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Improved Undeidability Results onWeighted Timed AutomataPatriia Bouyer a, Thomas Brihaye b, Niolas Markey a

aLab. Spéi�ation & Véri�ation, CNRS & ENS de Cahan, Frane
bUniv. Mons-Hainault, Centre Fédéré en Véri�ation, BelgiumAbstratIn this paper, we strengthen two reent undeidability results of [9,10℄ about weighted timedautomata, an extension of timed automata with ost variables. More preisely, we proposenew enodings of a Minsky mahine that only require three loks and one stopwath ost,while they required �ve loks and one stopwath ost in [9,10℄.Key words: Weighted timed automata, weighted timed games, undeidability

1 IntrodutionWeighted timed automata (WTA for short), or pried timed automata, have beende�ned in 2001 independently by Alur et al. [5℄ and Larsen et al. [6℄ for modelling re-soure onsumption in timed systems. They extend lassial timed automata (TA) [3℄with ost information on both loations and edges. These osts inrease while timeelapses, but are never tested in the automaton. An interesting problem is then toompute the optimal ost for reahing a given state. In [5,6℄, this problem (alledoptimal reahability) is proved deidable.In order to express more involved properties, the logi WCTL has been proposed asan extension of TCTL [2℄ in whih ost variables an be onstrained [11℄. Model-heking this logi is undeidable in general for the lassial dense-time seman-tis [11,9℄. Games played on WTAs with an optimality riterion have been onsideredin [14,1,7,10℄ and though partial deidability results have been obtained in [1,7℄, ithas reently been proved in [10℄ that the general problem of �nding optimal strate-gies in suh a game is undeidable. In this paper, we improve both undeidabilityresults mentioned above: our enodings are simpler, and above all, the redutionsuse only three loks, instead of �ve in [9,10℄.Email addresses: bouyer�lsv.ens-ahan.fr (Patriia Bouyer),thomas.brihaye�umh.a.be (Thomas Brihaye), markey�lsv.ens-ahan.fr(Niolas Markey).Preprint submitted to Elsevier Siene 7 January 2006



2 PreliminariesIn the sequel, X is a �nite set of loks and AP is a �nite set of atomi propositions.We adopt standard notations for TAs and refer to [3℄ for lassial de�nitions. AWTAis a tuple (Loc,Edg,Lab, ost) where (Loc,Edg,Lab) is a TA and ost : Loc ∪ Edg →Nd is an extra ost funtion. A run of a WTA is a run of the underlying TA, havingboth ontinuous (time-elapsing) and disrete transitions. Given a run ρ and a state palong that run, we write ρ[p] for the �nite pre�x of ρ ending at p. Let ρ be the �niterun (ℓ0, α0)
γ0
−→ (ℓ1, α1)

γ1
−→ (ℓ2, α2) · · ·

γk−1
−−−→ (ℓk, αk) where γi ∈ R+ for ontinuoustransitions and γi ∈ Edg for disrete ones. We de�ne ost(ρ) =

∑
i≤k,γi∈R+

ost(ℓi) ·
γi +

∑
i≤k,γi∈Edg ost(γi). Our onstrutions only involve one ost, we thus alwayshave d = 1 in the sequel. A stopwath ost is a ost ost s.t. ost(Loc) ⊆ {0, 1}.We onsider the logiWCTL 1 , a branhing-time logi lose to TCTL [2℄ and ICTL [4℄.It is built over AP with boolean ombinators, and with two families of modalitiesE U∼c and A U∼c , where ∼ ∈ {<,≤,=, >,≥}, and c ∈ N. Let ξ ∈ WCTL, A bea WTA and q be a state of A. That ξ holds in A at state q, denoted by A, q |= ξ, isde�ned in the standard way for atomi propositions and boolean ombinators, andby:

• A, q |= E (ϕU∼c ψ) i� there exists a run ρ = (qi)i≥0 in A with q = q0, anda position p in ρ suh that A, p |= ψ and ost(ρ[p]) ∼ c and A, p′ |= ϕ for allpositions p′ 6= p of ρ[p];
• A, q |= A (ϕU∼c ψ) i� for any in�nite run ρ = (qi)i≥0 in A with q = q0, thereexists a position p in ρ suh that A, p |= ψ and ost(ρ[p]) ∼ c and A, p′ |= ϕ forall positions p′ 6= p of ρ[p].In the sequel, we might omit to mention A when it is lear from the ontext, andsimply write q |= ϕ.3 Enoding the ountersWe now explain the undeidability proof forWCTL model-heking. Let M be a two-ounter mahine [15℄. We build a WTA AM (with three loks and one stopwathost) and a WCTL-formula Φ suh that given q0, a well-hosen state of AM, we havethat M halts if, and only if, q0 |= Φ. The two ounters c1 and c2 will be enodedalternately by three loks x, y and z. The value of c1 is enoded by x1 = 1/2c1 (with
x1 ∈ {x, y, z}) whereas the value of c2 is enoded by x2 = 1/3c2 (with x2 ∈ {x, y, z}).To eah instrution will be assoiated six modules, one for eah injetive funtion
{x1, x2} → {x, y, z}.3.1 Inrementation of a ounterWe onsider the following instrution of the two-ounter mahine:

pi : c1 := c1 + 1; goto pj.
1 WCTL stands for �Weighted CTL�. 2



We also assume that the initial value of c1 is stored in lok x whereas that of c2is stored in y. To pi, we assoiate the automaton Auti1,+(x, y, z) as in Fig. 1. Inthat �gure (and in all the other ones), osts whih are omitted are equal to zero.The subsript 1,+ is a remainder that instrution pi deals with ounter stored inthe �rst lok (x here) and is an inrementation (we might omit it when it is notneessary), the tuple (x, y, z) indiates whih loks enode ounters c1 and c2: here,
c1 is initially stored in x and c2 is initially stored in y. At the end of this module,the new values of c1 and c2 are stored in z and y, resp.; that's why we swap x and zwhen leaving the module (transition from Di

x,y,z to Aj
z,y,x).

Ai
x,y,z Bi

x,y,z Ci
x,y,z Di

x,y,z Aj
z,y,xTest(x = 2z, {y})Power2(x, {y, z})Power3(y, {x, z})

ost=1

x=1,x:=0 z:=0

y=1,y:=0 y=1,y:=0

Fig. 1. Automaton Auti1,+(x, y, z)For that automaton to really inrement the �rst ounter, we will enfore the followingrequirements (see Setion 5): (1) the delay between arrival in Ai
x,y,z and arrivalin Di

x,y,z is 1 t.u., (2) when entering Di
x,y,z, z equals x/2 and (3) the delay elapsedin Di

x,y,z is 0.The last point will be ensured through a global WCTL-formula stating that noost is aumulated in loation Di
x,y,z. The seond point is obtained by a moduleTest(x = 2z, {y}), together with a WCTL-formula ϕ1 (see Setion 4.2 for details onthat module). Finally, aording to Lemma 1 below, the �rst point is enfored byheking that the values of x and y when entering Di

x,y,z are 1/2n and 1/3m for someintegers n and m. Those onditions are ensured by modules Power2 and Power3 andthe assoiated formulas ϕ2 and ϕ3, whose onstrution is explained to Setion 4.3.Lemma 1 If a run enters loation Ai
x,y,z with x = 1/2c1 , y = 1/3c2 and entersloation Di

x,y,z t time units later with the value of x of the form 1/2n for some n,and the value of y of the form 1/3m for some m, then t = 1, n = c1 and m = c2.This lemma an easily be proved using elementary arithmetial manipulations. Itplays a ruial role in our redution: it explains how omparing loks to powersof 1/2 and 1/3 gives a way to measure exatly 1 t.u., and thus why we enode theounters as powers of 1/2 and 1/3. Note that 2 and 3 ould be replaed by any tworelatively prime numbers.Similar ideas an be used for designing an automaton Auti2,+(x, y, z) that inrementsthe seond ounter (i.e. ends up with z = y/3, while x returns to its original value),involving module Test(x = 3z, {y}). 3



3.2 Derementation of a ounterWe now treat instrution: pi : if (c1 > 0) then c1 := c1 −1; goto pj else goto pk.We only give the onstrution of automaton Auti1,−(x, y, z), whih is a slight variationof the previous onstrution. This automaton implements the derementation of the�rst ounter, initially stored in x, unless it equals zero.
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Fig. 2. Automaton Auti1,−(x, y, z)In the global redution, we will enfore the following properties: (1) the values of xand y when entering Di
x,y,z are 1/2n and 1/3m for some n and m, (2) when entering

Di
x,y,z, z equals 2x and (3) the delay in Di

x,y,z is 0. As previously, we an prove thatthese three onditions express orretness of the onstrution. Lemma 1 learly alsoholds for Auti1,−(x, y, z). Automaton Auti2,−(x, y, z) is built in the same way.4 Modules4.1 Adding x or 1 − x to the ost variable, where x is a lokFollowing [10℄, we build modules Add+(x, {z}) and Add−(x, {z}), displayed on Fig. 3and 4. Those automata learly satisfy the following Lemma:Lemma 2 If a run enters loation ℓ0 of Add+(x, {z}) (resp. Add−(x, {z})) with x =
α0 ∈ [0, 1], y = β0 ∈ [0, 1] and ost = γ0, it then leaves loation ℓ1 with the samevalues for x and y, and with ost = γ0 + α0 (resp. ost = γ0 + 1 − α0).4.2 Cheking y = 2xModule Test(y = 2x, {z}) is the (deterministi) automaton displayed on Fig. 5. Itsets the ost to 2x+ 1− y. Let ϕ1 = S ∧ E F≤1 T ∧ E F≥1 T . The following Lemmalearly holds:Lemma 3 Formula ϕ1 holds in S along module Test(y = 2x, {z}) with x = α0 ∈
[0, 1] and y = β0 ∈ [0, 1] if, and only if, β0 = 2α0.This onstrution an easily be adapted for other tests, espeially for building amodule Test(y = 3x, {z}) testing if y = 3x.4
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x=1,x:=0 z=1,z:=0Fig. 3. Automaton Add+(x, {z})
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x=1,x:=0 z=1,z:=0Fig. 4. Automaton Add−(x, {z})
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z:=0 z=0 Fig. 5. Automaton Test(y = 2x, {z})
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z=0

x=1,z=0Fig. 6. Automaton Power2(x, {y, z})4.3 Cheking that the value of x is of the form 1/2dModule Power2(x, {y, z}) is displayed on Fig. 6. Note that it requires two auxiliaryloks. Note also that it uses an update �x := y�, instead of lassial resets. Thisis for the sake of simpliity, as the module ould be adapted (by dupliating theperiodi part, involving no extra lok) in order to only have standard resets [8℄.We let ϕ2 = P2 ∧ E ((Q2 → E (Q2 U ϕ1))UR2). We have the following Lemma:Lemma 4 Formula ϕ2 holds in P2 in module Power2(x, {y, z}) with x = α0 ∈ (0, 1]if, and only if, there exists a non-negative integer d s.t. α0 = 1/2d.PROOF. Let q0 be the on�guration (P2, 〈α0,−, 0〉) when entering P2 for the�rst time. Assume that Power2(x, {y, z}), q0 |= ϕ2, and pik a run ρ witnessingthis property, i.e., starting from P2, reahing R2, and s.t. intermediate positionssatisfy Q2 → E (Q2U ϕ1) in Power2(x, {y, z}). Sine time annot elapse in Q2,Lemma 3 ensures that, when entering Q2, the value of y is always twie the valueof x.Let n be the number of times ρ enters the loation Q2. If n = 0, then α0 = 1 = 20, asrequired. Now, assume n > 0. Clearly, lok x has the same value when ρ enters Q2as the previous time it entered P2, provided this value is in (0, 1]. Sine y = 2xwhen entering Q2, it an easily be proved by indution that, when entering Q2 forthe k-th time, with k ≤ n, then x = 2k−1α0. Thus, the last time run ρ enters Q2,we have x = 2n−1α0, and y = 2nα0. From that point on, ρ must go to loation R2without entering Q2 any more. This requires that the last value of y in Q2 is 1.Thus α0 = 1/2n. 5



Conversely, if there exists a non-negative integer d s.t. α0 = 1/2d we have to provethat Power2(x, {y, z}), q0 |= ϕ2. We build by indution a run ρd witnessing this fat.If d = 0, we take ρd = (P2, 〈1,−, 0〉) → (R2, 〈1,−, 0〉). Otherwise, assume we anbuild a run ρd−1 from (P2, 〈1/2
d−1,−, 0〉) to (R2, 〈1,−, 0〉). We build ρd as follows:
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z:=0 x:=yClearly, the paths ρd are paths of Power2(x, {y, z}) and satisfy ϕ2. �It is easy to adapt this onstrution in order to build a module Power3(x, {y, z}) anda formula ϕ3 that hek if x is of the form 1/3d, for some integer d.5 Global redutionWe build the global automaton AM indutively using sub-automata Autic,+ andAutic,− as explained previously. To the halting instrution orresponds a unique lo-ation AHalt, labelled with Halt. The initial loation is the state A1
x,y,z denoted A1 forshort. In the sequel, a state of AM is written (A, 〈x, y, z〉), where A is the loationand 〈x, y, z〉 is the valuation of x, y and z, in that order. Thus, the initial on�gu-ration of M is enoded by q0 = (A1, 〈1, 1, 0〉). We set a new atomi proposition Dwhih is true in all states Di

σ(x,y,z), for any permutation σ.As explained in Setion 4, our modules (Test, Power2 and Power3) require that someWCTL formulas (namely ϕ1, ϕ2 and ϕ3) hold in their initial state in order to reallyplay their roles. This will be ensured in AM through the following formula: Φ =E [(D → ϕ) U≤0 Halt] where ϕ =
∧

i=1,2,3 E (DU≤0 ϕi).Lemma 5 AM, q0 |= Φ i� the two-ounter mahine M has a halting omputation.PROOF. First assume q0 |= Φ, and pik a run ρ, starting in q0 and witness-ing Φ, i.e., reahing state Halt with ost 0, and suh that intermediate positionssatisfy D → ϕ in AM. As the ost rate in all D-states is 1, and the overall ostof ρ is 0, no time an elapse in D-state. Also, eah time ρ is in a D-state, ϕ holds.Consider a D-state (Di
y,x,z, 〈xD, yD, zD〉) along ρ (the ase of other permutations of

(x, y, z) would be treated similarly). In that state:
• formula E (DU≤0 ϕ2) holds, where ϕ2 = P2 ∧ E ((Q2 → E (Q2 U ϕ1))UR2)(see Setion 4.3). This means that this is possible to immediately enter modulePower2(y, {x, z}) and satisfy ϕ2. Lemma 4 then ensures that yD equals 1/2n, forsome integer n.
• similarly, formula E (DU≤0 ϕ3) and module Power3(x, {y, z}) ensure that xDequals 1/3m for some integer m.
• formula E (DU≤0 ϕ1) holds, where ϕ1 = S∧E F≤1 T∧EF≥1 T (see Setion 4.2).Thus, it is possible to immediately (with lok values yD, xD and zD) enter mod-ule Test(y = 2z, {x}) (or another Test-module, depending on instrution i) and6



satisfy ϕ1. Aording to Lemma 3, this ensures that the orresponding test holds,i.e. yD = 2zD (for the ase of Test(y = 2z, {x})).It follows that:
• if ρ enters Auti1,+(y, x, z), say, with lok valuation 〈1/3m, 1/2n,−〉, then, aord-ing to Lemma 1 (whose hypotheses hold, aording to the remarks above), itreahes Di

y,x,z (and then the next sub-automaton Autj(z, x, y)) after exatly 1 t.u.with lok valuation 〈1/3m,−, 1/2n+1〉.
• if ρ enters Auti1,−(y, x, z) with y = 1, then it immediately enters the next sub-automaton, without letting time elapse.
• if ρ enters Auti1,−(y, x, z) with valuation 〈1/3m, 1/2n,−〉, assuming n 6= 0, then wean again apply Lemma 1, whih laims that ρ reahes Di

y,x,z (and then the nextautomaton Autj(z, x, y)) after exatly 1 t.u. and with valuation 〈1/3m,−, 1/2n−1〉.By indution, whenever ρ enters the �rst loation of a sub-automaton Auti(α, β, γ),for any permutation (α, β, γ) of (x, y, z), then α = 1/2n and β = 1/3m, for someintegers n and m. Aording to Φ, ρ eventually enters state AHalt. In the meantime,it traverses a (�nite) sequene (Ak)k of sub-automata of the form Auti(α, β, γ).Thus, to ρ, we an assoiate a sequene of tuples pk = (ik, c1,k, c2,k) as follows:
(a) ik is the index i of the sub-automaton Ak, (b) c1,k is the integer s.t. α = 1/2c1,kwhen ρ enters Ak, and (c) c2,k is the integer s.t. β = 1/2c2,k when ρ enters Ak.Quite obviously, our onstrution ensures that the values of the ounters between pkand pk+1 are updated aording to instrution ik of M. The sequene (pk)k thusorresponds to a halting omputation of M.Conversely, if M has a halting omputation, we an exatly mimi this omputationwith a run in AM. The arguments are similar to the ones above in order to provethat this run satis�es Φ. �Theorem 6 Model-heking WCTL on WTAs with three loks and one stopwathost is undeidable.Note that our redution holds for a restrition of WCTL not involving equality-onstraints, and involves only a stopwath ost.6 Appliation to Optimal Reahability Timed GamesOptimal reahability timed games have been �rst introdued in [14℄ and furtherstudied in [1,7,10℄. We refer to the above papers for formal de�nitions.A weighted timed game (WTG) is a WTA with a distinguished set of winning states,and where the set of ations is split into ontrollable ations (played by the on-troller) and unontrollable ations (played by the environment). We assume a las-sial de�nition of strategies, and the aim of a game is, for the ontroller, to enforewinning states and to minimize the ost of the plays, whatever does the environment.To illustrate these notions, we better give an example.7



Example 7 ([7℄) We onsider the WTG in Fig. 7. Dashed (resp. plain) arrowsare for unontrollable (resp. ontrollable) ations. Depending on the hoie of theenvironment (going to loation ℓ2 or ℓ3), the aumulated ost along plays of thegame is either 5t + 10(2 − t) + 1 (through ℓ2) or 5t + (2 − t) + 7 (through ℓ3)when t is the delay in state ℓ0. The optimal ost the ontroller an ensure is thus
inft≤2 max(5t+ 10(2 − t) + 1, 5t+ (2 − t) + 7) = 14 + 1/3, and the optimal delay isthen t = 4/3. The optimal strategy for the ontroller is thus to wait in state ℓ0 until
x = 4/3, and then enter state ℓ1. Then, the environment hooses to go either to ℓ2or to ℓ3, and �nally as soon as x = 2, the ontroller goes to state Win.

ℓ0 ℓ1

ℓ3

ℓ2 Winx≤2; c1

y:=0
u

u

x≥2; c2ost=1

x≥2; c2ost=7
[y=0]ost=5

ost=10

ost=1

ost=5 Fig. 7. A weighted timed gameThis example indiates that the region partitioning (of [3℄) is not su�ient for solvingoptimal WTGs. Restrited deidability results have however been obtained in [1,7℄,but the general problem has been reently proved undeidable [10℄. This result relieson a redution whih uses �ve loks. A onstrution similar to that of WCTL anbe used to get a redution with only three loks, we sketh it now.Given a two-ounter mahine M we onstrut a WTG GM with one ost variableost. The shape of the automaton is similar to the one desribed in Setion 3, weonly point out the few di�erenes:
• When arriving in state AHalt we add a disrete ost 3;
• All arrows leading to a test module (dashed on the �gures) are unontrollable;
• The module for heking that y = 2x is split into two branhes, one setting theost to 2 + 2x + (1 − y), and the other to 1 + 2(1 − x) + y (these two branhesare slight adaptations of Fig. 5 and transitions leading to one or the other branhare unontrollable). If the relation y = 2x does not hold, the environment has astrategy to set the ost up to a value stritly greater than 3 (if y < 2x, he takes thebranh storing 2 + 2x+ (1− y) in the ost, otherwise he takes the other branh).If the relation y = 2x holds, then whatever branh hooses the environment, theaumulated ost will be exatly 3, and the ontroller will win the game;
• The module for heking that y = 3x is similar, and has two branhes, one settingthe ost to 2+3x+(1−y), and the other one setting the ost to 3(1−x)+y. Thus,if the relation y = 3x does not hold, the environment has a strategy to set theost up to a value stritly greater than 3 (if y < 3x, he takes the branh storing

2 + 3x+ (1 − y) in the ost, otherwise he takes the other branh). If the relation
y = 3x holds, then whatever branh hooses the environment, the aumulatedwill be exatly 3, and the ontroller will win the game;

• The modules Power2 and Power3 are similar to the one for WCTL (tests y = 2x(resp. y = 3x) are done as desribed above). In this module, if the ontrollerheats, that's beause at some point of the loop he does not satisfy y = 2x (resp.8



y = 3x), whih an be deteted by the environment going to the orrespondingtest module, or that's beause he will not be able to reah a loation labelledby R2 (or R3). In the �rst ase, a state labelled by T will be reahed (the playwill thus be winning), but the ost will be stritly greater than 3, whereas in theseond ase, the play will not be winning.Following the lines of [10℄ and our previous proof forWCTL:M halts i� the ontrollerhas a winning strategy in GM to enfore one of the states labelled by {Halt, T,R2, R3}with ost less than or equal to 3. This is true beause if the environment does notdo any unontrollable ation, then the ontroller will have to never wait in stateswith a positive ost (otherwise the global ost will be stritly greater than 3). If theenvironment does an unontrollable ation, it means that he wants to hek thatthe ontroller has played orretly, and if (and only if) the latter has really playedorretly, he will be able to reah a state labelled by T , R2 or R3 with ost less thanor equal to 3. Thus:Theorem 8 The problem of deiding whether there exists a winning strategy withost less than or equal to a given value in a WTG with three loks and one stopwathost is undeidable.7 ConlusionIn this paper, we have improved two undeidability results of [9,10℄ by dereasing thenumber of loks used in the redutions: both WCTL model-heking and optimaltimed games are undeidable with three loks and one stopwath ost. These boundsare quite tight, as the same problems with only one lok are deidable. We did notmanage to lose the gap, with WTAs having two loks, even when trying to enodeboth ounter with only one lok x = 1/(2c13c2). But on the other hand, for priedtimed automata with two loks and one stopwath, the oarsest bisimulation hasin general an in�nite index [11℄.Referenes[1℄ R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reahability in weighted timedgames. In Pro. 31st Int. Coll. Automata, Languages and Programming (ICALP'04),vol. 3142 of LNCS, pages 122�133. Springer, 2004.[2℄ R. Alur, C. Couroubetis, and D. Dill. Model-heking in dense real-time. Informationand Computation, 104(1):2�34, 1993.[3℄ R. Alur and D. Dill. A theory of timed automata. Theor. Comp. Si., 126(2):183�235,1994.[4℄ R. Alur, T. A. Henzinger, and P.-H. Ho. Automati symboli veri�ation of embeddedsystems. IEEE Trans. Soft. Engin., 22(3):181�201, 1996.[5℄ R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.In Pro. 4th Int. Workshop Hybrid Systems: Computation and Control (HSCC'01), vol.2034 of LNCS, pages 49�62. Springer, 2001.9
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