, there are two sequences of transi-
tions o} (-,k) anday (k,-) s.t.:

O-ij('vk)

) o) K, -
Minit ———— 24~ (],K) L)

n (nNe%)
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By (5) and (6), these sequences are labelled as follows fffor, § > 1):

(18 1) (D=8 (1)

Vi<k <kp <N:A(G) (ki ko)) = w )
U (18 (D-1)
VI<Kk<N:A(G'(K) = Bw * (8)
- j-N+1-fC  (j
VI<k<N:A(G'(k-) = wi(J " <'=k>(”)Ei 9)

Finally, let us introduce the following notation. Letandu # € be two words.
Then, we let|w||, =i iff w=uv'. By (7) and point 4 of Lemma 7, the following
holds:

Vi,j>1:Vi<ki<ke<N: |
w; # & implies||A(7 (ke ko)) lw < A6 (ka, ko)) |

That is, whenw; # ¢, the word that labels the sequence leading fromkie
th marking of thej-th run of ///ﬁ to its ko-th marking is strictly shorter than
the word labelling the corresponding sequence injthel-th run of .#~. In
particular, sincav; # € implies that|| A(cil(ky, kz))|| > 1, we have:

Vi>1:V1<k <ky <N:w #eimplies|A(c! (ki k) w > (10)

. Let us first introduce the folowing notation. L&t be an infinite sequence of
runs.(1),.7(2),..., s.t. each run(i) is made up ofN markings.”(i,1),
Z(i,2), ..., Z(i,N). Then, for any K k < N, we denote bylaces.”,k) the
set of places s.ip € Placeg.”,K) iff, forany i > 1: .7 (i,k) (p) < Z(i+1,K)(p).
By (5) and (6), and by Lemma 7, point 3, for any<lk < N andi > 1, the set
Placeg.#~,k) C Z iss.t.

Vi>1:V1<k<N:Vpe Z:
p € Places.#~ k) iff Vj > 1:.47(j,K)(p) < 4~ (j+1,K)(p)  (11)
p & Places.#~ k) iff Vj > 1:.47(j,K)(p) = 4 (j + 1,K)(p)

In particular, this implies that#z~(1,k), #,~(2,K),...,.#(j,K),... is an in-
creasing sequence (W.r{):

Vi>1:VI<K<N:Vj>1:7(j,K) < 47(j+ 1,k (12)

To finish with the construction, we consider the infinite ssage of runs

M (1),45(1),... made up of the first runs (lines) of al~. From this sequence,
we extract the infinite subsequere ///;?1) (1), ‘///5(2) (1),... by successively apply-
ing Lemma 3. We constru@such that:

1. Forany I< j < Nthe sequenc%if(l)(l, j),//lﬁf(z)(l, i),...is increasing:

Vk> 15 (L)) < My (L) (13)
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2. Forany I< j <N, the places in the s€llacessS, j) C & strictly increase along
the sequenc%’fm(l, j),///l_f(z)(l, j),... and all the other places stay constant
along the sequence:

vk > 1, (L1)(P) < A1) (1.0)(p) iff pePlaceds ) (14)

Let c; andc; be such that K ¢; < ¢; < N andPlacegsS,c;) = PlacegS,c,).
Remark that; andc; always exist because there at€2= N — 1 subsets of?.

3. The sets of strictly increasing places of the selem{qﬁ are equal:
V1< j<N:Vk>1: Place$///§(k>, )= Place$///§(k+1), i) (15)

This is possible because there is a finite number of subse# of

Step 3| The rest of the proof consists in showing that there ater§ < n, < n3 s.t.

for anyK € N there aré; > 0, i, > 0 andK’ > K and the wordv = anvv'nlswﬁl/vv’nzzEn2
is accepted by/".

We first choose the values of andn; as follows:n; = p(1) andn, = p(2) (where
p is the function defined at the begining of step 2). Then, wevshow to compute
nz. Actually, we letns = p(n) for a well-chosen value af. We provide a constraint
(see equation (16) in the sequel) orthat we prove satisfiable and that we exploit
at the end of the proof. Equipped with the valugs n, andnz, we show that, for
anyK € N, it is possible to compute a values.t. the sequence of transitioos=

O (+C1) 0p1)(€1,C2) - 05 (C2, ) accepts a word of the desired form.

. ) 01(1)(C11C2)
Choice ofn Let my, be the marking such tha%{;(n)(l,cl) mnh. Re-

mark that, since we are dealing with Petri nets, the sequebﬁja(cl,cz) has a con-
stant effect (i.e., characterized by a vector of naturastamts) equal toflj(l) (1,c0) —
M3 (1,¢1). As aconsequencey, = ///;(n) (1,¢1) +///§<1)(1, C2)— ///;(l) (1,c1). We

p(1)
choosen > 2 such that:

mp = ///;?n)(l, c)+ ///Ff(l)(l, C2) — ///;?1)(1, c1) = ///5(2)(1, C2) (16)

Let us show that suchreexists. First notice thalé(l) (c1,¢p) isfirable from//l;(n) (1,c1)

for all n> 2, because///lf(n)(l,cl) = ///Ff(l)(l, c1) following (13). Then, recall that
PlacegS,c;) = PlacesS,c,), i.e. the places that strictly increase al®are the same
in columnsc; andc,. Let us show that, for any plage my(p) > ///’f(a(l, c2)(p). For

that purpose, we consider two cases:

1. If p € Place$S ¢;), then, the sequencs!//;(l)(l, cl)(p),//ls(z)(l, c1)(p),... is
strictly growing by (14), and, for any plage € PlacegS,c;), for anyn > 1,
//[;(n)(l, c1)(p) > n—1. Thus there exists a value> 1 s.t.Vp € PlacegS c1) :

M 5y (L,C1)(P) 2 M ) (1,€2)(P) = M 5y (1,€2) (P) + 4 51y (1, €1)(p). Thisiis

equivalent to’/p € PlacegS,c1) : mn(p) > ///;(2)(1, C2)(p), by definition ofmp,.
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2. On the other hand, for anye &2\ PlacegS,c;), we have: ///;(n (1,c1)(p) =
M55y (L,c1)(p) and. 5, (1,¢2)(p) = 5, (1,¢2)(p), by (14) again. Hence,
vpe 2\ PlacesS or): .4 (1,61)(P) — 505 (1,62)(p) = 45, (1,61)(p)

- ///’f(l (1,c2)(p), and thus, we have that, for any plage &7\ PlacesS,c):
M 55 (1,60) (D) + A 513, (1,62) (P) — A 513, (1,61) (P) = 4515, (1,62) (), hence

mn(p) ///:(2)(1, CZ)(p)-

From these two points, we conclude that there exigts. mp, = //[;(2)(1, Co).

Choice ofx We choose > K such that:
//[;(n) (Xa Cl) s //[;(n) (17 Cl) + %;?1) (K7 Cl) - //[;(1)(1a Cl) (17)

One can prove that such aralways exists by a the same reasoning as in the choice of
n, and by the fact thaPIace$ p(n c1) = Places.# p(l ,C1) (see (15) above). In-
deed,Vp € Placeg.# p(l>, c1), the sequence%/;(n)(1,c1)(p),//l;(n>(2,c1)(p),... is
strictly increasing by (11) and (15), and we can thus choolsege enough to have

M 5o (%,6)(P) > A5 (1,61)(P) +.4511 (K, 1) (p) — 45 (1,61)(p), for any place

pin the setPIace$//ﬁ ,C1). On the other hand, for anye 2\ Placeg ///’fm,cl):

M5 (K,e1)(p) = ///;(1 (1,c1)(p), by (11) and (15). Thus, we havé/y (x,c1)(p) >

//ﬁ )(1,c1) )+//l; (K,cl)(p)—//l;(l)(l,cl)(p) if and only |f///;n (x,c1)(p) >

(
//ﬁ )(1, c1)(p). This latter pointis true by (11). We conclude that for araaelp € &2
///,_-f(n (x,€1)(P) > A (L,1)(P) + 4 (K, C1) (D) = A3 (1,1) (P)-

The next step amounts to showing that the sequentsefirable. Frommj,;;, we

fire O'p(n)( 1) and reach///p(n (x,c1). From that marking, we can fire the sequence
O'p(l)(Cl,Cz) This is possible becausﬂ;(n) (x,¢1) = //ﬁ )(K,c1). Indeed, by (17):
///;(n (x,c1) = //ﬁ( (K,c1)+ (///’f(n)(l, c1) —///p(l)(l cl)) However, we know that
(A5 (L.€1) = ///;(1 (L,c1)) = 071, by (13). Hencers, (x.c1) = A (K,c1)
and we have: «
OX (Oa Cl) g 1 (01702)
Minit —2 ///;(n) (x,c1) O

To finish the sequence, we have to show that //ﬁ ( C2). Since the effect of

0p1)(c1,C2) is constant and equal W;a (K,c2) — ///;(1 ( c1), we have:
m = ///pj(n)(x cl)+//l<( (K, CZ)_///;.‘Z(D(K’Cl)
=m = ///f;(n)(l c1)+ p*(l)(K,cl) - ///p“(l)(l, C1)
My (K, C2) = M 5 (K, C1) by (17)
=>m = %fz(n)(l’cl)_%é(l)(l Cl)—i—%é(l)(K,Cz)
=m = ///f;(n)(l’ C1) —l///p*(l)(l C1) + M yq)(Lc2) by (12)
=m = ///;(2)(1’ c2) by (16)

We can thus firefg(z)(cz, ) fromm and obtairm’ such thatm’ 3= n,(,) ; (by mono-
tonicity), which implies thatn’ € %. Thus,.#" accepts\(g), which is of the form
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Bn3v¢}%3w'rfl'vxf}122En2 with n; = p(1), nz = p(2) andnz = p(n), i1 > 0, andi, > 0. The
former implies that G< ny < nz < nz, by definition ofp. We finish the proof by con-
sidering two cases:

1. If wy, = &, then clearly, for anyj > 0: W#.]l = ¢. In particularwfy, =& = W'rfl'
Thus, for anyj > 0, the wordB,wi,wh, Wi, En, satisfies the lemma.

2. If wy, # &, it remains to show that the central part of the accepted veolwhg
enough, i.e., thak’ > K. This stems from the fact that, by constructiéti,=
IA(gpy1(C1,c2)) llw and that| A(of 4 (c1,C2))[|lw = K by (10).

In both cases, we conclude that the word we have built, artdsla@cepted by thEN
satisfies the lemma. O

4.3 A pumping lemma for PN+NBA

Let us turn our attention to the third pumping lemma. Its preties on the following
auxiliary lemma:

Lemma9 Let 4 = (£,.7,2,mp) be aPN-+NBA, and leto be a finite sequence of
transitions of.4” that contains n occurrences of transitions#a. Letm;, m7, m, and
m), be four makings such that (i, = my, (i) mz = mj and (iii) my = my. Then,
for every place g 22: mj(p) —mj(p) > my(p) —my(p) —n.

Proof. Let us consider a placp € &2. First, we remark that when we fii@ from
my instead ofmy, its Petri net arcs will have the same effectmnOn the other hand,
since we want to find a lower bound an,(p) — m/(p), we consider the situation
where no non-blocking arcs affeptwhen g is fired frommg, but they all remove
one token fromp wheno is fired frommsy. In the latter case, the effect of on p is
m3(p) —m1(p) —n. We obtain thusmj(p) > max{my(p) +m’(p) — m1(p) —n,0}.
Hencemj(p) > my(p) +mz(p) — ma(p) —n, and thus:mj(p) —m’(p) > ma(p) —
ma(p) —n. O
We can now state our pumping lemma RIM+NBA:

Lemma 10 Let.#” be aPN+NBA and% be an<-upward-closed set of markings of
A . If there exists an infinite sequence of wordswg, ... such that for any > 1,
there exist two wordsBE; with BwW/E; C L(.#", %), then there existi > 0, i > 0,

i3> 0and0 < ny < ny < ng such that the word Bwi, ;121V\/},32En2 isinL(A,%).

Once again, since the proof of Lemma 10 is rather technicalfimst sketch it
informally. The proof may be decomposed into two steps:

Step 1 We build an infinite sequence of runs whaseth element is a run that accepts

the WordBiwizM E; (whereZ is the set of places of theN+NBA considered).
Then, we build a sub-sequence of these runs by applying ssigety Lemma
3. Those sub-sequences have the property that markingarapgp@ different
runs are<-ordered. The increasing sequences appear along/tHer2 first

“columns”.

Step 2 Finally, we show how to split and combine parts of runs apipgdn the runs
in order to obtain a new run that allows tR&l+NBA to accept a word of the
desired form.
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In order to build this sequence, we rely on several varialnlemely:cy, ¢, and
n. At the present step of the proof, we present several conttranc,, ¢, and
n. These constraints are meant to produce a sequence ofibasshat accepts
a word of the desired form. The main (and most technical)gfestep 2 consists
to show that these constraints are satisfiable.

Proof. Let.# be aPN+NBA with set of places? and initial markingmjsi such
thatBiw/E; C L(.#,% ). For technical reason, we assume without loss of generality
that.#" has a transitiot. = (0,0, L, 1,0, ¢), i.e. a transition labelled by that can be
fired from any marking and has no effect.

SinceBW'E; C L(4,% ) for all i > 1, the WordBiwiz"% E; is accepted by
N Letus consider the infinite sequence of runs that acceputids: Blwf"% Ej,
B2 'Ep,....BjW2 Ej...., ie.,

1 2 212 i} /
bt 1 % 2% G 20211 U1
Mipit — M3 — My — -~ my =
1 2 21 i /
v G G G 1214 U
mine 2 m 2mg & E 27 L,
1 2 22| ) /
U G G G |2 11 U]
mimt—'>mil—'>mi2;>-.-'—>mi2 +1—'>I’li

where for any > 1: A(u) = Bi, A(u{) = Ej,nj €  and forany I< j < 271 A(¢) =
wi. Remark that these executions exist even whiess €, because/” contains thed,
transition.

By applying Lemma 3 successively, we can construct an iefisitbsequence of
that sequence:

2 221 /
Up(1 S So(1 S P Yo(u
p(1) p(1) m2 p(1) p(1) mzl 11 “p(1) n

. 1
Minit Mo (D) o p(1) (D)
Vp(2) S(2) Go G o711 Yo
U I I S ) P 22141 "p
Minit = Mpg) = Mp(z) =" Mo = Me@

such that, forany ¥ j <2l +1, the sequenoag)(l)mlj)(z) ...isincreasing:

<m

plk+1) (18)

L _ ol . ol
vi<j<2?l41ivk>1:ml

and, forany I< j <211 +1 there exists a set of places, nofldceg j) that strictly
increase along the sequenng(l)m;)(2> ... while the other places stay constant:

vi<j<2?l41:vk>1: m;(k)(p) <mb .1 (p) iff p€ Placegj) (19)

Since, there are!Z! subsets of2, there exist 1< ¢; < ¢, < 21! + 1 such that
Placegc;) = Placegcy).
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In the following, we denote byfp(j)(kl,kz) with k; < ky the sequenceg%n e

kp—1 I B <

Cp?i) . We also denote byrpm(-,:(.)), the sequence,)) Sty So()) and by
k p(i) .,

Tp(jy (k) the sequencey ...~ Gy Uy

The rest of the proof consists in devising a word.¢f#", %) that is of the
form BnSV\/}%3V\/},21 -n32 En,, With iy > 0,i2 > 0,i3 > 0 and 0< n; < np < n3. The sequence
of transitions that accepts this word (calle}lis built as follows:

0= O-p(n)('a Cl) ! Up(l) (Cla CZ) ! Up(Z) (027 )

for a well-chosen value af. We next explain how to compute this value.
We choosen > 2 such that, when firingrp(l)(cl, ) from mgl(n), we reach a mark-
ingm 3= mf)z(z). Let us show that such malways exists. First, remark that for any
. H . C1 H C1 C1
n>2: Up(l)(cl,cz) is .f|rable fr.ommp(n) since, by (18)mp(n) Moy Letk be the
number of non-blocking arcs Iap<1)(Cl,Cz). By Lemma 9, we have that
. C: C; C:
vpe Z:m(p) = mg (p)+mgy () — My, () —K (20)

But, sincePlacegc;) = Placegc,), we can state the following. For any plapes
Placegc;) and for anyn > 1: mgl(m(p) >n—1, since by (19)nl°)1<1)(p), m;1(2>(p), .
is a strictly increasing sequence. In particular, if we cderosuch that

C2

N> max (e, (p) - %, () + M, (P) +k

pePlacegc;) P(2)

we haverp € Placegc) : m2t (p) > m?Z, (p) —m72, (p) +m7t ) (p) +kand thus:
vp € Placegey) :mi (p)+mE (p) —miiy (p) —k>mE, (p) (21)

By (20) and (21), we obtain:
vp € Placesc;) : m(p) > m, (p) (22)

On the other hand, for any plage the monotonicity property oPN+NBA im-
plies thatm(p) > mf_f(l)(p). And since, by (19)¥p € 2\ Placesc;) : mgzm(p) =
m?, (p), we obtain:

Vpe 2\ Placegc;) : m(p) > mlc)z(z)(p) (23)

By (22) and (23), we conclude that = mgz(z).

Thus, the sequence of transitioms- Tpn) (-,c1)- T1) (C1,C2)- Tp2) (Cy,-) isfirable
from minit (with ncomputed as explained above) and leads to a markinge minit g,
m’. Sincem = mzz(a, we also have that' = Np(2), by monotonicity. Hencen' € %,
and the word\(o) € L(.#",% ). Itis not difficult to see that by the previous con-
struction this word is of the formBnwii,wi2 Wi, En, with (i) n3 = p(n), ny = p(1) and
np = p(2), hence 0< ny < N < ng, and(ii)i; > 0,ip =cp— ¢y > 0,i3 > 0. O
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5 Properties of WSL

In this section, we apply the pumping lemmata of the prevgmesion to obtain several
results aboutVSL and languages &PN. Section 5.1 presents properties/@bL that

can be proved thanks to Lemma 6. Then, the pumping lemmaRdcemdPN-+NBA

are exploited in sections 5.2 and 5.3 to prove a strict hibsaamong the languages
of PN, PN+NBA andPN+T; as well as in section 5.4, to obtain closure properties of
languages oEPN. Finally, section 5.5 shows that some of the results tha¢ leeen
obtained thanks to the pumping lemma \&$L can also be obtained thanks to the
pumping lemmata oRN andPN-+NBA.

5.1 Consequences of Lemma 6

We first study several classical languages and show thataieepot well-structured.
These languages are: the set of all words of the fath¥, the set of all words of the
form a"b™ with m> n, and the set of all palindromes.

o £ ={a""|n>1} ¢ LS(WSTS). Suppose that” € LS(WSTS). Since,vk >
1:a*pk e .2, we can apply Lemma 6 (lettirB = a andEy = b, for anyk > 1).
We conclude that there is< j s.t. albl € ., which is a contradiction. Notice
that this results is also a consequence of Theorem 2 and &ineby following
the reasoning given in [16, pages 175-176].

e #Z ={a"b™m>n} ¢ LS(WSTS). The proof is similar to the previous one.

o ZR={w-wR} ¢ L6(WSTS). LetZ be an alphabet andt=a; -...-an € ¥,
we define the mirror oy, as the word\R = a, - ...-aj. Let us supposeZR e
LS(WSTS). Since{a™ba" | n > 0} C .ZR, we can apply Lemma 6 (letting
By = a“b andEy = bak, for anyk > 1). We conclude that there exist j such
thatalbba' € .ZR, which is a contradiction. Henc&R ¢ LS(WSTS).

These results allow us to show that neither the clas&/sf, nor L5(PN), nor
LS(PN+NBA), norL®(PN+-T) are closed under complement.

Proposition 4 LS(WSTS),L®(PN),LS(PN+NBA) and L°(PN+T) are not closed
under complement.

Proof. It is not difficult to devise @PN .4~ and an<-upward-closed se¥/ such
thatL(.4",%) = {a"™ | m< n}. It is well-known [16] thatL®(PN) is closed under
union and that the regular languages are ali%PN). Hence {a"b™ |m< n} U ((a+
b)*\ a*b*) is in L6(PN), but also inPN+NBA and inPN+T, sincePN is a syntactic
subclass of theirs. However, its complemenis = {a"b™ | m > n}, which is not a
WSL (see above). ]
Finally, we can also exploit the previous results to show the class of/V/SL is
incomparable to the class of Context Free Languages (Cfbrishort).

Proposition 5 The class E(WSTS) is incomparable to the class of context-free lan-
guages.

Proof. C.F.L.Z LS(WSTS) stems from the fact tha¥’, which is well-known to be
a C.F.L., is not inL®(WSTS). We prove that. *(WSTS) ¢ C.F.L. thanks to.#] =
{a'blck |i>j >k>0}. Itis not difficult to devise &N that accepts?; for some
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Figure 5: ThePN+NBA used in the proof of Theorem 4.

<-upward-closed set. On the other hand, we proveffiais not a C.F.L. thanks to the
classical pumping lemma for C.F.L.

For that purpose, we have to devise, for any constaniN, a wordw, € %1 such
that|wn| > n and, for any words, v, w, x andy respectingi) w=u-v-w-x-y, (ii)
lv-w-x| < nand(ii) |v-x| >0, we can find > 0s.t.u-v.-w-xX .y¢ 2.

Foranyn > 0, we letw, = a"™b"c". Clearlyw, € %1 and|wy| > n, for anyn. Let us
consider all the possible valueswofv,. ..,y that respect the three conditions above, and
let us show that, for all these values, there existsa such thati- V' -w-X .y & ;.

e If either v or x contain at least two different charactetise wordu-v?-w-x? -y
is clearly not a word of#;.

e If v e a*, then, sincav-w-x| <n, there are two possibilities. Eith&re a*. In
that case, we choose= 0 and the wordi-\°-w-x°-y s of the forma" VX p"en,
and is clearly not in3, since|v-x| > 0. Otherwisex € b*. In that case, we
choosd = 0 again and we obtain a word of the foeffi Vo™X c", which is not
in 1 becausév- x| > 0.

e Otherwise, i.e., & b* or v € c*, we choosé = 2, and the wordi-v?-w-x?-y
contains either more’s or morec’s thana’s. Hence, it does not belong 1#3.0

5.2 PN-+NBA are more expressive tharPN

In this section we prove that the class of languages accdptdtN-+NBA strictly
contains the class of languages accepte@lywhen the acceptance condition is an
<-upward-closed set). Since the cldd¥ forms a syntactic subclass 8N-+NBA,
we obtain this result by showing that there is a languageedery aPN-+NBA that
cannot be accepted by aR\.

Separation of PN+-NBA and PN The strategy adopted in the proof is as follows.
We look into thePN+NBA .41 of Fig. 5 with initial markingmg such thatng(p;) =1
andmg(p) = 0 for p € {p2, ps3, Ps, Ps, P}, and prove it accepts every word of the
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form iks(akcbkd)j, for k>0 andj > 0 (Lemma 11), but not those of the form
in3san3c(bn3dan3c)i1(bnldanlc)k(andar‘Zc)lzand, for k big enough, and & n; <
ny < nz (Lemma 12). Then we invoke Lemma 8 (pumping lemmé&dl) to prove that
everyPN accepting the words of the first form also accepts words ofdtter, which
implies that ncPN accepts (.47, N®).

Lemma 11 For any k> 0, for any j> 0, the wordiks(akcbkd)j is in L(.47,N6).

Proof. Remark that, since thg-upward-closed set considered heré\s we just
need to show that a sequence of transitions labelletkbya*cbkd)’ is firable in.4;
to get the Lemma.

The following holds for ank > 0. After firing the transitiom;‘ftz from the initial
marking of 41, we reach the markingn; such thatm;(p;) = k, m1(p3) = 1, and
m1(pj) =0 for j € {1,4,5,6}. Then, we can fire§t4 from mq. This leads to the
markingm, such thatma(ps) =k, mx(ps) = 1, andmy(p;) =0 for j € {1,2,3,6}.
Fromm,, t5k can be fired. This sequence of transitions moveskthekens fromp,
to p2. Then, from the resulting marking; can be fired. Sincep, is now empty, the
effect oftg only consists in moving the token fropy to ps (its non-blocking arc has
no effect) and we reaah; again. Thus, the sequence of transititghﬂskts, labelled by
aKebKkd, can be fired arbitrarily often fromn, and reaches the same marking. Hence

the wordiXs (akcbka)” is in L(.44,N®), for anyk > 0, anyj > 0. O

Lemma 12 Let m, np and rg be three natural numbers such thak n; < ny < ns.
The words _ ) ,
iMsac(b™da"c)" (bMda™c) (bnzdanzc)lzbnzd

are not in L(.#1,N®), foralli; > 0,k>n3—nyand i > 0.

Proof.

In this proof, we will identify a sequence of transitions lwihe word it accepts
(all the transitions have different labels). Clearly (deeproof of Lemma 11), for any
ns > 0, m> 0, the firing 01‘i”3s(a“3cb”3d)rn from mq leads to a markingn; such
thatmy(p2) = n3, mi(p3) = 1, andvi € {1,4,5,6} : m1(p;) = O (the non-blocking
arc oftg hasn’t consumed any token imy). By firing a™cb™d from m;, we now
haven; tokens inpy, n3 — n; — 1 tokens inp4 and one token ipg (this time the non-
blocking arc has moved one token simge< n3). Clearly, at each subsequent firing of
aMcb™d, the non-blocking arc af will remove one token fronps and the marking
of this place will strictly decrease untiy becomes empty. Let=nz3—n; — 1. ltis
easy to see that that firimj‘Scbnld(a”lcb”ld)E from m; leads to a markingn, with
my(p2) = Ny, Mz(p3) = 1, ma(p) = N3 —ng andVj € {1,4,5} : my(p;) = 0. This
characterization also implies that we can fifecb™d an arbitrary number of times

n n
from m, becausen, 2lcbld, m,. On the other hand, it is not possible to fi® cb™d

, With np > nq, from m,. Indeedm, 2o, ms, with m3z(ps) = 1, mz(p2) = ny,

m3(pe) = N3 —ng andVj € {1,3,4} : m3(pj) = 0, which does not allow to fire the

b-labelled transitiorts anymore. We conclude thatk > n3 — n1, a sequence labelled

by i"s(a"cbd) ma”3c(b”lda”lc)kb”Zda”2c, is not firable in#1. Thus, we will not

find in L(.#1,N®) any word with this prefix, hence the Lemma. O
Thanks to these lemmata, we can prove Proposition 6.
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Proposition 6 There is nd®N .4 with an<-upward-closed se% such thatl(.4", % ) =
L(.#1,N8).

Proof. By Lemma1l, anyPN .4 s.t. L(A, %) = L(M,N?) for some<-upward-
closed set of accepting markings, must acceptXs (akcbkd)’, for anyk > 1 andj >
0. Hence, we can apply Lemma 8, by lettiBg= i¥saKc, E, = bkd andwy = bkdakc,
for anyk > 1. We conclude that/” also accepts a word of the form:

iMgaMc (b”3dan3c) B (bnldanlc) L (bnzdanzc) i2b"zd

such that < n; < np < ngandL’ > nz—n,. Sinceitis notirL(.41,% ), by Lemma 12,
there is ndPN .#” and no<-upward-closed se¥ s.t.L(.4", %) = L(.#1,N®). O
Thus, we conclude that:

Theorem 4 L6(PN) c LE(PN+NBA).

Proof. LS(PN) C L®(PN+NBA) is trivial sincePN is a syntactic subclass BN+-NBA.
The strictness of the inclusion is given by Proposition 6. O

5.3 PN+T are more expressive tharPN+NBA

Let us now prove a similar result about the clasRBs-NBA andPN+T: the class of
languages that can be accepted by séfde-T strictly contains the class of languages
accepted by any giveRAN+NBA. For this purpose, we first show thaP&+T can
alwayssimulatea PN+NBA, henceL®(PN+NBA) C L6(PN+T). Then, we prove,
thanks to Lemma 10, that there is a language that can be reedgny aPN+T, but
not by aPN+NBA, which implies the strictness of the inclusion.

Simulation of a PN+NBA by aPN+T Lemma 13 below states that aRj-+NBA
can be simulated by BN+T. The proof of this lemma is based on the following
construction. Let us considerRN+NBA 4 = (£, 7,2 mp), and an<-upward-
closed setZ of markings, and let us show how to transform them inNa+T .4
and anx-upward-closed se¥’ such thal. (A", %) = L(A",%").

Let us consider the partition of” into .7% and .7 as defined in Section 2, and a
new placepr (the trash place). We show now how to build’ = (%', 7', %, mp)
and?%'. First, 2’ = 22 U{pr}. For each transition= (1,0,s,d,1,A) in F, we put
in 7"t = (1,0,s, prr,+%,A) andte = (l,O¢, L, L,0,A), two new transitions, such
that:Vpe 22 : (p#s=>le(p) =1(p) Ap#d= Og(p) =0(p)), le(s) =1(s)+1 and
Oe(d) = O(d) + 1. We also add intg7’ all the transitions of7; (extended tqr, such
that they have no guard and no effect prt). Finally, Vp € & = mg(p) = mo(p),
mo(prr) =0and%’ ={m|3Im e % :¥Ype & :m(p) =m'(p)}.

Example 2 Fig. 6 illustrates the above construction. O

Lemma 13 For any PN+NBA 4" with an <-upward-closed se¥/, it is possible to
construct alPN+T .#” and an<-upward closed se¥/’ s.t.: L(A, %) =L(A",%").

Proof. Let us consider the previous construction and let us progelth?", %) =
L(A" ).
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‘ L(A %) S L(AN" U ‘We show that, for every sequence of transitionsf ./ that

leads into a markingn € %, we can find a sequence of transitiarisof .#” that leads
into a markingm’ € %' such that\(g) = A(0”).

Let us define the functiofi : .7 x NI?I — 7’ such thatt € .7 : f(t,m) =t and
vt =(O,l,5,d,1,A) € Z: f(t,m) =tg, if m(s) > I(s) (the non-blocking arc still has
an effect after the firing of the Petri part of the transiticand f (t, m) =t;, otherwise.

tn

t t: t
Leto=mo > m1 > ... 5 mp =5 my,1 be a sequence of” such thamp, 1 €

f(t;,mp) f(tz,my) f(tn.mp_y) f(the1,m}
% . Then we may see that' = mj o m) ! "y, gy [ o)

my,, 1 iS a sequence off”, wherev1 <i<n+1l:miis such thami{(p) = m;(p) for
aII p € & andmi(pr;) = 0. Hencemy , € %' and/\( ") is accepted. Since we
havevl <i <n+1:A(t)=A(f(t,mi-1)), we conclude that\(c) = A(d’), hence
LA w) S LA u").

‘ LA U CL(AN,U) ‘We show that, for every sequence of transitiariof .4

that leads into a markingy' € %, we can find a sequence of transitian®f .4 that
leads into a markingn € % such that\(a’) = A(o).

We define the functiog : .7’ — .7 such that for alt € Z: g(t) =t and for all
t e % :9(te) = g(t) =t. Moreover, we define the relatiog » that compares two
markings only on the places that aredf. Thus, ifm is defined on#Z andm’ on &’
(rememberthat? C 2'), m' x> miff Ype & :m'(p) < m(p).

t t t thi1
! . L ;2 n /ot !
Leto’ =mg—mj = ... = my — my_ , be asequence of” such thamy , €

. . t
/'. Then, there existni,m,,...mp.1 in .4 such that we haveng M m; M

g(tn) 9(tns1)
— My ——

Mpy1 andmpy 1 € . To prove that the sequence of markings
exists, we show by induction on the indexes, thrit< » m; for all i such that 0<
i <n+1. That implies that1 <i <n-+1:g(t) is firable fromm;_; becausey(t;)
consumes no more tokens in any plgcthant; does.

Base casej = 0. The base case is trivially verified.

Induction step: j = k. By induction hypothesis, we havéd < j <k-—1: m’j <
mj. In the case wherg = (1,0,s,d,b,A) (fromm;_,) has the same effect o than
g(tk) (from my_1), we directly have thain, < my. This happens ifi is a regular
Petri transition or ifmy_1(s) = m;_,(s) = (s).

Otherwiset, has a transfer arc and we must consider two cases:

e The transfer ofi has no effect and the non-blocking ar@gt) moves one token
from the sourcesto the target, hencel (s) = m;_,(s) < mi_1(s). Sincet, and
g(tk) have the same effect except tiggt) removes one more token frosrand
adds one more token ih, and sincam;_; < mi_1 with mi_;(s) < mi_1(s),
we conclude thatn <5 my.

e The transfer ofy moves at least one token from the sous¢e pr, and the non-
blocking arc ofg(tx) moves one token frorato d. Sincety andg(tk) have the
same effect on the places ¥ except thag(tx) adds one more token ihand
ty may remove more tokens frosnand sincem;_; <4 my_1, we conclude that
my < M.

Thus, there areny,my, ..., My, 1 S.t. Mo M),y S, ), Oltn+1) M1

in/ andvl<i<n+1:m{=<zm. Thusmu.1 € %. SinceA(tj) = A(g(t;)) for all
1<i<n+1,we conclude thah(o”) = A(o), hencel (A", %) CL(ANV, U ). O
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(b)

Figure 7: ThePN+T used in the proof of Theorem 5.

Separation ofPN+T and PN+NBA  Let us now prove thdt®(PN-+NBA) is strictly
included inL®(PN+T). We consider th®N+T .45 presented in Fig.7 with the initial
markingmo(p1) =1 andmg(p) = 0 for p € {pz, p3, p4}. The two following Lemmata
allow us to better understand the behaviourtt

Lemma 14 For any k> 1, for any j> 0, the word(akbk)j isin L(.45,N%).

Proof. Remark that, since the-upward-closed set considered heré\fs we just
need to show that a sequence of transitions Iabelle(daLt“l)k)J (j > 0)is firable in.#3
to get the lemma.

The following holds for ank > 1. From the initial markingng of .45, we can fire
thtots~? (which is labelled bya*bK), and obtain the marking; such thaim; (pp) = 1
andVvp € {p1, p3, P4} : m1(p) = 0. Thus,y is firable fromm; and does not transfer
any token, but produces a tokenpg and moves the token fromy to p;. It is thus not
difficult to see thatst< tot5 1, labelled byabX, can be fired fromm;. The marking
one obtains isn; again. Hence, we can fire a sequence labelled"bYy arbitrarily
often frommj. Thus, any word of the fornia*b¥)” is in L(.#3, N%). m

Lemma 15 Let m,ny,n3 be three natural numbers such thaik n; < ny < n3. For
any i > 0, i > 0and > 0, the words of the form:

ahs (bns ana)il (bnl anl)iz (bnz anz)isbnz

are not in L(.45,N%).

35



Proof. The following holds for any;, np, n3 with 0 < n; < np < nz. From the initial
marking of .45, the only sequence of transitions labelled 4V is tf3. Firing this
sequence leads to the markimg such tham;(p;) = 1,m1(p3) = nz andm;(p) =0
if pe {p2,pa}. Fromm;y the only firable sequence of transitions labelleddy is
tztga’l. This leads to the marking, such thaim;(p,) = 1 andmy(p) = 0 if p # pa.

The only sequence of transitions firable froma and labelled by is t4t'113’l. Since
mz(p3) = 0, the transfer of4 has no effect when fired fromn,. Hence, we reach
m; again after firing4tf3’1. By repeating the reasoning, we conclude that the only
sequence of transitions firable from the initial marking éatgelled by(a"b")'1a™
(wheniy > 0) ist]2tt5® (tst]e "ot5e 1)1 1t,t™ ' and leads ton;. In the case where
i1 =0, the sequencq3 is firable and leads ton; too. Frommg, the only firable
sequence of transitions labelled bt is tztgl’l. This leads to a marking similar to
my, notedmy, except thaps containsnz — n; tokens. Then, the only firable sequence
of transitions labelled by™ ist4t£‘1’1. In this case, the transfer f moves then; —n;
tokens fromps to ps and we reach a marking similar to;, notedm’, except thapa
containsn — n tokens andpz containgn; tokens. Fromm/, the only firable sequence

of transitions labelled by™a™ istzt:’,,‘l’ltzltfl’1 and leads tan}. Hence, the sequence

(totht gt 12 is firable fromm.

However, after firingztgl’1 fromm{, we reach a markinm’ similar tom; except
that p4 containsnz — ny tokens and from which no transition labelled bys firable.
Sincen; > ny, we conclude that there is no sequence of transitions kdbblb"™ that
is firable fromm), hencea™ (b™a")' (b"aM )iz (b"2a"2)3a"2 with iy > 0,ip > 0,i3 >0
is not inL (.42, N%). O

Thanks to these two lemmata, and thanks to Lemma 10, we capruie Propo-
sition 7, that states that feiN+NBA can accept the language.db.

Proposition 7 There is nd®N+NBA with an<-upward-closed se¥ s.t. (A", % ) =
L(A5,N%).

Proof. By Lemma 14, anPN+NBA 4 s.t. L(A, %) = L(.#5,N%) for somex-

upward-closed se?/, acc_epts(aibi)k, forany j > 1,k > 1. Thus, we can apply

Lemma 10, by lettind; = a', E; =1b' andw; =b'a', foralli > 1, and obtain thatt” ac-

cepts a word of the forma™ (b™a")i1(bMaM)i2(b2a")!3p" with 0 < Ny < Np < Ng

andi, > 0. Since, by Lemma 15, this word is not lr(Jé,N“), there can be no

PN--NBA .4 and no<-upward-closed-se¥ s.t.:L(.4,%) = L(43,N%). O
The two last propositions allow us to conclude that:

Theorem 5 LS(PN+NBA) C LS(PN+T)
Proof. LS(PN+NBA) C LS(PN+T) is given by Lemma 13. The strictness of the

inclusion is given by Proposition 7. O

5.4 Closure Properties ofEPN

The pumping lemmata oRN and PN+NBA can also be used to show that neither
LS(PN) norLS(PN+NBA) are closed under iteration.

Theorem 6 LS(PN) and L°(PN+NBA) are not closed under iteration.
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Proof. It is easy to show that = {a"o™n > m} € L6(PN) (hence,L is also in
LS(PN+NBA)). Let us show, by contradiction, thiat ¢ LS(PN). Suppose that there
is aPN .4 and an upward-closed sét s.t. L(.#,%)=L". LetB; =a', wj = b'al
andE; =b; foralli > 1. Thanks to Lemma 8, we obtain that 4", %7 ) contains a word
of the form:

an3 (bn3an3)i1 (bnlanl)K (bnzanz)izbnz

with ny < ny < n3g, K > 1, which is notinL*. Hence the contradiction. A similar proof
for PN+NBA invokes Lemma 10. O In [16], Peterson proves that (PN) is not
closed under iteration, but does not treat the cade®¢PN) (which we have solved
here) and mentions the casel6fPN) as an open problem (see page 186 of [16]). It
is possible to adapt the proof of Theorem 6 to show LFAPN) is not closed under
iteration. IndeedL. is also inLP(PN). Then, suppose that there existBld .4 with
set of places? s.t. L(.#",N?l) = L*. SinceL(.#",NI”l) € LP(PN) C L®(PN), we
can apply Lemma 8, and conclude th4t#", NI’|) too contains a word that is not in
L*. HenceLP(PN) is not closed under iteration.

Following Definition 1, Theorem 6 allows us to deduce that:

Corollary 2 L¢(PN) and LS(PN-+NBA) are not full AFL.
On the other hand, it is easy to show that:
Theorem 7 LS(PN+T) is a full AFL, closed under intersection.

Proof. We consider tWPN+T 41 = (P, Ty, %1, md) and 45 = (P, Tp, 52, m3) and

two upward-closed set®; and%>, and we assume that the set of places and transitions
of this two nets are disjoint. For each property to prove wewshow to build an
upward-closed se¥/ and aPN+T .4 = (P, T,Z,mg) s.t. L(.#",%) is the desired
language. Since the proofs that accepts the right language are quite immediate, we
do not provide them here. We rather report the main ideaseotdmstruction which
should be clear enough to convince the reader.

Union: L(#1,21) UL(A5, %) € LS(PN4-T). We build.4" as follows.P = P, &P &
{Pinit, P1, P2} For each transitioh= (1,0,s,d,b,A) € Ty, we putinT atransitiort’ =
(1U{p1},0U{p1},s,d,b,A). Symmetrically, for each transitidn= (I,O,s,d,b,A) €

T,, we putinT a transitiont’ = (1 U{pz},0U{pz2},s,d,b,A). We also add td the

two following transitionst; = ({pinit },01, L, L,0,€) andt; = ({ pinit }, O2, L, L,0, &)
whereOy (p) = m§(p) for all p € P1,01(p1) = 1 andOy(p) = 0 for all p € P,U{p2};
andOy(p) = m%(p) for all pe P, O2(p2) =1 andOy(p) =0forallpe PLU{p1}.

We letX = Z; UX,. The accepting upward-closed set is:

% ={m|mep 24} U{m|mep, %}

wherem €p %7 means that the projection of the markimgon the set of placeB is in
% . More precisely, lem’ : P — N be the marking s.t. for ang € P: m’(p) = m(p).
Then,m ep % iff m"isin % . Remark tha{m | m ep, %4} is upward-closed because
7/ is upward-closed. Similarlyym | m ep, %} is upward-closed too. We conclude
that % is upward-closed because the union of two upward-closedisein upward-
closed set. Finally, we lehg be s.t.mo(pinit) = 1 andmg(p) = 0 for anyp # pinit -

It is not difficult to see that#” accepts exactly. (.41, %1) U L(A2,%>). Indeed,
any transition of 4 that corresponds to a transition.gf; (resp..#2) can be fired only
if there is a token irpy (p2). In the initial marking, onlyt; andt, are enabled. Firing
t; puts a token inp; which enables the sub-net that correspondsfio(and accepts
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words fromL(.41,%4) only). Symmetricallyt, enables the subnet that corresponds to
N,

Concatenation L(.41,74) - L(A42,%) € L5(PN+T). We build.#" as follows.P =
PruPw{p1, p2}. For any transition = (I,0,s,d,b,A) in T1, we putinT a transition

t' = ({uU{p1},0U{p1},sd,b,A). For each transition= (I,0,s,d,b,A) in T, we put

in T a transitiont’ = (1 U{p2},0U{pz},s,d,b,A). We also add ta@ a transitionty,

for anym € min (24), wherety, = (1,0, L, 1,0,¢) s.t.

1 ifp=pm 1 if p=p2
VpeP:l(p) = { m(p) ifpeP  O(p)= { mg(p) if peP
0 otherwise 0 otherwise
Notice that sincex is a wgqo,min (%4) is finite. Hence, we only add a finite number of
transitiong,.
We also letz = 2, UZ,. The initial markingmg is s.t.

1 if p=p1
YpeP:mo(p) =4 mi(p) if pePy
0 otherwise

Finally, the accepting upward-closed g&tis: = {m | m €p, %>}

Itis rather straightforward to see that /", % ) = L(#1,%1) - L(A2,%5). Indeed,
in the initial marking, a token is present g3, which enables the transitions that cor-
responds to those ofi; but no token is present ipp, which inhibits all the transitions
that correspond to transitions of5. Moreover,mg corresponds t(nné as far as the
places of 41 are concerned. Hence, a sequence of transitions that accetrd from
L(.11,%4) can be fired frommg. When a marking that corresponds to an accepting
marking of 41 is reached, one of th, transitions can fire (and they can fire in this
case only). Indeed, sincg is a wqo, all the accepting markings .of; are greater to
at least onen € min (%4) (and only those markings are). This firing moves the token
from p; to p and creates a marking that correspondmgoon the places aof#5. This
inhibits the subnet that corresponds tq and enables the subnet that corresponds to
5. That subnet is then ready to accept a word ftdmis, %5).
Intersection: L(.47,%24) NL(A2,%) € LS(PN+T). We build_#" as follows. For any
transitiont, let A; be the label of. We let

P=PiuPW{pock} W{Put |1 € TIAL2 € T2A My = Ay, # €}

That is,P contains all the places of; and. 43, a special plac@ock that we will use to
inhibit transitions of 4", and a placey, t, per pair of transitions from#; and.#5 that
have the same label (different frogi.

For eache-labelled transitiort = (I,0,s,d,b, €) of T, UT,, we add taT the tran-
sitiont’ = {1 U{piock}, OU{Piock},S, d,b, ). Thust’ can fire if and only if a token is
present in plac@qck. Beside this, its effect is the same as /i or 45.

For anyt; = (11,01, 51, d1, bl,A1> of Ty and anyt; = (l2,02,%,d2, bz,A2> of T s.t.
A1 = A2 # g, we add toT two transitiond = (11U {piock}, O1U{ Pty 1, },51,0d1,b1,A1)
andt’ = (I, U{py t,}. 02U {Piock}, S2, o, b2, €). Remark that these two transitiohs
andt’ are meant to fire sequentially, and that, ohtes fired, no other transition can
fire before the correspondingfires (becauseconsumes the token ingck).
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The initial markings isng defined as follows:

mi(p) if pePy
mi(p) if peP
1 if P= Plock
0 otherwise

VYpeP:mp(p) =

The accepting upward-closed set is defined as:
% ={m|m ep, 741 andm €p, % andm(piock) > 1}

7 is indeed upward-closed. Let; andm; be two markings s.tm; € 2 andm; <

my, and let us show tha, € %7. Sincem; < my, we have(i) foranyp € Pi: m1(p) <

ma(p); (i) for any p € Po: m1(p) < ma(p); and (i) m1(piock) < M2(Prock). Since
7/ is upward-closed and since;, €p, %4, point(i) implies thatm, €p, %4. Similarly,

we deduce thaimy €p, % from point (ii). Finally, since 1< my(pjock), We have
1 < mz(piock). Hencemy € % .

It is not difficult to see that (.4, %) = L(A41,%4) NL(A2,%). Indeed, for any
pair of transitiong; andt, respectively from#1 and.#> that have the same label, there
are two transitions in/#” that, when fired sequentially, have the same effect thand
t> on their respective input and output places. The plagg ensures that the two
transitions of 4" that correspond tt andt, will fire sequentially. The transitions of
A1 and.45 that are labelled bg do not require any synchronisation and can thus fire
independently. Hence, any pair of executionsf and.45 that have the same label
can be simulated by an executiondf, and any execution off” (ending in a marking
m s.t. m(piock) = 1) corresponds to a pair of executions.¢f and. 45 with the same
label.

Iteration: L*(A41,24) € LG(PN+T). The idea is similar to the construction for the
concatenation. Let us assume tRat= {p1, p2,... pn}. We build_4" as follows. The
set of place® = P. & { piock, PTr, P71, Pbs - - - Pn}- The set of transitions is:

T = {<|U{p|OCk}7OU{p|00k}asadabaA>|<Iaoasadaba)\>€T1}
W {tm|Memin(?)}
W {t,t,.. .t}

where the transition§ andty, are defined as follows. For every<li < n, we let
t' = ({p}, 0, pi, prr, +0, €) with:

mi(p) if p=pi
VpeP:Oi(p)=¢ 1 ifp=pi,,
0 otherwise
The transitiort), is ({ph}, On, Pn, PTr, +, €) with:
mé(p) ilf P=Pn
VpeP:On(p)=4q 1 if P= Plock
0 otherwise
Finally, for everym € min (%), tm = (Im,{p1},L,L,0,€), with:
m(p) ifpeh
VpePilm(p)=q 1 if P= Plock
0 otherwise
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The initial markingmo is s.t. mo(piock) = 1, for everyp € Py, mo(p) = m3(p) and
for everyp € P\ (PLU{piock}), Mo(p) = 0. Finally, the accepting upward-closed set
is% ={m|3Im e24:Vpe P :m'(p) <m(p)}.

Let us show why the construction is correct. contains all the transitions off{
(with the same labels), that have been adapted in order toriiseif there is at least
one token inpjock, Which is true initially. Hence,#” can start its execution by firing a
sequence of transitions that is labelled by a worl(i7, %) and put into the places
of P; a marking that is inZ3. At that point, the global marking of#” is thus in% .
Thus, the word read so far (which is indeed.in#1, 241)*) is accepted. Nevertheless,
the net can continue its execution, because, once a markifig bas been reached,
one of thety, transitions can fire, by monotonicity. This removes the tokem pjgck,
which inhibits all the (adapted) transitions franf;. At that point, the only firable
sequence of transitionst&st; .. .t;, (labelled bye). Eacht/ transition has the effect to
restore the initial marking ofy, by first transferring all the tokens from to prr (a
trash can place), and then, produce iptexactlym}(p;) tokens. The last transitidp
of the sequence also produces a token pigy, which allows the (adapted) transitions
from .41 to fire anew. Since the initial marking has been restored vawerd from
L(.#1,%4) can be read. This allows to reach again a marking/inand so on. Thus,
every word inL(.41,24) " isinL(A, % ).

On the other hand, in the case where the sequence of (adatesitions from
1 does not produce a markimg that corresponds to a marking @f, then,(i) the
markingm is not in % and is thus not accepting, arfiil) no transition of the form
tm can fire. Hence, the net is blocked until a marking correspantb an accept-
ing marking of 41 is reached. We conclude that.#", %) C L(.41,7241)". Hence,
LA, %) =L(M,%)".

Arbitrary homomorphism : h(L(.#1,24)) € L(PN+T). Leth be a homomorphism
that maps each characteof Z; to a sequence of charactdi@) of an alphabed’
(ande to itself). Again, we denote the label of any transittdoy A;. We build.4" as
follows. We letZ = %'. We define the set of placsas:

P =Pt {proa} & | J {puil1 <i < [h(A)}

teTy

As usual, the plac@ock is meant to lock the net, i.e., prevent undesired transtton
fire, when necessary. The plagag act as intermediary states when reading the word
h(A¢) for anyt € T; with [h(A)| > 1. More precisely, a token ip;; means that the net
has accepted the prefix of lengthf h(A;) so far.

T is built according to these ideas. For any transitioa (I,0,s,d,b,A) of Ty,
we consider two cases. H(A) =& or h(A) € 23, we add toT a single transition
t' = (1 U{piock}> OU{Piock},S,d,b,h(A)). Otherwiselh(A)| > 1, and we assume that
h(A) =wiw,---w,. We add toT then transitionds, tp, .. .t defined as followst; =
{1U{Piock}, OU{pr,1},s.d,b,wi}. Forany 1<i<n,ti = ({p -1}, {pri}, L, L,0,w).
Finally, th = ({pn-1}, { Prock}, L, L, 0,Wn}).

The initial markingmg is s.t.:

m§(p) i_f pehP
VpeP:mo(p)=4 1 if P= Plock
0 otherwise

The accepting upward-closed stis {m|m €p, %4 andm(pjock) > 1}. For the justi-
fication thatZ is upward-closed, we refer the reader to the arguments ndbe case
of the intersection.
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Clearly,L(A, %) = h(L(Ji/l,%l)). Indeed, each transitianof .41 with label A
and s.th(A) <1, is replaced by a transitighwith labelh(A ), that has the same effect
on the places d?; but which can be fired only if the token is presenpjg.k. Moreover,
each transition of .41 with labelA and s.t.h(A) > 1 is replaced by a set of transitions
that, when fired sequentially, accdgfl ) and have the same effectasn the places
of P1. Thanks to the places of the forpa; and thanks tqjock, We ensure that these
transitions are indeed fired sequentially.

Inverse homomorphism h=1(L(.41,%4)) € LS(PN+T). LetZ’ be an alphabet and
let h be a homomorphism that maps any word3ro a word onz;. ThePN-+T .4

is built as follows. First of all, we build &N A5 = (P, To,Z1 W{aa | a€ '}, mg) that
will act as an observer and repeatedly accepts all the wdrtteedormh(a) for any
ae?y.

More precisely, 1, is defined as follows. Its set of places is:

Po = {pinit} W{pai |a€ T A1<i < |h(a)}
The set of transitions is:
To={taj|lacZA1<i<|h(@)}u{tl|ac}

where, for anya € 3’ s.t. h(a) = wiwa---wn: (i) t2 = ({pan}, {Pinit }, L, L,0,aa);

(ii) tar = ({Pinit},{Pa1},L,L,0,wq); and (iii ) for any 1< i < n, we let: ta; be the
transition ({ paj—1},{Pai},-L,L,0,w;). Moreover, for anya € ¥’ s.t. h(a) = ¢, we
havetQ = ({pinit }, {Pinit }, L., L.,0,0a). The initial markingmg puts a token inpinit
only. The accepting set i% = {m | m(pinit) > 1}. Thus, any accepting sequence of
transitions of 45 is labelled by a word of the formn(ay) - aa, - h(az) - Qa, - - -h(an) - Aa,,
where all thea's belong toZ’ (remark that it holds wheh(a) = € too).

The next step amounts to computing a eW-+T .47 and a new upward-closed
set' from A1, Ao, 21 and %, by applying the same procedure as in the case of
the intersectionexcept thatve treat all the transitions labelled lmy for somea € &’
as if they were labelled by (in other words, we replace all the, labels in_4; by
€, compute the intersection, then restore the labels. Rermethhat thees-labelled
transitions are unaffected by the construction we haveepted for the intersection.
Thus, all the transitions of the fortf appeas isin the resulting net). What we obtain
is a net that accepts all the words of the fdufay ) - 0, -h(az) - 0a, - --h(an) - aa, such
thath(a;)-h(az)---h(an) =h(ai-az---an) isinL(.41,%4). We obtain4” by replacing
the labelA; of any transitiort in .4 as follows: if Ay = a5 for ac ¥/, we letA; = a,
otherwise, we lef\; = €. We also let = %'. Hence,L(.#,%) is the set of all
the words of the formay -az---an s.t. h(az-az---an) € L(A41,%24). This is exactly
h=t(L(1,24)). O

Remark 5 LP(PN+T) is not a full AFL. The justification is the same as in the case of
LP(WSTS). Thatis, let us consider the language-l{¢,a} on the alphabeX = {a,b},
and the homomorphism h s.t(d) = bb. Then, Lc LP(PN+T), but hL) = {¢,bb} ¢
LP(PN+T) because it is not prefix-closed (it does not contain the predikob).

5.5 Some remarks about the pumping lemmata

It is interesting to compare, on the one hand, Lemma 6, andherother hand,
Lemma 8 and Lemma 10. Indeed, Lemma 6 provides us with a psofhext holds
on any WSL, where Lemma 8 and Lemma 10 deal with restrictedlasbes of WSTS
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(namely,PN andPN+NBA). Because they focus on these two peculiar classes, these
two lemmata allow us to state more precise properties tharotte that is given by
Lemma 6.

Nevertheless, when we restrict ourselves to the d#&kd emma 8 is more general
than Lemma 6. By lettingy, = € for anyi > 1 in Lemma 8, we re-obtain Lemma 6.
In particular, we can obtain thanks to Lemma 8 several re’sthiat we had previously
proved with Lemma 6 in section 5.1. From our point of viewstisianother argumentin
favor of the interest of Lemma 8. A similar conclusion can benh when comparing
Lemma 6 to Lemma 10 for the claBS+NBA.

6 Conclusion

The (labelled) well-structured transition systems are llreown class of infinite-state
transition systems, that enjoy monotonicity propertied @whose set of states is well-
quasi ordered. In the present work, we have studied severpépies of the classes of
languages that can be recognizedig TS, and some of their subclasses, such as the
EPN. We have proved three pumping lemmata by exploiting spegifiperties of the
WSTS (which is, to the best of our knowledge, original in this aoxi). These lemmata
have allowed us mainly to strictly separate the expresss®af three important classes
of EPN: thePN, thePN+NBA, and thePN+T.

These different models have been used in different worksddetize behaviours
of concurrent systems [6, 5, 20]. Roughly speaking, in ttesdelizations, each pro-
cess is represented by a token and the place in which each imkgesent encodes
the state of the corresponding process. The peculiar EabfiPN-+T or PN+NBA
have been regarded as natural ways to express the comnioimjoaicedures between
the processes of the system. For instance, a transfer agcfecpy suited to represent
a broadcasti.e., a message that is sent to all the processes in a giatm and that
modifies at once the state of all these processes. Such lastaate intrinsic features of
some programming languages, suchaa Jthrough thenotifyAll keyword). From
our point of view, it is thus important to have a precise krexge of the expressivity
of these models, and to be able to compare these expressBytstrictly separat-
ing the expressive powers 8N, PN+NBA andPN+T, our results demonstrate the
meaningfulness of these different communication prooesiur
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