Centre Fédéré en Vérification

Technical Report number 2006.62

Control in o-minimal hybrid systems

Patricia Bouyer, Thomas Brihaye, Fabrice Chevalier

€5 M
&%

UMH -7

UNIVERSITE DE MONS-HAINAUT

3

WIES Uiy
£
EE

le

This work was partially supported by a FRFC grant: 2.4530.02

http://www.ulb.ac.be/di/ssd/cfv




Control in o-minimal hybrid systems

Patricia Bouyer'*, Thomas Brihaye?!, Fabrice Chevalier!*

! LSV - CNRS & ENS de Cachan
61, avenue du Président Wilson, 94230 Cachan, France
e-mails: {bouyer, chevalie}@lsv.ens—cachan.fr
2 Université de Mons-Hainaut, Institut de Mathématique
6, avenue du Champ de Mars, 7000 Mons, Belgium
e-mail: thomas.brihaye@umh.ac.be

Abstract. In this paper, we consider the control of general hybrid systems. We
show that, surprisingly, time-abstract bisimulation is not fine enough for solving
such a problem. Conversely, we show that suffix equivalence is a correct abstrac-
tion for that problem. We apply this equivalence to o-minimal hybrid systems and
get decidability and computability results in this framework.

1 Introduction

Control of hybrid systems. Hybrid systems are fi nite-state machines equipped with a
continuous dynamics. In the last thirty years, formal verifi cation of such systems has be-
come a very active fi eld of research in computer science, with numerous success stories.
In this context, hybrid automata, an extension of timed automata [1], have been inten-
sively studied [ 13, 14], and decidable subclasses of hybrid systems have been drawn like
initialized rectangular hybrid automata [14] or o-minimal hybrid automata [18]. More
recently, the control of hybrid systems has appeared as a new interesting and active fi eld
of research, and many results have already been obtained, like the (un)decidability of
control problems for hybrid automata [15], or (semi-)algorithms for solving such prob-
lems [11]. Given a system S (with controllable and uncontrollable actions) and a prop-
erty , controlling the system means building another system C' (which can only en-
force controllable actions), called the controller, such that S || C (the system S guided
by the controller ') satisfi es the property ¢. In our context, the property is a reachabil-
ity property and our aim is to build a controller enforcing a given location of the system,
whatever the environment does (which plays with the uncontrollable actions).

O-minimal hybrid systems. O-minimal hybrid systems have been fi rst proposed in [18]
as an interesting class of systems (see [23] for an overview of properties of o-minimal
structures). They have very rich continuous dynamics, but limited discrete steps (at each
discrete step, all variables have to be reset, independently from their initial values). This
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allows to decouple the continuous and discrete components of the hybrid system (see
[18]). Thus, properties of a global o-minimal system can be deduced directly from prop-
erties of the continuous behaviors of the system. Since the introductory paper [18], sev-
eral works have considered o-minimal hybrid systems [10, 8, 7, 17], mostly focusing on
abstractions of such systems, on reachability properties, and on bisimulation properties.

Word encoding. In [8], an encoding of trajectories with words has been proposed in

order to prove the existence of fi nite bisimulations for o-minimal hybrid systems (see
also [7]). Let us mention that this technique has been used in [17] in order to provide

an exponential bound on the size of the fi nite bisimulation in the case of pfaffi an hy-
brid systems. Different word encoding techniques have been studied in a wider context

in [6]. In this paper we use the so-called suffi x encoding, which was shown to be in
general too fi ne to provide the coarsest time-abstract bisimulation. However, based on
this encoding, a semi-algorithm has been proposed in [6] for computing a time-abstract

bisimulation, and it terminates in the case of o-minimal hybrid systems (under some

word uniqueness hypothesis').

Contributions of this paper. In this paper, we focus on the control of hybrid systems,

and use the above-mentioned suffi x word encoding of trajectories for giving suffi cient
computability conditions for the winning states of a game. Time-abstract bisimulation

is an equivalence relation which is correct with respect to reachability properties [2].

Game bisimulation is correct for discrete infi nite-state games [11]. On the contrary,
we show that the time-abstract bisimulation is not correct for solving control problems

(with a reachability objective): we exhibit a system in which two states are time-abstract

bisimilar, but one of the states is winning and the other is not winning. Using the word

encoding of trajectories of [6], we prove that two states having the same suffi xes in this
encoding are equivalently winning or losing (this is a stronger condition than for the

time-abstract bisimulation). We fi nally focus on o-minimal hybrid games and prove that,
under the assumption that the theory of the underlying o-minimal structure is decidable

and assuming that each state has a unique suffi x, the control problem can be solved
and that winning states and winning strategies can be computed. Note that this unique

suffi x assumption is not that restrictive as it encompasses the assumptions of [18] where
continuous dynamics are time-deterministic.

Plan of the paper. Section 2, we defi ne the hybrid games we will consider, and we
show that time-abstract bisimulation is not correct for solving them. The word encoding
technique is presented in Section 3 and used in Section 4 to present a general framework
for solving hybrid games. We apply these results in Section 5 for computing winning
states and winning strategies in o-minimal hybrid games.

All proofs can be found in the appendix.

! Notice that when this word uniqueness assumption is relaxed, the reachability problem be-
comes undecidable for o-minimal hybrid systems (see [5]).
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2 Games over dynamical systems

2.1 Dynamical systems

Let M be a structure. In this paper when we say that some relation, subset or func-

tion is definable, we mean it is fi rst-order defi nable in the sense of the structure M.
A general reference for first-order logic is [16]. We denote by Th(M) the theory
of M. In this paper we only consider structures M that are expansions of ordered

groups, we also assume that the structure M contains two symbols of constants, i.e.

M = {(M,+,0,1,<,...) and without loss of generality we assume that 0 < 1.

Definition 2.1. A dynamical system is a pair (M, v) where:

- M =(M,+,0,1,<,...) is an expansion of an ordered group,
- v: Vi x Mt — Vj is a function
(Where M* = {m € M | m >0}, Vy € M* and Vo C M*2)?

The function 7 is called the dynamics of the dynamical system.

Classically, when M is the field of the reals, we see M™ as the time, V3 x M™*
as the space-time, V5 as the (output) space and V; as the input space. We keep this
terminology in the more general context of a structure M.

The defi nition of dynamical systems encompasses a lot of different behaviors. Let
us give a simple example.

Example 2.2. We can recover the continuous dynamics of timed automata (see [1]). In
this case, we have that M = (R, <, 4,0, 1) and the dynamics v : R" x [0, +00[— R"”
is defi ned by v(ay, ..., xpn,t) = (1 + ¢, ...y + ).

Definition 2.3. If we fix a point z € W, the set I, = {y(x,t) | t € MT} C Vais
called the trajectory determined by x.

We defi ne a transition system associated with the dynamical system, this defi nition
is an adaptation to our context of the classical continuous transition system in the case
of hybrid systems (see [18] for example).

Definition 2.4. Given (M, ) a dynamical system, we defi ne a transition system I, =
(Q, X, —.) associated with the dynamical system by:

— the set (Q of states is V5;
— the set X of eventsis M+™ = {m &€ M | m > 0};

— the transition relation y; i’w Yo is defi ned by:
dx € Vl, 3t1,t2 (S Z\/f+, (tl < tg, "\/(x,tl) = Y1, "\/(x,tg) = Y2 and t = to — tl)

2 We keep these notations in the rest of the paper.
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2.2 M-games

In this subsection, we defi ne M-automata, which are automata with guards, resets and
continuous dynamics defi nable in the M-structure. We then introduce our model of
real-time game which is an M-automaton with two sets of actions, one for each player;
we fi nally express in terms of winning strategy the main problem we will be interested
in, the control problem in an M-structure.

Definition 2.5 (M-automaton). An M-automaron A is a tuple (M, Q, Goal, X, 6, )
where M = (M,+,<,---) is an expansion of an ordered group, @ is a finite set
of locations, Goal C () is a subset of winning locations, 3/ is a fi nite set of actions, §
consists in a fi nite number of transitions (¢, g, a, R,d) € Qx2V2x Yx (Vo — 2V2)xQ
where g and R are defi nable in M, and v maps every location ¢ € @ to a dynamic
v : Vi X M — Vj defi nable in M.

We use a general defi nition for resets: a reset R is indeed a general function from 15
to 2"2, which may for example correspond to a non-deterministic update. If the current
state is (¢, y) the system will jump to some (¢’,y") with ¢’ € R(y).

An M-automaton 4 = (M, Q,Goal, X,0,v) defines a mixed transition system
T4 = (S, I',—) where:

— the set S of states is (Q x V5;

— the set I" of labels is M T U X;

— the transition relation (¢,v) = (¢’,%’) is defi ned when:
e e € X and there exists (¢, g,¢, R,q’) € 0 withy € gand y’ € R(y),
ecc M, g=¢q,andy i)'Yq y" where 7, is the dynamic in location q.

In the sequel, we will focus on behaviors of M-automata which alternate between
continuous transitions and discrete transitions, like classically in timed automata. We

will also need more precise notions of transitions. When (g, y) L, (¢,y') with t/ €
M, this is due to some choice of (z,t) € V3 x M such that v,(z,t) = y. We say

that (¢,9) = (0,9) if (0,5) = (0,4). V(@) = y and yy(z,t +t') = y'. To
ease the reading of the paper, we will sometimes write (g, z, t,y) SN (g,z, t+t,y")
for (¢,y) t—>m’t (q,vy'). We say that an action (d,a) € M™ x X is enabled in a state

(q,,t,y) if there exists a (¢’,2’,t',y’) such that (q,x,t,y) LNCR (¢ 2", t,y"). We
then write (¢, z,t,y) 2a, (¢ 2", t',y).

. . e t,
A run of A is a finite or infi nite sequence (g, Zo, t}, o) —— (q1,x1,t,,91) ...

where for every i, (q;, y;) t—’&t;m (¢i,9!) = (i1, yir1). Such a run is said winning

if ¢; € Goal for some i. We note Runs(A, (¢, z,t,y)) (resp. Runs;(A, (¢,z,t,v)))
the set of (fi nite) runs starting in (¢, z, ¢, y), and we note Runs(.A) the set of all runs

t1,a1 tn,an

in A. If p is a finite run (g, zo, t(, Yo)
last(p) = (Qnaxnat;wyn)'

Definition 2.6 (M-game). An M-game is an M-automaton (M, Q, Goal, X, §,7)
where X' is partitioned into two subsets Y. and X, corresponding to controllable and
uncontrollable actions.

(qn7 Ty t'ln) yn) we deﬁ ne



Control in o-minimal hybrid systems 5

Without loss of generality, we suppose that there is a loop labeled by a controllable
action on every state of Goal.

Definition 2.7 (Strategy). A strategy’ is a partial function A from Runs ;(A) to M x
X, such that for all runs p in Runs(.A), A(p) is enabled in last(p).

The strategy tells what needs to be done for controlling the system: at each instant
it tells what delay we need to wait and which action needs to be done after this delay.
Note then that the environment may have to choose between several edges, each labeled

by the action given by the strategy (because the original game is not deterministic).

Let p = (qo, Zo,tH Yo) RAELIN ... be an run, and set for every i, p; the prefi x of

length i of p. The run p is said consistent with a strategy A when for all ¢, if A(p;) =
(t,a) then either ¢;417 = t and ;41 = a, or t;y; < tand a;y; € Xy. Atun pis
said maximal if it is infi nite or if it is fi nite ending in (q, z, ¢, y) and satisfi es that for all

t' >0, foralla € X, “(q,2,t,y) RALRE implies a € X,,. A strategy \ is winning from a
state (g,x,t,y) if all maximal runs starting in (g, «, t, y) compatible with A are winning.

We can now defi ne the control problem we will study.

Problem 2.8 (Control problem in a class C of M-automata). Given an M-game
A € C, and a definable initial state (q,y), determine if there exists a winning strategy

in A from (q,y).

2.3 .M-game and bisimulation

Time-abstraction bisimulation [10, 2, 13] is a suffi cient behavioral relation to check
reachability properties of timed systems, and in particular of M-automata [6]. When
considering control problems, we will see that this is no more the case in general.

Example 2.9. Let us consider the M-game A = (M, Q,Goal, X, §,~) where M =
(R,<,+,0,1,=1) (=; denotes the “modulo 17 relation), Q@ = {q1,q2,q3}, Goal =
{g2}, ¥ = {c,u}. The dynamic in g1, 74, : R x {0,1} x R — R* x {0,1} is
defined as v, (z1,z2,t) = (1 + 1, 22).

gc,c @ r9 =1 ILIMILI—
@ 9B, u @ =0 A g C ¢ B g C B, .

(a) The M-game A (b) Dynamics in ¢

Fig. 1. Time-abstract bisimulation does not preserve winning states

3 In the context of control problems, a strategy is also called a controller.
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We consider the partition depicted on Figure 1(b). The guard g is satisfi ed on C-
states and the guard gp is satisfi ed on B-states. Note that this partition is compatible
with Goal and w.r.t. discrete transitions.

In this game, the controller can win when it enters a C'-state by performing action
c and it loses when entering a B-state because it cannot prevent the environment from
performing a v and going in the losing state gs.

It follows that the state s; = (g1, (0, 1)) is losing, whereas the state s3 = (¢1, (0, 0))
is winning. However the equivalence relation induced by the partition {A, B, C'} is a
time-abstract bisimulation: the two states s; and s, are thus time-abstract bisimilar, but
not equivalent for the game. It follows that time-abstract bisimulation is not correct for
solving control problems, in the sense that a time-abstract bisimulation cannot always
distinguish between winning and losing states.

Proposition 2.10. Let M be a structure and A an M-game. A partition respecting
Goal and inducing a time-abstract bisimulation on Q) X Vs does not necessarily respect
the set of winning states of A.

3 Suffix and dynamical type

In this section we explain how to encode trajectories of dynamical systems through
words. This technique was introduced in [8, 7] in order to study o-minimal hybrid sys-
tems. We focus on the suffix partition introduced in [6].

First let us defi ne the notion of word in this general (possibly uncountable) context.
This defi nition is inspired from [21, 9, 20].

Definition 3.1. Given P a finite set (called the alphabet), M a totally ordered set, a
word w on P is a function from M to P; the word w is also denoted in a sequence-like
notation by (w; ), ,, where w; € P is the image of the element 7 under the function w.

Given w : M — P aword on P, a suffix of w is a sub-word ws : M’ — P of w such
that M/ ={te MT |t >to}or M ={t € M" |t > ty} forsomety € M.

We are now ready to build words associated with trajectories. Given (M, ) a dy-
namical system and P a fi nite partition of 15, given z € V; we associate a word with
the trajectory I, in the following way. We consider the sets {t € M T | y(x,t) € P}
for P € P. This gives a partition of the time M ™. In order to define a word on P
associated with the trajectory determined by x, we need to define the set of inter-
vals F, = {I | I is a time interval or a point and is maximal for the property 3P €
P, Vtel, y(z,t) € P}. For each z, the set F, is totally ordered by the order induced
from M. This allows us to defi ne the word on P associated with I, denoted w,.

Definition 3.2. Given = € Vi, the word associated with I, is given by the function
wy + Fyp — P defined by w,(I) = P, where I € F, is such that V¢t € I, y(z,t) € P.

The set of words associated with (M, ) over P gives in some sense a complete
static description of the dynamical system (M, ) through the partition P. In order to
recover the dynamics, we need further information.
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Given a point z of the input space V7, we have associated with x a trajectory I and
a word w,.. If we consider (z, ) a point of the space-time V; x M, it corresponds to a
point y(x, t) lying on I',.. To recover in some sense the position of v(x,t) on I, from
w,, we associate with (x,t) a suffi x of the word «;, denoted w(, ;). The construction of
W(z,t) 1s similar to the construction of w,, we only need to consider the sets of intervals

Fap={INn{' e Mt |t >t} |IeF,}.

Let us notice that given (z,¢) a point of the space-time V; x M™ there is a unique
suffi X wy, 4 of w, associated with (z,t). Given a point y € V> it may have several
(x,t) such that v(x,t) = y and so several suffi xes are associated with y. In other
words, given y € Vs, the future of y is non-deterministic, and a single suffi x «y; 4 is
thus not suffi cient to recover the dynamics of the transition system through the partition
‘P. To encode the dynamical behavior of a point y of the output space V5 through the
partition P, we introduce the notion of suffix dynamical type of a point y w.r.t. P.

Definition 3.3. Given a dynamical system (M, ), a fi nite partition P of 15, a point
y € Va the suffix dynamical type of y w.rt. P is denoted Sufp(y) and defined by
Sufp(y) = {w@ | (2,t) =y}

This allows us to define an equivalence relation on V5. Given y1, yo € Vo, we
say that they are suffix-equivalent if and only if Sufp(y;) = Sufp(y=2), and we note
y1 =p yo. We denote by Suf (P) the partition induced by the suffi x equivalence (=p).

We say that a partition P is suffix-stable if Suf(P) = P.

To understand the word encoding technique, let us illustrate it on an example.

Example 3.4. We consider the dynamical system (M, ~v) where M = (R, +,-,0,1,<
,siny, €O, ) 4and v : R? x [0,27] x R — R? is defi ned as follows.

(t.cos(6),t.sin(6)) if (z1,22) = (0,0)

71y 797t = .
V(@@ ) {(m +tay,xg +tas) if (x1,22) # (0,0)

Fig. 2. The dynamical system of the spiral

We associate with this dynamical system the partition P = {4, B, C'} where A =
{(0,0)}, B={(0cos(0),0sin(f)) | 0 < 6 < 2w} and C = (R)?\ (AUC). Let us call

4 Siny g 5 and cos; 0.27] correspond to the sinus and cosinus functions restricted to the segments
[0, 27].
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piece B the spiral. There are four dynamical types for this system: { ACBC'}, {CBC1},
{BC'} and {C}. Let us notice that though the dynamical system is infi nitely branching
in (0, 0), there is a unique suffi x associated with each point y of the output space.

4 Solving an M-game

In this section we present a procedure to compute the set of winning states for an M-
game. We then show that if a partition is suffix-stable, the procedure can be performed
symbolically on pieces of the partition.’ The procedure described is not always effective
and we will point out specifi c M-structures for which each step of the procedure is
computable.

4.1 Controllable predecessors

As for classical reachability games [12], one way of computing winning states is to
compute the attractor of goal states by iterating a controllable predecessor operator.

Let A = (M, Q,Goal, X, d,7) be an M-game. For A C @ X Vo and a € X we
defi ne the controllable and uncontrollable discrete predecessors as follows:

e € X, cisenabledin (¢,y),
cPred(A) =< (¢,y) € Q x Vo | and V(¢',y') € Q x V5,
(¢.y) = (¢y) = (¢,y) €A

UPred(A) = {(q,y) c Q X V2 Ju € Eua 3(qlay/) S Q X ‘/2 }

s.t. (q,y) LN (¢',y')and (¢',y') € A

As for timed and hybrid games [3, 15], we also defi ne a safe time predecessor of
aset A wrt. a set B: a state (¢,y) is in Pred;(A, B) if, by letting time elapse, one
reaches (¢',y’) € A, avoiding B. Formally the operator Pred; is defi ned as follows:

V(z,t) € Vi x M+, 3t € MT s.t.
Predy(A,B) =} (¢.4) € Q@ x Va | (¢,y) Sou (d,)), (¢, ¥/) € A,

and POSt?tﬁth'} CB

where Postii”, = {,(2,t") | t <t <t+1'}

The controllable predecessor operator is then defi ned as:
7(A) = AU Pred;(cPred(A), uPred(A4))

Intuitively, a state (¢, y) is in 7(A) whenever either it is already in A or there is a way
of waiting some amount of time, and of performing a controllable action to enter A, and
no uncontrollable action leads outside A.

5 The effectivity of the computation will be discussed later.
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Remark 4.1. Note that the operator 7 is defi nable in any expansion of an ordered group.
Hence, if A is defi nable, so is w(A).

We will compute the set of winning states by iterating the operator 7: denoting
7 (Goal) = Uy»0 7¥(Goal), we will show that the set of winning states for the game
is precisely 7*(Goal). This will help getting further effective defi nability and com-
putability results of winning states and winning strategies under some assumption on
the underlying structure.

Proposition 4.2. Let A = (M, Q,Goal, X, §,v) be an M-game, and (q,y) € Q X Va.
Then, (q,y) € ©*(Goal) iff there is a winning strategy in A from (q,y).

‘We now deduce an algorithmic result from proposition 4.2. The set of winning states
is 7*(Goal) but this does not imply that we can compute this set as many M -structure
structures are already intrinsically undecidable. The following corollary states that if
some conditions on the structure and 7 are satisfi ed, then this procedure provides an
algorithmic solution to the control problem:

Corollary 4.3. Let M be a structure such that Th(M) is decidable. Let C be a class
of M-games such that for every A in C, there exists a finite partition P of Q) X Vs
definable in M, respecting Goal®, and stable by 7. Then the control problem in the
class C is decidable. Moreover if A € C, the set of winning states of A is computable.

4.2 Stability of Suf (P)

In section 2.3, we have presented a counter-example which showed that bisimulation
was not correct to solve control problems; the main reason was that the partition induced
by bisimilarity was not stable under the operator 7.

‘We now present a suffi cient condition for a partition to be stable under the operator
7. we require that the partition is stable under cPred and uPred to handle the discrete
part of the automaton and we show that the stability by suffi x is fi ne enough to ensure a
good continuous behavior w.r.t. control problems.

Proposition 4.4. Let A be an M-game, P be a partition of () X Vo and 7 be the
controllable predecessor operator. If P respects Goal, is stable under cPred, uPred
and suffix-stable, then P is stable under the operator .

Proof. We fix a location ¢ of the automaton and we take y,y> € V5 such that there
exists A € P with y1,y2 € A. We now show that if y; € m(X), for some X € P then
Y2 € 71'(X)

Since y; € w(X), for all (z,t) € V4 x M7 such that v,(z,t) = y1, there exists
Yy} such that y; t—1>z’t y} for some t} € M, y; € cPred(X), and Post!” ., (X) C

[t.t+t]]
uPred(X).
Let w(, 1) (y1) be a suffix of g associated to = and ¢. In term of words the three
previous conditions mean that there exists a prefi x of «, ;) (y1) whose last letter is in

® j.e. Goal is a union of pieces of P
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cPred(X) and with no occurrence of letters of UPred(X) (this has a meaning as by
hypothesis cPred(X) and uPred(X) are unions of pieces of P). Let us call w%’m’t) (y1)
this prefi x.

Since P = Suf(P) and y; and y» belong to the same piece of P, we have that
Sufp(y1) = Sufp(y2). Let (,t) € Vi x M such that y(z,t) = y2 and let w(, 4 (y2)
be the suffix of 3 associated to  and t. As Sufp(y1) = Sufp(yz), Wiz (y2) =
Wz ) (y1) for some (2',t') such that v,(2’,#") = y1, so the prefix ‘*&/,t/)(%) is a

prefix of e, (12).
So we can find 3 € cPred(X) such that y, t—r“»x’t yh for some th € M™, yh €

cPred(X), and Postf;? ,, (X) € uPred(X). Thus y» € 7(X). O
Remark 4.5. The results of this section permit to recover the results of [3] about control
of timed automata. We consider the classical fi nite partition of timed automata that
induces the region graph (see [1]). Let us call Pg this partition, and notice that P, is
defi nable in (R, <, 4,0, 1). The equivalence relation induced by Py is a time-abstract
bisimulation. Hence in particular P, is stable under the action of cPred and uPred. By
Example 2.2 the continuous dynamics of timed automata is defi nable in (R, <, +,0, 1).
Hence it makes sense to encode continuous trajectories of timed automata as words.
One can easily be convinced that Suf(Pr) = Pg. We thus conclude that P, is stable
under the action of 7 (see Proposition 4.4). Hypotheses of corollary 4.3 are thus satisfi ed
and we get the computability of winning states in timed games [3] as a side result by
computing 7*(Goal).

5 Case of o-minimal games

In this section, we focus on the particular case of o-minimal games (i.e. M-games
where M is an o-minimal structure and in which extra assumptions are made on the
resets) [18].

We first briefly recall definitions and results related to o-minimality. The reader
interested in o-minimality should refer to [23] for further results and an extensive bibli-
ography on this subject. Then we focus on o-minimal structures with a decidable theory
in order to obtain decidability and computability results.

Definition 5.1. An extension of an ordered structure M = (M, <,...) is o-minimal
if every defi nable subset of M is a fi nite union of points and open intervals (possibly
unbounded).

In other words the defi nable subsets of M are the simplest possible: the ones which
are defi nable in (M, <). The following are examples of o-minimal structures.

Example 5.2. There are many examples of o-minimal structures: the ordered group of
rationals (Q, <,+,0, 1), the ordered field of reals (R, <,+,-,0,1), the field of reals
with exponential function, the fi eld of reals expanded by restricted pfaffi an functions
and the exponential function, and many more interesting structures.
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5.1 Generalities on o-minimal games

Definition 5.3. Given A an M-game, we say that A is an o-minimal game if the struc-
ture M is o-minimal and if all transitions (g, g, a, R, q’) of A belong to’ @ x 2"2 x
Y x2V2 x Q.

Let us notice that the previous defi nition implies that given .4 an o-minimal game,
the guards, the resets and the dynamics are defi nable in the underlying o-minimal struc-
ture.

We denote by P4 the partition of the state space S = @ x V5 which respects all
guards and resets in .A. Note that P 4 is a fi nite defi nable partition of .S.

Clearly the partition P 4 respects the guards, the resets and Goal. Moreover due
to the strong reset condition we have that P 4 is stable under the action of cPred and
uPred. This holds by the same argument that allows to decouple the continuous and
discrete components of the hybrid system in [18]. Let us also notice that, in the frame-
work of o-minimal games, any refi nement of P4 is stable under the action of cPred
and uPred.

O-minimal games are o-minimal hybrid systems (as defined in [7]). With slight
adaptations of Lemma 4.13 and Theorem 4.18 of [7], we can easily deduce the fol-
lowing result.

Theorem 5.4 ([7]). Let A be an o-minimal game. If there exists a unique suffix on P 4
associated with each (q,y) € Q x V5 then the partition SUf(P 4) is finite and definable.
Moreover SUf(P 4) is a time-abstract bisimulation.

In particular, every piece A € Suf(P) is defi nable in the structure M.

Remark 5.5. Note also that this “unique suffi x” assumption is reasonable as there al-
ready exist infi nite time-abstract bisimulations when two suffi xes are allowed (see the
torus example in [8]), and reachability in o-minimal automata is undecidable when sev-

eral suffi xes are allowed [5].

‘We will now see that in the particular context of Theorem 5.4, time-abstract bisim-
ulation is fi ne enough to solve control problems.

Lemma 5.6. Let A be an o-minimal game, P a partition inducing a time-abstract

bisimulation. If there exists a unique suffix on P associated with each (q,y) € Q X V3
then P = Suf(P).

Applying Theorem 5.4 and Lemma 5.6 we get that Suf(P4) is suffi x-stable, and
using Proposition 4.4 we obtain that it is stable under 7:

Proposition 5.7. Let A be an o-minimal game. If there exists a unique suffix on P 4
associated with each (q,y) € @Q X Va then SUf(P4) is finite and stable under the
action of .

" This is is a particular case of reset for M-game where we consider only constant functions for
resets.
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5.2 Synthesis of winning strategies

‘We now prove that under the hypotheses of Theorem 5.4, we can construct a definable
strategy for the winning states. The effectiveness of this construction will be discussed
in subsection 5.3.

Theorem 5.8. Let A be an o-minimal game. If there exists a unique suffix associated
with each y € Va on P4, then there exists a definable winning strategy for each y €
*(Goal).

Proof (Sketch). The complete proof is done in the appendix.

Given P C 7*(Goal), by Proposition 4.2 we know there exists a winning strategy on
P. We now point out a defi nable memoryless winning strategy, i.e. we build a defi nable
function A : {(¢,z,t,y) | v4(z,t) =y} — MT x X.. We define \ by induction on
the number of iterations of 7.

Suppose we have already built a defi nable strategy on W = Uogig . T (Goal), and
let us now consider (W) \ W.

By Proposition 5.7 we know that (W) \ W is a fi nite union of pieces of Suf(P).
Let P be one of these pieces. Let w be the unique suffi x associated with all states (g, )
of P. One can see that there exists a piece P’ of Suf(P) and an action ¢ in X, such
that P’ % P” with P C W. The strategy in piece P will then be to perform action
c after some delay. We now explain how to choose this delay )to reach piece P’ of the
partition).

Let (¢, z,t,y) be such that y € P and ,(x,t) = y. Let us consider Time(z, t) the
subset of M defi ned as follows:

Time(x,t) ={t' € M* | y(zo,t+t') € P'}.

This set is defi nable since P is defi nable by Theorem 5.4.

By o-minimality we have that Time(x, t) is a fi nite union of points and open inter-
vals. Let us denote by [ the leftmost point or interval. Let us notice that I is defi nable.
If I has a minimum m, we defi ne A(q, x,t,y) = (m, a). Otherwise two cases may oc-
cur. If I is bounded then it is of the form (m,m’) or (m,m’] in this case we defi né
Mg, z,t,y) = (3(m + m’),a). Finally if I has no minimum and is unbounded it is of
the form (m, o) and in this case we define \(¢, z,t,y) = (m + 1, a). We summarize’
the defi nition of A on P as follows:

(min(I),a) if p1(z,t)
Mg, z,t,y) = < (3 (inf(I) +sup(l)),a) if @a(z,t)
(inf(1) +1,a) otherwise

where ¢4 (x, t) is a formula which is true if and only if I (or Time(x, ¢)) has a minimum
and oo (x, t) is a formula which is true if and only if I has no minimum and is bounded.
Thus clearly A is defi nable on P.

8 Let us recall that every o-minimal ordered group is torsion free and divisible (see [19]), this
implies there exists a unique y satisfying y + y = (m + m’), which we note £ (m + m').

? Let us notice that the way we extract a single point from Time(z, t) is nothing more than the
curve selection for o-minimal expansions of ordered abelian groups, see [23, chap.6].
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Since there are finitely many P € Suf(P4) (see Theorem 5.4), we can conclude
that \ is defi nable on 7*(Goal). O

Let us now illustrate Theorem 5.8 on two examples.

Example 5.9. Let us consider again the automaton shape of Example 2.9. We now
define from A an o-minimal game .4 related to the spiral example (Example 3.4).
The underlying o-minimal structure'® M is (R, +,-,0,1, <,sinj, ,cos|, ). The
o-minimal game 4 has the same set of locations, same Goal, same set of actions and
same underlying fi nite automaton than A (i.e. Figure 1(a) represents also .4;). The two
differences between A and A, are the guards and the continuous dynamics. Let us fi rst
defi ne the guards. We have that gz can be taken on B-states (i.e. points on the spiral)
and g¢ on C-states (points not on the spiral and different from the origin). The contin-
uous dynamics in ¢; is the one described by the dynamical system of Example 3.4 (the
continuous dynamics in ¢ and g3 does not play any role). Clearly gp, gc and v, are
defi nable in M.

The winning strategy in point (0,0) given by Theorem 5.8 is A(0,0,6,t) = (4,¢)
where c consists in taking the transition leading to state ¢o (which is winning).

Example 5.10. Let us notice that in the case of timed automata dynamics (described
in Example 2.2), our defi nable strategies correspond in some sense to the realizable
strategies obtained in [4].

5.3 Decidability result

Theorem 5.8 is an existential result. It claims that given an o-minimal game with suffi x
uniqueness hypothesis, there exists a defi nable strategy for each y € 7*(Goal), and by
Theorem 5.4 we know that Suf(P) is fi nite. The conclusion of the previous subsection
is that under hypothesis of Theorem 5.4 there exists a defi nable uniform memoryless
winning strategy on each P € Suf(P) such that P C 7*(Goal).

We recall that a theory Th(M) is decidable iff there is an algorithm which can
determine whether or not any sentence'! is a member of the theory (i.e. is true). We
suggest to readers interested in general decidability issues on o-minimal hybrid systems
to refer to Section 5 of [7].

In general Theorem 5.8 does not allow to conclude that the control problem in an
M.structure is decidable. Indeed it depends on the decidability of Th(M).

However we can state the following theorem:

Theorem 5.11. Let M be an o-minimal structure such that Th(M) is decidable and
C the class of M-automata A such that there exists a unique suffix on P 4 associated
with each (q,y) € Q x Va. Then the control problem in class C is decidable. Moreover
if A € C, the set of winning states 7*(Goal) is computable and a strategy can be
effectively computed for each (q,y) € =*(Goal).

10 This structure is o-minimal (see [22]).
! j e. a formula with no free variable.
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Proof. By Theorem 5.4, for each A € C, Suf(P4) is a defi nable finite partition re-
specting Goal; Corollary 5.7 ensures that this partition is stable under 7. Hypothesis
of Corollary 4.3 are thus satisfied and we get that the control problem in class C is
decidable and that the winning states of a game A € C are computable.

The proof of Theorem 5.8 gives a way to compute a winning strategy. a

Remark 5.12. Let us notice that (R, <,+,0,1) and (R, <,+,-,0,1) are examples of
o-minimal structures with decidable theory.

Remark 5.13. Let us notice that the “unique suffi x”” assumption of Theorem 5.11 en-
compasses the continuous behavior allowed in [18] (where the dynamics - is the flow
of a vector fi eld that does not depend on the time, and is thus time-deterministic). More
general systems can also be handled, for example the spiral dynamics (Example 5.9)
which is an infi nitely branching system with unique suffi x.

Remark 5.14. Let us notice that given .4 an o-minimal M-game such that Th(M) is
decidable, we can effectively decide if there exists a unique suffi x P4 associated with
each point (¢,y) € Q X Va.

Remark 5.15. In fact Theorem 5.11 can be proved for a wider class than o-minimal
systems: the condition that every variable is reset on every transition is only used to get
that P 4 is stable under the action of cPred and uPred; if this condition is satisfi ed (and
the dynamic in every state is o-minimal) the resets can be arbitrary.

Timed automata can be treated in this framework. Theorem 5.11 thus provides in
particular a way to compute winning strategies for timed games.

6 Conclusion

In this paper we have studied the control problem of hybrid systems with general dy-
namics. We have shown that time-abstract bisimulation is not fi ne enough to solve them,
which is a major difference with the discrete case. Using an encoding of trajectories by
words [6], we have proved that the so-called suffi x partition is a good abstraction for
control. We have fi nally provided decidability and computability results for o-minimal
hybrid systems. Our technique applies to timed automata, and we get the decidability
of timed games [3], as well as the construction of winning strategies [4] as side results.

There are several interesting further research directions: we could try to relax the
suffi X uniqueness hypothesis, or assume only partial observability of the system.
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A Proof of Proposition 4.2

Proposition 4.2. Let A = (M, Q,Goal, X, d, ) be an M-game, and (q,y) € Q X Va.
Then, (q,y) € ©*(Goal) iff there is a winning strategy in A from (q,y).

Proof. We first prove that if (¢,y) € #*(Goal) then there exists a winning strategy
from (g,y). To this aim, we define a state-based winning strategy from any (q,y) €

(Goal) (a strategy is state-based when its value on an execution only depends on the
last confi guration of this execution). By notation misuse, we defi ne the strategy A on
states (q, z, t,y) instead of executions.

We defi ne a strategy A on all setsJyc; <, 7*(Goal) by induction on k, and prove
that it is a winning strategy. If £ = 0, we defi ne X to be any controllable action looping
on Goal; it is winning by defi nition.

Suppose now that A is already defined on W' = Jyc; < 7¢(Goal) and is winning
on these states. We now defi ne A on w(W). Let (q,7,t,y) € Q@ X U x M+ x Va: if
(q,y) € W, Xis already defined; if (q,y) € 7(W) \ W, then we know that (q,y) €
Pred, (cPred(W),uPred(W)). For every (z,t) such that v,(z,t) = y, there exists

t' € M* and ¢ € X, with (', ¢) enabled in (¢,y) and (q,y) imt (¢',y') implies

(¢'»y') € W and Post!% L] (W) C uPred(W). We set A(q, =, t,y) = (¢, c) and show
that this is a winning ¢ 01ce

Letp = (q,x,t u) S (qu,@1,t1,y1) 12292, be an execution compatible with
A. We have that either t; = ¢t/ and a; = ¢, in which case (q1,y1) € W,ort; <t and
a1 € X, in which case (q,y) a0 (¢4 1)) 2 (q1,y1) with (¢/,') ¢ uPred(W) so

(g1,y1) € W. In both cases, (q1, yl) € W so by induction hypothesis, p is winning.

We now show that if there exists a strategy A winning from (g, y) then (q,y) €
7m*(Goal). Set W = 7*(Goal), by contradiction suppose that (¢,y) ¢ W, we will
construct a non-winning execution compatible with A\. As (¢,y) ¢ W, there exists
(z,t) € Vi x M such that v,(z,t) = y, and for all ' € M™, (q,y) H;”t (d,v)
implies (¢',y") ¢ cPred(W) or Post( (W )NUPred(W) # @. Fix such an (z,t) €
Vi x M+, and set (t',c) = Nq,z,t,y).

Re

There exists (q1,21,t1,y1) with (¢1,41) ¢ W such that elther (q,:z: t,y) toe,

(q1,x1,t1,y1) or there exists t”/ < t' and u € X, with (¢, z,, y) % (quy 21, t1, 1)

In both cases, the constructed execution is compatible with \. As (ql7 y1) ¢ W we can

. . . t1,
repeat the same argument and construct inductively an execution p = (g, z,t,y) RELEUN

ta,

(qu. @1, t1,y1) == ... compatible with A and such that for every i, (¢i, i, t;, y;) ¢
W. By defi nition of W, for every i, ¢ ¢ Goal, which contradicts the assumption that A
is a winning strategy. a

B Proof of Corollary 4.3

Corollary 4.3. Let M be a structure such that Th(M) is decidable. Let C be a class of
M-games such that for every A in C, there exists a finite partition P of Q) X V5 definable
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in M, respecting Goal'?, and stable by m. Then the control problem in the class C is
decidable. Moreover if A € C, the set of winning states of A is computable.

Proof. Let M be a structure and C a class of automata satisfying the hypotheses and
take A € C.

By proposition 4.2 the set of winning states is 7*(Goal). As P is stable under
m, m*(Goal) is a finite union of pieces of P. Hence there exists n € N such that
7*(Goal) = 7"(Goal). As  and Goal are defi nable, we have that 7(Goal) is defi n-
able and as Th(M) is decidable we can test if 7¢(Goal) = 7*!(Goal), we can thus
effectively fi nd a representation of 7*(Goal).

As Th(M) is decidable, if a state (g, y) is defi nable we can test if (¢, y) € 7*(Goal).
It follows that the control problem in an M-structure is decidable. a

C Proof of Lemma 5.6

Lemma 5.6. Let A be an o-minimal game, P a partition inducing a time-abstract
bisimulation. If there exists a unique suffix on P associated with each (q,y) € Q X V3
then P = Suf(P).

Proof. We work in a given location ¢ € () and for convenience we denote by y the state

(¢,y). We also use the shortcuty — 3’ for3¢ >0y i»y Y.

Let y1,y) € A; for some A; € P. We will prove that Sufp (y;) = Sufp (v}).

In the context of o-minimal systems, the suffi x associated to a point is a fi nite word
[7], so let w; = A;j...A,, be the unique suffi x associated with 31, we can build the
following sequence of transitions.

Y1 7y Y2 =~ oo 7y Yn,

with y; € A; fori = 1,...,n. Since y; and ¥} are time-abstract bisimilar,
we can build a similar sequence of transitions.

/ / /
Y1 7y Y2 7~ - 7y Uns

withy, € A;fori=1,...,n.

Let us now prove that the suffi x uniqueness hypothesis implies that there exists
x € V7 and tq,....t,, € M with t; < ... < t,, such that y(z,t1) =y}, and y(x,t;) € A;
fori = 1,...,n; meaning that w; is a sub-word of w} (the unique suffi x associated with
y1). Clearly we can find z, 4, t2 with t; < to, ¥y = y(2,t1) € Ay and y(z,t2) € Ay
(since y} —y y5). Let us suppose, for a contradiction, that given x, ¢, t5 such that
t1 < to, y(w,t1) € Ay and y(x,t3) € Ao we have that y(z,t3) ¢ As for all t3 > to.
In particular using the suffi x uniqueness hypothesis, this means that the unique suffi x
associated with y4 does not contain the letter A3. This contradicts the existence of the
transition y5 —~ y3 where y3 € As. Thus we can fi nd # with the desired conditions.
Iterating the same argument we fi nd the other #’s.

Similarly, we can prove that w] is a sub-word of wy. Hence wy = w} since they are
fi nite words by o-minimality assumptions. Thus Sufp(y1) = Sufp (v}). O

12 j.e. Goal is a union of pieces of P
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D Proof of Theorem 5.8

In order to prove Theorem 5.8, we have to associate a couple (t,a) with each state
q € 7 (Goal). We proceed in two steps. First we prove that we can defi ne a winning
strategy uniform w.r.t. the controlled actions on each piece P of P. Then we show how to
pick a time in a defi nable way. We start by defi ning what we mean by uniform strategy.

Definition D.1. Given A an M-game, a € X, P a partition of @ x V, and P € P.
‘We say that a strategy A is a-uniform on P if the following condition holds:

V(g,z,t) €Q x Vi x M
(q,’y(m,t)) €EP = I M st )\(q,m,t,’y(x,t)) = (t',a)

We say that a strategy A is uniform if for all P € P, there exists a € X such that )\ is
a-uniform on P.

Lemma D.2. Under the hypotheses of Theorem 5.4, there exists a uniform winning
strategy on each piece of P € SUf(P 1) such that P C 7*(Goal).

Proof. Given y € 7*(Goal), by Proposition 4.2 we know that there exists a winning
strategy from y. We now have to point out a uniform winning strategy. Following the
lines of the proof of Proposition 4.2, we build the defi nable strategy by induction on the
number of iterations of 7. Let us suppose we already built a uniform strategy on each
piece of W, let us now consider (W) \ W (where W = Ug<;<x7(Goal)).

By Corollary 5.7 we know that (W) \ W is a union of pieces of Suf(P 4). Let P be
one of these pieces. Given (g, xo, tg) such that y(zg, tg) = yo € P, by Proposition 4.2
we know there exists (t{,a) € Y. x M such that defi ning A(q, 1, to, yo) by (t5,a)
will make A a winning strategy on (g, o). We now prove that given any (g, x,t) such
that y(z,t) = y € P there exists t' € M such that defi ning A(q, z, ¢, y) to be ({,a)
will make A a winning strategy on (g, y).

The previous statement holds by the suffi x uniqueness hypothesis. Indeed given
given any (g, x,t) such that y(z,t) = y € P, there exists t' € M such that w(, ; ) =
W(ao,to,ty) (for the dynamics v,). By choosing this t’ we obtain the desired result. In
particular, with this choice, there exists a piece P’ € Suf(P 4) such that for all (g, z,t)
such that y(z, t) = y € P we have that (¢,v(z,t +t')) € P O

Theorem 5.8. Let A be an o-minimal game. If there exists a unique suffix associated
with each y € Vo on ‘P4, then there exists a definable winning strategy for each y €
m*(Goal).

Proof. Given P C 7*(Goal), by Proposition 4.2 we know there exists a winning strat-
egy on P. We now point out a defi nable memoryless winning strategy, i.e. we build a
definable function X : {(¢,z,t,y) | (z,t) = y} — M+ x .. Again following
the lines of the proof of Proposition 4.2, we defi ne A by induction on the number of
iterations of 7.

Suppose we have already built a defi nable strategy on W =Jo<; < 7'(Goal), and
let us now consider (W) \ W.



Control in o-minimal hybrid systems 19

By Corollary 5.7 we know that w(W) \ W is a fi nite union of pieces of Suf(P). Let
P be one of these pieces. By Lemma D.2 there exists an a-uniform winning strategy on
P for some a € Y. Let P’ be the piece of Suf(P) appearing at the end of the proof of
Lemma D.2.

Given (g, x,t,y) such that y € P and ~y,(z,t) = y, let us consider Time(z, t) the
subset of M defi ned as follows:

Time(x,t) ={t' € M* | y(zo,t+t') € P'}.

This set is defi nable since P is defi nable by Theorem 5.4.

By o-minimality we have that Time(x, t) is a fi nite union of points and open inter-
vals. Let us denote by [ the leftmost point or interval. Let us notice that I is defi nable.
If I has a minimum m, we define A(q,z,t,y) = (m,a). Otherwise two cases may
occur. If I is bounded then it is of the form (m,m’) or (m,m’] in this case we define
Mg, z, t,y) = (%, a). Finally if T has no minimum and is unbounded it is of the
form (m, co0) and in this case we define \(q, z,t,y) = (m + 1,a). We summarize the
defi nition of A on P as follows:

(min(7), a) if p1(z,t)
Mg, z,t,y) = S (5(inf(1) +sup(1)),a) if @a(z,t)
(inf(I) +1,a) otherwise

where ¢1(z, t) is a formula which is true if and only if I (or Time(z, ¢)) has a minimum
and @9 (z, t) is a formula which is true if and only if I has no minimum and is bounded.
Thus clearly A is defi nable on P.

Since there are finitely many P € Suf(P4) (see Theorem 5.4), we can conclude
that \ is defi nable on 7*(Goal). O



