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tIn this paper, we strengthen two re
ent unde
idability results of [9,10℄ about weighted timedautomata, an extension of timed automata with 
ost variables. More pre
isely, we proposenew en
odings of a Minsky ma
hine that only require three 
lo
ks and one stopwat
h 
ost,while they required �ve 
lo
ks and one stopwat
h 
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1 Introdu
tionWeighted timed automata (WTA for short), or pri
ed timed automata, have beende�ned in 2001 independently by Alur et al. [5℄ and Larsen et al. [6℄ for modelling re-sour
e 
onsumption in timed systems. They extend 
lassi
al timed automata (TA) [3℄with 
ost information on both lo
ations and edges. These 
osts in
rease while timeelapses, but are never tested in the automaton. An interesting problem is then to
ompute the optimal 
ost for rea
hing a given state. In [5,6℄, this problem (
alledoptimal rea
hability) is proved de
idable.In order to express more involved properties, the logi
 WCTL has been proposed asan extension of TCTL [2℄ in whi
h 
ost variables 
an be 
onstrained [11℄. Model-
he
king this logi
 is unde
idable in general for the 
lassi
al dense-time seman-ti
s [11,9℄. Games played on WTAs with an optimality 
riterion have been 
onsideredin [14,1,7,10℄ and though partial de
idability results have been obtained in [1,7℄, ithas re
ently been proved in [10℄ that the general problem of �nding optimal strate-gies in su
h a game is unde
idable. In this paper, we improve both unde
idabilityresults mentioned above: our en
odings are simpler, and above all, the redu
tionsuse only three 
lo
ks, instead of �ve in [9,10℄.Email addresses: bouyer�lsv.ens-
a
han.fr (Patri
ia Bouyer),thomas.brihaye�umh.a
.be (Thomas Brihaye), markey�lsv.ens-
a
han.fr(Ni
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2 PreliminariesIn the sequel, X is a �nite set of 
lo
ks and AP is a �nite set of atomi
 propositions.We adopt standard notations for TAs and refer to [3℄ for 
lassi
al de�nitions. AWTAis a tuple (Loc,Edg,Lab, 
ost) where (Loc,Edg,Lab) is a TA and 
ost : Loc ∪ Edg →Nd is an extra 
ost fun
tion. A run of a WTA is a run of the underlying TA, havingboth 
ontinuous (time-elapsing) and dis
rete transitions. Given a run ρ and a state palong that run, we write ρ[p] for the �nite pre�x of ρ ending at p. Let ρ be the �niterun (ℓ0, α0)
γ0
−→ (ℓ1, α1)

γ1
−→ (ℓ2, α2) · · ·

γk−1
−−−→ (ℓk, αk) where γi ∈ R+ for 
ontinuoustransitions and γi ∈ Edg for dis
rete ones. We de�ne 
ost(ρ) =

∑
i≤k,γi∈R+


ost(ℓi) ·
γi +

∑
i≤k,γi∈Edg 
ost(γi). Our 
onstru
tions only involve one 
ost, we thus alwayshave d = 1 in the sequel. A stopwat
h 
ost is a 
ost 
ost s.t. 
ost(Loc) ⊆ {0, 1}.We 
onsider the logi
WCTL 1 , a bran
hing-time logi
 
lose to TCTL [2℄ and ICTL [4℄.It is built over AP with boolean 
ombinators, and with two families of modalitiesE U∼c and A U∼c , where ∼ ∈ {<,≤,=, >,≥}, and c ∈ N. Let ξ ∈ WCTL, A bea WTA and q be a state of A. That ξ holds in A at state q, denoted by A, q |= ξ, isde�ned in the standard way for atomi
 propositions and boolean 
ombinators, andby:

• A, q |= E (ϕU∼c ψ) i� there exists a run ρ = (qi)i≥0 in A with q = q0, anda position p in ρ su
h that A, p |= ψ and 
ost(ρ[p]) ∼ c and A, p′ |= ϕ for allpositions p′ 6= p of ρ[p];
• A, q |= A (ϕU∼c ψ) i� for any in�nite run ρ = (qi)i≥0 in A with q = q0, thereexists a position p in ρ su
h that A, p |= ψ and 
ost(ρ[p]) ∼ c and A, p′ |= ϕ forall positions p′ 6= p of ρ[p].In the sequel, we might omit to mention A when it is 
lear from the 
ontext, andsimply write q |= ϕ.3 En
oding the 
ountersWe now explain the unde
idability proof forWCTL model-
he
king. Let M be a two-
ounter ma
hine [15℄. We build a WTA AM (with three 
lo
ks and one stopwat
h
ost) and a WCTL-formula Φ su
h that given q0, a well-
hosen state of AM, we havethat M halts if, and only if, q0 |= Φ. The two 
ounters c1 and c2 will be en
odedalternately by three 
lo
ks x, y and z. The value of c1 is en
oded by x1 = 1/2c1 (with
x1 ∈ {x, y, z}) whereas the value of c2 is en
oded by x2 = 1/3c2 (with x2 ∈ {x, y, z}).To ea
h instru
tion will be asso
iated six modules, one for ea
h inje
tive fun
tion
{x1, x2} → {x, y, z}.3.1 In
rementation of a 
ounterWe 
onsider the following instru
tion of the two-
ounter ma
hine:

pi : c1 := c1 + 1; goto pj.
1 WCTL stands for �Weighted CTL�. 2



We also assume that the initial value of c1 is stored in 
lo
k x whereas that of c2is stored in y. To pi, we asso
iate the automaton Auti1,+(x, y, z) as in Fig. 1. Inthat �gure (and in all the other ones), 
osts whi
h are omitted are equal to zero.The subs
ript 1,+ is a remainder that instru
tion pi deals with 
ounter stored inthe �rst 
lo
k (x here) and is an in
rementation (we might omit it when it is notne
essary), the tuple (x, y, z) indi
ates whi
h 
lo
ks en
ode 
ounters c1 and c2: here,
c1 is initially stored in x and c2 is initially stored in y. At the end of this module,the new values of c1 and c2 are stored in z and y, resp.; that's why we swap x and zwhen leaving the module (transition from Di

x,y,z to Aj
z,y,x).

Ai
x,y,z Bi

x,y,z Ci
x,y,z Di

x,y,z Aj
z,y,xTest(x = 2z, {y})Power2(x, {y, z})Power3(y, {x, z})


ost=1

x=1,x:=0 z:=0

y=1,y:=0 y=1,y:=0

Fig. 1. Automaton Auti1,+(x, y, z)For that automaton to really in
rement the �rst 
ounter, we will enfor
e the followingrequirements (see Se
tion 5): (1) the delay between arrival in Ai
x,y,z and arrivalin Di

x,y,z is 1 t.u., (2) when entering Di
x,y,z, z equals x/2 and (3) the delay elapsedin Di

x,y,z is 0.The last point will be ensured through a global WCTL-formula stating that no
ost is a

umulated in lo
ation Di
x,y,z. The se
ond point is obtained by a moduleTest(x = 2z, {y}), together with a WCTL-formula ϕ1 (see Se
tion 4.2 for details onthat module). Finally, a

ording to Lemma 1 below, the �rst point is enfor
ed by
he
king that the values of x and y when entering Di

x,y,z are 1/2n and 1/3m for someintegers n and m. Those 
onditions are ensured by modules Power2 and Power3 andthe asso
iated formulas ϕ2 and ϕ3, whose 
onstru
tion is explained to Se
tion 4.3.Lemma 1 If a run enters lo
ation Ai
x,y,z with x = 1/2c1 , y = 1/3c2 and enterslo
ation Di

x,y,z t time units later with the value of x of the form 1/2n for some n,and the value of y of the form 1/3m for some m, then t = 1, n = c1 and m = c2.This lemma 
an easily be proved using elementary arithmeti
al manipulations. Itplays a 
ru
ial role in our redu
tion: it explains how 
omparing 
lo
ks to powersof 1/2 and 1/3 gives a way to measure exa
tly 1 t.u., and thus why we en
ode the
ounters as powers of 1/2 and 1/3. Note that 2 and 3 
ould be repla
ed by any tworelatively prime numbers.Similar ideas 
an be used for designing an automaton Auti2,+(x, y, z) that in
rementsthe se
ond 
ounter (i.e. ends up with z = y/3, while x returns to its original value),involving module Test(x = 3z, {y}). 3



3.2 De
rementation of a 
ounterWe now treat instru
tion: pi : if (c1 > 0) then c1 := c1 −1; goto pj else goto pk.We only give the 
onstru
tion of automaton Auti1,−(x, y, z), whi
h is a slight variationof the previous 
onstru
tion. This automaton implements the de
rementation of the�rst 
ounter, initially stored in x, unless it equals zero.
Ai

x,y,z

A′i
x,y,z Bi

x,y,z Ci
x,y,z Di

x,y,z Aj
z,y,x

Ak
x,y,z

Test(z = 2x, {y})Power2(x, {y, z})Power3(y, {x, z})

ost=1

z:=0 x=1

z=0

x<1 z=0

x=1

x:=0

z:=0

y=1,y:=0 y=1,y:=0

Fig. 2. Automaton Auti1,−(x, y, z)In the global redu
tion, we will enfor
e the following properties: (1) the values of xand y when entering Di
x,y,z are 1/2n and 1/3m for some n and m, (2) when entering

Di
x,y,z, z equals 2x and (3) the delay in Di

x,y,z is 0. As previously, we 
an prove thatthese three 
onditions express 
orre
tness of the 
onstru
tion. Lemma 1 
learly alsoholds for Auti1,−(x, y, z). Automaton Auti2,−(x, y, z) is built in the same way.4 Modules4.1 Adding x or 1 − x to the 
ost variable, where x is a 
lo
kFollowing [10℄, we build modules Add+(x, {z}) and Add−(x, {z}), displayed on Fig. 3and 4. Those automata 
learly satisfy the following Lemma:Lemma 2 If a run enters lo
ation ℓ0 of Add+(x, {z}) (resp. Add−(x, {z})) with x =
α0 ∈ [0, 1], y = β0 ∈ [0, 1] and 
ost = γ0, it then leaves lo
ation ℓ1 with the samevalues for x and y, and with 
ost = γ0 + α0 (resp. 
ost = γ0 + 1 − α0).4.2 Che
king y = 2xModule Test(y = 2x, {z}) is the (deterministi
) automaton displayed on Fig. 5. Itsets the 
ost to 2x+ 1− y. Let ϕ1 = S ∧ E F≤1 T ∧ E F≥1 T . The following Lemma
learly holds:Lemma 3 Formula ϕ1 holds in S along module Test(y = 2x, {z}) with x = α0 ∈
[0, 1] and y = β0 ∈ [0, 1] if, and only if, β0 = 2α0.This 
onstru
tion 
an easily be adapted for other tests, espe
ially for building amodule Test(y = 3x, {z}) testing if y = 3x.4



ℓ0 ℓ1
ost=0 
ost=1

z:=0

y=1,y:=0 y=1,y:=0

x=1,x:=0 z=1,z:=0Fig. 3. Automaton Add+(x, {z})

ℓ0 ℓ1
ost=1 
ost=0

z:=0

y=1,y:=0 y=1,y:=0

x=1,x:=0 z=1,z:=0Fig. 4. Automaton Add−(x, {z})

S Add+(x, {z}) Add+(x, {z}) Add−(y, {z}) T
ost=0 
ost=0

z:=0 z=0 Fig. 5. Automaton Test(y = 2x, {z})

P2 Q2

R2

Test(y = 2x, {z})
z:=0 y:=0

x=1
x:=0

z=1∧x≤1

z:=0

z=0,x:=y

z=0

x=1,z=0Fig. 6. Automaton Power2(x, {y, z})4.3 Che
king that the value of x is of the form 1/2dModule Power2(x, {y, z}) is displayed on Fig. 6. Note that it requires two auxiliary
lo
ks. Note also that it uses an update �x := y�, instead of 
lassi
al resets. Thisis for the sake of simpli
ity, as the module 
ould be adapted (by dupli
ating theperiodi
 part, involving no extra 
lo
k) in order to only have standard resets [8℄.We let ϕ2 = P2 ∧ E ((Q2 → E (Q2 U ϕ1))UR2). We have the following Lemma:Lemma 4 Formula ϕ2 holds in P2 in module Power2(x, {y, z}) with x = α0 ∈ (0, 1]if, and only if, there exists a non-negative integer d s.t. α0 = 1/2d.PROOF. Let q0 be the 
on�guration (P2, 〈α0,−, 0〉) when entering P2 for the�rst time. Assume that Power2(x, {y, z}), q0 |= ϕ2, and pi
k a run ρ witnessingthis property, i.e., starting from P2, rea
hing R2, and s.t. intermediate positionssatisfy Q2 → E (Q2U ϕ1) in Power2(x, {y, z}). Sin
e time 
annot elapse in Q2,Lemma 3 ensures that, when entering Q2, the value of y is always twi
e the valueof x.Let n be the number of times ρ enters the lo
ation Q2. If n = 0, then α0 = 1 = 20, asrequired. Now, assume n > 0. Clearly, 
lo
k x has the same value when ρ enters Q2as the previous time it entered P2, provided this value is in (0, 1]. Sin
e y = 2xwhen entering Q2, it 
an easily be proved by indu
tion that, when entering Q2 forthe k-th time, with k ≤ n, then x = 2k−1α0. Thus, the last time run ρ enters Q2,we have x = 2n−1α0, and y = 2nα0. From that point on, ρ must go to lo
ation R2without entering Q2 any more. This requires that the last value of y in Q2 is 1.Thus α0 = 1/2n. 5



Conversely, if there exists a non-negative integer d s.t. α0 = 1/2d we have to provethat Power2(x, {y, z}), q0 |= ϕ2. We build by indu
tion a run ρd witnessing this fa
t.If d = 0, we take ρd = (P2, 〈1,−, 0〉) → (R2, 〈1,−, 0〉). Otherwise, assume we 
anbuild a run ρd−1 from (P2, 〈1/2
d−1,−, 0〉) to (R2, 〈1,−, 0〉). We build ρd as follows:

P2

x=α0

z=0

P2

x=1−α0

z=1−2α0

x=1−α0

y=0
z=1−2α0

x=1
y=α0

z=1−α0

x=0
y=α0

z=1−α0

x=α0

y=2α0

z=1

Q2

x=α0

y=2α0

z=0

ρd−1

x=2α0

z=0

1−2α0

y:=0

α0

x:=0

α0

z:=0 x:=yClearly, the paths ρd are paths of Power2(x, {y, z}) and satisfy ϕ2. �It is easy to adapt this 
onstru
tion in order to build a module Power3(x, {y, z}) anda formula ϕ3 that 
he
k if x is of the form 1/3d, for some integer d.5 Global redu
tionWe build the global automaton AM indu
tively using sub-automata Autic,+ andAutic,− as explained previously. To the halting instru
tion 
orresponds a unique lo-
ation AHalt, labelled with Halt. The initial lo
ation is the state A1
x,y,z denoted A1 forshort. In the sequel, a state of AM is written (A, 〈x, y, z〉), where A is the lo
ationand 〈x, y, z〉 is the valuation of x, y and z, in that order. Thus, the initial 
on�gu-ration of M is en
oded by q0 = (A1, 〈1, 1, 0〉). We set a new atomi
 proposition Dwhi
h is true in all states Di

σ(x,y,z), for any permutation σ.As explained in Se
tion 4, our modules (Test, Power2 and Power3) require that someWCTL formulas (namely ϕ1, ϕ2 and ϕ3) hold in their initial state in order to reallyplay their roles. This will be ensured in AM through the following formula: Φ =E [(D → ϕ) U≤0 Halt] where ϕ =
∧

i=1,2,3 E (DU≤0 ϕi).Lemma 5 AM, q0 |= Φ i� the two-
ounter ma
hine M has a halting 
omputation.PROOF. First assume q0 |= Φ, and pi
k a run ρ, starting in q0 and witness-ing Φ, i.e., rea
hing state Halt with 
ost 0, and su
h that intermediate positionssatisfy D → ϕ in AM. As the 
ost rate in all D-states is 1, and the overall 
ostof ρ is 0, no time 
an elapse in D-state. Also, ea
h time ρ is in a D-state, ϕ holds.Consider a D-state (Di
y,x,z, 〈xD, yD, zD〉) along ρ (the 
ase of other permutations of

(x, y, z) would be treated similarly). In that state:
• formula E (DU≤0 ϕ2) holds, where ϕ2 = P2 ∧ E ((Q2 → E (Q2 U ϕ1))UR2)(see Se
tion 4.3). This means that this is possible to immediately enter modulePower2(y, {x, z}) and satisfy ϕ2. Lemma 4 then ensures that yD equals 1/2n, forsome integer n.
• similarly, formula E (DU≤0 ϕ3) and module Power3(x, {y, z}) ensure that xDequals 1/3m for some integer m.
• formula E (DU≤0 ϕ1) holds, where ϕ1 = S∧E F≤1 T∧EF≥1 T (see Se
tion 4.2).Thus, it is possible to immediately (with 
lo
k values yD, xD and zD) enter mod-ule Test(y = 2z, {x}) (or another Test-module, depending on instru
tion i) and6



satisfy ϕ1. A

ording to Lemma 3, this ensures that the 
orresponding test holds,i.e. yD = 2zD (for the 
ase of Test(y = 2z, {x})).It follows that:
• if ρ enters Auti1,+(y, x, z), say, with 
lo
k valuation 〈1/3m, 1/2n,−〉, then, a

ord-ing to Lemma 1 (whose hypotheses hold, a

ording to the remarks above), itrea
hes Di

y,x,z (and then the next sub-automaton Autj(z, x, y)) after exa
tly 1 t.u.with 
lo
k valuation 〈1/3m,−, 1/2n+1〉.
• if ρ enters Auti1,−(y, x, z) with y = 1, then it immediately enters the next sub-automaton, without letting time elapse.
• if ρ enters Auti1,−(y, x, z) with valuation 〈1/3m, 1/2n,−〉, assuming n 6= 0, then we
an again apply Lemma 1, whi
h 
laims that ρ rea
hes Di

y,x,z (and then the nextautomaton Autj(z, x, y)) after exa
tly 1 t.u. and with valuation 〈1/3m,−, 1/2n−1〉.By indu
tion, whenever ρ enters the �rst lo
ation of a sub-automaton Auti(α, β, γ),for any permutation (α, β, γ) of (x, y, z), then α = 1/2n and β = 1/3m, for someintegers n and m. A

ording to Φ, ρ eventually enters state AHalt. In the meantime,it traverses a (�nite) sequen
e (Ak)k of sub-automata of the form Auti(α, β, γ).Thus, to ρ, we 
an asso
iate a sequen
e of tuples pk = (ik, c1,k, c2,k) as follows:
(a) ik is the index i of the sub-automaton Ak, (b) c1,k is the integer s.t. α = 1/2c1,kwhen ρ enters Ak, and (c) c2,k is the integer s.t. β = 1/2c2,k when ρ enters Ak.Quite obviously, our 
onstru
tion ensures that the values of the 
ounters between pkand pk+1 are updated a

ording to instru
tion ik of M. The sequen
e (pk)k thus
orresponds to a halting 
omputation of M.Conversely, if M has a halting 
omputation, we 
an exa
tly mimi
 this 
omputationwith a run in AM. The arguments are similar to the ones above in order to provethat this run satis�es Φ. �Theorem 6 Model-
he
king WCTL on WTAs with three 
lo
ks and one stopwat
h
ost is unde
idable.Note that our redu
tion holds for a restri
tion of WCTL not involving equality-
onstraints, and involves only a stopwat
h 
ost.6 Appli
ation to Optimal Rea
hability Timed GamesOptimal rea
hability timed games have been �rst introdu
ed in [14℄ and furtherstudied in [1,7,10℄. We refer to the above papers for formal de�nitions.A weighted timed game (WTG) is a WTA with a distinguished set of winning states,and where the set of a
tions is split into 
ontrollable a
tions (played by the 
on-troller) and un
ontrollable a
tions (played by the environment). We assume a 
las-si
al de�nition of strategies, and the aim of a game is, for the 
ontroller, to enfor
ewinning states and to minimize the 
ost of the plays, whatever does the environment.To illustrate these notions, we better give an example.7



Example 7 ([7℄) We 
onsider the WTG in Fig. 7. Dashed (resp. plain) arrowsare for un
ontrollable (resp. 
ontrollable) a
tions. Depending on the 
hoi
e of theenvironment (going to lo
ation ℓ2 or ℓ3), the a

umulated 
ost along plays of thegame is either 5t + 10(2 − t) + 1 (through ℓ2) or 5t + (2 − t) + 7 (through ℓ3)when t is the delay in state ℓ0. The optimal 
ost the 
ontroller 
an ensure is thus
inft≤2 max(5t+ 10(2 − t) + 1, 5t+ (2 − t) + 7) = 14 + 1/3, and the optimal delay isthen t = 4/3. The optimal strategy for the 
ontroller is thus to wait in state ℓ0 until
x = 4/3, and then enter state ℓ1. Then, the environment 
hooses to go either to ℓ2or to ℓ3, and �nally as soon as x = 2, the 
ontroller goes to state Win.

ℓ0 ℓ1

ℓ3

ℓ2 Winx≤2; c1

y:=0
u

u

x≥2; c2
ost=1

x≥2; c2
ost=7
[y=0]
ost=5


ost=10


ost=1


ost=5 Fig. 7. A weighted timed gameThis example indi
ates that the region partitioning (of [3℄) is not su�
ient for solvingoptimal WTGs. Restri
ted de
idability results have however been obtained in [1,7℄,but the general problem has been re
ently proved unde
idable [10℄. This result relieson a redu
tion whi
h uses �ve 
lo
ks. A 
onstru
tion similar to that of WCTL 
anbe used to get a redu
tion with only three 
lo
ks, we sket
h it now.Given a two-
ounter ma
hine M we 
onstru
t a WTG GM with one 
ost variable
ost. The shape of the automaton is similar to the one des
ribed in Se
tion 3, weonly point out the few di�eren
es:
• When arriving in state AHalt we add a dis
rete 
ost 3;
• All arrows leading to a test module (dashed on the �gures) are un
ontrollable;
• The module for 
he
king that y = 2x is split into two bran
hes, one setting the
ost to 2 + 2x + (1 − y), and the other to 1 + 2(1 − x) + y (these two bran
hesare slight adaptations of Fig. 5 and transitions leading to one or the other bran
hare un
ontrollable). If the relation y = 2x does not hold, the environment has astrategy to set the 
ost up to a value stri
tly greater than 3 (if y < 2x, he takes thebran
h storing 2 + 2x+ (1− y) in the 
ost, otherwise he takes the other bran
h).If the relation y = 2x holds, then whatever bran
h 
hooses the environment, thea

umulated 
ost will be exa
tly 3, and the 
ontroller will win the game;
• The module for 
he
king that y = 3x is similar, and has two bran
hes, one settingthe 
ost to 2+3x+(1−y), and the other one setting the 
ost to 3(1−x)+y. Thus,if the relation y = 3x does not hold, the environment has a strategy to set the
ost up to a value stri
tly greater than 3 (if y < 3x, he takes the bran
h storing

2 + 3x+ (1 − y) in the 
ost, otherwise he takes the other bran
h). If the relation
y = 3x holds, then whatever bran
h 
hooses the environment, the a

umulatedwill be exa
tly 3, and the 
ontroller will win the game;

• The modules Power2 and Power3 are similar to the one for WCTL (tests y = 2x(resp. y = 3x) are done as des
ribed above). In this module, if the 
ontroller
heats, that's be
ause at some point of the loop he does not satisfy y = 2x (resp.8



y = 3x), whi
h 
an be dete
ted by the environment going to the 
orrespondingtest module, or that's be
ause he will not be able to rea
h a lo
ation labelledby R2 (or R3). In the �rst 
ase, a state labelled by T will be rea
hed (the playwill thus be winning), but the 
ost will be stri
tly greater than 3, whereas in these
ond 
ase, the play will not be winning.Following the lines of [10℄ and our previous proof forWCTL:M halts i� the 
ontrollerhas a winning strategy in GM to enfor
e one of the states labelled by {Halt, T,R2, R3}with 
ost less than or equal to 3. This is true be
ause if the environment does notdo any un
ontrollable a
tion, then the 
ontroller will have to never wait in stateswith a positive 
ost (otherwise the global 
ost will be stri
tly greater than 3). If theenvironment does an un
ontrollable a
tion, it means that he wants to 
he
k thatthe 
ontroller has played 
orre
tly, and if (and only if) the latter has really played
orre
tly, he will be able to rea
h a state labelled by T , R2 or R3 with 
ost less thanor equal to 3. Thus:Theorem 8 The problem of de
iding whether there exists a winning strategy with
ost less than or equal to a given value in a WTG with three 
lo
ks and one stopwat
h
ost is unde
idable.7 Con
lusionIn this paper, we have improved two unde
idability results of [9,10℄ by de
reasing thenumber of 
lo
ks used in the redu
tions: both WCTL model-
he
king and optimaltimed games are unde
idable with three 
lo
ks and one stopwat
h 
ost. These boundsare quite tight, as the same problems with only one 
lo
k are de
idable. We did notmanage to 
lose the gap, with WTAs having two 
lo
ks, even when trying to en
odeboth 
ounter with only one 
lo
k x = 1/(2c13c2). But on the other hand, for pri
edtimed automata with two 
lo
ks and one stopwat
h, the 
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