
Centre Fédéré en Véri�
ationTe
hni
al Report number 2006.66

Well-Stru
tured Languages
Gilles Geeraerts, Jean-Fran
ois Raskin and Laurent Van Begin

http://www.ulb.a
.be/di/ssd/
fvThis work was partially supported by a FRFC grant: 2.4530.02



Well-Structured Languages∗

Gilles Geeraerts Jean-François Raskin Laurent Van Begin†
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Abstract

This paper introduces the notion ofwell-structured language. A well-structured
language can be defined by alabelled well-structured transition system, equipped
with an upward-closed setof accepting states. That peculiar class of transition
systems has been extensively studied in the field ofcomputer-aided verification,
where it has direct an important applications. Petri nets, and their monotonic ex-
tensions (like Petri nets with non-blocking arcs or Petri nets with transfer arcs), for
instance, are special subclasses of well-structured transition systems.

We show that the class of well-structured languages enjoy several important
closure properties. We propose several pumping lemmata that are applicable re-
spectively to the whole class of well-structured languagesand to the classes of
languages recognized by Petri nets or Petri nets with non-blocking arcs. These
pumping lemmata allow us to characterize the limits in the expressiveness of these
classes of language. Furthermore, we exploit the pumping lemmata to strictly sep-
arate the expressive power of Petri nets, Petri nets with non-blocking arcs and Petri
nets with transfer arcs.

1 Introduction

In this paper, we study the family of languages defined bywell-structured (labelled)
transition systems(WSTS for short). WSTS [10] are transition systems whose state
space is infinite but equipped with a well-quasi ordering (wqo for short) and whose
transition relation is monotonic w.r.t. this wqo.WSTS have recently attracted a large
interest in the community ofmodel-checkingbecause they enjoy nice decidability re-
sults and are useful to model important classes of systems (like parametric systems [8]
and communication protocols [2]). In particular, thecoverability problem(a variation
of the reachability problem) has been shown decidable for the whole class ofWSTS

[1, 10]. A large number of popular models defineWSTS: Petri nets [16], monotonic ex-
tensions of Petri nets (e.g., Petri nets with transfer arcs [4]), lossy channel systems [2],
broadcast protocols [8].

While the decidability properties of those models have beenstudied extensively
(see, for example [10]), there are few known results about their expressive power in
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term ofrecognized languages. For example, several extensions of Petri nets have been
proposed but their expressive power has not been studied andcompared1 so far.

In a previous paper [9], we have started to study the expressive power of monotonic
extensions of Petri nets w.r.t. their ability to define sets of infinite words (omega lan-
guages). Unfortunately, the techniques that we had developed in that work were only
applicable to omega languages. In the present paper, we generalize those techniques
to make them applicable to the study of the expressive power of WSTS measured in
term of definable sets of finite words. This classical measureallows us to compare
the expressive power ofWSTS with other well-studied formalisms like finite automata
(defining regular languages), push-down automata (definingcontext free languages)
or Turing machines (defining recursively enumerable languages). We propose proof
techniques that intensively use basic properties of wqo. Webelieve that those proof
techniques are interesting on their own.

The main contributions of our paper can be summarized as follows: (i) we define
a natural class of languages recognized byWSTS for which the emptiness problem is
decidable,(ii) we show that this class has important closure properties andforms an
Abstract Family of Languages(AFL for short),(iii ) to show the limits of the expressive
power ofWSTS, we introduce a general pumping lemma and show some examples
of its possible applications,(iv) we study the relative expressive power of Petri nets
and two important monotonic extensions of theirs. This study is made possible by two
stronger pumping lemmata for these models.

The rest of this paper is structured as follows. In section 2,we recall some pre-
liminaries about wqo,WSTS and (monotonic extensions of) Petri nets. In section 3,
by considering different kinds of accepting conditions, wedefine three classes of lan-
guages recognized byWSTS, and we show that one of them has several interesting
properties. That class is called thewell-structured languages(WSL for short). In sec-
tion 4, we propose a general pumping lemma applicable to any formalism that defines
WSL. Two stronger versions of this lemma are defined and shown applicable to mono-
tonic extensions of Petri nets. In section 5, we use the pumping lemmata to show the
limits of WSL, some non-closure properties, and a strict hierarchy of expressive power
among the monotonic extensions of Petri nets that we have considered.

2 Preliminaries

In this first section, we recall the main basic results that will be useful in the sequel.
More precisely, we recall the classical notions oflanguagesandAbstract Family of
Languages[12, 18]. Then, we definewell-quasi orderingsandwell-structured tran-
sitions systemsthat form the basis of our definition of well-structured languages. We
close the section by recalling the (monotonic extensions of) Petri nets, whose languages
are actually well-structured.

Throughout this paper, we denote byN the set{0,1,2, . . .} of natural numbers(0
included), and byZ+ the set{1,2, . . .} of strictly positive natural numbers.

Languages and abstract family of languages Given a (finite) alphabetΣ, a (finite)
word onΣ is either the empty wordε (we assume thatε 6∈Σ) or a finite concatenation of
symbols inΣ. Given a wordw on the alphabetΣ, thelengthof w, denoted|w| is defined

1Some partial results are known about Petri nets, see for example [16].
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as follows. Ifw = ε, then|w| = 0. Otherwise,w = a1a2 · · ·an, where{a1, . . .an} ⊆ Σ,
and|w| = n. A language onΣ is a (possibly infinite) set of words onΣ.

Let · denote the word concatenation. As usualw·ε = ε ·w = w. The concatenation
of two languagesL1 andL2 is the languageL1 ·L2 = {w1 ·w2 | w1 ∈ L1,w2 ∈ L2}. The
iteration of a languageL is the languageL+ = {w1 · . . . ·wn | n≥ 1∧∀1≤ i ≤ n : wi ∈ L}.
Given a finite alphabetΣ, ahomomorphismis a functionh : Σ∗ 7→ Σ∗ s.t.∀w1,w2 ∈ Σ∗ :
h(w1 ·w2) = h(w1) ·h(w2). The inverse ofh is the functionh−1 : Σ∗ 7→ 2Σ∗

such that
h−1(w) = {w′ | h(w′) = w}. If L is a language onΣ, thenh(L) = {h(w) | w∈ L} and
h−1(L) = ∪w∈Lh−1(w).

Definition 1 ([12, 18]) A full abstract family of languages(full AFL for short) is a set
of languages closed under(i) union,(ii) concatenation,(iii ) intersection with regular
languages,(iv) iteration,(v) homomorphism and(vi) inverse homomorphism. �

Well-quasi orderings Well-quasi orderings are special cases of quasi orders thatare
the cornerstone of the definition ofWSTS.

Definition 2 A well quasi ordering≤ on C (wqo for short) is areflexiveand transitive
relation s.t. for any infinite sequence c0,c1, . . . of elements in C, there are i, j ∈ N, with
i < j and ci ≤ c j . �

In the sequel, we writeci < c j iff ci ≤ c j but c j 6≤ ci . When a setC of elements is
equipped with an ordering≤, one can define the notion ofupward-closed set. That no-
tion will be useful in the sequel to defineaccepting conditionsof languages ofWSTS.

Definition 3 U ⊆ C is a≤-upward-closed set if and only if: for any c∈ U , for any
c′ ∈C such that c≤ c′: c′ ∈ U . �

Given a≤-upward closed setU , let min(U ) be a maximal set such that:

• for all c,c′ ∈ min(U ) : c 6= c′ impliesc 6≤ c′ andc′ 6≤ c, i.e., all the elements of
min(U ) are incomparable to each other;

• ∀c∈min(U ) :¬∃c′ ∈U : c′ < c, i.e. all the elements inmin(U ) are≤-minimal
in U .

The following lemma is well-known and is a direct consequence of the definitions
of min and of a wqo:

Lemma 1 Given a set C and a wqo≤⊆C×C: for any≤-upward-closed setU ⊆C:
the setmin(U ) is finite andU = {c | ∃c′ ∈ min(U ) : c′ ≤ c}.

Well-structured transition systems These transition systems have the characteristic
that their set of configurations is ordered by a wqo≤, and their transition relation is
≤-monotonic, as stated by the following definition:

Definition 4 A (labelled) well-structured transition system(WSTS for short) is a tuple
〈C,c0,Σ,⇒,≤〉 where:

• C is a (possibly infinite) set of configurations;

• c0 ∈C is the initial configuration;

• Σ is a finite alphabet;
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• ⇒⊆C×Σ∪{ε}×C is the transition relation;

• ≤ is a wqo for the elements of C.

Moreover,⇒ is monotonicw.r.t. to≤, that is, for any c1, c2 and c3 in C: for any a∈ Σ∪
{ε}: if (c1,a,c2) ∈⇒ and c1 ≤ c3, then, there exist a finite sequencec1,c2, . . . ,ck ∈C
(with k≥ 2) and1≤ ℓ < k, such that:

• c1 = c3;

• for any1≤ i < ℓ: (ci ,ε,ci+1) ∈⇒;

• (cℓ,a,cℓ+1) ∈⇒;

• for anyℓ+1≤ i < k: (ci ,ε,ci+1) ∈⇒;

• c2 ≤ ck. �

In the sequel we often writec1
a
⇒ c2 instead of(c1,a,c2) ∈⇒. When the character

labelling the transition is not relevant, we might omit it and writec1 ⇒ c2 to mean that
there existsa∈ Σ∪{ε} s.t.c1

a
⇒ c2.

We also writec
w
⇒∗ c′ to mean that there exists a (finite) sequence of configurations

c1,c2, . . . ,cn such that(i) c
a0⇒ c1

a1⇒ c2 · · ·cn
an⇒ c′ and(ii) w = a0 ·a1 · · ·an (thus, some

of theai ’s may beε). Remark that, for any pair of configurationsc1 andc2, and any
charactera, c1

a
⇒ c2 impliesc1

a
⇒∗ c2, but that the reverse implication does not hold.

When two configurationsc1 andc2 are such thatc1
w
⇒∗

c 2 for some wordw, se say that
c2 is reachablefrom c1.

For any configurationc∈C, letPreUp(c) be the set of all configurations whose one-
step successors by⇒ are larger (w.r.t.≤) thanc i.e.,PreUp(c) = {c′ | c′ ⇒ c′′,c≤ c′′}.
When both⇒ and≤ are decidable, and when we can effectively computePreUp(c),
for anyc∈C, theWSTS is called aneffectiveWSTS (EWSTS for short).

Remark 1 We assume that, for anyEWSTS S= 〈C,c0,Σ,⇒,≤〉, we are provided with
the procedures that allow us to computePreUp(c) for any c∈C, and to decide whether
c1 ≤ c2 and c1

a
⇒ c2, for any pair of configurations c1 and c2 in C, and any a∈ Σ∪{ε}.

This also implies that there is an effective representationfor any configuration c∈C.

Remark 2 Several well-studied models of computation such as Extended Petri Nets
(defined hereunder) and Lossy Channel Systems (see [3]) areEWSTS.

The following lemma is a direct consequence of the definitionof wqo:

Lemma 2 Given a set C with the well-quasi ordering≤⊆ C×C and an infinite se-
quence S= c1,c2, . . . with∀i ≥ 1 :ci ∈C, there exists an infinite subsequence cρ(1),cρ(2), . . .

of S such thatρ : N 7→ N is a striclty monotonic function and∀ j ≥ 1 : cρ( j) ≤ cρ( j+1).

Extended Petri nets In the sequel, we study in particular a subclass ofEWSTS de-
fined by Extended Petri Nets. Intuitively, an Extended Petrinet is a Petri net model
where transitions are extended with a special arc that connects a source place to a des-
tination place, and whose semantics is different from the semantics of classical Petri
net arcs. We distinguish three subclasses of Extended Petrinets: the (regular) Petri
nets, the Petri nets with non-blocking arcs and the Petri nets with transfer arcs. Those
models are classically used to model parameterized systems[20, 11].
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A (labelled)Extended Petri Net(EPN) N is a tuple〈P,T ,Σ,m0〉, whereP is
a finite set{p1, p2, . . . , pn} of places,T is a finite set of transitions andΣ is a finite
alphabet. Amarkingof the places is a functionm : P 7→ N. A marking can also be
seen as a vectorv such thatvT = [m(p1),m(p2), . . . ,m(pn)]. m0 : P 7→ N is the initial
marking. Given a set of places{p1, p2, . . . , pk}, we denote bym

(
{p1, p2, . . . , pk}

)

the value∑1≤i≤k m(pi). Each transition is of the form〈I ,O,s,d,b,λ 〉, whereI and
O : P 7→N are multi-sets of input and output places respectively. By convention,O(p)
(resp. I(p)) denotes the number of occurrences ofp in O (resp. I ). s,d ∈ P ∪{⊥}
are the source and the destination places respectively of aspecial arc, b∈ N∪{+∞}
is the bound associated to the special arc andλ ∈ Σ∪{ε} is the label of the transition.
Let us partitionT into Tr andTe such thatT = Tr ∪Te andTr ∩Te = /0. Without
loss of generality, we assume that for each transition〈I ,O,s,d,b,λ 〉 ∈ T , eitherb = 0
ands= ⊥ = d (regular Petri transitions, grouped intoTr ); or b > 0, s 6= d, s 6= ⊥ and
d 6=⊥ (extended transitions, grouped intoTe). We identify several non-disjoint classes
of EPN, depending onTe:

1. Petri nets(PN for short): anEPN is aPN iff Te = /0;

2. Petri nets with non-blocking arcs(PN+NBA): anEPN is aPN+NBA iff for any
t = 〈I ,O,s,d,b,λ 〉 in Te: b = 1;

3. Petri nets with transfer arcs(PN+T): anEPN is aPN+T if and only if for any
t = 〈I ,O,s,d,b,λ 〉 in Te: b = +∞.

Places are graphically depicted by circles; transitions byfilled rectangles. For any
transitiont = 〈I ,O,s,d,b,λ 〉, we draw an arrow from any placep∈ I to transitiont and
from t to any placep∈ O. WhenI(p) (resp.O(p)) is strictly greater than 1, we label
the corresponding arrow byI(p) (O(p)). For aPN+NBA (resp. PN+T), we draw a
dotted (grey) arrow froms to t and fromt to d (provided thats,d 6= ⊥).

Given an extended Petri netN = 〈P,T ,Σ,m0〉, and a markingm of N , a tran-

sition t = 〈I ,O,s,d,b,λ 〉 is said to beenabled inm (notation: m t
−→) iff ∀p ∈ P :

m(p) ≥ I(p). An enabled transitiont = 〈I ,O,s,d,b,λ 〉 canoccur, which determinis-

tically transforms the markingm into a new markingm′ (we denote this bym t
−→ m′).

m′ is computed as follows:

1. First computem1 such that:∀p∈ P : m1(p) = m(p)− I(p).

2. Then computem2 as follows. Ifs= d = ⊥, thenm2 = m1. Otherwise:

m2(s)=

{
0 if m1(s) ≤ b
m1(s)−b otherwise

m2(d)=

{
m1(d)+m1(s) if m1(s) ≤ b
m1(d)+b otherwise

∀p∈ P \ {d,s} : m2(p) = m1(p)

3. Finally, computem′, such that∀p∈ O : m′(p) = m2(p)+O(p).

Let σ = t1t2 . . . tn be a sequence of transitions. We writem σ
−→ m′ to mean that there

exist m1, . . . ,mn−1 such thatm
t1−→ m1

t2−→ . . .
tn−1
−−→ mn−1

tn−→ m′. Moreover, we let
Λ(σ) = λ1 · λ2 · · ·λn, where∀1 ≤ i ≤ n: λi is the label ofti . We sometimes write
m ∗

−→ m′ to mean that there exists a sequence of transitionsσ such thatm σ
−→ m′.
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Figure 1: The four steps to compute the effect of a transfer arc

Example 1 Fig. 1 presents a transition t= 〈I ,O,s,d,+∞,a〉 equipped with a transfer
arc. I and O are such that : I(p1) = I(s) = 1, I(p2) = I(d) = 0, O(p2) = 1 and
O(p1) = O(s) = O(d) = 0.

The successive steps to compute the effect of the firing of t are shown. Namely, (a)
presents a markingm before the firing of t; (b) presents the markingm1 obtained by re-
moving I(p) tokens in every place p; (c) presentsm2 obtained fromm1 by transferring
to d the two tokens present in s; and (d) presents the resulting markingm′ obtained
after producing O(p) tokens in every place p.

If t had been equipped with a non-blocking arc (hence t= 〈I ,O,s,d,1,a〉), only one
token would have been transfered from s to d at step (c). In both cases, t would have
been firable even ifm1(s) had been1. 3

Let 4 denote the wqo on markings, defined as follows: letm andm′ be two mark-
ings on the set of placesP, thenm 4 m′ iff ∀p∈ P : m(p) ≤ m′(p). By Dickson’s
Lemma [7] we know that4 is a wqo. Hence, we obtain the following property, which
can be regarded as a consequence of Lemma 2:

Lemma 3 Given an infinite sequence of markings (ranging on the set of placesP)
m1,m2, . . . we can always extract an infinite subsequencemρ(1),mρ(2), . . . (ρ : N 7→ N

is strictly monotonic function) s.t. for any place p∈ P, eithermρ( j)(p) < mρ( j+1)(p)
for all j ≥ 1 or mρ( j)(p) = mρ( j+1)(p) for all j ≥ 1.

An EPN 〈P,T ,Σ,m0〉, defines anEWSTS S= 〈N|P|,m0,Σ,⇒,4〉; where⇒ is

such thatm1
a
⇒ m2 iff there is a transitiont ∈ T with labela andm1

t
−→ m2.

3 Well-structured languages

This section is mainly devoted to the definitions of languages of WSTS (and the mo-
tivations of these definitions). In accordance to previous classical works on the ex-
pressive power of Petri nets, we distinguish several classes of languages ofWSTS,
depending on the form of the set ofaccepting states. Then, we study several properties
of these different classes of languages. As we will see, the class one obtains when con-
sidering≤-upward-closedsets of accepting states enjoys nice properties (the emptiness
is decidable, that class forms a fullAFL, closed under intersection) that do not hold if
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we choose, for instance, a finite set of accepting states. This will motivate our choice
for the definition ofwell-structured languages. Unfortunately, the universality problem
is undecidable forEWSTS, even when the accepting set of configuration is≤-upward-
closed. That result is proved by reducing the place boundedness problem forPN+NBA

(which has been proved undecidable in [17]) to the universality problem forPN+NBA.

3.1 Languages ofWSTS

We first define the notion of language of aWSTS:

Definition 5 Given aWSTS S= 〈C,c0,Σ,⇒,≤〉, and a set C′ ⊆C of accepting con-
figurations, thelanguageof S, noted L(S,C′) is the set of all the finite words w such that
c0

w
⇒∗ c for some c∈C′. �

By imposing some well-chosen restrictions about the set of accepting configura-
tions, one can obtain different classes of languages. In therestricted case ofPN, this
approach has already been followed in classical works of theliterature such as [16],
[19] or [14]. Namely, ifS is a set ofWSTS, thenLL(S ), LT(S ) andLG(S ) are the
classes of languages defined by aWSTS in S , and where the set of accepting config-
urations is (resp.) afinite setof configurations; the set of everydeadlockconfiguration
or; a≤-upward-closed setof configurations.

Remark 3 It is worth recalling that a fourth kind of accepting condition has been
routinely studied in the literature. In our context, it is the class LP(WSTS) of prefix
languages one obtains by taking the whole set of configurations as accepting set. By
definition, such a set is upward-closed. Since a language that contains no words of
length< 2 cannot be in LP(WSTS), we have: LP(WSTS) ⊂ LG(WSTS). Most of the
results about the classes LG we are about to present can easily be adapted to their
corresponding classes LP.

Not surprisingly, these different classes of languages enjoy different properties,
as shown by the following propositions. Proposition 1 states thatLL(EWSTS) and
LT(EWSTS) are both equal to the set of recursively enumerable languages (R.E.). This
proposition stems from the fact thatLL(PN+T) = R.E. (see [4]).

Proposition 1 ([4]) LL(EWSTS) = LT(EWSTS) = R.E.

Since many problems are undecidable on the class R.E.2, this result is a strong
indication that other accepting conditions should be considered to obtain positive de-
cidability results. As a matter of fact, the emptiness is decidable forEWSTS with
≤-upward-closed accepting sets. That result stems from the fact that thecoverability
problemis decidable on that class:

Problem 1 Given anEWSTS S and an upward-closed setU of configurations of S,
thecoverability problemasks whether there exists a configuration c that is reachable
in S and that belongs toU .

Theorem 1 ([10]) The coverability problem forEWSTS is decidable.

2Remark that the aforementioned proof works by translating atwo-counter machine [15], which are as
expressive as Turing machines, to aPN+T that accepts the same language.

7



From the definition of the problem, it is not difficult to see that, given anEWSTS S
and an upward-closed setU of configurations ofS, we haveL(S,U ) = /0 iff the answer
to the coverability problem isnegativeonSandU . This provides us with an effective
procedure to test the emptiness of the language of anEWSTS when an upward-closed
set of accepting configurations is considered. Hence, the Corollary to Theorem 1:

Corollary 1 The emptiness problem is decidable for the class ofEWSTS, when we
consider≤-upward-closed accepting sets.

We will prove in section 5.1 (see Proposition 5) that some Context Free Languages
(C.F.L.) are not inLG(EWSTS). This implies thatLG(EWSTS) 6= R.E., which is not
surprising since the emptiness problem is decidable.

Finally, one can prove thatLG(WSTS) is a full AFL closed under intersection,
which is a strong indication that it is a class worth of attention. The proof consists
in showing that, given two languagesL1 andL2 in LG(WSTS), there areWSTS that
accept respectivelyL1∩L2, L1∪L2, L1 ·L2, L+

1 , L1∩LR (whereLR is any regular lan-
guage),h(L1) andh−1(L1) (whereh is any arbitrary homomorphism). Remark that we
only prove theexistenceof theseWSTS, and these constructions are thusnot effective
in general, since we have not fixed any formalism to describeWSTS. However, we
will present in section 5.4 effective constructions for these operations when theWSTS

considered arePN+T.
In order to show thatLG(WSTS) is a full AFL closed under intersection, we first

introduce a construction that turns anyWSTS S into anotherWSTS Ss that accepts the
same language asS does (for any set of accepting configurations) and that issimply
monotonic:

Definition 6 A labelledWSTS S= 〈C,c0,⇒,≤,Σ〉 is simply monotoniciff for any
c1,c2,c3 ∈C, for any a∈ Σ∪{ε}: c1

a
⇒ c2 and c1 ≤ c3 implies that there exists c4 ∈C

s.t.t c3
a
⇒ c4 and c2 ≤ c4.

The construction works as follows. First, given aWSTS S= 〈C,c0,⇒,≤,Σ〉, and
a configurationc ∈ C, we letε−closure⇒ (c) = {c′ | c

ε
⇒∗ c′}. Remark that, for any

c ∈ C: c ∈ ε−closure⇒ (c). Then, for anyWSTS S= 〈C,c0,⇒,≤,Σ〉, we build the
WSTS Ss = 〈C,c0,⇒s,≤,Σ〉 s.t.:

⇒s=






c1 ∈ ε−closure⇒ (c) ∧

(c,a,c′) ∃c1,c2 ∈C : c1
a
⇒ c2 ∧

c′ ∈ ε−closure⇒ (c2)




∪{(c,ε,c) | c∈C}

We can now show that this new transition relation enjoys the desired monotonicity
property:

Lemma 4 Let S= 〈C,c0,⇒,≤,Σ〉 be aWSTS and let Ss = 〈C,c0,⇒s,≤,Σ〉 be ob-
tained from S by the above construction. Then, for any c1,c2,c3 ∈ C, for any a∈
Σ∪{ε}: c1 ≤ c3 and c1

a
⇒s c2 implies that there exists c4 s.t. c2 ≤ c4 and c3

a
⇒s c4.

Proof. Let c1,c2,c3 be three configurations ofC and leta ∈ Σ∪{ε} be a letter s.t.
c1

a
⇒s c2 and c1 ≤ c3. Remark that, by definition,c1

a
⇒s c2 implies thatc1

a
⇒∗ c2.

Hence, by monotonicity of⇒, there existsc4 s.t. c3
a
⇒∗ c4 andc2 ≤ c4. By definition

of ⇒∗, and sincea is a single character, this means either thatc3
a
⇒s c4, or that there
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are two configurationsc andc′ s.t. c3
ε
⇒∗ c

a
⇒ c′

ε
⇒∗ c4. Hence,c∈ ε−closure⇒ (c3),

c4 ∈ ε−closure⇒ (c′), and we conclude thatc3
a
⇒s c4. 2

Thus, Ss is indeed a simply monotonicWSTS. Let us show that for any set of
accepting configurationsC′, bothSandSs accept the same language.

Proposition 2 Let S= 〈C,c0,⇒,≤,Σ〉 be aWSTS and let Ss = 〈C,c0,⇒s,≤,Σ〉 be the
simply monotonicWSTS obtained from S. Then, for any C′ ⊆C: L(S,C′) = L(Ss,C′).

Proof. First remark that⇒⊆⇒s. Hence,L(S,C′) ⊆ L(Ss,C′). Let us show that
L(Ss,C′) ⊆ L(S,C′). Let us considerw∈ L(Ss,C′) and let us show thatw∈ L(S,C′).

By definition ofL, there isc∈C′ s.t. c0
w
⇒∗

s c. Hence, by definition of⇒∗
s there is

k≥ 1 s.t. there arec1,c2, . . . ,ck ∈C andb1,b2, . . .bk−1 ∈ Σ∪{ε} with c1 = c0, ck = c,

b1 ·b2 · · ·bk−1 = w andc1
b1⇒s c2

b2⇒s · · ·
bk−1
⇒ s ck. Without loss of generality, we assume

that there is no 1≤ i ≤ k−1 s.t.ci = ci+1 andbi = ε. Indeed, if such transitions appear
in the sequence, they can be removed because they do not add any character to the
words, and are not necessary to reachC′.

By definition of⇒s, there arec1,c2, . . .ck−1 andĉ1, ĉ2, . . . , ĉk−1 in C s.t.:

c1
ε
⇒∗ c1

b1⇒ ĉ1
ε
⇒∗ c2

ε
⇒∗ c2

b2⇒ ĉ2
ε
⇒∗ · · ·

ε
⇒∗ ck−1

bk−1
⇒ ĉk−1

ε
⇒∗ ck

Sinceck ∈C′, this implies that

ε ·b1 · ε · ε ·b2 · ε · · ·ε ·bk−1 · ε = b1 ·b2 · · ·bk−1 = w∈ L(S,C′)

2

Theorem 2 LG(WSTS) is a full AFL, closed under intersection.

Proof. According to Definition 1, one has to show seven closure properties (the
six properties that define anAFL, plus the closure under intersection) in order to es-
tablish this result. In the sequel, we assume thatS1 = 〈C1, i1,Σ1,⇒1,≤1〉 andS2 =
〈C2, i2,Σ2,⇒2,≤2〉 are twoWSTS (with C1∩C2 = /0), and thatU1 andU2 are their as-
sociated upward-closed sets of accepting states. In order to make the proofs easier, we
further assume that bothS1 andS2 are simply monotonic. According to Proposition 2,
this is not restrictive since, for any labelledWSTS S, there exists a simply monotonic
WSTS Ss that accepts the same language. We finally assume thath : Σ1 7→ Σ∗

1 is a
homomorphism s.t.h(ε) = ε, according to the definition from [12, 18]. We prove the
closure of the seven operations by showing the existence of aWSTS S= 〈C, i,Σ,⇒,≤〉
and a set of accepting statesU , s.t. L(S,U ) is the result of the operation in question.
We ensure thatL(S,U ) ∈ LG(WSTS) by proving that≤ is a wqo,⇒ is ≤-monotonic
andU is upward-closed.
Intersection Let us show that there areSandU s.t. L(S,U ) = L(S1,U1)∩L(S2,U2).
S is built as follows:C = C1 ×C2; i = (i1, i2); Σ = Σ1∩Σ2. The wqo is obtained as
follows: ≤= {

(
(c1,c2),(c′1,c

′
2)

)
| c1 ≤1 c′1∧ c2 ≤2 c′2}. The transition relation⇒ is

defined as:

⇒ = {
(
(c1,c2),a,(c′1,c

′
2)

)
| c1

a
⇒1 c′1∧ c2

a
⇒2 c′2∧a∈ Σ} ∪

{
(
(c1,c2),ε,(c′1,c

′
2)

)
|
(
c1

ε
⇒1 c′1∧c2 = c′2

)
or

(
c1 = c′1∧c2

ε
⇒2 c′2

)
}

Finally,U = {(c1,c2) | c1 ∈ U1∧c2 ∈ U2}.
Clearly,L(S,U ) = L(S1,U1)∩L(S2,U2). Let us prove that≤, ⇒ andU have the

desired properties:
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• ≤ is a wqo Let ς = (c1
1,c

2
1),(c

1
2,c

2
2), . . . ,(c

1
n,c

2
n), . . . be an infinite sequence of

elements ofC. Since≤1 is a wqo onC1, following Lemma 2, one can extract
from ς an infinite subsequence

ς ′ = (c1
ρ(1),c

2
ρ(1)),(c

1
ρ(2),c

2
ρ(2)), . . . ,(c

1
ρ(n),c

2
ρ(n)), . . .

such that for anyj ≥ 1: c1
ρ( j) ≤1 c1

ρ( j+1). Since≤2 is a wqo on the elements of

C2, there are, inς ′, two positionsk andℓ s.t. k < ℓ andc2
ρ(k) ≤2 c2

ρ(ℓ). Hence,

(c1
ρ(k),c

2
ρ(k)) ≤ (c1

ρ(ℓ),c
2
ρ(ℓ)), which proves that≤ is a wqo, according to Defini-

tion 2.

• ⇒ is ≤-monotonic Let (c1
1,c

2
1), (c1

2,c
2
2), and(c1

3,c
2
3) be three configurations of

C. We consider two cases. Either there isa ∈ Σ s.t. (c1
1,c

2
1)

a
⇒ (c1

2,c
2
2) and

(c1
1,c

2
1) ≤ (c1

3,c
2
3). By definition of⇒ and≤, this implies thatc1

1
a
⇒1 c1

2, c2
1

a
⇒2

c2
2, c1

1 ≤1 c1
3 andc2

1 ≤2 c2
3. Since⇒1 and⇒2 are resp.≤1- and≤2- simply

monotonic, there arec ∈ C1 andc′ ∈ C2 s.t.: c1
3

a
⇒1 c, c2

3
a

⇒2 c′, c1
2 ≤1 c and

c2
2 ≤2 c′. The first two point imply that(c1

3,c
2
3)

a
⇒ (c,c′). The last two points

imply that(c1
2,c

2
2) ≤ (c,c′).

On the other hand, if(c1
1,c

2
1)

ε
⇒ (c1

2,c
2
2) then either(i) c1

1
ε
⇒1 c1

2 andc2
1 = c2

2 or

(ii) c2
1

ε
⇒1 c2

2 andc1
1 = c1

2. In the first case, since⇒1 is simply monotonic, and

sincec1
1 ≤1 c1

3, there existsc1
4 s.t. c1

3
ε

⇒1 c1
4 andc1

2 ≤ c1
4. Thus,(c1

4,c
2
1) ≤ (c1

3c2
1)

by definition of≤ and(c1
3,c

2
1)

ε
⇒ (c1

4,c
2
1) by definition of⇒. The second case is

similar.

• U is ≤-upward-closedLet (c1
1,c

2
1) and (c1

2,c
2
2), both inC, be s.t. (c1

1,c
2
1) ≤

(c1
2,c

2
2) and(c1

1,c
2
1) ∈ U . Let us show that(c1

2,c
2
2) ∈ U too. Since(c1

1,c
2
1) ∈ U ,

we havec1
1 ∈ U1 and c2

1 ∈ U2, by definition ofU . Since(c1
1,c

2
1) ≤ (c1

2,c
2
2),

c1
1 ≤1 c1

2 andc2
1 ≤2 c2

2, by definition of≤. But U1 andU2 are resp.≤1- and≤2-
upward-closed, which implies thatc1

2 ∈ U1 andc2
2 ∈ U2. Hence(c1

2,c
2
2) ∈ U .

Union Let us show that there areSandU such thatL(S,U ) = L(S1,U1)∪L(S2,U2).
We let C = {i} ⊎C1 ⊎C2; Σ = Σ1 ∪ Σ2; ≤=≤1 ∪ ≤2 ∪{(i, i)}; U = U1 ∪U2 and
⇒= {(i,ε, i1),(i,ε, i2)}∪⇒1 ∪⇒2.

Clearly,L(S,U ) = L(S1,U1)∪L(S2,U2). Let us show thatShas the desired prop-
erties. By definition,⇒ is≤-monotonic (remark thati is≤-incomparable to any other
element ofC). Thus, it remains to prove that:

• ≤ is a wqo Let ς = c0,c2, . . . ,cn, . . . be an infinite sequence of elements ofC.
Because it is infinite, one can extract, from that sequence, an infinite subsequence
ς ′ = c j1,c j2,c j3, . . ., s.t. either∀k ≥ 1 : c jk ∈C1 or ∀k≥ 1 : c jk ∈C2 or ∀k ≥ 1 :
c jk = i. In the case where∀k ≥ 1 : c jk = i, there are clearly two positionsk < ℓ

s.t. c jk ≤ c jℓ , sincei ≤ i. Otherwise, since≤1 and≤2 are both wqo, there exist
two positionsk andℓ s.t.k < ℓ and eitherc jk ≤1 c jℓ or c jk ≤2 c jℓ . In either cases,
this implies thatc jk ≤ c jℓ , which proves that≤ is a wqo following Definition 2.

• U is ≤-upward-closedLet c1,c2 be two configurations inC s.t. c1 ∈ U and
c1 ≤ c2. Let us show thatc2 ∈ U . We consider two cases: eitherc1 ∈ U1 or
c1 ∈ U2. In the former case, sincec1 andc2 are≤-comparable, we deduce that
c2 ∈C1 and thus,c1 ≤1 c2, by definition of≤. Hence,c2 ∈ U1, sinceU1 is ≤1-
upward-closed. This implies thatc2 ∈ U . The same reasoning can be applied to
the latter case.
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ConcatenationLet us show that there areS andU such thatL(S,U ) = L(S1,U1) ·
L(S2,U2). We letC=C1∪C2; i = i1; Σ = Σ1∪Σ2; ⇒= {(c,ε, i2) | c∈U1}∪⇒2 ∪⇒1;
≤=≤1 ∪ ≤2 andU = U2.

Clearly, L(S,U ) is the concatenation ofL(S1,U1) andL(S2,U2). The transition
relation⇒ is ≤-monotonic from its definition. Indeed, letc1, c2 andc3 be three con-
figurations fromC anda ∈ Σ∪{ε} be a character s.t.c1

a
⇒ c2 andc1 ≤ c3. In the

case where{c1,c2,c3} ⊆ C1 or {c1,c2,c3} ⊆ C2, there existsc4 ≥ c2 in C = C1∪C2

s.t. c3
a
⇒ c4, by monotonicity of⇒1 and⇒2. In the case wherec1 ∈C1 andc2 ∈ C2,

we havec1 ∈ U1, c2 = i2 anda = ε, by construction. Hence,c3 ∈ U andc3
ε
⇒ i2

by construction again. Remark that it is not possible thatc1 ∈ C2 andc2 ∈ C1. Since
U2 = U is ≤2-upward-closed,≤=≤1 ∪ ≤2 andC1 ∩C2 = /0, we conclude thatU is
≤-upward-closed. Finally, one can show that≤ is a wqo by reusing the same reasoning
as for the union.
Iteration Let us show that there areS such thatL(S,U ) = L(S1,U1)

+. We consider
a new configurationi0 6∈ C1 and letC = C1 ∪ {i0}; i = i0; ≤=≤1 ∪{(i0, i0)}; ⇒=
{(i0,ε, i1)}∪{(c,ε, i0) | c∈ U1}∪⇒1 andU = U1.

From these definitions, it is trivial to see thatL(S,U ) = L(S1,U1)
+, ≤ is a wqo,

⇒ is≤-monotonic, andU is≤-upward-closed.
Intersection with regular languagesIt is not difficult to see that any deterministic
finite-state automaton is aWSTS, when we choose the equality between states as wqo.
Hence, any regular language is aWSL. SinceWSL are closed under intersection (see
above), the closure with regular languages holds too.
Arbitrary homomorphism Let us show that there areS andU such thatL(S,U ) =
h
(
L(S1,U1)

)
. We extend the set of statesC1 with elements fromC1 ×Σ×N in the

following way:C=C1⊎{(c,a, j) | c∈C1∧a∈Σ∪{ε}∧0≤ j ≤ |h(a)|∧∃c′ : c
a
⇒1 c′}.

Intuitively, these extra states are the intermediate states that have to appear along the
path fromc to c′ when readingh(a). More precisely,(c,a, j) is the state reached
after having read thej first characters ofh(a) from c. We also leti = i1 and≤=≤1

∪{
(
(c1,a, j),(c2,a, j)

)
| (c1,a, j),(c2,a, j) ∈ C∧ c1 ≤1 c2}. The transition relation is

built according to the intuition we have sketched when introducingC:

⇒=






(
c,ε,(c,a,0)

)
,(

(c,a,0),w1,(c,a,1)
)
, a∈ Σ∪{ε} :

... c
a
⇒1 c′ and(

(c,a, |h(a)|−1),w|h(a)|,(c,a, |h(a)|)
)

h(a) = w1w2 . . .w|h(a)|(
(c,a, |h(a)|),ε,c′

)






Finally,U = U1.
By construction,L(S,U ) = h

(
L(S1,U1)

)
, andU is a ≤-upward-closed set. It

remains to show that:

• ≤ is a wqo Let us suppose it is not the case. Then, there exists a sequence of
elements ofC: ς = c1,c2, . . . ,cn, . . . s.t. for anyk≥ 1, for any 1≤ n < k: cn 6≤ ck

(each configuration is≤-incomparable to all the previous ones). Remark that,
since≤1 is a wqo on the elements ofC1 and sincec≤1 c′ impliesc≤ c′ (by defi-
nition of≤), one cannot find inς , infinitely many elements fromC1. Otherwise,
the infinite subsequence ofς made of all the elementsci ∈C1 would be an infi-
nite sequence of≤1-incomparable elements fromC1. But this cannot exist since
≤1 is a wqo. Thus, there is, inς , an infinite subsequenceς ′ = c j1,c j2, . . .c jn, . . .

s.t. for anyk≥ 1: (i) c jk 6∈C1 and(ii) for any 1≤ n < k: c jn 6≤ c jk .
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By definition of a homomorphism, the valueℓ = maxa∈Σ∪{ε}{|h(a)|} is a finite
value. Hence, there exists 0≤ ℓ′ ≤ ℓ and a charactera of Σ∪{ε} s.t. the sequence
(c j1,a, ℓ′),(c j2,a, ℓ′), . . . ,(c jn,a, ℓ′), . . . is an infinite subsequence ofς ′ and for
any n < k: (c jn,a, ℓ′) 6≤ (c jk ,a, ℓ′). However, this implies that for anyn < k:
c jn 6≤1 c jk , which contradicts the fact that≤1 is a wqo.

• ⇒ is≤-monotonicLet us show that, for anyc1,c2,c3 ∈C, and for anya∈ Σ s.t.
c1

a
⇒ c2 andc1 ≤ c3, there existsc4 s.t. c3

a
⇒∗ c4 andc2 ≤ c4. We consider two

cases.

1. Eitherc1 ∈ C1. In that case, by definition of⇒, we havea = ε andc2 =

(c1,b,0) for someb. By construction, there is thusc′1 ∈ C1 s.t. c1
b

⇒1 c′1.
Moreover,c1 ≤ c3 implies thatc3 ∈C1, and thus that,c1 ≤1 c3. Since⇒1

is ≤1-simply monotonic, there isc′3 s.t. c3
b

⇒1 c′3. Hence, by construction,

the configurationc4 = (c3,b,0) ≥ (c1,b,0) is in C, and satisfiesc3
ε
⇒ c4.

2. Or,c1 6∈C1. In that casec1 = (c′,b, i) andc3 = (c′′,b, i) with c′ ≤1 c′′, for
someb. Again, we have to consider two subcases.

(a) In the case wherei < |h(b)|, c2 = (c′,b, i + 1), by construction. We
can choosec4 = (c′′,b, i +1), which satisfies the conditions.

(b) In the case wherei = |h(b)|, c2 is a configuration ofC1 s.t. c′
b
⇒1

c2. By definition of⇒, we have:c1 = (c′,b, |h(b)|)
ε
⇒ c2. By ≤1-

simple monotonicity of⇒1, there exists a configurationc4 s.t. c′′
b

⇒1

c4 and c2 ≤1 c4. Thus,c2 ≤ c4, and, by definition of⇒, we have
c3 = (c′′,b, |h(b)|)

ε
⇒ c4. Hence,c4 satisfies the conditions.

In any case, we conclude that⇒ is≤-monotonic.

Inverse homomorphismLet us buildSandU s.t. L(S,U ) = h−1
(
L(S1,U1)

)
. We let

C = C1; i = i1; ≤=≤1; ⇒= {(c1,a,c2) | a∈ Σ∪{ε}∧∃w∈ Σ∗ : h(a) = w∧c1
w
⇒∗

1 c2}
andU = U1.

Clearly,L(S,U ) = h−1
(
L(S1,U1)

)
. By definition,U is≤-upward-closed and≤ is

a wqo. It remains to show that⇒ is≤-monotonic. Letc1, c2, c3 be three configurations
in C s.t. c1

a
⇒ c2 for somea, andc1 ≤ c3. By definition of⇒, there existsw∈ Σ∗ s.t.

h(a) = w and c1
w
⇒∗

1 c2. Moreover,c3 ∈ C1 and c1 ≤1 c3, by definition. By using
an inductive reasoning on the length ofw, one can show that there existsc4 ∈ C1 s.t.
c3

w
⇒∗

1 c4 andc2 ≤1 c4. Hence,c4 ∈C andc3
a
⇒ c4, by definition of⇒. 2

Remark 4 LP(WSTS) is not a full AFL. Indeed, let us consider the alphabetΣ =
{a,b}. Clearly, the languageLa = {a,ε} is in LP(WSTS). Let h : Σ 7→ Σ∗ be an
homomorphism s.t. h(a) = bb. Then, h(La) = {(bb),ε} is not in LP(WSTS) because
it is not prefix-closed (the wordb is missing).

It should now be clear that the classLG(WSTS) enjoys interesting properties: the
emptiness is decidable on this class, under reasonable effectiveness assumptions (The-
orem 1), and it forms a fullAFL closed under intersection (Theorem 2). Moreover, the
transition relation ofWSTS is, by definition,≤-monotonic. Thus,≤-upward-closed
sets are perfectly suited accepting conditions for these systems. For all these reasons,
we will henceforth restrict ourselves to the study ofLG(WSTS). The languages in this
class are calledwell-structured languages:
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Definition 7 A language L is awell-structured language(WSL for short) if and only if
L ∈ LG(WSTS). �

3.2 Undecidability of universality

Unfortunately, the universality problem is undecidable onEWSTS. This problem is
defined as follows:

Problem 2 Given anEWSTS S= 〈C,c0,⇒,≤,Σ〉, and an upward-closed set of ac-
cepting markingsU f , theuniversality problemasks whether L(S,U f ) = Σ∗.

The proof consists in showing that the universality problemis undecidable on
PN+NBA. In order to prove the undecidability of universality forPN+NBA, we re-
duce the place boundedness problem forPN+NBA (which is know to be undecidable
– see[17]) to the universality problem forPN+NBA. The place-boundedness problem
for PN+NBA asks whether there isboundon the number of tokens that any reachable
marking assigns to a given placep. More precisely, it is defined as follows:

Problem 3 Given aPN+NBA 〈P,T ,Σ,m0〉 and p∈ P, the place-boundedness
problemasks whether there exists k∈ N such that for anym∈N

|P|: if m0
∗
−→ m then

m(p) ≤ k.

Given aPN+NBA N = 〈P,T ,Σ,m0〉 and a placep∈ P, the reduction consists
in building a newPN+NBA Np = 〈P ′,T ′,{a},m′

0〉 s.t. N ′ accepts (withN|P ′| as
accepting set) the universal language (i.e.,a∗) if and only if the placep is unbounded
in N . The construction works as follows:

• P ′ = P ∪{run,stop}, provided thatP ∩{run,stop}= /0;

• T ′ is the smallest set of transitions that contains the transitionsta andt f with ta =
〈{stop, p},{stop},⊥,⊥,0,a〉; t f = 〈{run},{stop},⊥,⊥,0,ε〉; and such that if
〈I ,O,s,d,b,λ 〉 ∈ T then〈I ∪{run},O∪{run},s,d,b,ε〉 ∈ T ′;

• m′
0(run) = 1, m′

0(stop) = 0 and∀p′ ∈ P : m′
0(p′) = m0(p′).

In other words,Np is similar toN except that its transitions (apart fromta) may
fire only if the placerun is marked. Besides this, the transitions ofN ′ that have been
adapted from transitions ofN have the same effect inN ′ than inN . Remark that all
the transitions inT ′ \ {ta} are labelled byε. The transitiont f moves the unique token
from run to stop. This has the effect to prevent the transitions inT ′ \{ta} from firing.
Hence,ta only (labelled bya) can be fired aftert f has been fired. Sinceta consumes one
token from placep, that transition can be fired at mostk times wherek is the number
of tokens inp when firingt f .

The following lemma states that the the construction we havejust introduced is
correct:

Lemma 5 Given aPN+NBA N = 〈P,T ,Σ,m0〉 with p∈ P, the place bounded-
ness problem forN and p has a negative answer iff LG(Np,N

|P|) = a∗.

Proof. If the place-boundedness problem has a negative answer forN andp, then,
for anyk ∈ N, there is a sequence of transitionsσ s.t. m0

σ
−→ m with m(p) ≥ k. Let

σ ′ be the sequence of transitions ofNp obtained by replacing inσ each sequence of

transitions by its corresponding transition inNp. Let m′ be the marking s.t.m′
0

σ ′

−→
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m′. By construction, we have:m′(run) = 1 and for anyp ∈ P: m′(p) = m(p). In
particular, this implies thatm′(p) ≥ k. Hence, the sequencet f tk

a is firable fromm′.
Since the accepting upward-closed set isN

|P|, the sequenceσ ′t f tk
a is accepting, with

Λ(σ ′t f tk
a) = ak. This holds for anyk ∈ N, and we conclude thatNp acceptsa∗, and is

thus universal because the alphabet ofNp is {a}.
On the other hand, ifNp acceptsa∗, then, for anyk∈ N, there exists a sequence of

transitionsσ ′ s.t. σ ′t f tk
a is firable fromm′

0. This holds becauseta is the only transition
of Np that is labelled bya, and becauset f has to be fired beforeta can fire. Moreover,
no ε-labelled transition can be fired oncet f has fired because it removes the token

from placerun. Let m′ be the marking s.t.m′
0

σ ′

−→ m′. Clearly, m′(run) = 1 and
m′(p) ≥ k. Hence, the sequenceσ ′ contains transitions fromT ′ \ {t f ,ta} only. Thus,

by construction ofNp, there exists a sequence of transitionsσ of N s.t.m0
σ
−→m with

m(p) ≥ k. Since this is true for anyk∈ N, it implies thatp is unboundedin N . 2

This allows us to obtain the following proposition:

Proposition 3 The universality problem forPN+NBA is undecidable.

Proof. From [17], we know that the place boundedness problem is undecidable for
PN+NBA. Lemma 5 reduces this problem to the universality problem. Hence, the
latter is undecidable. 2

SincePN+NBA form a syntactic subclass ofEWSTS, we immediately obtain:

Theorem 3 The universality problem forEWSTS is undecidable.

4 Pumping lemmata

This section presents three lemmata that show the limitations in the expressiveness of
WSTS (for the first one),PN (for the second one), andPN+NBA (for the third one).
All these lemmata have a similar statement: if a givenWSTS (resp. PN, PN+NBA)
accepts an infinite set of words{w1,w2, . . .} with a given structure, then it must also ac-
cept other words that are built upon the wordsw1,w2, . . . In some sense, these lemmata
allow to “inflate” the set of accepted words. For that reason,we have chosen to call
thempumping lemmata, owing to their similarities to the classical pumping lemmata
for regular and context-free languages (see for instance [13]).

The proof techniques rely on properties of infinite sequences of configurations
(equipped with a wqo), and monotonicity properties. The usefulness of these pumping
lemmata will be demonstrated in Section 5, where we apply them to obtain several
results aboutWSL.

4.1 A pumping lemma forWSL

Our first pumping lemma deals withWSL, and is very easy to prove:

Lemma 6 Let L be aWSL, and let w1,w2, . . . be an infinite sequence of words s.t.
∀k≥ 1 : wk ∈ L and wk = Bk ·Ek. Then, there exist i< j s.t. Bj ·Ei ∈ L.

Proof. Let S= 〈C,c0,Σ,⇒,≤〉 be aWSTS s.t. L(S,U ) = L for some≤-upward-

closed setU . For anyk ≥ 1, let ck ∈ C be a configuration s.t.c0
Bk
⇒∗ ck

Ek
⇒∗ c′k, with

c′k ∈ U . Since≤ is a wqo, there isi < j s.t. ci ≤ c j . Hence,c0
B j
⇒∗ c j

Ei
⇒∗ c′, with

c′i ≤ c′ by monotonicity. Thus,c′ ∈ U andB j ·Ei ∈ L. 2
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4.2 A pumping lemma forPN

Our second pumping lemma states properties of languages of Petri nets (more precisely,
languages in the classLG(PN)). This lemma will be exploited mainly in section 5.2,
to strictly separate the expressive power ofPN andPN+NBA. Other results of interest
that one can obtain thanks to this lemma are mentioned in section 5.5.

The proof of the pumping lemma onWSL (see Lemma 6 above) exploited the prop-
erties of wqo and the monotonicity property in a rather straightforward fashion: from
a well-chosen infinite sequence of configurations, we have extracted two comparable
elements (property of wqo). Thanks to these two comparable elements, and by the
monotonicity property, we have devised a new execution of the WSTS that allows to
prove the lemma.

We follow the same pattern in the proof of the present pumpinglemma forPN.
Thus, starting from some well-chosen executions of thePN, we buildinfinite sequences
of comparable markings that are reached along these sequences. This construction
exploits the properties of wqo. However, it is much more intricate in the present case
than in the case of Lemma 6 and deserves some attention. This is the purpose of
lemma 7, that we introduce now.

Intuitively, Lemma 7 shows that, given a matrixM with infinitely many lines and
columns containing tuples of natural numbers and given a natural numbern, it is possi-
ble to buildn infinite increasing sequences of elements ofM that enjoy some proper-
ties which are necessary to prove the pumping lemma. Thesen sequences are obtained
by the means ofn functions f1, f2, . . . , fn which take their values inZ+ ×Z

+, and are
thus meant toselectelements fromM . Thus the first infinite sequence to consider will
be M ( f1(1)),M ( f1(2)), . . .; the secondM ( f2(1)),M ( f2(2)), . . . and so forth. The
lemma is as follows:

Lemma 7 LetM be a matrix with an infinite number of lines and columns, and whose
elements are numbered by pairs inZ

+ ×Z
+ and take their values inNk (for k≥ 1).

For any n≥ 1, there are n functionsZ+ 7→ Z
+×Z

+, denoted by f1, f2, . . . , fn such
that the following holds (where fl

i (x) and fci (x) denote respectively the first and second
coordinate of fi(x)):

1. For any1≤ i ≤ n, for any x≥ 1: f c
i (x) ≤ i · f l

i (x) ;

2. For any1≤ i ≤ n and1≤ j ≤ n, for any x≥ 1: f l
i (x) = f l

j (x) ;

3. For any1 ≤ i ≤ n, for any1 ≤ p ≤ k: either for any x≥ 1, M ( fi(x))(p) <

M ( fi(x+1))(p) or, for any x≥ 1, M ( fi(x))(p) = M ( fi(x+1))(p) ;

4. For any1≤ i < j ≤ n, for any x≥ 1: 0< f c
j (x)− f c

i (x) < f c
j (x+1)− f c

i (x+1) ;

5. For any1≤ i ≤ n, for any x≥ 1: f l
i (x) < f l

i (x+1).

Proof. The proof is constructive and by induction onn.
Base case:n = 1. Let us consider the sequence:

S= M (1,1),M (2,1),M (3,1), . . .

By lemma 3, the exists a strictly increasing functionρ : Z
+ 7→ Z

+ s.t. the following is
a subsequence ofS:

M (ρ(1),1),M (ρ(2),1),M (ρ(3),1), . . .

15



with the following property: for any 1≤ p≤ k: either for anyi ≥ 1: M (ρ(i),1)(p) <

M (ρ(i +1),1)(p) or, for anyi ≥ 1: M (ρ(i),1)(p) = M (ρ(i +1),1)(p). We define
f1 as follows:

for anyx≥ 1 : f1(x) = (ρ(x),1) (1)

Let us check that the lemma holds on this function:

1. We have to show that for anyx≥ 1: f c
1 (x) ≤ 1 · f l

1 (x). By (1), this is equivalent
to ∀x≥ 1 : 1≤ ρ(x), which is true by definition ofρ .

2. Trivial for n = 1.

3. This holds by (1) and definition ofρ .

4. Trivial for n = 1.

5. We have to show that for anyx≥ 1: f l
1 (x) < f l

1 (x+1). By (1), this is equivalent
to ∀x≥ 1 : ρ(x) < ρ(x+1), which is true by definition ofρ .

Inductive case: n > 1 Let us suppose there aren− 1 functionsg1,g2, . . . ,gn−1 that
respect the lemma and let us show how to buildn functions f1, f2, . . . , fn that respect
the lemma.

We first define a functiongn as follows:

for anyx≥ 1 : gn(x) = (gl
n−1 (x) ,gc

n−1 (x)+x) (2)

Let us now consider the sequence:

M (gn(1)),M (gn(2)),M (gn(3)), . . .

By Lemma 3, there exists a strictly increasing functionρ : Z
+ 7→ Z

+ s.t.:

M (gn(ρ(1))),M (gn(ρ(2))),M (gn(ρ(3))), . . .

has the following property:

∀1≤ p≤ k :

{
either ∀i ≥ 1 : M (gn(ρ(i)))(p) < M (gn(ρ(i +1)))(p)

or ∀i ≥ 1 : M (gn(ρ(i)))(p) = M (gn(ρ(i +1)))(p)
(3)

We can now definef1, f2, . . . , fn as follows:

For any 1≤ i ≤ n : for anyx≥ 1 : fi(x) = gi(ρ(x)) (4)

Let us show that they satisfy the lemma. We prove each point ofthe lemma by consid-
ering several subcases:

1. (a) In the case where1≤ i ≤ n−1:
∀x≥ 1 : f c

i (x) ≤ i · f l
i (x)

⇐⇒ ∀x≥ 1 : gc
i (ρ(x)) ≤ i ·gl

i (ρ(x)) by (4)
and the latter is true by induction hypothesis (point 1).

16



(b) In the case wherei = n:
∀x≥ 1 : f c

n (x) ≤ n · f l
n(x)

⇐⇒ ∀x≥ 1 : gc
n (ρ(x)) ≤ n ·gl

n(ρ(x)) by (4)
⇐⇒ ∀x≥ 1 : gc

n−1(ρ(x))+ ρ(x)≤ n ·gl
n−1(ρ(x)) by (2)

⇐⇒ ∀x≥ 1 : gc
n−1(ρ(x))− (n−1) ·gl

n−1(ρ(x))
≤ gl

n−1(ρ(x))−ρ(x)
We show that the last point is valid by establishing that, foranyx≥ 1, (i)
the left-hand side of the inequationgc

n−1(ρ(x))− (n− 1) · gl
n−1(ρ(x)) is

≤ 0 and(ii) the right-hand side of the inequationgl
n−1(ρ(x))−ρ(x) is≥ 0.

The first point stems from the induction hypothesis, point 1.The latter,
holds since, by induction hypothesis (point 5): 0< gl

n−1(1) < gl
n−1(2) <

gl
n−1(3) , . . . Hence, for anyx ≥ 1 : gl

n−1(x) ≥ x, and thus for anyx ≥ 1 :
gl

n−1(x)−x≥ 0.

2. Without loss of generality, we assume thatj ≤ i.

(a) In the case where1≤ j < i ≤ n−1:
∀x≥ 1 : f l

i (x) = f l
j (x)

⇐⇒ ∀x≥ 1 : gl
i (ρ(x)) = gl

j (ρ(x)) by (4)
The last point is true by induction hypothesis (point 2).

(b) In the case wherei = n and 1≤ j ≤ n−1:
∀x≥ 1 : f l

n (x) = f l
j (x)

⇐⇒ ∀x≥ 1 : gl
n (ρ(x)) = gl

j (ρ(x)) by (4)
⇐⇒ ∀x≥ 1 : gl

n−1(ρ(x)) = gl
j (ρ(x)) by (2)

The last point is true by induction hypothesis (point 2).

(c) In the case wherei = j: the point is trivially true.

3. First remark that:
∀1≤ i ≤ n : ∀1≤ p≤ k :{

either ∀x≥ 1 : M ( fi(x))(p) < M ( fi(x+1))(p)
or ∀x≥ 1 : M ( fi(x))(p) = M ( fi(x+1))(p)

⇐⇒ ∀1≤ i ≤ n : ∀1≤ p≤ k : by (4){
either ∀x≥ 1 : M (gi(ρ(x)))(p) < M (gi(ρ(x+1)))(p)

or ∀x≥ 1 : M (gi(ρ(x)))(p) = M (gi(ρ(x+1)))(p)

(a) In the case where1≤ i ≤ n−1, this last point is true by induction hypoth-
esis (point 3).

(b) In the case wherei = n, this last point is true by (3).

4. (a) In the case where1≤ i < j ≤ n−1:
∀x≥ 1 : 0< f c

j (x)− f c
i (x) < f c

j (x+1)− f c
i (x+1)

⇐⇒ ∀x≥ 1 : 0< gc
j (ρ(x))−gc

i (ρ(x))
< gc

j (ρ(x+1))−gc
i (ρ(x+1)) by (4)

This last point is true by induction hypothesis (point 4) andthe fact that
ρ(x) < ρ(x+1).

(b) In the case where1≤ i ≤ n−1 and j = n:
∀x≥ 1 : 0< f c

n (x)− f c
i (x) < f c

n (x+1)− f c
i (x+1)

⇐⇒ ∀x≥ 1 : 0< gc
n(ρ(x))−gc

i (ρ(x))
< gc

n(ρ(x+1))−gc
i (ρ(x+1)) by (4)

⇐⇒ ∀x≥ 1 : 0< gc
n−1(ρ(x))+ ρ(x)−gc

i (ρ(x))
< gc

n−1(ρ(x+1))+ ρ(x+1)−gc
i (ρ(x+1)) by (2)
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This can be proved by showing two points. First:∀x≥ 1 : 0< gc
n−1(ρ(x))+

ρ(x)−gc
i (ρ(x)). This holds because(i) ∀x≥ 1 : ρ(x) > 0 (by definition of

ρ) and(ii) ∀x≥ 1 :gc
n−1(ρ(x))−gc

i (ρ(x))≥ 0 (in the case wherei 6= n−1,
we havegc

n−1(ρ(x))− gc
i (ρ(x)) > 0 by induction hypothesis, point 4. In

the case wherei = n−1, we havegc
n−1(ρ(x))−gc

i (ρ(x)) = 0). Second:
∀x≥ 1 : gc

n−1(ρ(x))+ ρ(x)−gc
i (ρ(x))

< gc
n−1(ρ(x+1))+ ρ(x+1)−gc

i (ρ(x+1))
⇐⇒ ∀x≥ 1 : gc

n−1(ρ(x))−gc
i (ρ(x))−

(
gc

n−1(ρ(x+1))−gc
i (ρ(x+1))

)

< ρ(x+1)−ρ(x)
The last point holds because:(i) the left-hand sidegc

n−1(ρ(x))−gc
i (ρ(x))−

(gc
n−1(ρ(x+1))−gc

i (ρ(x+1)) of the inequation is≤ 0 (wheni 6= n−1, it
is < 0 by induction hypothesis (point 4), and wheni = n−1, it is = 0) and
(ii) the right-hand sideρ(x+1)−ρ(x) is > 0, by definition ofρ .

5. (a) In the case where1≤ i ≤ n−1:
∀x≥ 1 : f l

i (x) < f l
i (x+1)

⇐⇒ ∀x≥ 1 : gl
i (ρ(x)) < gl

i (ρ(x+1)) by (4)
This last point is true by induction hypothesis (point 5) andthe fact that
ρ(x) < ρ(x+1).

(b) In the case wherei = n:
∀x≥ 1 : f l

n (x) < f l
n (x+1)

⇐⇒ ∀x≥ 1 : gl
n (ρ(x)) < gl

n (ρ(x+1)) by (4)
⇐⇒ ∀x≥ 1 : gl

n−1(ρ(x)) < gl
n−1(ρ(x+1)) by (2)

This last point is true by induction hypothesis (point 5) andthe fact that
ρ(x) < ρ(x+1). 2

Equipped with this lemma, we can state and prove our pumping lemma forPN.

Lemma 8 Let N be aPN and U be an4-upward-closed set of markings ofN .
If there exists an infinite sequence of words w1,w2, . . . such that for any i≥ 1, there
exist two words Bi , Ei with Biw∗

i Ei ⊆ L(N ,U ), then there exist0 < n1 < n2 < n3

such that for any K≥ 0, there exists K′ ≥ K and i1 ≥ 0, i2 ≥ 0 such that the word
Bn3wi1

n3wK′

n1
wi2

n2En2 is in L(N ,U ).

The proof of the lemma is quite tedious and technical. However, we believe that
the technique at work in this proof is interesting by itself,since it directly exploits
the monotonicity and well-quasi ordering properties that are characteristic ofWSTS.
It also relies in great part on the fact that Petri net transitions have a constant effect.
Before giving the proof, we provide the reader with a sketch that presents the main
arguments in order to make the task of reading the proof easier. Throughout this ex-
planation, we refer to peculiar markings using the same notations as in the proof. The
reader is advised to refer to Fig. 2, 3 and 4 to get the intuition of the meaning of these
notations.

The proof is constructive. From the fact that thePN accepts the wordsBiw∗
i Ei for

any i ≥ 1, we build, by applying Lemma 7, infinite sequences of markings that are
ordered (this is the purpose of the two first steps of the proof). Then, at the third step,
we exploit these ordering properties, as well as the monotonicity of the PN and the
fact that their transitions have constant effect, to show that a sequence of transitions
with the desirable form is firable, and leads to the accepting4-upward-closed set of
markings.
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



m1
1 m2

1 · · · mN+1
1 0|P| · · · 0|P| 0|P| · · · 0|P| 0|P| · · ·

m1
2 m2

2 · · · mN+1
2 mN+2

2 · · · m2N+1
2 0|P| · · · 0|P| 0|P| · · ·

...
...

...
...

...
m1

j m2
j · · · mN+1

j mN+2
j · · · m2N+1

j m2N+2
j · · · m jN+1

j 0|P| · · ·
...

...
...

...
...

...
...





Figure 2: An illustration of the construction ofMi .

Step 1 Let N denote the value 2|P|+1. For alli ≥ 1, we consider the infinite sequence
of wordsBiwN

i Ei , Biw2N
i Ei , Biw3N

i Ei ,. . . ,Biw
jN
i Ei ,. . . For each of these words, we

select an accepting sequence of transitions and consider the markings that are
reached along this sequence. For instance, when considering the sequence that
acceptsBiw

jN
i Ei , we selectjN +1 markingsmk

j (1≤ k≤ jN +1) s.t.:

minit
Bi−→ m1

j
wi−→ m2

j
wi−→ ·· ·

wi−→ m jN+1
j

Ei−→

For anyi ≥ 1, we build an infinite matrixMi . The jth line ofMi contains all the
markings that have been selected along the run acceptingBiw

jN
i Ei (in the same

order as in the run). Hence, we obtain a matrix with infinitelymany lines. In
order to obtain infinitely many elements on each line, we pad the matrix with
0|P| = 〈0,0, . . . ,0〉 markings. Fig. 2 presents an example of such a matrix.

Then, we apply lemma 7 onMi and buildN functions f(i,1), f(i,2), . . . , f(i,N).
These functions allow us to select elements in the matrixMi . The selected ele-
ments are arranged into a new matrixM

4
i with N columns and infinitely many

lines (see Fig. 3 for an informal illustration of the construction). M
4
i is built

column by column: thej-th column contains the elements selected byf(i, j), i.e.,
the first element of thej-th columns is the element ofMi whose coordinate are
given by f(i, j)(1), the second element is the elementf(i, j)(2) in Mi, and so on.

The new matrixM 4
i has interesting properties upon with we rely in the rest of

the proof. All these properties are direct consequences of Lemma 7. The most
important are:

1. Each column ofM 4
i forms an infinitely increasing sequence of markings

(according to point 3 of Lemma 7);

2. Each line ofM 4
i is actually a subsequence of one of the lines ofMi (by

point 2 of Lemma 7). Thus, ifm andm′ are two markings taken from
the same line ofM 4

i (with m appearing beforem′), we are sure that there
exists a sequence of transitions that is firable fromm and producesm′. For
that reason, we will sometimes refer to lines ofM

4
i asruns.

3. Let us consider two linesℓ1 andℓ2 of M
4
i s.t. ℓ1 < ℓ2. Let m1, m2 be

two markings of lineℓ1 that appear respectively in columns numberk1

andk2 with k1 < k2. Let m′
1 andm′

2 be two markings of lineℓ2 that appear

respectively in columnsk1 andk2. Letσ andσ ′ be the sequences s.t.m1
σ
−→

m2 andm′
1

σ ′

−→ m′
2. Then, the number ofwi that labelsσ ′ is strictly larger
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Mi =





Mi( f(i,1)(1)) Mi( f(i,2)(1)) Mi( f(i,3)(1)) 0|P| · · ·

× × × × × × 0|P| · · ·

Mi( f(i,1)(2)) × Mi( f(i,2)(2)) × Mi( f(i,3)(2)) × × × × 0|P| · · ·

× × Mi( f(i,1)(3)) × × × Mi( f(i,2)(3)) × × Mi( f(i,3)(3)) × × 0|P| · · ·

× × × × × × × × × × × × × × × 0|P| · · ·
...

...
...

...
...

...





M
4
i =





Mi( f(i,1)(1)) Mi( f(i,2)(1)) Mi( f(i,3)(1))

Mi( f(i,1)(2)) Mi( f(i,2)(2)) Mi( f(i,3)(2))

Mi( f(i,1)(3)) Mi( f(i,2)(3)) Mi( f(i,3)(3))

...
...

...





Figure 3: An illustration of the construction ofM
4
i for N = 3. Each× represent a marking reached in thePN. Lemma 7 has been applied in order to

obtain three functionsf(i,1), f(i,2) and f(i,3).

2
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that the number ofwi that labelsσ (this stems from point 4 of Lemma 7).
This property is important since we want to be able to construct sequences
of the formBn3wi1

n3wK′

n1
wi2

n2En2 with K′ arbitrarily large.

Step 2 The second step consists to select an infinite subsetSof {M 4
i | i ≥ 1}. We do

this by building a sequence of runs such that thejth run in the sequence is the
first run appearing inM 4

j . Again, we extract the sub-sequenceSwhere markings
appearing in different runs are4-ordered by applying successively Lemma 3. In
this case, only markings appearing along the 2|P| + 1 first “columns” are4-
ordered.

Step 3 Finally, we show how to split and combine parts of runs appearing in theMi ’s
andS to obtain a run that allows thePN to accept a word of the desired form.
This is shown in Fig. 4.

In order to build this sequence, we rely on several variables, namely:c1, c2, n and
x. At the present step of the proof, we introduce some constraints that relatex,
andn to c1, c2 andK. These constraints are meant to produce a sequence of tran-
sitions that accepts a word of the desired form. The main (andmost technical)
part of step 3 consists to show that these constraints are satisfiable.

The first part of the sequence is the prefix ofM
4

ρ(n)
(x), up to the “column”c1 (see

Fig. 4). At that point, we are guaranteed that the marking we obtain is larger than
M

4

ρ(1)
(K,c1). This allows us to continue the sequence with a part ofM

4

ρ(1)
(K),

starting at “column”c1 and ending at “column”c2. Again, by exploiting the
properties of the sequences built at steps 1 and 2, as well as the constant effect of
PN transitions, we are ensured that the marking we have reachedis larger than
M

4

ρ(2)
(1,c2). This allow us to finish the sequence with the suffix ofM

4

ρ(2)
(1).

The word accepted by this sequence is of the desired form, since we have cor-
rectly chosen the values ofx andn (in particular, the central part of the word is
longer thanK times|wn1|).

We are now ready to present the proof of Lemma 8.
Proof. Let N be aPN with set of placesP and initial markingminit , such that

Biw∗
i Ei ⊆ L(N ,U ) for all i ≥ 1. For technical reason, we assume without loss of

generality thatN has a transitiontε = 〈 /0, /0,⊥,⊥,0,ε〉, i.e. a transition labelled byε
that can be fired from any marking and has no effect. LetN denote the value 2|P|+1.

Step 1 For anyi ≥ 1, letSi be the infinite sequence of all the runs accepting the words

of the formBiw
j ·N
i Ei , with j ≥ 1. That is,Si is the sequence of runs:

minit
υ1−→ m1

1
ς1
1−→ m2

1
ς2
1−→ ·· ·

ςN
1−→ mN+1

1

υ ′
1−→ ni,1

minit
υ2−→ m1

2
ς1
2−→ m2

2
ς2
2−→ ·· · · · ·

ς2·N
2−−→ m2·N+1

2

υ ′
2−→ ni,2

...

minit
υ j
−→ m1

j

ς1
j

−→ m2
j

ς2
j

−→ ·· · · · · · · ·
ς j·N

j
−−→ m j ·N+1

j

υ ′
j

−→ ni, j

where for anyℓ ≥ 1: ni,ℓ ∈ U , Λ(υℓ) = Bi andΛ(υ ′
ℓ) = Ei . Moreover,∀ℓ ≥ 1 : ∀1≤

k ≤ ℓ ·N : Λ(ςk
ℓ ) = wi . Remark that these executions exist even whenwi = ε, because

N contains thetε transition.
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M
4

ρ(1)
(K) = minit

Bρ(1) // M 4

ρ(1)
(K,1)

wρ(1) // M 4

ρ(1)
(K,c1)

wρ(1) +3
wρ(1) +3 M 4

ρ(1)
(K,c2)

��

wρ(1) //
Eρ(1) // nρ(1),K

M
4

ρ(n)
(x) = minit

Bρ(n) +3 M 4

ρ(n)
(x,1)

wρ(n) +3
wρ(n) +3 M 4

ρ(n)
(x,c1)

KS

Eρ(n) // nρ(n),x

M
4

ρ(2)
(1) = minit

Bρ(2) // M 4

ρ(2)
(1,1)

wρ(2) // M 4

ρ(2)
(1,c2)

wρ(2) +3
Eρ(2) +3 nρ(2),1

Figure 4: The firable sequence (along the⇒’s) that accepts a word of the formBn3w
i1
n3wK′

n1
wi2

n2En2.

2
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Let 0|P| denote the marking that ranges over|P| places and assigns 0 token to
each place. For anyi ≥ 1, we build, an infinite matrixMi , whose values are either
markings met along the runs ofSi or 0|P|. More precisely, for anyj ≥ 1,k ≥ 1 we
have:

Mi( j,k) =

{
mk

j if 1 ≤ k≤ j ·N+1
0|P| otherwise

(5)

For anyi ≥ 1, we can apply Lemma 7 toMi , and obtainN functions that respect the
five points of the lemma. We denote these functions byf(i,1), f(i,2), . . . f(i,N). Thanks to
these functions, we build infinitely many sequences ofN markings. We represent these
sequences under the form of a new matrixM

4
i , with N columns and infinitely many

lines (each line corresponds to a sequence).M
4
i is defined as follows (wheref l

(i,k) ( j)

and f c
(i,k) ( j) denote respectively the first and second coordinate off(i,k)( j)):

∀i ≥ 1 : ∀ j ≥ 1 :∀1≤ k≤ N : M
4
i ( j,k) = Mi( f l

(i,k) ( j) , f c
(i,k) ( j)) (6)

For any i, j ≥ 1, let M
4
i ( j) denoteM

4
i ( j,1),M 4

i ( j,2), . . .M 4
i ( j,N), i.e. the se-

quence of markings that appears on thej-th line ofM 4
i . Let us expose several proper-

ties of these sequences that will be useful in the sequel of the proof:

1. For anyi ≥ 1, j ≥ 1, the sequenceM 4
i ( j) corresponds to a run ofSi . More

precisely,M 4
i ( j) is a subsequence of the markings in thef l

(i,1) ( j)−th run ofSi .

According to the definitions ofMi andM
4
i (see (5) and (6)), this can be proved

by establishing three points:

(a) The markings ofM 4
i ( j) have all been taken in the same run ofSi : f l

(i,1) ( j) =

f l
(i,2) ( j) = · · · = f l

(i,N) ( j). This is true by point 2 of Lemma 7.

(b) The ordering of the markings along the run has been preserved. This
amounts to show that the sequencef c

(i,1) ( j) , f c
(i,2) ( j) , . . . , f c

(i,N) ( j) is strictly
increasing. This follows directly from point 4 of Lemma 7.

(c) All the selected markings inM 4
i ( j) exist in the f l

(i,1) ( j)-th run ofSi, i.e.,

they are all different from the 0|P| markings we have added when building
Mi . Since the ordering of the markings has been preserved, it issufficient
to show that the last marking ofM 4

i ( j) corresponds to a marking of the
f l
(i,1) ( j)-th run of Si , i.e., that f c

(i,N) ( j) ≤ N · f l
(i,1) ( j) + 1. By point (a)

above, this is equivalent tof c
(i,N) ( j) ≤ N · f l

(i,N) ( j) + 1, which is true by
point 1 of Lemma 7.

2. SinceM 4
i ( j) is a subsequence of markings that appear in a run ofSi , there exists,

for anyi ≥ 1, j ≥ 1 and 1≤ k1 < k2 ≤ N a sequence of transitionsσ j
i (k1,k2) s.t.:

M
4
i ( j,k1)

σ j
i (k1,k2)

−−−−−−−→ M
4
i ( j,k2)

Moreover, for anyi ≥ 1, j ≥ 1 and 1≤ k≤ N, there are two sequences of transi-
tionsσ j

i (·,k) andσ j
i (k, ·) s.t.:

minit
σ j

i (·,k)
−−−−−→ M

4
i ( j,k)

σ j
i (k, ·)

−−−−−→ n (n ∈ U )
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By (5) and (6), these sequences are labelled as follows (for any i, j ≥ 1):

∀1≤ k1 < k2 ≤ N : Λ(σ j
i (k1,k2)) = w

( f c
(i,k2)

( j)− f c
(i,k1)

( j))

i (7)

∀1≤ k≤ N : Λ(σ j
i (·,k)) = Biw

( f c
(i,k)( j)−1)

i (8)

∀1≤ k≤ N : Λ(σ j
i (k, ·)) = w

( j ·N+1− f c
(i,k)( j))

i Ei (9)

Finally, let us introduce the following notation. Letw andυ 6= ε be two words.
Then, we let‖w‖υ = i iff w = υ i . By (7) and point 4 of Lemma 7, the following
holds:

∀i, j ≥ 1 : ∀1≤ k1 < k2 ≤ N :
wi 6= ε implies‖Λ(σ j

i (k1,k2))‖wi < ‖Λ(σ j+1
i (k1,k2))‖wi

That is, whenwi 6= ε, the word that labels the sequence leading from thek1-
th marking of thej-th run of M 4

i to its k2-th marking is strictly shorter than
the word labelling the corresponding sequence in thej + 1-th run ofM 4

i . In
particular, sincewi 6= ε implies that‖Λ(σ1

i (k1,k2))‖ ≥ 1, we have:

∀i ≥ 1 : ∀1≤ k1 < k2 ≤ N : wi 6= ε implies‖Λ(σ j
i (k1,k2))‖wi ≥ j (10)

3. Let us first introduce the folowing notation. LetS be an infinite sequence of
runsS (1),S (2), . . ., s.t. each runS (i) is made up ofN markingsS (i,1),
S (i,2), . . . , S (i,N). Then, for any 1≤ k ≤ N, we denote byPlaces(S ,k) the
set of places s.t.p∈Places(S ,k) iff, for any i ≥ 1: S (i,k)(p) < S (i+1,k)(p).

By (5) and (6), and by Lemma 7, point 3, for any 1≤ k ≤ N and i ≥ 1, the set
Places(M 4

i ,k) ⊆ P is s.t.:

∀i ≥ 1 :∀1≤ k≤ N : ∀p∈ P :
p∈ Places(M 4

i ,k) iff ∀ j ≥ 1 : M 4
i ( j,k)(p) < M

4
i ( j +1,k)(p)

p 6∈ Places(M 4
i ,k) iff ∀ j ≥ 1 : M 4

i ( j,k)(p) = M
4
i ( j +1,k)(p)

(11)

In particular, this implies thatM 4
i (1,k),M 4

i (2,k), . . . ,M 4
i ( j,k), . . . is an in-

creasing sequence (w.r.t.4):

∀i ≥ 1 : ∀1≤ k≤ N : ∀ j ≥ 1 : M 4
i ( j,k) 4 M

4
i ( j +1,k) (12)

Step 2 To finish with the construction, we consider the infinite sequence of runs

M
4
1 (1),M 4

2 (1), . . . made up of the first runs (lines) of allM
4
i . From this sequence,

we extract the infinite subsequenceS= M
4

ρ(1)(1),M 4

ρ(2)(1), . . . by successively apply-
ing Lemma 3. We constructSsuch that:

1. For any 1≤ j ≤ N the sequenceM 4

ρ(1)
(1, j),M 4

ρ(2)
(1, j), . . . is increasing:

∀k≥ 1 : M 4

ρ(k)(1, j) 4 M
4

ρ(k+1)
(1, j) (13)
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2. For any 1≤ j ≤ N, the places in the setPlaces(S, j)⊆ P strictly increase along
the sequenceM 4

ρ(1)
(1, j),M 4

ρ(2)
(1, j), . . . and all the other places stay constant

along the sequence:

∀k≥ 1 : M 4

ρ(k)(1, j)(p) < M
4

ρ(k+1)(1, j)(p) iff p∈ Places(S, j) (14)

Let c1 andc2 be such that 1≤ c1 < c2 ≤ N andPlaces(S,c1) = Places(S,c2).
Remark thatc1 andc2 always exist because there are 2|P| = N−1 subsets ofP.

3. The sets of strictly increasing places of the selectedM
4
i are equal:

∀1≤ j ≤ N : ∀k≥ 1 : Places(M 4

ρ(k), j) = Places(M 4

ρ(k+1)
, j) (15)

This is possible because there is a finite number of subsets ofP.

Step 3 The rest of the proof consists in showing that there are 0< n1 < n2 < n3 s.t.

for anyK ∈ N there arei1 ≥ 0, i2 ≥ 0 andK′ ≥ K and the wordw = Bn3w
i1
n3wK′

n1
wi2

n2En2

is accepted byN .
We first choose the values ofn1 andn2 as follows:n1 = ρ(1) andn2 = ρ(2) (where

ρ is the function defined at the begining of step 2). Then, we show how to compute
n3. Actually, we letn3 = ρ(n) for a well-chosen value ofn. We provide a constraint
(see equation (16) in the sequel) onn that we prove satisfiable and that we exploit
at the end of the proof. Equipped with the valuesn1, n2 andn3, we show that, for
any K ∈ N, it is possible to compute a valuex s.t. the sequence of transitionsσ =
σx

ρ(n)(·,c1) ·σK
ρ(1)(c1,c2) ·σ1

ρ(2)(c2, ·) accepts a word of the desired form.

Choice of n Let mn be the marking such thatM 4

ρ(n)(1,c1)
σ1

ρ(1)(c1,c2)
−−−−−−−−−→ mn. Re-

mark that, since we are dealing with Petri nets, the sequenceσ1
ρ(1)(c1,c2) has a con-

stant effect (i.e., characterized by a vector of natural constants) equal toM 4

ρ(1)
(1,c2)−

M
4

ρ(1)
(1,c1). As a consequence,mn = M

4

ρ(n)
(1,c1)+M

4

ρ(1)
(1,c2)−M

4

ρ(1)
(1,c1). We

choosen > 2 such that:

mn = M
4

ρ(n)(1,c1)+M
4

ρ(1)(1,c2)−M
4

ρ(1)(1,c1) < M
4

ρ(2)(1,c2) (16)

Let us show that such anexists. First notice thatσ1
ρ(1)(c1,c2) is firable fromM

4

ρ(n)
(1,c1)

for all n > 2, becauseM 4

ρ(n)(1,c1) < M
4

ρ(1)(1,c1) following (13). Then, recall that

Places(S,c1) = Places(S,c2), i.e. the places that strictly increase alongSare the same
in columnsc1 andc2. Let us show that, for any placep, mn(p) ≥ M

4

ρ(2)
(1,c2)(p). For

that purpose, we consider two cases:

1. If p∈ Places(S,c1), then, the sequenceM 4

ρ(1)
(1,c1)(p),M 4

ρ(2)
(1,c1)(p), . . . is

strictly growing by (14), and, for any placep ∈ Places(S,c1), for any n ≥ 1,
M

4

ρ(n)
(1,c1)(p) ≥ n−1. Thus there exists a valuen≥ 1 s.t.∀p∈ Places(S,c1) :

M
4

ρ(n)
(1,c1)(p)≥M

4

ρ(2)
(1,c2)(p)−M

4

ρ(1)
(1,c2)(p)+M

4

ρ(1)
(1,c1)(p). This is

equivalent to∀p∈ Places(S,c1) : mn(p)≥M
4

ρ(2)
(1,c2)(p), by definition ofmn.
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2. On the other hand, for anyp ∈ P \Places(S,c1), we have:M 4

ρ(n)
(1,c1)(p) =

M
4

ρ(1)
(1,c1)(p) andM

4

ρ(2)
(1,c2)(p) = M

4

ρ(1)
(1,c2)(p), by (14) again. Hence,

∀p ∈ P \Places(S,c1): M
4

ρ(n)
(1,c1)(p)−M

4

ρ(2)
(1,c2)(p) = M

4

ρ(1)
(1,c1)(p)

−M
4

ρ(1)
(1,c2)(p), and thus, we have that, for any placep∈ P \Places(S,c1):

M
4

ρ(n)
(1,c1)(p)+M

4

ρ(1)
(1,c2)(p)−M

4

ρ(1)
(1,c1)(p) = M

4

ρ(2)
(1,c2)(p), hence

mn(p) = M
4

ρ(2)
(1,c2)(p).

From these two points, we conclude that there existsn s.t. mn < M
4

ρ(2)
(1,c2).

Choice ofx We choosex > K such that:

M
4

ρ(n)
(x,c1) < M

4

ρ(n)
(1,c1)+M

4

ρ(1)
(K,c1)−M

4

ρ(1)
(1,c1) (17)

One can prove that such anx always exists by a the same reasoning as in the choice of
n, and by the fact thatPlaces(M 4

ρ(n)
,c1) = Places(M 4

ρ(1)
,c1) (see (15) above). In-

deed,∀p ∈ Places(M 4

ρ(1),c1), the sequenceM 4

ρ(n)(1,c1)(p),M 4

ρ(n)(2,c1)(p), . . . is
strictly increasing by (11) and (15), and we can thus choosex large enough to have
M

4

ρ(n)
(x,c1)(p)≥M

4

ρ(n)
(1,c1)(p)+M

4

ρ(1)
(K,c1)(p)−M

4

ρ(1)
(1,c1)(p), for any place

p in the setPlaces(M 4

ρ(1)
,c1). On the other hand, for anyp∈ P \Places(M 4

ρ(1)
,c1):

M
4

ρ(1)
(K,c1)(p)= M

4

ρ(1)
(1,c1)(p), by (11) and (15). Thus, we haveM 4

ρ(n)
(x,c1)(p)≥

M
4

ρ(n)
(1,c1)(p)+M

4

ρ(1)
(K,c1)(p)−M

4

ρ(1)
(1,c1)(p) if and only if M 4

ρ(n)
(x,c1)(p) ≥

M
4

ρ(n)
(1,c1)(p). This latter point is true by (11). We conclude that for any placep∈P

M
4

ρ(n)
(x,c1)(p) ≥ M

4

ρ(n)
(1,c1)(p)+M

4

ρ(1)
(K,c1)(p)−M

4

ρ(1)
(1,c1)(p).

The next step amounts to showing that the sequenceσ is firable. Fromminit , we
fire σx

ρ(n)(·,c1) and reachM 4

ρ(n)(x,c1). From that marking, we can fire the sequence

σK
ρ(1)(c1,c2). This is possible becauseM 4

ρ(n)
(x,c1) < M

4

ρ(1)
(K,c1). Indeed, by (17):

M
4

ρ(n)
(x,c1) < M

4

ρ(1)
(K,c1)+

(
M

4

ρ(n)
(1,c1)−M

4

ρ(1)
(1,c1)

)
. However, we know that

(
M

4

ρ(n)
(1,c1)−M

4

ρ(1)
(1,c1)

)
< 0|P|, by (13). HenceM 4

ρ(n)
(x,c1) < M

4

ρ(1)
(K,c1)

and we have:

minit

σx
ρ(n)(0,c1)

−−−−−−−−→ M
4

ρ(n)
(x,c1)

σK
ρ(1)(c1,c2)

−−−−−−−−−→ m

To finish the sequence, we have to show thatm < M
4

ρ(2)
(1,c2). Since the effect of

σK
ρ(1)(c1,c2) is constant and equal toM 4

ρ(1)
(K,c2)−M

4

ρ(1)
(K,c1), we have:

m = M
4

ρ(n)(x,c1)+M
4

ρ(1)(K,c2)−M
4

ρ(1)(K,c1)

⇒ m < M
4

ρ(n)
(1,c1)+M

4

ρ(1)
(K,c1)−M

4

ρ(1)
(1,c1)

+M
4

ρ(1)
(K,c2)−M

4

ρ(1)
(K,c1) by (17)

⇒ m < M
4

ρ(n)
(1,c1)−M

4

ρ(1)
(1,c1)+M

4

ρ(1)
(K,c2)

⇒ m < M
4

ρ(n)(1,c1)−M
4

ρ(1)(1,c1)+M
4

ρ(1)(1,c2) by (12)

⇒ m < M
4

ρ(2)
(1,c2) by (16)

We can thus fireσ1
ρ(2)(c2, ·) from m and obtainm′ such thatm′ < nρ(2),1 (by mono-

tonicity), which implies thatm′ ∈ U . Thus,N acceptsΛ(σ), which is of the form
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Bn3wi1
n3wK′

n1
wi2

n2En2 with n1 = ρ(1), n2 = ρ(2) andn3 = ρ(n), i1 ≥ 0, andi2 ≥ 0. The
former implies that 0< n1 < n2 < n3, by definition ofρ . We finish the proof by con-
sidering two cases:

1. If wn1 = ε, then clearly, for anyj ≥ 0: wj
n1 = ε. In particularwK

n1
= ε = wK′

n1
.

Thus, for anyj ≥ 0, the wordBn3wi1
n3wj

n1wi2
n2En2 satisfies the lemma.

2. If wn1 6= ε, it remains to show that the central part of the accepted wordis long
enough, i.e., thatK′ ≥ K. This stems from the fact that, by construction,K′ =
‖Λ(σK

ρ(1)(c1,c2))‖wi and that‖Λ(σK
ρ(1)(c1,c2))‖wi ≥ K by (10).

In both cases, we conclude that the word we have built, and that is accepted by thePN

satisfies the lemma. 2

4.3 A pumping lemma forPN+NBA

Let us turn our attention to the third pumping lemma. Its proof relies on the following
auxiliary lemma:

Lemma 9 Let N = 〈P,T ,Σ,m0〉 be aPN+NBA, and letσ be a finite sequence of
transitions ofN that contains n occurrences of transitions inTe. Letm1, m′

1, m2 and

m′
2 be four makings such that (i)m1

σ
−→ m′

1, (ii) m2
σ
−→ m′

2 and (iii) m2 < m1. Then,
for every place p∈ P: m′

2(p)−m′
1(p) ≥ m2(p)−m1(p)−n.

Proof. Let us consider a placep ∈ P. First, we remark that when we fireσ from
m2 instead ofm1, its Petri net arcs will have the same effect onp. On the other hand,
since we want to find a lower bound onm′

2(p)−m′
1(p), we consider the situation

where no non-blocking arcs affectp whenσ is fired fromm1, but they all remove
one token fromp whenσ is fired fromm2. In the latter case, the effect ofσ on p is
m′

1(p)−m1(p)−n. We obtain thus:m′
2(p) ≥ max{m2(p)+ m′

1(p)−m1(p)−n,0}.
Hencem′

2(p) ≥ m′
1(p)+ m2(p)−m1(p)− n, and thus:m′

2(p)−m′
1(p) ≥ m2(p)−

m1(p)−n. 2

We can now state our pumping lemma forPN+NBA:

Lemma 10 LetN be aPN+NBA andU be an4-upward-closed set of markings of
N . If there exists an infinite sequence of words w1,w2, . . . such that for any i≥ 1,
there exist two words Bi ,Ei with Biw∗

i Ei ⊆ L(N ,U ), then there exist i1 ≥ 0, i2 > 0,
i3 ≥ 0 and0 < n1 < n2 < n3 such that the word Bn3w

i1
n3wi2

n1wi3
n2En2 is in L(N ,U ).

Once again, since the proof of Lemma 10 is rather technical, we first sketch it
informally. The proof may be decomposed into two steps:

Step 1 We build an infinite sequence of runs whosei− th element is a run that accepts

the wordBiw2|P|

i Ei (whereP is the set of places of thePN+NBA considered).
Then, we build a sub-sequence of these runs by applying successively Lemma
3. Those sub-sequences have the property that markings appearing in different
runs are4-ordered. The increasing sequences appear along the 2|P| + 1 first
“columns”.

Step 2 Finally, we show how to split and combine parts of runs appearing in the runs
in order to obtain a new run that allows thePN+NBA to accept a word of the
desired form.
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In order to build this sequence, we rely on several variables, namely:c1, c2 and
n. At the present step of the proof, we present several constraints onc1, c2 and
n. These constraints are meant to produce a sequence of transitions that accepts
a word of the desired form. The main (and most technical) partof step 2 consists
to show that these constraints are satisfiable.

Proof. Let N be aPN+NBA with set of placesP and initial markingminit such
thatBiw∗

i Ei ⊆ L(N ,U ). For technical reason, we assume without loss of generality
thatN has a transitiontε = 〈 /0, /0,⊥,⊥,0,ε〉, i.e. a transition labelled byε that can be
fired from any marking and has no effect.

Step 1 SinceBiw∗
i Ei ⊆ L(N ,U ) for all i ≥ 1, the wordBiw2|P|

i Ei is accepted by

N . Let us consider the infinite sequence of runs that accept thewords: B1w2|P|

1 E1,

B2w2|P|

2 E2,. . . ,B jw2|P|

j E j ,. . . , i.e.,

minit
υ1−→ m1

1
ς1
1−→ m2

1
ς2
1−→ ·· ·

ς2|P|
1−−−→ m2|P|+1

1

υ ′
1−→ n1

minit
υ2−→ m1

2
ς1
2−→ m2

2
ς2
2−→ ·· ·

ς2|P|
2−−−→ m2|P|+1

2

υ ′
2−→ n2

...
...

...

minit
υi−→ m1

i
ς1
i−→ m2

i
ς2
i−→ ·· ·

ς2|P|
i−−−→ m2|P|+1

i

υ ′
i−→ ni

...
...

...

where for anyi ≥ 1: Λ(υi) = Bi , Λ(υ ′
i ) = Ei , ni ∈U and for any 1≤ j ≤ 2|P|: Λ(ς j

i ) =
wi . Remark that these executions exist even whenwi = ε, becauseN contains thetε
transition.

By applying Lemma 3 successively, we can construct an infinite subsequence of
that sequence:

minit
υρ(1)
−−−→ m1

ρ(1)

ς1
ρ(1)

−−→ m2
ρ(1)

ς2
ρ(1)

−−→ ·· ·
ς2|P|

ρ(1)
−−−→ m2|P|+1

ρ(1)

υ ′
ρ(1)

−−−→ nρ(1)

minit
υρ(2)
−−−→ m1

ρ(2)

ς1
ρ(2)

−−→ m2
ρ(2)

ς2
ρ(2)

−−→ ·· ·
ς2|P|

ρ(2)
−−−→ m2|P|+1

ρ(2)

υ ′
ρ(2)

−−−→ nρ(2)

. . .

such that, for any 1≤ j ≤ 2|P| +1, the sequencem j
ρ(1)m

j
ρ(2) . . . is increasing:

∀1≤ j ≤ 2|P| +1 :∀k≥ 1 : m j
ρ(k) 4 m j

ρ(k+1)
(18)

and, for any 1≤ j ≤ 2|P| +1 there exists a set of places, notedPlaces( j) that strictly
increase along the sequencem j

ρ(1)
m j

ρ(2)
. . . while the other places stay constant:

∀1≤ j ≤ 2|P| +1 : ∀k≥ 1 : m j
ρ(k)(p) < m j

ρ(k+1)(p) iff p∈ Places( j) (19)

Since, there are 2|P| subsets ofP, there exist 1≤ c1 < c2 ≤ 2|P| + 1 such that
Places(c1) = Places(c2).
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In the following, we denote byσρ( j)(k1,k2) with k1 < k2 the sequenceςk1
ρ( j) · . . . ·

ςk2−1
ρ( j) . We also denote byσρ( j)(·,k), the sequenceυρ( j) · ς1

ρ( j) · . . . · ςk−1
ρ( j); and by

σρ( j)(k, ·) the sequenceςk
ρ( j) · . . . · ς

ρ( j)
ρ( j) ·υ

′
ρ( j)

Step 2 The rest of the proof consists in devising a word ofL(N ,U ) that is of the

form Bn3wi1
n3wi2

n1wi3
n2En2, with i1 ≥ 0, i2 > 0, i3 ≥ 0 and 0< n1 < n2 < n3. The sequence

of transitions that accepts this word (calledσ ) is built as follows:

σ = σρ(n)(·,c1) ·σρ(1)(c1,c2) ·σρ(2)(c2, ·)

for a well-chosen value ofn. We next explain how to compute this value.
We choosen > 2 such that, when firingσρ(1)(c1,c2) from mc1

ρ(n)
, we reach a mark-

ing m < mc2
ρ(2)

. Let us show that such an always exists. First, remark that for any

n > 2: σρ(1)(c1,c2) is firable frommc1
ρ(n)

since, by (18),mc1
ρ(n)

< mc1
ρ(1)

. Let k be the

number of non-blocking arcs inσρ(1)(c1,c2). By Lemma 9, we have that

∀p∈ P : m(p) ≥ mc1
ρ(n)

(p)+mc2
ρ(1)

(p)−mc1
ρ(1)

(p)−k (20)

But, sincePlaces(c1) = Places(c2), we can state the following. For any placep ∈
Places(c1) and for anyn≥ 1: mc1

ρ(n)
(p) ≥ n−1, since by (19)mc1

ρ(1)
(p),mc1

ρ(2)
(p), . . .

is a strictly increasing sequence. In particular, if we choosen such that

n > max
p∈Places(c1)

(
mc2

ρ(2)
(p)−mc2

ρ(1)
(p)+mc1

ρ(1)
(p)

)
+k

we have∀p∈ Places(c1) : mc1
ρ(n)

(p) ≥ mc2
ρ(2)

(p)−mc2
ρ(1)

(p)+mc1
ρ(1)

(p)+k and thus:

∀p∈ Places(c1) : mc1
ρ(n)

(p)+mc2
ρ(1)

(p)−mc1
ρ(1)

(p)−k≥ mc2
ρ(2)

(p) (21)

By (20) and (21), we obtain:

∀p∈ Places(c1) : m(p) ≥ mc2
ρ(2)

(p) (22)

On the other hand, for any placep, the monotonicity property ofPN+NBA im-
plies thatm(p) ≥ mc2

ρ(1)
(p). And since, by (19):∀p ∈ P \Places(c1) : mc2

ρ(1)
(p) =

mc2
ρ(2)

(p), we obtain:

∀p∈ P \Places(c1) : m(p) ≥ mc2
ρ(2)(p) (23)

By (22) and (23), we conclude thatm < mc2
ρ(2).

Thus, the sequence of transitionsσ = σρ(n)(·,c1)·σρ(1)(c1,c2)·σρ(2)(c2, ·) is firable

from minit (with n computed as explained above) and leads to a markingm′, i.eminit
σ
−→

m′. Sincem < mc2
ρ(2)

, we also have thatm′ < nρ(2), by monotonicity. Hencem′ ∈ U ,

and the wordΛ(σ) ∈ L(N ,U ). It is not difficult to see that by the previous con-
struction this word is of the form:Bn3wi1

n3wi2
n1wi3

n2En2 with (i) n3 = ρ(n), n1 = ρ(1) and
n2 = ρ(2), hence 0< n1 < n2 < n3, and(ii) i 1 ≥ 0, i2 = c2−c1 > 0, i3 ≥ 0. 2
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5 Properties ofWSL

In this section, we apply the pumping lemmata of the previoussection to obtain several
results aboutWSL and languages ofEPN. Section 5.1 presents properties ofWSL that
can be proved thanks to Lemma 6. Then, the pumping lemmata onPN andPN+NBA

are exploited in sections 5.2 and 5.3 to prove a strict hierarchy among the languages
of PN, PN+NBA andPN+T; as well as in section 5.4, to obtain closure properties of
languages ofEPN. Finally, section 5.5 shows that some of the results that have been
obtained thanks to the pumping lemma onWSL can also be obtained thanks to the
pumping lemmata onPN andPN+NBA.

5.1 Consequences of Lemma 6

We first study several classical languages and show that theyare not well-structured.
These languages are: the set of all words of the formanbn, the set of all words of the
form anbm with m≥ n, and the set of all palindromes.

• L = {anbn|n≥ 1} 6∈ LG(WSTS). Suppose thatL ∈ LG(WSTS). Since,∀k ≥
1 :akbk ∈L , we can apply Lemma 6 (lettingBk = ak andEk = bk, for anyk≥ 1).
We conclude that there isi < j s.t. a jbi ∈ L , which is a contradiction. Notice
that this results is also a consequence of Theorem 2 and Theorem 1, following
the reasoning given in [16, pages 175–176].

• L ≥ = {anbm|m≥ n} 6∈ LG(WSTS). The proof is similar to the previous one.

• L R = {w ·wR} 6∈ LG(WSTS). Let Σ be an alphabet andw = a1 · . . . · an ∈ Σ∗,
we define the mirror ofw, as the wordwR = an · . . . ·a1. Let us supposeL R ∈
LG(WSTS). Since{anbban | n ≥ 0} ⊆ L R, we can apply Lemma 6 (letting
Bk = akb andEk = bak, for anyk ≥ 1). We conclude that there existi < j such
thata jbbai ∈ L R, which is a contradiction. HenceL R 6∈ LG(WSTS).

These results allow us to show that neither the class ofWSL, nor LG(PN), nor
LG(PN+NBA), norLG(PN+T) are closed under complement.

Proposition 4 LG(WSTS),LG(PN),LG(PN+NBA) and LG(PN+T) are not closed
under complement.

Proof. It is not difficult to devise aPN N and an4-upward-closed setU such
thatL(N ,U ) = {anbm | m< n}. It is well-known [16] thatLG(PN) is closed under
union and that the regular languages are all inLG(PN). Hence,{anbm | m< n}∪

(
(a+

b)∗ \a∗b∗
)

is in LG(PN), but also inPN+NBA and inPN+T, sincePN is a syntactic
subclass of theirs. However, its complement isL ≥ = {anbm | m≥ n}, which is not a
WSL (see above). 2

Finally, we can also exploit the previous results to show that the class ofWSL is
incomparable to the class of Context Free Languages (C.F.L., for short).

Proposition 5 The class LG(WSTS) is incomparable to the class of context-free lan-
guages.

Proof. C.F.L. 6⊆ LG(WSTS) stems from the fact thatL , which is well-known to be
a C.F.L., is not inLG(WSTS). We prove thatLG(WSTS) 6⊆ C.F.L. thanks toL1 =
{aib jck | i ≥ j ≥ k ≥ 0}. It is not difficult to devise aPN that acceptsL1 for some
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Figure 5: ThePN+NBA used in the proof of Theorem 4.

4-upward-closed set. On the other hand, we prove thatL1 is not a C.F.L. thanks to the
classical pumping lemma for C.F.L.

For that purpose, we have to devise, for any constantn∈ N, a wordωn ∈ L1 such
that |ωn| ≥ n and, for any wordsu, v, w, x andy respecting(i) ω = u · v ·w · x · y, (ii)
|v ·w ·x| ≤ n and(iii ) |v ·x| > 0, we can findi ≥ 0 s.t.u ·vi ·w ·xi ·y 6∈ L1.

For anyn≥ 0, we letωn = anbncn. Clearlyωn ∈L1 and|ωn| ≥ n, for anyn. Let us
consider all the possible values ofu, v,. . . ,y that respect the three conditions above, and
let us show that, for all these values, there exists ani ≥ 0 such thatu·vi ·w·xi ·y 6∈ L1.

• If either v or x contain at least two different characters, the wordu ·v2 ·w ·x2 ·y
is clearly not a word ofL1.

• If v ∈ a∗, then, since|v ·w · x| ≤ n, there are two possibilities. Eitherx∈ a∗. In
that case, we choosei = 0 and the wordu·v0 ·w·x0 ·y is of the forman−|v·x|bncn,
and is clearly not inL1, since|v · x| > 0. Otherwise,x ∈ b∗. In that case, we
choosei = 0 again and we obtain a word of the forman−|v|bn−|x|cn, which is not
in L1 because|v ·x|> 0.

• Otherwise, i.e., v∈ b∗ or v ∈ c∗, we choosei = 2, and the wordu · v2 ·w · x2 · y
contains either moreb’s or morec’s thana’s. Hence, it does not belong toL1.2

5.2 PN+NBA are more expressive thanPN

In this section we prove that the class of languages acceptedby PN+NBA strictly
contains the class of languages accepted byPN (when the acceptance condition is an
4-upward-closed set). Since the classPN forms a syntactic subclass ofPN+NBA,
we obtain this result by showing that there is a language accepted by aPN+NBA that
cannot be accepted by anyPN.

Separation of PN+NBA and PN The strategy adopted in the proof is as follows.
We look into thePN+NBA N1 of Fig. 5 with initial markingm0 such thatm0(p1) = 1
and m0(p) = 0 for p ∈ {p2, p3, p4, p5, p6}, and prove it accepts every word of the
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form iks
(
akcbkd

) j
, for k ≥ 0 and j ≥ 0 (Lemma 11), but not those of the form

in3san3c(bn3dan3c)i1
(
bn1dan1c

)k(
bn2dan2c

)i2bn2d, for k big enough, and 0< n1 <

n2 < n3 (Lemma 12). Then we invoke Lemma 8 (pumping lemma onPN) to prove that
everyPN accepting the words of the first form also accepts words of thelatter, which
implies that noPN acceptsL(N1,N

6).

Lemma 11 For any k≥ 0, for any j≥ 0, the wordiks
(
akcbkd

) j
is in L(N1,N

6).

Proof. Remark that, since the4-upward-closed set considered here isN
6, we just

need to show that a sequence of transitions labelled byiks
(
akcbkd

) j
is firable inN1

to get the Lemma.
The following holds for anyk ≥ 0. After firing the transitionstk

1t2 from the initial
marking ofN1, we reach the markingm1 such thatm1(p2) = k, m1(p3) = 1, and
m1(p j) = 0 for j ∈ {1,4,5,6}. Then, we can firetk

3t4 from m1. This leads to the
markingm2 such thatm2(p4) = k, m2(p5) = 1, andm2(p j) = 0 for j ∈ {1,2,3,6}.
From m2, tk

5 can be fired. This sequence of transitions moves thek tokens fromp4

to p2. Then, from the resulting marking,t6 can be fired. Since,p4 is now empty, the
effect of t6 only consists in moving the token fromp5 to p3 (its non-blocking arc has
no effect) and we reachm1 again. Thus, the sequence of transitionstk

3t4tk
5t6, labelled by

akcbkd, can be fired arbitrarily often fromm1, and reaches the same marking. Hence
the wordiks

(
akcbkd

) j
is in L(N1,N

6), for anyk≥ 0, any j ≥ 0. 2

Lemma 12 Let n1, n2 and n3 be three natural numbers such that0 < n1 < n2 < n3.
The words

in3san3c(bn3dan3c)i1
(
bn1dan1c

)k(
bn2dan2c

)i2bn2d

are not in L(N1,N
6), for all i1 ≥ 0, k≥ n3−n1 and i2 ≥ 0.

Proof.
In this proof, we will identify a sequence of transitions with the word it accepts

(all the transitions have different labels). Clearly (see the proof of Lemma 11), for any
n3 ≥ 0, m≥ 0, the firing ofin3s

(
an3cbn3d

)m
from m0 leads to a markingm1 such

that m1(p2) = n3, m1(p3) = 1, and∀i ∈ {1,4,5,6} : m1(pi) = 0 (the non-blocking
arc of t6 hasn’t consumed any token inp4). By firing an3cbn1d from m1, we now
haven1 tokens inp2, n3−n1−1 tokens inp4 and one token inp6 (this time the non-
blocking arc has moved one token sincen1 < n3). Clearly, at each subsequent firing of
an1cbn1d, the non-blocking arc oft6 will remove one token fromp4 and the marking
of this place will strictly decrease untilp4 becomes empty. Letℓ = n3−n1−1. It is

easy to see that that firingan3cbn1d
(
an1cbn1d

)ℓ
from m1 leads to a markingm2 with

m2(p2) = n1, m2(p3) = 1, m2(p6) = n3 −n1 and∀ j ∈ {1,4,5} : m2(p j) = 0. This
characterization also implies that we can firean1cbn1d an arbitrary number of times

from m2 becausem2
a

n1cbn1d
−−−−−→ m2. On the other hand, it is not possible to firean1cbn2d

, with n2 > n1, from m2. Indeedm2
a

n1cbn1
−−−−→ m3, with m3(p5) = 1, m3(p2) = n1,

m3(p6) = n3 − n1 and∀ j ∈ {1,3,4} : m3(p j) = 0, which does not allow to fire the
b-labelled transitiont5 anymore. We conclude that,∀k ≥ n3−n1, a sequence labelled

by in3s
(
an3cbn3d

)m
an3c

(
bn1dan1c

)k
bn2dan2c, is not firable inN1. Thus, we will not

find in L(N1,N
6) any word with this prefix, hence the Lemma. 2

Thanks to these lemmata, we can prove Proposition 6.
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Proposition 6 There is noPN N with an4-upward-closed setU such that L(N ,U )=
L(N1,N

6).

Proof. By Lemma 11, anyPN N s.t. L(N ,U ) = L(N1,N
6) for some4-upward-

closed set of accepting markingsU , must acceptiks
(
akcbkd

) j , for anyk≥ 1 and j ≥
0. Hence, we can apply Lemma 8, by lettingBk = iksakc, Ek = bkd andwk = bkdakc,
for anyk≥ 1. We conclude thatN also accepts a word of the form:

in3san3c
(
bn3dan3c

)i1(bn1dan1c
)L′(

bn2dan2c
)i2bn2d

such that 0< n1 < n2 < n3 andL′ ≥ n3−n1. Since it is not inL(N1,U ), by Lemma 12,
there is noPN N and no4-upward-closed setU s.t.L(N ,U ) = L(N1,N

6). 2

Thus, we conclude that:

Theorem 4 LG(PN) ⊂ LG(PN+NBA).

Proof. LG(PN)⊆ LG(PN+NBA) is trivial sincePN is a syntactic subclass ofPN+NBA.
The strictness of the inclusion is given by Proposition 6. 2

5.3 PN+T are more expressive thanPN+NBA

Let us now prove a similar result about the classesPN+NBA andPN+T: the class of
languages that can be accepted by somePN+T strictly contains the class of languages
accepted by any givenPN+NBA. For this purpose, we first show that aPN+T can
alwayssimulatea PN+NBA, henceLG(PN+NBA) ⊆ LG(PN+T). Then, we prove,
thanks to Lemma 10, that there is a language that can be recognized by aPN+T, but
not by aPN+NBA, which implies the strictness of the inclusion.

Simulation of a PN+NBA by a PN+T Lemma 13 below states that anyPN+NBA

can be simulated by aPN+T. The proof of this lemma is based on the following
construction. Let us consider aPN+NBA N = 〈P,T ,Σ,m0〉, and an4-upward-
closed setU of markings, and let us show how to transform them into aPN+T N ′

and an4-upward-closed setU ′ such thatL(N ,U ) = L(N ′,U ′).
Let us consider the partition ofT into Te andTr as defined in Section 2, and a

new placepTr (the trash place). We show now how to buildN ′ = 〈P ′,T ′,Σ,m′
0〉

andU ′. First,P ′ = P ∪{pTr}. For each transitiont = 〈I ,O,s,d,1,λ 〉 in Te, we put
in T ′: tl = 〈I ,O,s, pTr,+∞,λ 〉 andte = 〈Ie,Oe,⊥,⊥,0,λ 〉, two new transitions, such
that:∀p∈ P :

(
p 6= s⇒ Ie(p) = I(p)∧ p 6= d ⇒ Oe(p) = O(p)

)
, Ie(s) = I(s)+1 and

Oe(d) = O(d)+1. We also add intoT ′ all the transitions ofTr (extended topTr such
that they have no guard and no effect onpTr). Finally, ∀p ∈ P = m′

0(p) = m0(p),
m′

0(pTr) = 0 andU ′ = {m | ∃m′ ∈ U : ∀p∈ P : m(p) = m′(p)}.

Example 2 Fig. 6 illustrates the above construction. 3

Lemma 13 For anyPN+NBA N with an4-upward-closed setU , it is possible to
construct aPN+T N ′ and an4-upward closed setU ′ s.t.: L(N ,U ) = L(N ′,U ′).

Proof. Let us consider the previous construction and let us prove that L(N ,U ) =
L(N ′,U ′).
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L(N ,U ) ⊆ L(N ′,U ′) We show that, for every sequence of transitionsσ of N that

leads into a markingm ∈ U , we can find a sequence of transitionsσ ′ of N ′ that leads
into a markingm′ ∈ U ′ such thatΛ(σ) = Λ(σ ′).

Let us define the functionf : T ×N
|P| → T ′ such that∀t ∈ Tr : f (t,m) = t and

∀t = 〈O, I ,s,d,1,λ 〉 ∈ Te : f (t,m) = te, if m(s) > I(s) (the non-blocking arc still has
an effect after the firing of the Petri part of the transition); and f (t,m) = tl , otherwise.

Let σ = m0
t1−→ m1

t2−→ . . .
tn−→ mn

tn+1
−−→ mn+1 be a sequence ofN such thatmn+1 ∈

U . Then we may see thatσ ′ = m′
0

f (t1,m′
0)

−−−−−→ m′
1

f (t2,m′
1)−−−−−→ . . .

f (tn,m′
n−1)

−−−−−−→ m′
n

f (tn+1,m′
n)−−−−−−→

m′
n+1 is a sequence ofN ′, where∀1≤ i ≤ n+ 1 : m′

i is such thatm′
i(p) = mi(p) for

all p ∈ P andm′
i(pTr) = 0. Hence,m′

n+1 ∈ U ′ andΛ(σ ′) is accepted. Since we
have∀1 ≤ i ≤ n+ 1 : Λ(ti) = Λ( f (ti ,mi−1)), we conclude thatΛ(σ) = Λ(σ ′), hence
L(N ,U ) ⊆ L(N ′,U ′).

L(N ′,U ′) ⊆ L(N ,U ) We show that, for every sequence of transitionsσ ′ of N ′

that leads into a markingm′ ∈ U ′, we can find a sequence of transitionsσ of N that
leads into a markingm ∈ U such thatΛ(σ ′) = Λ(σ).

We define the functiong : T ′ → T such that for allt ∈ Tr : g(t) = t and for all
t ∈ Te : g(te) = g(tl ) = t. Moreover, we define the relation4P that compares two
markings only on the places that are inP. Thus, ifm is defined onP andm′ onP ′

(remember thatP ⊆ P ′), m′ 4P m iff ∀p∈ P : m′(p) ≤ m(p).

Let σ ′ = m′
0

t1−→m′
1

t2−→ . . .
tn−→m′

n
tn+1
−−→m′

n+1 be a sequence ofN ′ such thatm′
n+1 ∈

U ′. Then, there existm1,m2, . . .mn+1 in N such that we havem0
g(t1)
−−→ m1

g(t2)
−−→

. . .
g(tn)
−−→ mn

g(tn+1)
−−−−→ mn+1 andmn+1 ∈ U . To prove that the sequence of markings

exists, we show by induction on the indexes, thatm′
i 4P mi for all i such that 0≤

i ≤ n+ 1. That implies that∀1 ≤ i ≤ n+ 1 : g(ti) is firable frommi−1 becauseg(ti)
consumes no more tokens in any placep thanti does.

Base case:j = 0. The base case is trivially verified.
Induction step: j = k. By induction hypothesis, we have:∀0≤ j ≤ k−1 : m′

j 4P

m j . In the case wheretk = 〈I ,O,s,d,b,λ 〉 (from m′
k−1) has the same effect onP than

g(tk) (from mk−1), we directly have thatm′
k 4P mk. This happens iftk is a regular

Petri transition or ifmk−1(s) = m′
k−1(s) = I(s).

Otherwisetk has a transfer arc and we must consider two cases:

• The transfer oftk has no effect and the non-blocking arc ofg(tk) moves one token
from the sources to the targetd, henceI(s) = m′

k−1(s) < mk−1(s). Sincetk and
g(tk) have the same effect except thatg(tk) removes one more token froms and
adds one more token ind, and sincem′

k−1 4P mk−1 with m′
k−1(s) < mk−1(s),

we conclude thatm′
k 4P mk.

• The transfer oftk moves at least one token from the sources to pTr and the non-
blocking arc ofg(tk) moves one token froms to d. Sincetk andg(tk) have the
same effect on the places inP except thatg(tk) adds one more token ind and
tk may remove more tokens froms, and sincem′

k−1 4P mk−1, we conclude that
m′

k 4P mk.

Thus, there arem1,m2, . . . ,mn+1 s.t. m0
g(t1)
−−→ m1

g(t2)
−−→ . . .

g(tn)
−−→ mn

g(tn+1)
−−−−→ mn+1

in N and∀1≤ i ≤ n+1 : m′
i 4P mi . Thus,mn+1 ∈ U . SinceΛ(ti) = Λ(g(ti)) for all

1≤ i ≤ n+1, we conclude thatΛ(σ ′) = Λ(σ), henceL(N ′,U ′) ⊆ L(N ,U ). 2
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Figure 6: APN+NBA N (a) and the correspondingPN+T N ′ (b)

N2

•

p1 p2

p3

p4

t1

a

t2

b

t3 b

t4 a

Figure 7: ThePN+T used in the proof of Theorem 5.

Separation ofPN+T andPN+NBA Let us now prove thatLG(PN+NBA) is strictly
included inLG(PN+T). We consider thePN+T N2 presented in Fig.7 with the initial
markingm0(p1) = 1 andm0(p) = 0 for p∈ {p2, p3, p4}. The two following Lemmata
allow us to better understand the behaviour ofN2.

Lemma 14 For any k≥ 1, for any j≥ 0, the word
(
akbk

) j
is in L(N2,N

4).

Proof. Remark that, since the4-upward-closed set considered here isN
4, we just

need to show that a sequence of transitions labelled by
(
akbk

) j ( j ≥ 0) is firable inN2

to get the lemma.
The following holds for anyk≥ 1. From the initial markingm0 of N2, we can fire

tk
1t2t

k−1
3 (which is labelled byakbk), and obtain the markingm1 such thatm1(p2) = 1

and∀p ∈ {p1, p3, p4} : m1(p) = 0. Thus,t4 is firable fromm1 and does not transfer
any token, but produces a token inp3 and moves the token fromp2 to p1. It is thus not
difficult to see thatt4tk−1

1 t2t
k−1
3 , labelled byakbk, can be fired fromm1. The marking

one obtains ism1 again. Hence, we can fire a sequence labelled byakbk arbitrarily
often fromm1. Thus, any word of the form

(
akbk

) j
is in L(N2,N

4). 2

Lemma 15 Let n1,n2,n3 be three natural numbers such that0 < n1 < n2 < n3. For
any i1≥ 0, i2 > 0 and i3≥ 0, the words of the form:

an3(bn3an3)i1(bn1an1)i2(bn2an2)i3bn2

are not in L(N2,N
4).
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Proof. The following holds for anyn1,n2,n3 with 0 < n1 < n2 < n3. From the initial
marking of N2, the only sequence of transitions labelled byan3 is tn3

1 . Firing this
sequence leads to the markingm1 such thatm1(p1) = 1,m1(p3) = n3 andm1(p) = 0
if p ∈ {p2, p4}. Fromm1 the only firable sequence of transitions labelled bybn3 is
t2t

n3−1
3 . This leads to the markingm2 such thatm2(p2) = 1 andm2(p) = 0 if p 6= p2.

The only sequence of transitions firable fromm2 and labelled byan3 is t4t
n3−1
1 . Since

m2(p3) = 0, the transfer oft4 has no effect when fired fromm2. Hence, we reach
m1 again after firingt4t

n3−1
1 . By repeating the reasoning, we conclude that the only

sequence of transitions firable from the initial marking andlabelled by(an3bn3)i1an3

(wheni1 > 0) istn3
1 t2t

n3−1
3 (t4t

n3−1
1 t2t

n3−1
3 )i1−1t4t

n3−1
1 and leads tom1. In the case where

i1 = 0, the sequencetn3
1 is firable and leads tom1 too. Fromm1, the only firable

sequence of transitions labelled bybn1 is t2t
n1−1
3 . This leads to a marking similar to

m2, notedm′
2, except thatp3 containsn3−n1 tokens. Then, the only firable sequence

of transitions labelled byan1 is t4t
n1−1
1 . In this case, the transfer oft4 moves then3−n1

tokens fromp3 to p4 and we reach a marking similar tom1, notedm′
1, except thatp4

containsn3−n1 tokens andp3 containsn1 tokens. Fromm′
1, the only firable sequence

of transitions labelled bybn1an1 is t2t
n1−1
3 t4t

n1−1
1 and leads tom′

1. Hence, the sequence

(t2t
n1−1
3 t4t

n1−1
1 )i2 is firable fromm′

1.

However, after firingt2t
n1−1
3 from m′

1, we reach a markingm′′
2 similar tom2 except

that p4 containsn3−n1 tokens and from which no transition labelled byb is firable.
Sincen2 > n1, we conclude that there is no sequence of transitions labelled bybn2 that
is firable fromm′

1, hencean3(bn3an3)i1(bn1an1)i2(bn2an2)i3an2 with i1 ≥ 0, i2 > 0, i3 ≥ 0
is not inL(N2,N

4). 2

Thanks to these two lemmata, and thanks to Lemma 10, we can nowprove Propo-
sition 7, that states that noPN+NBA can accept the language ofN2.

Proposition 7 There is noPN+NBA with an4-upward-closed setU s.t. L(N ,U ) =
L(N2,N

4).

Proof. By Lemma 14, anyPN+NBA N s.t. L(N ,U ) = L(N2,N
4) for some4-

upward-closed setU , accepts
(
a jb j

)k
, for any j ≥ 1,k ≥ 1. Thus, we can apply

Lemma 10, by lettingBi = ai , Ei = bi andwi = biai , for all i ≥ 1, and obtain thatN ac-
cepts a word of the form:an3(bn3an3)i1(bn1an1)i2(bn2an2)i3bn2 with 0 < n1 < n2 < n3

and i2 > 0. Since, by Lemma 15, this word is not inL(N2,N
4), there can be no

PN+NBA N and no4-upward-closed-setU s.t.: L(N ,U ) = L(N2,N
4). 2

The two last propositions allow us to conclude that:

Theorem 5 LG(PN+NBA) ⊂ LG(PN+T)

Proof. LG(PN+NBA) ⊆ LG(PN+T) is given by Lemma 13. The strictness of the
inclusion is given by Proposition 7. 2

5.4 Closure Properties ofEPN

The pumping lemmata onPN andPN+NBA can also be used to show that neither
LG(PN) norLG(PN+NBA) are closed under iteration.

Theorem 6 LG(PN) and LG(PN+NBA) are not closed under iteration.
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Proof. It is easy to show thatL = {anbm|n ≥ m} ∈ LG(PN) (hence,L is also in
LG(PN+NBA)). Let us show, by contradiction, thatL+ 6∈ LG(PN). Suppose that there
is aPN N and an upward-closed setU s.t. L(N ,U ) = L+. Let Bi = ai , wi = biai

andEi = bi for all i ≥ 1. Thanks to Lemma 8, we obtain thatL(N ,U ) contains a word
of the form:

an3(bn3an3)i1(bn1an1)K(bn2an2)i2bn2

with n1 < n2 < n3, K ≥ 1, which is not inL+. Hence the contradiction. A similar proof
for PN+NBA invokes Lemma 10. 2 In [16], Peterson proves thatLL(PN) is not
closed under iteration, but does not treat the case ofLG(PN) (which we have solved
here) and mentions the case ofLP(PN) as an open problem (see page 186 of [16]). It
is possible to adapt the proof of Theorem 6 to show thatLP(PN) is not closed under
iteration. Indeed,L is also inLP(PN). Then, suppose that there exists aPN N with
set of placesP s.t. L(N ,N|P|) = L+. SinceL(N ,N|P|) ∈ LP(PN) ⊆ LG(PN), we
can apply Lemma 8, and conclude thatL(N ,N|P|) too contains a word that is not in
L+. HenceLP(PN) is not closed under iteration.

Following Definition 1, Theorem 6 allows us to deduce that:

Corollary 2 LG(PN) and LG(PN+NBA) are not fullAFL.

On the other hand, it is easy to show that:

Theorem 7 LG(PN+T) is a full AFL, closed under intersection.

Proof. We consider twoPN+T N1 = 〈P1,T1,Σ1,m1
0〉 andN2 = 〈P2,T2,Σ2,m2

0〉 and
two upward-closed setsU1 andU2, and we assume that the set of places and transitions
of this two nets are disjoint. For each property to prove we show how to build an
upward-closed setU and aPN+T N = 〈P,T,Σ,m0〉 s.t. L(N ,U ) is the desired
language. Since the proofs thatN accepts the right language are quite immediate, we
do not provide them here. We rather report the main ideas of the construction which
should be clear enough to convince the reader.
Union: L(N1,U1)∪L(N2,U2) ∈ LG(PN+T). We buildN as follows.P = P1⊎P2⊎
{pinit , p1, p2}. For each transitiont = 〈I ,O,s,d,b,λ 〉 ∈ T1, we put inT a transitiont ′ =
〈I ∪{p1},O∪{p1},s,d,b,λ 〉. Symmetrically, for each transitiont = 〈I ,O,s,d,b,λ 〉 ∈
T2, we put inT a transitiont ′ = 〈I ∪{p2},O∪{p2},s,d,b,λ 〉. We also add toT the
two following transitions:t1 = 〈{pinit},O1,⊥,⊥,0,ε〉 andt2 = 〈{pinit},O2,⊥,⊥,0,ε〉
whereO1(p) = m1

0(p) for all p∈ P1,O1(p1) = 1 andO1(p) = 0 for all p∈ P2∪{p2};
andO2(p) = m2

0(p) for all p ∈ P2, O2(p2) = 1 andO2(p) = 0 for all p ∈ P1∪{p1}.
We letΣ = Σ1∪Σ2. The accepting upward-closed set is:

U =
{

m | m ∈P1 U1
}
∪

{
m | m ∈P2 U2

}

wherem ∈P U means that the projection of the markingm on the set of placesP is in
U . More precisely, letm′ : P 7→ N be the marking s.t. for anyp∈ P: m′(p) = m(p).
Then,m ∈P U iff m′ is in U . Remark that{m | m ∈P1 U1} is upward-closed because
U1 is upward-closed. Similarly,{m | m ∈P2 U2} is upward-closed too. We conclude
thatU is upward-closed because the union of two upward-closed sets is an upward-
closed set. Finally, we letm0 be s.t.m0(pinit ) = 1 andm0(p) = 0 for anyp 6= pinit .

It is not difficult to see thatN accepts exactlyL(N1,U1)∪ L(N2,U2). Indeed,
any transition ofN that corresponds to a transition ofN1 (resp.N2) can be fired only
if there is a token inp1 (p2). In the initial marking, onlyt1 andt2 are enabled. Firing
t1 puts a token inp1 which enables the sub-net that corresponds toN1 (and accepts
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words fromL(N1,U1) only). Symmetrically,t2 enables the subnet that corresponds to
N2.
Concatenation: L(N1,U1) ·L(N2,U2) ∈ LG(PN+T). We buildN as follows.P =
P1⊎P2⊎{p1, p2}. For any transitiont = 〈I ,O,s,d,b,λ 〉 in T1, we put inT a transition
t ′ = 〈I ∪{p1},O∪{p1},s,d,b,λ 〉. For each transitiont = 〈I ,O,s,d,b,λ 〉 in T2, we put
in T a transitiont ′ = 〈I ∪{p2},O∪{p2},s,d,b,λ 〉. We also add toT a transitiontm
for anym ∈ min(U1), wheretm = 〈I ,O,⊥,⊥,0,ε〉 s.t.:

∀p∈ P : I(p) =






1 if p = p1

m(p) if p∈ P1

0 otherwise
O(p) =






1 if p = p2

m2
0(p) if p∈ P2

0 otherwise

Notice that since4 is a wqo,min(U1) is finite. Hence, we only add a finite number of
transitionstm .

We also letΣ = Σ1∪Σ2. The initial markingm0 is s.t.

∀p∈ P : m0(p) =






1 if p = p1

m1
0(p) if p∈ P1

0 otherwise

Finally, the accepting upward-closed setU is: U =
{

m | m ∈P2 U2
}

It is rather straightforward to see thatL(N ,U ) = L(N1,U1) ·L(N2,U2). Indeed,
in the initial marking, a token is present inp1, which enables the transitions that cor-
responds to those ofN1 but no token is present inp2, which inhibits all the transitions
that correspond to transitions ofN2. Moreover,m0 corresponds tom1

0 as far as the
places ofN1 are concerned. Hence, a sequence of transitions that accepts a word from
L(N1,U1) can be fired fromm0. When a marking that corresponds to an accepting
marking ofN1 is reached, one of thetm transitions can fire (and they can fire in this
case only). Indeed, since4 is a wqo, all the accepting markings ofN1 are greater to
at least onem ∈ min(U1) (and only those markings are). This firing moves the token
from p1 to p2 and creates a marking that corresponds tom2

0 on the places ofN2. This
inhibits the subnet that corresponds toN1 and enables the subnet that corresponds to
N2. That subnet is then ready to accept a word fromL(N2,U2).
Intersection: L(N1,U1)∩L(N2,U2) ∈ LG(PN+T). We buildN as follows. For any
transitiont, let λt be the label oft. We let

P = P1⊎P2⊎{plock}⊎{pt1,t2 | t1 ∈ T1∧ t2 ∈ T2∧λt1 = λt2 6= ε}

That is,P contains all the places ofN1 andN2, a special placeplock that we will use to
inhibit transitions ofN , and a placept1,t2 per pair of transitions fromN1 andN2 that
have the same label (different fromε).

For eachε-labelled transitiont = 〈I ,O,s,d,b,ε〉 of T1∪T2, we add toT the tran-
sition t ′ = 〈I ∪{plock},O∪{plock},s,d,b,ε〉. Thus,t ′ can fire if and only if a token is
present in placeplock. Beside this, its effect is the same as inN1 or N2.

For anyt1 = 〈I1,O1,s1,d1,b1,λ1〉 of T1 and anyt2 = 〈I2,O2,s2,d2,b2,λ2〉 of T2 s.t.
λ1 = λ2 6= ε, we add toT two transitionst = 〈I1∪{plock},O1∪{pt1,t2},s1,d1,b1,λ1〉
andt ′ = 〈I2 ∪{pt1,t2},O2 ∪ {plock},s2,d2,b2,ε〉. Remark that these two transitionst
andt ′ are meant to fire sequentially, and that, oncet has fired, no other transition can
fire before the correspondingt ′ fires (becauset consumes the token inplock).
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The initial markings ism0 defined as follows:

∀p∈ P : m0(p) =






m1
0(p) if p∈ P1

m2
0(p) if p∈ P2

1 if p = plock

0 otherwise

The accepting upward-closed set is defined as:

U = {m | m ∈P1 U1 andm ∈P2 U2 andm(plock) ≥ 1}

U is indeed upward-closed. Letm1 andm2 be two markings s.t.m1 ∈ U andm1 4

m2, and let us show thatm2 ∈U . Sincem1 4 m2, we have(i) for anyp∈P1: m1(p)≤
m2(p); (ii) for any p ∈ P2: m1(p) ≤ m2(p); and(iii ) m1(plock) ≤ m2(plock). Since
U1 is upward-closed and sincem1 ∈P1 U1, point(i) implies thatm2 ∈P1 U1. Similarly,
we deduce thatm2 ∈P2 U2 from point (ii). Finally, since 1≤ m1(plock), we have
1≤ m2(plock). Hencem2 ∈ U .

It is not difficult to see thatL(N ,U ) = L(N1,U1)∩L(N2,U2). Indeed, for any
pair of transitionst1 andt2 respectively fromN1 andN2 that have the same label, there
are two transitions inN that, when fired sequentially, have the same effect thant1 and
t2 on their respective input and output places. The placeplock ensures that the two
transitions ofN that correspond tot1 andt2 will fire sequentially. The transitions of
N1 andN2 that are labelled byε do not require any synchronisation and can thus fire
independently. Hence, any pair of executions ofN1 andN2 that have the same label
can be simulated by an execution ofN , and any execution ofN (ending in a marking
m s.t. m(plock) = 1) corresponds to a pair of executions ofN1 andN2 with the same
label.
Iteration : L+(N1,U1) ∈ LG(PN+T). The idea is similar to the construction for the
concatenation. Let us assume thatP1 = {p1, p2, . . . pn}. We buildN as follows. The
set of placesP = P1⊎{plock, pTr, p′1, p′2, . . . p′n}. The set of transitions is:

T = {〈I ∪{plock},O∪{plock},s,d,b,λ 〉 | 〈I ,O,s,d,b,λ 〉 ∈ T1}
⊎ {tm | m ∈ min(U1)}
⊎ {t ′1, t

′
2, . . . ,t

′
n}

where the transitionst ′i and tm are defined as follows. For every 1≤ i < n, we let
t ′i = 〈{p′i},Oi , pi , pTr,+∞,ε〉 with:

∀p∈ P : Oi(p) =






m1
0(p) if p = pi

1 if p = p′i+1
0 otherwise

The transitiont ′n is 〈{p′n},On, pn, pTr,+∞,ε〉 with:

∀p∈ P : On(p) =






m1
0(p) if p = pn

1 if p = plock

0 otherwise

Finally, for everym ∈ min(U ), tm = 〈Im ,{p′1},⊥,⊥,0,ε〉, with:

∀p∈ P : Im(p) =






m(p) if p∈ P1

1 if p = plock

0 otherwise
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The initial markingm0 is s.t.m0(plock) = 1, for everyp∈ P1, m0(p) = m1
0(p) and

for everyp∈ P\ (P1∪{plock}), m0(p) = 0. Finally, the accepting upward-closed set
is U = {m | ∃m′ ∈ U1 : ∀p∈ P1 : m′(p) ≤ m(p)}.

Let us show why the construction is correct.N contains all the transitions ofN1

(with the same labels), that have been adapted in order to fireonly if there is at least
one token inplock, which is true initially. Hence,N can start its execution by firing a
sequence of transitions that is labelled by a word inL(N1,U1) and put into the places
of P1 a marking that is inU1. At that point, the global marking ofN is thus inU .
Thus, the word read so far (which is indeed inL(N1,U1)

∗) is accepted. Nevertheless,
the net can continue its execution, because, once a marking of U has been reached,
one of thetm transitions can fire, by monotonicity. This removes the token from plock,
which inhibits all the (adapted) transitions fromN1. At that point, the only firable
sequence of transitions ist ′1t

′
2t

′
3 . . .t ′n (labelled byε). Eacht ′i transition has the effect to

restore the initial marking ofpi , by first transferring all the tokens frompi to pTr (a
trash can place), and then, produce intopi exactlym1

0(pi) tokens. The last transitiont ′n
of the sequence also produces a token intoplock, which allows the (adapted) transitions
from N1 to fire anew. Since the initial marking has been restored, a new word from
L(N1,U1) can be read. This allows to reach again a marking inU , and so on. Thus,
every word inL(N1,U1)

+ is in L(N ,U ).
On the other hand, in the case where the sequence of (adapted)transitions from

N1 does not produce a markingm that corresponds to a marking ofU1, then,(i) the
markingm is not in U and is thus not accepting, and(ii) no transition of the form
tm can fire. Hence, the net is blocked until a marking corresponding to an accept-
ing marking ofN1 is reached. We conclude thatL(N ,U ) ⊆ L(N1,U1)

+. Hence,
L(N ,U ) = L(N1,U1)

+.
Arbitrary homomorphism : h(L(N1,U1)) ∈ LG(PN+T). Let h be a homomorphism
that maps each charactera of Σ1 to a sequence of charactersh(a) of an alphabetΣ′

(andε to itself). Again, we denote the label of any transitiont by λt . We buildN as
follows. We letΣ = Σ′. We define the set of placesP as:

P = P1⊎{plock}⊎
⋃

t∈T1

{pt,i |1≤ i < |h(λt)|}

As usual, the placeplock is meant to lock the net, i.e., prevent undesired transitions to
fire, when necessary. The placespt,i act as intermediary states when reading the word
h(λt) for anyt ∈ T1 with |h(λt)| ≥ 1. More precisely, a token inpt,i means that the net
has accepted the prefix of lengthi of h(λt) so far.

T is built according to these ideas. For any transitiont = 〈I ,O,s,d,b,λ 〉 of T1,
we consider two cases. Ifh(λ ) = ε or h(λ ) ∈ Σ1, we add toT a single transition
t ′ = 〈I ∪{plock},O∪{plock},s,d,b,h(λ )〉. Otherwise|h(λ )| > 1, and we assume that
h(λ ) = w1w2 · · ·wn. We add toT then transitionst1,t2, . . . tn defined as follows.t1 =
{I ∪{plock},O∪{pt,1},s,d,b,w1}. For any 1< i < n, ti = 〈{pt,i−1},{pt,i},⊥,⊥,0,wi〉.
Finally, tn = 〈{pt,n−1},{plock},⊥,⊥,0,wn}〉.

The initial markingm0 is s.t.:

∀p∈ P : m0(p) =






m1
0(p) if p∈ P1

1 if p = plock

0 otherwise

The accepting upward-closed setU is {m|m ∈P1 U1 andm(plock) ≥ 1}. For the justi-
fication thatU is upward-closed, we refer the reader to the arguments used in the case
of the intersection.
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Clearly,L(N ,U ) = h
(
L(N1,U1)

)
. Indeed, each transitiont of N1 with labelλ

and s.t.h(λ )≤ 1, is replaced by a transitiont ′ with labelh(λ ), that has the same effect
on the places ofP1 but which can be fired only if the token is present inplock. Moreover,
each transitiont of N1 with labelλ and s.t.h(λ ) > 1 is replaced by a set of transitions
that, when fired sequentially, accepth(λ ) and have the same effect ast on the places
of P1. Thanks to the places of the formpt,i and thanks toplock, we ensure that these
transitions are indeed fired sequentially.
Inverse homomorphism: h−1(L(N1,U1)) ∈ LG(PN+T). Let Σ′ be an alphabet and
let h be a homomorphism that maps any word onΣ′ to a word onΣ1. ThePN+T N

is built as follows. First of all, we build aPN No = 〈Po,To,Σ1⊎{αa | a∈ Σ′},mo
0〉 that

will act as an observer and repeatedly accepts all the words of the formh(a) for any
a∈ Σ′.

More precisely,No is defined as follows. Its set of places is:

Po = {pinit}⊎{pa,i | a∈ Σ′∧1≤ i ≤ |h(a)|}

The set of transitions is:

To = {ta,i | a∈ Σ′∧1≤ i ≤ |h(a)|}∪{th
a | a∈ Σ′}

where, for anya ∈ Σ′ s.t. h(a) = w1w2 · · ·wn: (i) th
a = 〈{pa,n},{pinit},⊥,⊥,0,αa〉;

(ii) ta,1 = 〈{pinit},{pa,1},⊥,⊥,0,w1〉; and(iii ) for any 1< i ≤ n, we let: ta,i be the
transition〈{pa,i−1},{pa,i},⊥,⊥,0,wi〉. Moreover, for anya ∈ Σ′ s.t. h(a) = ε, we
haveth

a = 〈{pinit},{pinit},⊥,⊥,0,αa〉. The initial markingmo
0 puts a token inpinit

only. The accepting set isUo = {m | m(pinit ) ≥ 1}. Thus, any accepting sequence of
transitions ofNo is labelled by a word of the formh(a1) ·αa1 ·h(a2) ·αa2 · · ·h(an) ·αan,
where all theai ’s belong toΣ′ (remark that it holds whenh(a) = ε too).

The next step amounts to computing a newPN+T N ′ and a new upward-closed
setU ′ from N1, No, U1 andUo by applying the same procedure as in the case of
the intersection,except thatwe treat all the transitions labelled byαa for somea∈ Σ′

as if they were labelled byε (in other words, we replace all theαa labels inNo by
ε, compute the intersection, then restore the labels. Remember that theε-labelled
transitions are unaffected by the construction we have presented for the intersection.
Thus, all the transitions of the formth

a appearas isin the resulting net). What we obtain
is a net that accepts all the words of the formh(a1) ·αa1 ·h(a2) ·αa2 · · ·h(an) ·αan such
thath(a1) ·h(a2) · · ·h(an) = h(a1 ·a2 · · ·an) is in L(N1,U1). We obtainN by replacing
the labelλt of any transitiont in N ′ as follows: ifλt = αa for a∈ Σ′, we letλt = a,
otherwise, we letλt = ε. We also letU = U ′. Hence,L(N ,U ) is the set of all
the words of the forma1 · a2 · · ·an s.t. h(a1 · a2 · · ·an) ∈ L(N1,U1). This is exactly
h−1

(
L(N1,U1)

)
. 2

Remark 5 LP(PN+T) is not a fullAFL. The justification is the same as in the case of
LP(WSTS). That is, let us consider the language L= {ε,a} on the alphabetΣ = {a,b},
and the homomorphism h s.t. h(a) = bb. Then, L∈ LP(PN+T), but h(L) = {ε,bb} 6∈
LP(PN+T) because it is not prefix-closed (it does not contain the prefixb of bb).

5.5 Some remarks about the pumping lemmata

It is interesting to compare, on the one hand, Lemma 6, and, onthe other hand,
Lemma 8 and Lemma 10. Indeed, Lemma 6 provides us with a property that holds
on any WSL, where Lemma 8 and Lemma 10 deal with restricted subclasses of WSTS
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(namely,PN andPN+NBA). Because they focus on these two peculiar classes, these
two lemmata allow us to state more precise properties than the one that is given by
Lemma 6.

Nevertheless, when we restrict ourselves to the classPN, Lemma 8 is more general
than Lemma 6. By lettingwi = ε for any i ≥ 1 in Lemma 8, we re-obtain Lemma 6.
In particular, we can obtain thanks to Lemma 8 several results3 that we had previously
proved with Lemma 6 in section 5.1. From our point of view, this is another argument in
favor of the interest of Lemma 8. A similar conclusion can be drawn when comparing
Lemma 6 to Lemma 10 for the classPN+NBA.

6 Conclusion

The (labelled) well-structured transition systems are a well-known class of infinite-state
transition systems, that enjoy monotonicity properties and whose set of states is well-
quasi ordered. In the present work, we have studied several properties of the classes of
languages that can be recognized byWSTS, and some of their subclasses, such as the
EPN. We have proved three pumping lemmata by exploiting specificproperties of the
WSTS (which is, to the best of our knowledge, original in this context). These lemmata
have allowed us mainly to strictly separate the expressiveness of three important classes
of EPN: thePN, thePN+NBA, and thePN+T.

These different models have been used in different works to modelize behaviours
of concurrent systems [6, 5, 20]. Roughly speaking, in thesemodelizations, each pro-
cess is represented by a token and the place in which each token is present encodes
the state of the corresponding process. The peculiar features ofPN+T or PN+NBA

have been regarded as natural ways to express the communication procedures between
the processes of the system. For instance, a transfer arc is perfectly suited to represent
a broadcast, i.e., a message that is sent to all the processes in a given state, and that
modifies at once the state of all these processes. Such broadcast are intrinsic features of
some programming languages, such as JAVA (through thenotifyAll keyword). From
our point of view, it is thus important to have a precise knowledge of the expressivity
of these models, and to be able to compare these expressivity. By strictly separat-
ing the expressive powers ofPN, PN+NBA andPN+T, our results demonstrate the
meaningfulness of these different communication procedures.
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