
Centre Fédéré en Véri�ationTehnial Report number 2005.71

Expand, Enlarge and Chek: new algorithms for theoverability problem of WSTS (extended version)
Gilles Geeraerts (ULB), Jean-François Raskin (ULB), Laurent Van Begin (ULB)

http://www.ulb.a.be/di/ssd/fvThis work was partially supported by a FRFC grant: 2.4530.02

Expand, Enlarge, and Check

New algorithms for the coverability problem of WSTS

G. Geeraerts 1, J.-F. Raskin 1, L. Van Begin 1,2

Département d’Informatique, Université Libre de Bruxelles

Boulevard du Triomphe, CP 212 – B-1050 Bruxelles

Telephone: +32 2 650 59 14 Telefax: +32 2 650 56 04

Abstract

In this paper, we present a general algorithmic schema called ‘Expand, Enlarge and
Check’ from which new algorithms for the coverability problem of WSTS can be
constructed. We show here that our schema allows us to define forward algorithms
that decide the coverability problem for several classes of systems for which the Karp
and Miller procedure cannot be generalized, and for which no complete forward
algorithms were known. Our results have important applications for the verification
of parameterized systems and communication protocols.

A preliminary version of this paper has been published as [1] in the proceedings
of FST&TCS 2004.

Key words: Well-structured transition systems, verification, coverability problem,
parameterized systems, Petri nets, lossy channel systems.

1 Introduction

Model-checking is nowadays widely accepted as a powerful technique for the
automatic verification of reactive systems that have natural finite state ab-
stractions. However, many reactive systems are only naturally modeled as
infinite-state systems. This is why a large research effort was done in the
recent years to allow the direct application of model-checking techniques to

Email addresses: gigeerae@ulb.ac.be (G. Geeraerts), jraskin@ulb.ac.be
(J.-F. Raskin), lvbegin@ulb.ac.be (L. Van Begin).
1 This author has been partially supported by the FRFC grant 2.4530.02.
2 This author has been supported by a “First Europe” grant EPH3310300R0012 of
the Walloon Region.

Preprint submitted to Elsevier Science 6 September 2006

infinite-state models. This research line has shown successes for several in-
teresting classes of infinite-state systems, for example: timed automata [2],
hybrid automata [3], FIFO channel systems [4–6], extended Petri nets [7,8],
broadcast protocols [9], etc.

General decidability results hold for a large class of infinite-state systems called
the well-structured transition systems, WSTS for short. WSTS are transition
systems whose sets of states are well-quasi ordered and whose transition re-
lations enjoy monotonicity properties with respect to the well quasi-ordering.
Examples of WSTS are Petri nets [10], monotonic extensions of Petri nets
(Petri nets with transfer arcs [11], Petri nets with reset arcs [12], and Petri
nets with non-blocking arcs [13]), Broadcast protocols [14], Lossy FIFO sys-
tems [5]. For all those classes of infinite-state systems, we know that an in-
teresting and large class of safety properties are decidable by reduction to the
coverability problem. The coverability problem is defined as follows: ‘given a
WSTS for the well-quasi order ≤, and two states of his c1 and c2, does there
exist a state c3 which is reachable from c1 and such that c2 ≤ c3 ?’ (in that
context, we say that c3 covers c2)

There exists a general algorithm to solve the coverability problem [15,16] which
is applicable to all the classes of infinite-state systems cited above as examples
of WSTS. Note that by algorithm, we mean a procedure that decides the
problem, and so, is guaranteed to terminate. This algorithm is symbolic: it
manipulates upward-closed sets of states (for the wqo) and applies a backward
exploration of the state space by iterating the Pre operator (a function that
returns all the states that have a one-step successor in a given set of states).
While very elegant, this backward algorithm is often inefficient in practice.
On the other hand, it is well-known that forward exploration of state spaces is
usually much more efficient [17]. Unfortunately, there is currently no general
forward algorithm that is able to solve the coverability problem for all the
examples above. In fact, with the notable exception of Petri nets for which
the Karp and Miller (KM, for short) procedure [18] is a forward algorithm
that solves the coverability problem, the forward approaches proposed in the
literature so far are incomplete.

Let us try to understand the rationale behind this situation. First, when ap-
plied to a Petri net, the KM procedure computes a finite representation of the
so-called covering set of the net, this set is the smallest downward-closed set
of markings that includes the set of reachable markings of the net. This set is
perfect to solve the coverability problem because for any marking m, the cov-
ering set covers m if and only if the set of reachable markings covers m. The
main ingredient of the KM procedure is a simple forward exploration of the
state space of the net combined with a simple acceleration technique. As this
procedure is simple and elegant, there have been several attempts to general-
ize it [19,14]. Unfortunately, those generalisations try to compute an effective

2

representation of the exact covering set. It has been shown later [12] that,
although this set always exists and has a finite representation, it is impossible
to construct it effectively, for all the examples of WSTS above, see [12,13] for
the details (with the exception of Petri nets). As a consequence, the recent
proposal of forward exploration techniques for WSTS have given up the idea of
completeness: either they are not guaranteed to terminate [14,20] or they are
approximate [21] (and they may be inconclusive on some examples). The main
contribution of this paper is to show that it is not necessary to give up the
idea of completeness when trying to define forward exploration techniques to
decide the coverability problem for a large class of WSTS. This class includes
all the classes of systems cited above as examples.

More precisely, we show that there exists a simple schema of algorithms, that
we call ‘Expand, Enlarge and Check’, which constructs a sequence of abstrac-
tions that are more and more precise. This schema is guaranteed to provide,
after a finite number of steps, an abstraction which is sufficiently precise to de-
cide the coverability problem. Those abstractions are constructed from reach-
able states together with elements taken in a well chosen domain of limits.
To show the practical interest of our method, we show how to obtain from
our general schema an efficient forward algorithm for a class of extended Petri
nets that subsumes Petri nets with transfer arcs, with reset arcs and with
non-blocking arcs. We also show that our method can similarly be applied to
the class of Lossy Channel Systems, and produce a forward algorithm for this
class of systems too.

Plan of the paper. The rest of this work is organized as follows. In section 2,
we recall several definition and results about well-quasi orderings, (effective)
well-structured transition systems, coverability sets (and their finite repre-
sentations), the coverability problem and And-Or graphs (and their related
avoidability problem). After these preliminaries, section 3 explains how we
compute under and over-approximations of the systems considered, and stud-
ies their properties. These two sorts of approximations will turn out to be the
basis of the ‘Expand, Enlarge and Check’ approach to solve the coverability
problem, which we discuss in section 4. Since ‘Expand, Enlarge and Check’ is
nothing but a general schema of algorithm, we provide the reader with practi-
cal evidence of its possible application to two important classes of WSTS (i.e.,
strongly monotonic Petri nets and lossy channel systems), in section 5 and 6
respectively. Finally, section 7 draws some conclusion.

Additional online material. A web page dedicated to ‘Expand, Enlarge
and Check’ is available at: http://www.ulb.ac.be/di/ssd/ggeeraer/eec/.
It provides an access to relevant papers, as well as a set of practical examples
we are able to verify thanks to the algorithms presented here.

3

2 Preliminaries

In this section, we recall some fundamental results about well-quasi orderings
and well-structured transition systems (the systems we analyze here). We show
how to finitely represent upward- and downward-closed sets of states (which
will allow us to devise symbolic algorithms). The definition of the coverability
problem is also recalled.

At the end of the section, we discuss And-Or graphs. These objects will be
useful to represent abstractions of systems, and we will need to decide whether
the set of executions represented by a given And-Or graph always leads to bad
states. This question is formalized by the And-Or graph avoidability problem.

Well quasi-orderings and adequate domains of limits. A well-quasi
ordering ≤ on the elements of a set C (wqo for short) is a reflexive and
transitive relation such that for any infinite sequence c0c1 . . . cn . . . of elements
in C, there exist two indices i and j, such that i < j and ci ≤ cj .

Let 〈C,≤〉 be a well-quasi ordered set. A ≤-upward-closed set U ⊆ C is such
that for any c ∈ U , for any c′ ∈ C such that c ≤ c′: c′ ∈ U . A ≤-downward
closed set D ⊆ C is such that for any c ∈ D, for any c′ ∈ C such that c′ ≤ c:
c′ ∈ D. It is well-known that any ≤-upward-closed set U ⊆ C is uniquely
determined by its finite set of minimal elements. Formally, a set of ≤-minimal
elements Min(U) of a set U ⊆ C is a minimal set such that Min(U) ⊆ U

and ∀s′ ∈ U : ∃s ∈ Min(U) : s ≤ s′. The following proposition is a direct
consequence of wqo:

Proposition 1 Let 〈C,≤〉 be a wqo set and U ⊆ C be an ≤-upward-closed
set, then: Min(U) is finite and U = {c | ∃c′ ∈ Min(U) : c′ ≤ c}.

Thus, any ≤-upward-closed set can be effectively represented by its finite set
of minimal elements. ≤-Downward-closed sets are more difficult to represent
effectively. To obtain a finite representation of those sets, we must use well-
chosen limit elements ℓ 6∈ C to represent ≤-downward-closures of infinite in-
creasing chains of elements. Thus, we introduce the notion of adequate domain
of limits.

Definition 1 Let 〈C,≤〉 be a well-quasi ordered set and L be a set of elements
disjoint from C, the tuple 〈L,⊑, γ〉 is called an adequate domain of limits for
〈C,≤〉 if the following conditions are satisfied:

(L1) representation mapping: γ : L∪C 7→ 2C associates to each element in L∪C

a ≤-downward-closed set D ⊆ C, furthermore, for any c ∈ C, we impose
that γ(c) = {c′ | c′ ≤ c}. In the following, γ is extended to sets S ⊆ L ∪ C

in the natural way: γ(S) = ∪c∈Sγ(c);

4

(L2) top element: there exists a special element ⊤ ∈ L such that γ(⊤) = C;
(L3) precision order : the elements of L ∪ C are ordered by the quasi-order ⊑,

defined as follows: d1 ⊑ d2 if and only if γ(d1) ⊆ γ(d2);
(L4) completeness: for any ≤-downward-closed set D ⊆ C, there exists a finite

set D′ ⊆ L ∪ C such that γ(D′) = D.

Well-structured transition systems and coverability problem. A tran-
sition system is a tuple S = 〈C, c0,→〉 where C is a (possibly infinite) set of
states, c0 ∈ C is the initial state,→⊆ C×C is a transition relation. In the fol-
lowing, c→ c′ will denote that (c, c′) ∈→. For any state c, Post(c) denotes the
set of one-step successors of c, i.e. Post(c) = {c′ | c→ c′}. This operator is ex-
tended to sets of states C ′ ⊆ C as follows: Post(C ′) = {c | ∃c′ ∈ C ′ : c′ → c}. A
path of S is a sequence of states c1, c2, . . . , ck such that c1 → c2 → · · · → ck. A
state c′ is reachable from a state c, noted c→∗ c′, if we have a path c1, c2, . . . , ck

in S with c1 = c and ck = c′. Given a transition system S = 〈C, c0,→〉,
Reach(S) denotes the set {c ∈ C | c0 →

∗ c}. Finally, we require a transition
system to be without deadlock states 3 . That is, for any state c ∈ C, there
exists c′ ∈ C such that c→ c′.

Definition 2 A transition system S = 〈C, c0,→〉 is a well-structured tran-
sition system for the quasi order ≤⊆ C × C if the two following properties
hold:

(W1) well-ordering: ≤ is a well-quasi ordering and
(W2) monotonicity: for all c1, c2, c3 ∈ C such that c1 ≤ c2 and c1 → c3, there

exists c4 ∈ C such that c3 ≤ c4 and c2 →
∗ c4.

Remark that, in this definition, condition W2 is more general than the classical
one-step monotonicity condition. Condition W2 can be found, for instance
in [16], where it is called ‘compatibility condition’.

From now on, S = 〈C, c0,→,≤〉 will denote the well-structured transition
system 〈C, c0,→〉 for ≤. In the sequel, we need to manipulate algorithmically
WSTS and adequate domain of limits. In particular, we need the following
effectiveness properties:

Definition 3 A WSTS S = 〈C, c0,→,≤〉 and an adequate domain of limits
〈L,⊑, γ〉 are effective if the following conditions are satisfied:

(E1) C and L are recursively enumerable;
(E2) for any c1, c2 ∈ C, we can decide whether c1 → c2;

3 Note that this condition is not restrictive since we can always add a self-loop on
the deadlock. Remark that this does not change the set of states that are covered
in the system.

5

(E3) for any d ∈ L ∪ C and for any finite subset D ⊆ L ∪ C, we can decide
whether Post(γ(d)) ⊆ γ(D);

(E4) For any finite subsets D1, D2 ⊆ L ∪ C, we can decide whether γ(D1) ⊆
γ(D2).

These four conditions are necessary to ensure the effectiveness and termina-
tion of the algorithms we are about to present. However, it is important to
remark that the domains proposed in the literature to handle forward analysis
of WSTS, respect these conditions. For instance, in sections 5 and 6, we recall
the domains of extended markings and simple regular expressions to handle
extended Petri nets and lossy channel systems respectively. From classical re-
sults of the literature, it is not difficult to deduce that conditions (E1) through
(E4) hold on these two domains.

Problem 1 The coverability problem for well-structured transition systems
is defined as follows: ‘Given a well-structured transition system S and the
≤-upward-closed set U ⊆ C, determine whether Reach(S) ∩ U = ∅ ?’

To solve the coverability problem, we use covering sets, defined as the downward-
closure of the set of reachable configurations:

Definition 4 Let S = 〈C, c0,→,≤〉 be a WSTS. The covering set of S, noted
Cover(S), is the set {c | ∃c′ ∈ Reach(S) : c ≤ c′}.

The following proposition states that the covering set is indeed suitable to
decide the coverability problem.

Proposition 2 ([19]) For any WSTS S = 〈C, c0,→,≤〉, the covering set of
S is such that for any ≤-upward-closed set U ⊆ C: Reach(S) ∩ U = ∅ if and
only if Cover(S) ∩ U = ∅.

Effective representation of the covering set. Let S = 〈C, c0,→,≤〉 be a
WSTS with an adequate domain of limits 〈L,⊑, γ〉 for 〈C,≤〉. By property L4

of Definition 1, there exists a finite subset CS(S) ⊆ L∪C such that γ(CS(S)) =
Cover(S). In the following, CS(S) is called a coverability set of the covering set
Cover(S) and it is a finite representation of that set.

And-Or graphs and their avoidability problem. An And-Or graph is a
tuple G = 〈VA, VO, vi,⇒〉 where V = VA ∪ VO is the set of nodes (VA is the
set of ‘And’ nodes and VO is the set of ‘Or’ nodes), VA ∩ VO = ∅, vi ∈ VO is
the initial node, and⇒⊆ (VA×VO)∪ (VO×VA) is the transition relation such
that for any v ∈ V , there exists v′ ∈ V with (v, v′) ∈⇒.

Definition 5 A compatible unfolding of an And-Or graph G = 〈VA, VO, vi,⇒〉
is an infinite labelled tree TG = 〈N, root , B, Λ〉 where: (i) N is the set of nodes
of TG, (ii) root ∈ N is the root of TG, (iii) B ⊆ N × N is the transition

6

relation of TG, (iv) Λ : N 7→ VA ∪ VO is the labelling function of the nodes of
TG by nodes of G. Λ respects the three following compatibility conditions (Λ
is extended to sets of nodes in the usual way):

(C1) Λ(root) = vi;
(C2) for all n ∈ N such that Λ(n) ∈ VA, we have that: (i) for all nodes v′ ∈ VO

such that Λ(n)⇒ v′, there exists one and only one n′ ∈ N such that B(n, n′)
and Λ(n′) = v′, and conversely (ii) for all nodes n′ ∈ N such that B(n, n′),
there exists v′ ∈ VO such that Λ(n)⇒ v′ and Λ(n′) = v′.

(C3) for all n ∈ N such that Λ(n) ∈ VO, there exists one and only one n′ ∈ N

such that B(n, n′), and Λ(n)⇒ Λ(n′);

Problem 2 The And-Or Graph Avoidability Problem is defined as follows:
‘Given an And-Or graph G = 〈VA, VO, vi,⇒〉 and a set E ⊆ VA∪VO, does there
exist T = 〈N, root , Λ, B〉, a compatible unfolding of G such that Λ(N) ∩E =
∅ ?’. When the answer is positive, we say that E is avoidable in G.

It is well-known that this problem is complete for PTIME [22].

3 Under and Over-approximations

In the present section, we define two kinds of (parameterized) approximations
of WSTS that will be used by our new schema of algorithm (which is discussed
in section 4).

We first explain, in section 3.1, how to build an underapproximation of a given
WSTS w.r.t. to a finite subset of reachable states C ′ ⊆ C. Intuitively, that
approximation contains all the traces of the WSTS that visit states of C ′ only.
It allows us to decide the positive instances of the coverability problem.

In section 3.2, we show how to build an overapproximation of a given WSTS,
w.r.t. a given finite set of reachable states C ′ ⊆ C and a given finite set of
limit elements L′ ⊆ L. These abstractions are And-Or graphs whose nodes are
annotated by ≤-downward-closed sets of states of a WSTS. We show that any
unfolding of this And-Or graph is able to simulate [23] the behaviours of its
associated WSTS (Proposition 3). Moreover, if the ≤-downward-closed sets
that are used to annotate the And-Or graph are precise enough (in a sense
that we make clear in Theorem 2), then the And-Or graph allows us to decide
negative instances of the coverability problem.

7

3.1 The C ′-Exact Partial Reachability Graph EPRG(S, C ′)

Given a WSTS S = 〈C, c0,→,≤〉 and a set C ′ ⊆ C (with c0 ∈ C ′), can build
the C ′-exact partial reachability graph (C ′-EPRG for short) EPRG(S, C ′). It is
an under-approximation of S (in the sense of Lemma 1). Let us first define
precisely the notion of C ′-EPRG:

Definition 6 Given a WSTS S = 〈C, c0,→,≤〉 and a set C ′ ⊆ C, the C ′-

EPRG of S is the transition system EPRG(S, C ′) =
〈
C ′, c0,

(
→ ∩(C ′×C ′)

)〉
.

The following lemmata state the usefulness of the C ′-EPRG to decide the
coverability problem. The first lemma states that these graphs are adequate
in the sense that when an ≤-upward-closed U is reachable in the C ′-EPRG, it
is also reachable in the corresponding WSTS.

Lemma 1 Given a WSTS S = 〈C, c0,→,≤〉, a finite set C ′ ⊆ C with c0 ∈
C ′ and an ≤-upward-closed U ⊆ C: If Reach(EPRG(S, C ′)) ∩ U 6= ∅ then
Reach(S) ∩ U 6= ∅.

The second lemma states the completeness of C ′-EPRG for some sets C ′ ⊆ C:
when a given upward-closed set U is actually reachable in a WSTS, there exists
a set C ′ ⊆ C that allows to prove the reachability of U thanks to the C ′-EPRG.

Lemma 2 Given a WSTS S = 〈C, c0,→,≤〉 and an ≤-upward-closed U ⊆ C:
if Reach(S) ∩ U 6= ∅, then there exists a finite set C ′ ⊆ C with c0 ∈ C ′ such
that Reach(EPRG(S, C ′)) ∩ U 6= ∅.

3.2 The And-Or Graph Abs(S, C ′, L′)

Let us now show how to over-approximate a WSTS S = 〈C, c0,→,≤〉. Just
as the EPRG was parameterized by a finite set of concrete elements, this over-
approximation relies upon C ′ ⊆ C, a finite set of concrete elements; and L′, a
finite set of limit elements. It has the form of an And-Or graph Abs(S, C ′, L′)
whose unfoldings all simulate S (as shown later, in Proposition 3):

Definition 7 Given a WSTS S = 〈C, c0,→,≤〉, an adequate domain of lim-
its 〈L,⊑, γ〉 for 〈C,≤〉, a finite subset C ′ ⊆ C with c0 ∈ C ′, and a finite
subset L′ ⊆ L with ⊤ ∈ L′, the And-Or graph G = 〈VA, VO, vi,⇒〉, noted
Abs(S, C ′, L′), is defined as follows:

(A1) VO = L′ ∪ C ′;
(A2) And-nodes are non empty subsets of L′ ∪ C ′ and contain ⊑-incomparable

elements only: VA = {S ∈ 2L′∪C′

\ {∅} | ∄d1 6= d2 ∈ S : d1 ⊑ d2};

8

(A3) vi = c0;
(A4.1) The successors of any And-node are Or nodes: (n1, n2) ∈⇒ with n1 ∈

VA, n2 ∈ VO if and only if n2 ∈ n1;
(A4.2) The successors of an Or-node n are all the most precise elements of L′ ∪C ′

that represent the set of successors of γ(n): for any n1 ∈ VO, n2 ∈ VA :
(n1, n2) ∈⇒ if and only if (i) successor covering: Post(γ(n1)) ⊆ γ(n2), (ii)
preciseness: ¬∃n ∈ VA : Post(γ(n1)) ⊆ γ(n) ⊂ γ(n2).

Notice that all the nodes of Abs(S, C ′, L′) have at least one successor. Indeed,
for all n ∈ VA, since n 6= ∅ (following point A4.1 and point A2 of Definition 7),
n has at least one successor. Since, by point A2 of Definition 7, And-nodes
are subsets of L′ ∪ C ′ that do not contain comparable elements, and since
⊤ ∈ L′, with γ(⊤) = C, by point L2 of Definition 1, there exists an And node
which is exactly {⊤}. Hence, for any n ∈ VO, we can always approximate the
(non-empty) set of successors of γ(n), and we are guaranteed that n will have
at least one successor (point A4.2 of Definition 7).

Given a WSTS S = 〈C, c0,→,≤〉, an associated And-Or graph Abs(S, L′, C ′) =
〈VA, VO, vi,⇒〉, and an ≤-upward-closed set of states U ⊆ C, we denote by U
the set of nodes v ∈ VA ∪ VO such that γ(v) ∩ U 6= ∅, that is, the set of nodes
whose associated ≤-downward-closed set of states intersects with U .

Degenerated case. If an And-Or graph is such that any Or-node has exactly
one successor, the And-Or graph is said to be degenerated. In that case, the
avoidability problem is equivalent to the (un)reachability problem in a plain
graph. From the definition of Abs(S, C ′, L′), we can easily see that the And-Or
graph will be degenerated if for any d ∈ L′∪C ′, there exists a unique minimal
set γ(D) such that D ∈ VA and Post(γ(d)) ⊆ γ(D). This motivates the next
definition:

Definition 8 Given a WSTS S = 〈C, c0,→,≤〉 and an adequate domain of
limits 〈L,⊑, γ〉 for 〈C,≤〉, we say that a pair 〈C ′, L′〉, where C ′ ⊆ C with
c0 ∈ C and L′ ⊆ L with ⊤ ∈ L′, is perfect if for any d ∈ L′ ∪ C ′, there exists
a unique minimal set D ⊆ L′ ∪ C ′ such that (i) Post(γ(d)) ⊆ γ(D) and (ii)
there is no D′ ⊆ L′ ∪ C ′ with Post(γ(d)) ⊆ γ(D′) ⊂ γ(D).

Lemma 3 Given a WSTS S = 〈C, c0,→,≤〉, an adequate domain of limits
〈L,⊑, γ〉 for 〈C,≤〉, a finite subset C ′ ⊆ C with c0 ∈ C ′, and a finite subset
L′ ⊆ L with ⊤ ∈ L′: if 〈C ′, L′〉 is perfect, then Abs(S, C ′, L′) is a degenerated
And-Or graph.

Properties. Let us now prove important properties of Abs(S, C ′, L′) that
show how it is related to the coverability problem. More precisely, we first
prove that, for any pair 〈C ′, L′〉 such that c0 ∈ C ′ and ⊤ ∈ L′, this abstraction
is adequate to decide negative instances of the coverability problem (Theo-
rem 1). Then, we prove that, for some pair 〈C ′, L′〉, it is complete to decide

9

negative instances (Theorem 2). To establish those results, we first show that
Abs(S, C ′, L′) can simulate its corresponding WSTS for any 〈C ′, L′〉 such that
c0 ∈ C ′ and ⊤ ∈ L′:

Proposition 3 (Simulation) Given a WSTS S = 〈C, c0,→,≤〉 with an ade-
quate domain of limits 〈L,⊑, γ〉 for 〈C,≤〉, the following holds for any C ′ ⊆ C

with c0 ∈ C ′ and L′ ⊆ L with ⊤ ∈ L′: for any path c0c1 . . . ck of S and any
unfolding T = 〈N, root, B, Λ〉 of Abs(S, C ′, L′) there exists a path n0n1 . . . n2k

of T with n0 = root and ci ∈ γ(Λ(n2i)) for any 0 ≤ i ≤ k.

Proof. Let c0, . . . , ck be a path of S. For any unfolding, we will show, by in-
duction on the length k of the path in S, that there exists a path n0n1 . . . n2k

of the unfolding such that ci ∈ γ(Λ(n2i)) for all i such that 0 ≤ i ≤ k.
Base case: The base case is trivial since Λ(root) = c0 following A3 and C1.
Induction step: Suppose that there exists a path P = n0, . . . , n2i (i < k)
of the unfolding, such that cj ∈ γ(Λ(n2j)) for all j such that 1 ≤ j ≤ i.
Let us show that there exists a path n0 . . . n2(i+1) of the unfolding, where
cj ∈ γ(Λ(n2j)) for all j such that 1 ≤ j ≤ i + 1. Since ci → ci+1, from point
A4.2 of Definition 7, all the And-nodes v = {d1, . . . , dℓ} in Abs(S, C ′, L′) with
Λ(n2i)⇒ v are such that ci+1 ∈ γ(dj) for some 1 ≤ j ≤ ℓ. Hence, following C3,
the successor of n2i in the unfolding is an And-node n with Λ(n) = {d1, . . . , dℓ}
such that ci+1 ∈ γ(dj) for some 1 ≤ j ≤ ℓ. Moreover, following A4.1 and C2,
each And-node v has a successor v′ such that Λ(v′) = dj. Thus, ci+1 ∈ γ(Λ(v′)).
We conclude that in the path P extended with the nodes v and v′, each Or-
node n2j covers its corresponding cj , i.e., cj ∈ γ(Λ(n2j)). 2

Theorem 1 states the adequacy of the And-Or graph to decide the negative
instances of the coverability problem.

Theorem 1 (Adequacy) Given a WSTS S = 〈C, c0,→,≤〉, an adequate
domain of limits 〈L,⊑, γ〉 for 〈C,≤〉, and an ≤-upward-closed set U ⊆ C, the
following holds for any C ′ ⊆ C with c0 ∈ C ′ and L′ ⊆ L with ⊤ ∈ L′: if U is
avoidable in Abs(S, C ′, L′), then Reach(S) ∩ U = ∅.

Proof. We prove the contraposition: suppose that Reach(S)∩U 6= ∅. Hence,
there exists a path c0, . . . , ck in S with ck ∈ U . From Proposition 3, there
exists in any unfolding T = 〈N, root, B, Λ〉 of Abs(S, C ′, L′), a path n0 . . . n2k

with n0 = root and ci ∈ γ(Λ(n2i)), for all i such that 0 ≤ i ≤ k. We conclude
that Λ(N) ∩ U 6= ∅ and get the theorem. 2

Finally, we prove a theorem of completeness. Intuitively, Theorem 2 says that,
when the pair 〈C ′, L′〉 is precise enough, Abs(S, C ′, L′) allows us to decide
negative instances of the coverability problem. To prove that theorem, we first
prove Lemma 4 that says that, if L′ ∪ C ′ contains a coverability set and the

10

≤-upward-closed set U of configurations is not reachable into the WSTS, then
there exists an unfolding that does not intersect with U .

Lemma 4 Given a WSTS S = 〈C, c0,→,≤〉, an adequate domain of limits
〈L,⊑, γ〉 for 〈C,≤〉 and an ≤-upward-closed set U ⊆ C, the following holds for
any C ′ ⊆ C with c0 ∈ C ′ and L′ ⊆ L with ⊤ ∈ L′ such that CS(S) ⊆ L′ ∪ C ′:
if Reach(S) ∩ U = ∅ then there exists an unfolding T = 〈N, root, B, Λ〉 of
Abs(S, C ′, L′) such that ∀n ∈ N : γ(Λ(n)) ∩ U = ∅.

Proof. We construct such an unfolding by induction, and use Proposition 2
to conclude. More precisely, we show how to compute an unfolding whose
nodes n are such that γ(Λ(n)) ⊆ γ(CS(S)). Following Proposition 2 and the
fact that Reach(S) ∩ U = ∅, that implies that γ(Λ(n)) ∩ U = ∅ for all the
nodes n of the unfolding.

Base case: Notice that root = c0 following C1 and A3, and c0 ∈ γ(CS(S))
following Definition 4. Moreover, Post(γ(c0)) ⊆ γ(CS(S)). Indeed, following
W2, ∀c ∈ γ(c0), ∀c

′ : c → c′, there exists c′′ ∈ C such that c0 →
∗ c′′ with

c′ ≤ c′′. Since c′′ ∈ γ(CS(S)) and CS(S) is ≤-downward-closed, we have that
c′ ∈ CS(S) and we conclude that Post(γ(c0)) ⊆ γ(CS(S)).

Following A4.2, there exists v ∈ VA (the set of And-nodes) with vi ⇒ v and
γ(v) ⊆ γ(CS(S)) since v satisfies the preciseness property of A4.2 and CS(S)
covers the successors of vi. Thus, we extend the unfolding by choosing such
an And-node v and add one successor node n to root such that Λ(n) = v.

Induction step: Suppose that we can construct 2k layers of the unfolding
such that for all the nodes n of the 2k first layers, γ(n) ⊆ γ(CS(S)). Let us
show that we can construct 2k + 2 layers such that for all the nodes n of the
2k + 2 first layers, γ(n) ⊆ γ(CS(S)).

By induction hypothesis, all the And-nodes n in the 2k-th layer are such that
Λ(n) = {d1, . . . , dℓ} and γ(Λ(n)) ⊆ γ(CS(S)). Since, following A4.1, all the
successors nodes v of Λ(n) in Abs(S, C ′, L′) are such that v ∈ Λ(n), we have
that γ(v) ⊆ γ(CS(S)). We conclude, following C2, that all the Or-nodes n′ of
the 2k + 1-th layer are such that γ(Λ(n′)) ⊆ γ(CS(S)).

For each node n of the 2k + 1-th layer, since S is monotonic (W2) and γ(n) ⊆
γ(CS(S)), we have that ∀c ∈ γ(n), ∀c′ s.t. c→ c′, there exists c′′ ∈ Reach(S) :
c ≤ c′′ and c′′ →∗ c′′′ with c′ ≤ c′′′ and c′′′ ∈ γ(CS(S)). Since γ(CS(S)) is
≤-downward-closed we obtain that Post(γ(n)) ⊆ γ(CS(S)) for all the nodes n

of the 2k + 1-th layer.

Moreover, there exists following A4.2 an And-node v with γ(v) ⊆ γ(CS(S))
and Λ(n)⇒ v since v satisfies the preciseness property of A4.2 and CS(S) cov-
ers the successors of γ(Λ(n)). So, we extend the unfolding by choosing such a

11

node v and add one successor n′ to n such that Λ(n′) = v. That allows us to
conclude that we can construct the 2k +2-th first layers of the unfolding with
the property that all the nodes n are such that γ(Λ(n)) ⊆ CS(S). 2

Theorem 2 (Completeness) Given a WSTS S = 〈C, c0,→,≤〉, an ade-
quate domain of limits 〈L,⊑, γ〉 for 〈C,≤〉 and an ≤-upward-closed set U ⊆ C,
the following holds for any C ′ ⊆ C with c0 ∈ C ′ and L′ ⊆ L with ⊤ ∈ L′ such
that CS(S) ⊆ L′∪C ′: if Reach(S)∩U = ∅ then U is avoidable in Abs(S, C ′, L′).

Proof. As Reach(S)∩U = ∅, there exists, form Lemma 4, an unfolding that
does not intersect with U , which means that U is avoidable in Abs(S, C ′, L′). 2

4 The ‘Expand, Enlarge and Check’ algorithm

On the basis of the results presented in section 3, we now propose a new algo-
rithmic schema to decide the coverability problem of effective WSTS (in the
sense of Definition 3). It works by iteratively constructing pairs of approx-
imations (under and overapproximations) of the WSTS which become more
and more precise. After a finite number of steps either a concrete trace to a
covering state will be found, or precise enough abstraction will be computed
to prove that no covering state can ever be reached. This informal statement
is formalized in Theorem 3.

Let C0, C1, . . . , Cn, . . . be an infinite sequence of finite sets of reachable states
of S such that (i) ∀i ≥ 0 : Ci ⊆ Ci+1, (ii) ∀c ∈ Reach(S) : ∃i ≥ 0 : c ∈ Ci,
and (iii) c0 ∈ C0. Let L0, L1, . . . , Ln, . . . be a infinite sequence of finite sets
of limits such that (i) ∀i ≥ 0 : Li ⊆ Li+1, (ii) ∀ℓ ∈ L : ∃i ≥ 0 : ℓ ∈ Li and
(iii) ⊤ ∈ L0. Those sequences of sets exist because C and L are recursively
enumerable, by E1. Remark that these conditions imply that, for any finite
subset D of C (resp. L ∪ C), there exists i (resp. j) such that D ⊆ Ci (resp.
D ⊆ Lj ∪Cj). The schema is given at Algorithm 1 and its proof of correctness
is stated in Theorem 3.

Theorem 3 For any WSTS S with adequate domain of limits 〈L,⊑, γ〉 that
are effective, for any ≤-upward-closed set U represented by Min(U), Algo-
rithm 1 terminates after a finite amount of time and returns ‘Reachable’ if
Reach(S) ∩ U 6= ∅, ‘Unreachable’ otherwise.

Proof. Let us first prove that the body of the main loop always terminate.
In order to establish this, let us notice that Ci is finite for all i ≥ 0, that the
transition relation → is decidable (following E2) and that ≤ is decidable too.

12

Algorithm 1: Abstract algorithm

Data : a finite representation of a WSTS S = 〈C, c0,→,≤〉 with the adequate
limit domain 〈L,⊑, γ〉 for 〈C,≤〉

Data : a finite representation of an ≤-upward-closed set of states U ⊆ C

begin
i← 0;
while (true) do

‘Expand’

Compute EPRG(S, Ci);

‘Enlarge’

Compute Abs(S, Ci, Li);

‘Check’

if Reach(EPRG(S, Ci)) ∩ U 6= ∅ then
return ‘Reachable’ ;

else if U is avoidable in Abs(S, Ci, Li) then
return ‘Unreachable’ ;

i← i + 1;

end

Hence we can test whether Reach(EPRG(S, Ci)) ∩ U 6= ∅ for all i ≥ 0. Then,
let us remark that the And-Or graph, as well as U are both constructible,
because of the effectiveness properties of Definition 3. Hence, we can effectively
test whether U is avoidable in Abs(S, Ci, Li) (remember that the avoidability
problem is Ptime-complete).

It remains to prove that the algorithm returns a correct answer after a finite
number of iterations of the loop.

If Reach(S) ∩ U 6= ∅, U is not avoidable in Abs(S, Ci, Li) for all i ≥ 0 (by
Theorem 1). Moreover, following Lemma 2 there is j s.t. Reach(EPRG(S, Cj))∩
U 6= ∅. We conclude that Algorithm 1 returns ‘Reachable’ if Reach(S)∩U 6= ∅.

If Reach(S)∩U = ∅, then, following Lemma 1, Reach(EPRG(S, Ci))∩U = ∅ for
all i ≥ 0. Moreover, there exists i ≥ 0 such that CS(S) ⊆ Li ∪Ci. Hence, from
Lemma 4, U is avoidable in Abs(S, Ci, Li) and we conclude that Algorithm 1
returns ‘Unreachable’ if Reach(S) ∩ U = ∅. 2

Remark 1 Note that Theorem 3, that states the adequation and completeness
of our algorithmic schema (for the coverability problem of effective WSTS), is
not in contradiction with the result of [12] which establishes that there does
not exist a procedure that always terminates and returns a coverability set for
a large class of WSTS, including ours. Indeed, to establish the correctness of

13

5

0

ℓ

2 4 6

1 3

ℓe

ℓ2
ℓo

Fig. 1. The configurations of SN and the limits that cover them.

our algorithm, we only need to ensure that a coverability set will eventually be
included in the sequence of Ci’s and Li’s. Nevertheless, given a pair 〈Ci, Li〉, it
is not possible to establish algorithmically that this pair contains a coverability
set. Furthermore, given a particular ≤-upward-closed set U , our algorithm
may terminate before reaching a pair 〈Ci, Li〉 that contains a coverability set,
because the set U is reachable or because the abstraction constructed from a
pair 〈Cj, Lj〉, with j < i, is sufficiently precise to prove that U is not reachable.

Remark 2 Note that the constraints on the sequence of Li’s computed by Al-
gorithm 1 may be relaxed. Indeed, those constraints ensure that the algorithm
eventually considers a set of limits which allows to construct a graph that is
precise enough to decide negative instances of the coverability problem. How-
ever, following Theorem 2, it is sufficient to ensure that there exists i ≥ 0 such
that Li ∪Ci contains a coverability set. Hence, only the limits of a coverability
set must appear in the sequence of Li’s.

Remark 3 In order to convince the reader that the And-Or graph is neces-
sary to build precise abstractions of WSTS, we discuss the following example.
Consider the WSTS SN = 〈N, 0,→,≤p〉, where:

(1) →= {(i, i + 2) | i ≥ 0}
(2) ≤p= {(i, i + 2j) | i ≥ 1, j ≥ 0}

Thus, the state space of this system contains two infinite ascending chains:
2, 4, 6, . . . and 1, 3, 5, . . . Remark that 0, the initial state, is incomparable to
any other state and that only the ascending chain of even number is reachable.

Let us fix the adequate domain of limits for SN defined as: L = {ℓ, ℓe, ℓo, ℓ2,⊤},
where (Fig. 1 depicts this):

(1) γ(ℓ) = N \ {0};
(2) γ(ℓe) = {2, 4, 6, . . .};
(3) γ(ℓo) = {1, 3, 5, . . .};
(4) γ(ℓ2) = {1, 2};
(5) γ(⊤) = {0, 1, 2 . . .}.

Thus, the coverability set of the system is CS(SN) = {0, ℓe}.

14

Let us now fix C ′ = {0} and L′ = {ℓ, ℓe, ℓ2,⊤}, and let us build Abs(SN, C ′, L′).
Remark that CS(SN) ⊆ L′ ∪C ′. We obtain the And-Or graph of Fig. 2 (where
And-nodes are represented by rectangles and Or-nodes are represented by el-
lipses). Indeed, ℓe and ℓ2 are two incomparable limits which are both suitable
to cover the one-step successor of the initial configuration. However, while ℓe

is sufficient to cover all the successors of 0, we need ℓ to over-approximate the
successors of ℓ2.

ℓ2ℓ2

ℓe

ℓ ℓ

0

Unsafe nodes

ℓe

Fig. 2. The And-Or graph obtained with C ′ and L′

Finally, let us chose the ≤p-upward-closed set of bad states U = {i | 1 ≤p i}.
Remark that the system is safe w.r.t. U , since only even natural numbers
(which are all ≤p-incomparable to 1) can be reached. But, due to the coarse
over-approximation, one of the unfoldings of the And-Or graph intersects with
U (see Fig. 2). And this happens even though all the elements of the cov-
erability set are present in L′ ∪ C ′. Thus, one cannot thoroughly represent
this over-approximation of the system thanks to a plain graph. Otherwise, one
would have to chose the right successor of the initial node. At each step i of
the algorithm, an exponential number of such plain graphs could have to be
constructed, in order to test for all the possible choices. Such a procedure is
clearly less efficient than the PTime algorithm that decides the avoidability on
And-Or graphs. Remark that all the possible graphs have to explored at each
step, otherwise the algorithm could never terminate. This happens, e.g. if the
system is safe and the only abstractions the algorithm builds are repeatedly too
coarse.

5 Application to Self-modifying Petri nets

Let us show how to apply the approach proposed in the previous section to
solve the coverability problem for a large subclass of Self-modifying Petri nets
[24] (SMPN), a general extension of Petri nets that includes, to the best of our
knowledge, all the monotonic extensions of Petri nets defined in the literature
and for which, so far, there was no complete forward procedure.

In subsection 5.1, we present our subclass of SMPN, called strongly mono-
tonic self-modifying Petri nets. In subsection 5.2, we instantiate the schema
of algorithm presented in section 4 to the case of strongly monotonic SMPN.
We first define the set of limits we will consider and how to construct the

15

sequences of Ci’s and Li’s. Then, we show that in this particular case, the
And-Or graph one obtains is degenerated (Corollary 2). As a consequence, we
deduce a simpler algorithm, that contains a decision procedure for the classical
graph reachability problem instead of the avoidability problem in an And-Or
graph.

5.1 Self-modifying Petri nets

A Self-Modifying Petri net [24], SMPN for short, is a tuple 〈P, T, D−, D+,m0〉.
P = {p1, . . . , pkP

} is a finite set of places. A marking is a function m : P 7→ N
that assigns a natural value to each place. In the following, markings are also
seen as tuples in NkP where the ith dimension is the value assigned to place
pi. T = {t1, . . . , tkT

} is a finite set of transitions. For any 1 ≤ i ≤ kT and any
1 ≤ j ≤ kP , D−

ij : NkP 7→ N and D+
ij : NkP 7→ N describe respectively the

input and output effect of transition ti on place pj . Namely, D−
ij and D+

ij are
functions of the marking m of the form α+

∑
k=1..kP

βk·m(pk) where α∈N and
βk∈N for all 1 ≤ k ≤ kP . m0 is the initial marking of the SMPN.

We define the quasi order 4⊆ NkP×NkP on markings such that 〈m1,. . .,mkP
〉 4

〈m′
1,. . .,m

′
kP
〉 if mi ≤ m′

i for all 1 ≤ i ≤ kP . It is well-known that 4 is a well-
quasi ordering.

A transition ti is firable from a marking m if m(pj) ≥ D−
ij(m) for all pj ∈ P .

Firing ti from m leads to a marking m′ ∈ NkP , noted m →ti m′, which is
computed as follows. First, we compute m′′, s.t. for any pj ∈ P : m′′(pj) =
m(pj)−D−

ij(m). Then, we let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) +
D+

ij(m). Remark that these two steps can be swapped when we manipulate
(plain) markings of SMPN. However, the order of these steps will become
relevant when we will manipulate extended markings, as defined in section 5.2.
Given a set S of markings and a transition ti, Post(S, ti) = {m′ | ∃m ∈ S :
ti is firable from m and m→ti m′}.

A SMPN P defines a transition system TP = 〈NkP ,m0,→〉 where →⊆ NkP ×
NkP is a transition relation and is such that we have 〈m,m′〉 ∈→, noted
m → m′, if and only if there exists ti ∈ T such that ti is firable from m and
m→ti m′.

A SMPN P is 4-monotonic when the underlying transition system TP satisfies
the monotonicity property for 4. A SMPN P is 4-strongly monotonic when
for every transition ti and markings m1,m2 and m3, the following holds:
if m1 →ti m3 and m1 4 m2, there exists m4 such that m2 →ti m4 and
m3 4 m4. Obviously, all the 4-strongly monotonic SMPN are 4-monotonic.

We say that a transition t is unfirable, whenever there exists no marking m

16

such that t is enabled in m. In the following, we assume that the SMPN we
consider do not contain unfirable transitions. The following lemma defines the
syntactical subclass of SMPN that are 4-strongly monotonic.

Lemma 5 Given a SMPN P = 〈P, T, D−, D+,m0〉 without unfirable transi-
tions, P is 4-strongly monotonic if and only if for all ti ∈ T, pj ∈ P : D−

ij = α

with α ∈ N or D−
ij = m(pj).

Proof. ⇒ Suppose that it is not the case, that is P is 4-strongly monotonic
and there exist ti ∈ T, pj ∈ P such that D−

ij is not of the form α with α ∈ N
or m(pj). Let D−

ij =
∑

pk∈P βk ·m(pk) + α. We consider two cases:

(1) βj > 1 or (βj = 1 and α > 0). In both cases, ti is unfirable, which
contradicts the hypothesis.

(2) βj = 0 or (βj = 1 and α = 0). Since D−
ij is not of the form α or m(pj),

there is k′ 6= j such that βk′ > 0. By hypothesis, ti is firable from at least
one marking m. Let us construct the marking m′ as follows: ∀pk 6= pk′ ∈
P : m′(pk) = m(pk), and m′(pk′) = m(pk′)+m(pj)+ 1. By construction,
m 4 m′ but ti is not firable from m′. Indeed, for ti to be firable we
should have m′(pj) = m(pj) ≥ D−

ij(m
′) ≥ βk′ ·

(
m(pk′) + m(pj) + 1

)
.

Since βk′ > 0, this is not possible. We conclude that P is not 4-strongly
monotonic.

In both cases, we obtain a contradiction.

⇐We proceed by contradiction. Suppose that P is not 4-strongly monotonic
but for all ti ∈ T, pj ∈ P : D−

ij = α with α ∈ N or D−
ij = m(pj). Hence there

exists three markings m1,m2 and m3 and a transition ti such that m1 →ti m3,
m1 4 m2 and there does not exist a marking m4 such that m2 →ti m4 and
m3 4 m4.

Since m1 4 m2 and m1(pj) ≥ D−
ij(m1) for all pj ∈ P , m2(pj) ≥ D−

ij(m2) for
all pj ∈ P . As a consequence, ti is firable from m2. Suppose that m2 →ti m4.

Let m′
k (k ∈ {1, 2}) be such that m′

k(pj) = mk(pj)−D−
ij(mk) for all pj ∈ P .

Since m1 4 m2, m′
1 4 m′

2. Moreover, we have that D+
ij(m1) ≤ D+

ij(m2)
for all j such that 1 ≤ j ≤ |P |. Since m3(pj) = m′

1(pj) + D+
ij(m1) and

m4(pj) = m′
2(pj) + D+

ij(m2) for all pj ∈ P , we conclude that m3 4 m4 and
we obtain a contradiction. 2

Although the class of 4-strongly monotonic SMPN form a sub-class of SMPN,
it remains a general class of monotonic systems. Indeed, almost all the mono-
tonic extensions of Petri nets studied in the literature are syntactical sub-
classes of 4-strongly monotonic SMPN, because they can be defined by im-
posing constraints on the linear expressions that express the effect of the tran-

17

sitions. Examples of such extensions are Petri nets with transfers [11], with
reset [25] and Post self-modifying Petri nets [24]. On the other hand, Petri
nets with non-blocking arcs (PN+NBA, for short) [13] and lossy Petri nets
[26] are not syntactical sub-classes of 4-strongly monotonic SMPN. But, for
any PN+NBA or lossy Petri net, we can construct (in polynomial time) an
SMPN with the same set of places that is equivalent to the original net with
respect to the coverability problem. So, to the best of our knowledge, the algo-
rithm that we propose in the next section is a forward algorithm that decides
the coverability problem for all monotonic extensions of Petri nets proposed
in the literature.

5.2 A forward algorithm to decide the coverability problem for strongly mono-
tonic SMPN

Domain of Limits. We will consider the domain of limits 〈L, 4e, γ〉 where
L = (N ∪ {+∞})k \ Nk, 4e⊆ (N ∪ {+∞})k × (N ∪ {+∞})k is such that
〈m1, . . . , mk〉 4e 〈m

′
1, . . . , m

′
k〉 if and only if ∀1 ≤ i ≤ k : mi ≤ m′

i where
c < +∞ for all c ∈ N. γ is defined as: γ(m) = {m′ ∈ Nk | m′ 4e m}. In the
following, tuples in L are called extended markings. We also note m1 ≺e m2

when m1 4e m2 but m2 64e m1. Notice that in the present case, the ⊤ element
(with γ(⊤) = Nk) is the extended marking that assigns +∞ to all the places.
One can remark that the following property holds on extended markings:

Property 1 Given an extended marking m and a finite set of extended mark-
ings S = {m1,m2, . . . ,mn}, the following property holds: γ(m) ⊆ γ(S) if and
only if there exists 1 ≤ i ≤ n s.t. m 4e mi.

It is also useful to remark that any downward-closed set in this domain can
be uniquely and finitely represented by a set of extended markings, as stated
by the next lemma:

Lemma 6 For any 4e-downward-closed set D in Nk there exists a set D ⊆(
N ∪ {+∞}

)k
which:

(1) is a generator of D: γ(D) = D;
(2) is minimal: for any m1,m2 ∈ D, m1 6= m2 implies that m1 64e m2;
(3) is finite;
(4) is unique.

Proof. The proof is constructive: for any 4e-downward-closed D ⊆ Nk, we
show, by induction on k, how to construct a finite and minimal representation
of D (points 1 through 3). Then, we prove that is representation is unique
(point 4).

18

Base Case k = 1 We consider two cases: either D = {n|n ≤ m} or D = N.
In the former case, D is represented by 〈n〉, in the latter, by 〈+∞〉. It is not
difficult to see that this representation is both unique and minimal.

Inductive Case k = i+1. Let Di
m be the set {〈m1, . . . , mi〉|〈m1, . . . , mi, m〉 ∈

D}. Intuitively, Di
m is the projection on the i first coordinates of all the mark-

ings of D whose i+1st coordinate is equal to m. Clearly, Di
m is a 4e-downward

closed set. By induction hypothesis, Di
m is representable by an unique minimal

finite set Ri
m ⊆ (N ∪ {+∞})i, for every m ∈ N.

Let M = ∪m∈NRi
m. Clearly:

D =
⋃

〈m1,...,mi〉∈M

 ⋃

n∈N

{〈m′
1, . . . , m

′
i, n〉 ∈ D | ∀1 ≤ j ≤ i : m′

j ≤ mj}

Let us show that this union allows us to find a finite representation for D.
For this purpose, we first show that the set M is finite, hence the outermost
union in the above representation is finite too. Then, we show that for each
m = 〈m1, . . . , mi〉 ∈ M , the set S

m
= ∪n∈N{〈m

′
1, . . .m

′
i, n〉 ∈ D | ∀1 ≤ j ≤ i :

m′
i ≤ mi} can be finitely represented.

M is finite Suppose it is not the case. As each Ri
m is finite, there exists an

infinite sequence Ri
m1

, Ri
m2

, . . . , Ri
mj

, . . . in which all the Ri
mj

are not empty
(for any j ≥ 1). From this sequence, let us build an infinite sequence of
markings m1,m2, . . . ,mj , . . . such that ∀j ≥ 1 : mj ∈ Ri

π(j) and π(j) <

π(j+1). Since 4e is a wqo, one can find ℓ1 and ℓ2 s.t. ℓ1 < ℓ2 and mℓ1 ≺e mℓ2 .
Since mℓ2 ∈ Ri

π(ℓ2), any marking 4 n 4e 〈mℓ2 , π(ℓ2)〉 is in D. But since
π(ℓ1) < π(ℓ2), we have: 〈mℓ2 , π(ℓ1)〉 ≺e 〈mℓ2 , π(ℓ2)〉. Hence, for any marking
n 4e 〈mℓ2 , π(ℓ1)〉: n ∈ D. Thus {m′ | m′ 4 mℓ2} ⊆ Di

π(ℓ1), by definition

of Di
π(ℓ1). Otherwise stated, γ(mℓ2) ⊆ Di

π(ℓ1)
, and thus γ(mℓ2) ⊆ γ(Ri

π(ℓ1)),

by definition of Ri
π(ℓ1). Following Property 1, this implies that there exists

m ∈ Ri
π(ℓ1) with mℓ2 4e m, and thus mℓ1 ≺e m, since mℓ1 ≺e mℓ2 .

We conclude that Ri
π(ℓ1) contains two different comparable markings m

and mℓ1 , and is thus not minimal, which contradicts the induction hypoth-
esis.

S
m

can be finitely represented For any m = 〈m1, . . . , mi〉, we show how
to construct R

m
, a finite representation for S

m
. We consider two cases:

either, there exists c such that {〈m′
1, . . . , m

′
i, c + 1〉 ∈ S

m
| ∀1 ≤ j ≤

i : m′
i ≤ mi} is empty, or there is no such c. In the first case, the finite

representation is: R
m

= 〈m1, . . . , mi, d〉, where d is the least natural number

4 Throughout this part of the proof, we will explicitely use the word marking to
differentiate the plain markings (that do not contain +∞), from the extended mark-

ings.

19

such that {〈m′
1, . . . , m

′
i, d + 1〉 ∈ S

m
| ∀1 ≤ j ≤ i : m′

i ≤ mi} is empty. In
the latter case, it is R

m
= 〈m1, . . . , mi, +∞〉.

Now let D = {R
m
| m ∈ M ∧ ∄m′ ∈ M : m′ 6= m ∧ R

m
4e R

m
′}. We

have already shown that this set is a finite representation of D. It is clearly
minimal.

We now show that there exists a unique minimal finite set D such that γ(D) =
D. This can be done by contradiction: suppose there is another minimal finite
set D′ of markings that represents D. Without loss of generality, that means
that there exists m ∈ D such that m 6∈ D′. Since ∀m′ ∈ γ(m) : m′ ∈ D

and γ(D′) = D by hypothesis, we have following Property 1 that there exists
m′ ∈ D′ : m ≺e m′. Since γ(m) ⊂ γ(m′) and γ(D) = D, we conclude, by
Property 1, that there exists m′′ ∈ D : m ≺e m′′. Hence, D is not minimal,
which is a contradiction.

We conclude that D is indeed a finite, unique and minimal representation of
D ⊆ Ni+1. 2

A direct consequence of this lemma and of the definition of γ, is given by this
corollary:

Corollary 1 〈L, 4e, γ〉 is an adequate domain of limits for 〈Nk, 4〉.

Approximation of the successors. Given a 4-strongly monotonic SMPN

P, we extend the underlying transition relation from markings to extended
markings by assuming that +∞ + +∞ = +∞, +∞ − +∞ = 0, c · +∞ =
+∞ for all c ∈ N \ {0}, 0 · +∞ = 0, +∞ + c = +∞ for all c ∈ Z. For
example, let us suppose that for some place j and some transition i, we have
D−

ij(m) = m(pj), D+
ij = 5, and D−

ik(m) = D+
ik(m) = 0 for any k 6= j. Let us

consider the extended marking m s.t. m(pj) = +∞, and let us compute m′

s.t. m→ti m′. According to the definition of→, we first compute m′′, which is
s.t. m′′(pj) = m(pj)−D−

ij(m) = +∞−+∞ = 0, and m′′(pk) = m(pk), for any
k 6= j. Then, we obtain m′, by letting m′(pj) = m′′(pj)+D+

ij(m) = 0+5 = 5,
and m′(pk) = m′′(pk) = m(pk), for k 6= j.

Let us show that the way we have extended the transition relation is well-
suited in the following sense. Let m and m′ be two (extended) markings such
that m →ti m′ for some transition ti. Then γ(m′) is the most precise 4e-
downward-closed overapproximation for Post(γ(m), ti).

Lemma 7 Let P be a 4-strongly monotonic SMPN with set of transitions T

and m,m′ be two (possibly extended) markings. If m→ti m′ for some ti ∈T ,
then γ(m′) has the two following properties: [covering] Post(γ(m), ti) ⊆ γ(m′)
and [preciseness] there is no finite set S ⊆ L∪NkP such that Post(γ(m), ti) ⊆

20

γ(S) ⊂ γ(m′).

Proof. (Covering) Suppose that the covering property is not verified. In
this case, there exist four (possibly extended) markings m,m′,n and n′, and
a transition ti ∈ T such that such that m →ti m′, n →ti n′, n ∈ γ(m) and
n′ 6∈ γ(m′). Hence, there exists pj ∈ P such that n′(pj) > m′(pj).

Following Lemma 5, the effect D+
ij(m)−D−

ij(m) of a transition ti on place pj

for a marking m, may be of two forms. Either D+
ij(m)−D−

ij(m) =
∑

pk∈P βk ·
m(pk) + α or D+

ij(m) −D−
ij(m) =

∑
pk∈P βk ·m(pk) + α −m(pj) with βk ∈ N

for all k and α ∈ Z. Hence, either n′(pj) = n(pj) +
∑

pk∈P βk · n(pk) + α and
m′(pj) = m(pj) +

∑
pk∈P βk · n(pk) + α, or n′(pj) =

∑
pk∈P βk · n(pk) + α and

m′(pj) =
∑

pk∈P βk ·m(pk) + α. In both cases, since n ∈ γ(m), n(pk) ≤m(pk)
for all pk ∈ P , hence

∑
pk∈P βk ·n(pk)+α ≤

∑
pk∈P βk ·m(pk)+α. We conclude

that n′(pj) ≤m′(pj) and we obtain a contradiction.

(Preciseness) In order to establish the preciseness property, we prove that
if m →ti m′, then any marking n ∈ γ(m′) is covered by a marking n′ ∈
Post(γ(m), ti). This clearly implies that the set γ(m′) is the minimal 4e-
downward-closed set that contains Post(γ(m), ti), since for any 4e-downward-
closed set D ⊂ γ(m′), there exists at least one marking n ∈ Post(γ(m), ti)
that is not in D. The proof is by contradiction. Suppose that it is not the
case, thus there exists n ∈ γ(m′) such that there is no n′′ ∈ Post(γ(m), ti)
with n 4 n′′.

Let c be such that c > max{|α1|, . . . , |αkP
|} where αj is the constant term

in D+
ij − D−

ij . We first construct the marking n′ in the following manner:
n′(pj) = m(pj) if m(pj) ∈ N; otherwise n′(pj) > max{n(pk) | pk ∈ P} + c.
By construction, n′ ∈ γ(m) and ti is firable from n′. Let n′ →ti n′′. From the
covering property, n′′ ∈ γ(m′). Let us show that n 4 n′′.

For all pj ∈ P , two cases hold following Lemma 5 again:

• D+
ij(m) − D−

ij(m) =
∑

pk∈P βk · m(pk) + αj − m(pj) with βk ∈ N for all
k and αj ∈ Z. Either m(pk) ∈ N, for any k s.t. βk > 0. In that case,
n′′(pj) = m′(pj), hence n(pj) ≤ n′′(pj). Or there is some pk ∈ P such that
βk > 0 and m(pk) = +∞. By construction, n′′(pj) > max{n(pk) | pk ∈ P},
hence n(pj) < n′′(pj);
• D+

ij(m)−D−
ij (m) =

∑
pk∈P βk ·m(pk)+αj with βk ∈ N for all k and αj ∈ Z.

By using a similar reasoning than in the previous case, we obtain that
n(pj) ≤ n′′(pj).

We conclude that n 4 n′′ and we obtain a contradiction. 2

Since our algorithm requires the WSTS and its associated domain of limits to

21

be effective (Definition 3), we state the following lemma (proof omitted):

Lemma 8 Any 4-strongly monotonic SMPN P with the adequate domain of
limits 〈L, 4e, γ〉 are effective.

The following definition explains how we construct the Ci’s and Li’s. Follow-
ing Definition 7, this is sufficient to define the And-Or graphs built by our
verification algorithm.

Definition 9 The sequences of Ci’s and Li’s are defined as follows:

(D1) Ci = {0, . . . , i}k ∪ {m0}, i.e. Ci is the set of markings where each place is
bounded by i (plus the initial marking);

(D2) Li = {m ∈ {0, . . . i, +∞}k | m 6∈ Nk}.

It is easy to see that (i) for all i ≥ 0 : Ci ⊂ Ci+1 and Li ⊂ Li+1, (ii) for any
m ∈ Nk, there exists i ∈ N such that for all j ≥ i : m ∈ Cj , (iii) for any
m ∈ L, there exists i ∈ N such that for all j ≥ i : m ∈ Lj , and (iv) m0 ∈ C0

and ⊤ = 〈+∞, . . . , +∞〉 ∈ L0.

Degenerated And-Or graph. Let us show that in the present case, one
obtains a degenerated And-Or graph. We establish this result by showing,
following Lemma 3, that the pairs 〈Ci, Li〉 are perfect pairs. For this purpose,
we first introduce the function Bound(m, k) and establish an auxiliary lemma
about this function. Given a (possibly extended) marking m over set of places
P and k ∈ N, we define Bound(m, k) : (N ∪ {+∞})|P | 7→ {0, 1, . . . , k, +∞}|P |

such that for any place pi ∈ P : Bound(m, k)(pi) = m(pi) if m(pi) ≤ k,
Bound(m, k)(pi) = +∞ otherwise. We can now state the following lemma,
that says that , for any marking m ∈ Li ∪Ci, Bound(m, i) is the most precise
approximation of m inside Li ∪ Ci.

Lemma 9 Given any i ∈ N, let Ci and Li be constructed following Definition
9 and m ∈ Li ∪ Ci. There does not exist a finite set S ⊆ Li ∪ Ci such that
γ(m) ⊆ γ(S) and γ(Bound(m, i)) 6⊆ γ(S).

We can now prove that the pairs 〈Ci, Li〉 constructed according to Definition 9
are perfect pairs.

Lemma 10 Given a SMPN P = 〈P, T, D−, D+〉 with the adequate domain
of limits 〈L, 4e, γ〉 and the sets Ci ⊆ NkP and Li ⊆ L constructed following
Definition 9, any pair 〈Ci, Li〉 is a perfect pair.

Proof. Let us first define Post(m, i) as the set of maximal elements of
∪tk∈T Bound(Post(m, tk), i). Following the definition of a perfect pair (Defini-
tion 8), we show that for any (extended) marking m ∈ Li ∪ Ci, Post(m, i) is
the unique, minimal and most precise subset of Li ∪ Ci to cover Post(γ(m)).

22

From Lemma 9 and Lemma 7, we have that for any i ≥ 0 and m ∈ Li ∪
Ci : Post(m, i) is such that Post(γ(m)) ⊆ γ(Post(m, i)). Moreover, for all
m1,m2 ∈ Post(m, i) : m1 6= m2 implies m1 64e m2 (because we keep the
maximal elements only). Let L ⊆ Li ∪ Ci be a set such that L 6= Post(m, i),
Post(γ(m)) ⊆ γ(L), ∀m1,m2 ∈ L : m1 6= m2 implies m1 64e m2, and ∄L′ ⊆
Li ∪ Ci : Post(γ(m)) ⊆ γ(L′) ⊂ γ(L). If such a set L does not exist (and we
prove in the next paragrpah that such a set does not exist), we can conclude
that there does not exist L′ ⊆ Ci∪Li : Post(γ(m)) ⊆ L′ ⊂ Post(m, i). Indeed,
if such a L′ existed there should also exist L′′ ⊆ Ci ∪ Li with Post(γ(m)) ⊆
L′′ ⊂ L′. By iterating the reasoning we conclude that there should exist an infi-
nite sequence K1, K2, . . . such that ∀j ≥ 1 : Kj ⊆ Ci∪Li and γ(Kj) ⊂ γ(Kj+1).
However, since there exists only a finite number of subsets of Ci ∪ Li that
sequence does not exist. Hence γ(Post(m, i)) is a most precise 4e-downward-
closed overapproximation of Post(γ(m)), and Post(m, i) is the unique most
precise 4e-downward-closed overapproximation of Post(γ(m)), which implies
that any pair 〈Ci, Li〉 is a perfect pair.

Thus, we can finish the proof by showing that such a L does not exist. We
proceed by contradiction. Suppose that there exists L ⊆ Li∪Ci such that L 6=
Post(m, i), Post(γ(m)) ⊆ γ(L), ∀m1,m2 ∈ L : m1 6= m2 implies m1 64e m2,
and there is no L′ ⊆ Li ∪ Ci : Post(γ(m)) ⊆ γ(L′) ⊂ γ(L). By hypothesis,
both L and Post(m, i) are minimal, and L 6= Post(m, i). Thus, by Lemma 6,
γ(Post(m, i)) 6⊆ γ(L). Hence, there exists n ∈ Post(m, i), s.t. γ(n) * γ(L).
By definition of Post(m, i), n = Bound(Post(m, tj), i) for some tj ∈ T . Re-
mark that γ(Post(m, tj)) ⊆ γ(L), because γ(Post(m)) ⊆ γ(L), by hypothesis.
Since L is a finite subset of Li ∪ Ci, we can apply Lemma 9 and obtain that
γ(n) = γ(Bound(Post(m, tj), i)) ⊆ γ(L) which is a contradiction. 2

From Lemma 10 and Lemma 3, the following corollary holds.

Corollary 2 Given a 4-strongly monotonic SMPN net P with the adequate
domain of limits 〈L, 4e, γ〉 and the sets Ci ⊆ NkP and Li ⊆ L constructed
following Definition 9, Abs(P, Ci, Li) is a degenerated And-Or graph.

Algorithm for the coverability problem. Let Abs(P, i) be the graph
(degenerated And-Or graph) Abs(P, Ci, Li) constructed from P, Ci and Li.
We note ⇒ its transition relation. We define EPRG(P, i) as EPRG(P, Ci) and
Reach(Abs(P, i)) as the set {m | m0 ⇒ m1 ⇒ . . . ⇒ mn with ∀1 ≤ j ≤
n : mj ∈ Li ∪ Ci,mn = m}. By applying the schema presented in Section 4
to 4-strongly monotonic self-modifying Petri nets, we obtain the algorithm
at Algorithm 2. Remark that this algorithm is incremental: one can compute
Reach(EPRG(P, i+1)) by extending Reach(EPRG(P, i)) for all i ≥ 0. Similarly,
one can construct Reach(Abs(P, i)) from Reach(EPRG(P, i)).

23

Algorithm 2: A forward algorithm to decide the coverability problem on
SMPN.
Data : P, a 4-strongly monotonic self-modifying Petri system

Data : GU , the set of minimal element of the 4-upward-closed set U .

begin
i← 1;
while (true) do

if Reach(EPRG(P, i)) ∩ U 6= ∅ then
return ‘Reachable’ ;

else if ∄m ∈ Reach(Abs(P, i)),m′ ∈ GU : m 4e m′ then
return ‘Unreachable’ ;

i← i + 1 ;

end

Theorem 4 Algorithm 2 returns ‘Reachable’ if Reach(P)∩U 6= ∅, ‘Unreach-
able’ otherwise.

6 Application to Lossy Channel Systems

To show the generality of our new approach, we apply our algorithmic schema
to lossy channel systems, which are systems made up of automata extended
with FIFO channels that may lose messages. We recall the model, define an
adequate domain of limits, show how to construct the sets Ci’s and Li’s and
discuss the construction of the And-Or graph.

A Lossy Channel System, LCS for short, is a tuple C = 〈Q, qi, F, Σ, T 〉 where
Q is a finite set of locations, qi ∈ Q is the initial location, F is a finite set of
channels, Σ is a finite alphabet, T ⊆ Q×Op×Q where Op : F 7→

⋃
a∈Σ{?a, !a}∪

{nop}. A state is a pair 〈q, W 〉 where q ∈ Q, W : F 7→ Σ∗. In the following, SC
will denote the set of states of the LCS C. We define the order - on states in
SC such that for any s = 〈q, W 〉, s′ = 〈q′, W ′〉 : s - s′ if and only if q = q′ and
W (f) is a (not necessarily contiguous) subword of W ′(f) for all f ∈ F . That is,
W (f) is obtained from W ′(f) by deleting characters. It is well-known that -

is a well-quasi order (see for instance [5]). Let · denote the word concatenation.
We define subword : Σ∗ 7→ 2Σ∗

such that subword(w) is the set of subwords of
w. We extend subword to function W : F 7→ Σ, such that subword(W) denotes
the set of functions W ′ : F 7→ Σ∗ such that ∀f ∈ F : W ′(f) ∈ subword(W (f)).
A transition t = 〈q1, Op, q2〉 ∈ T is firable from state 〈q, W 〉 if q = q1 and for all
f ∈ F : Op(f) =?a implies that W (f) contains at least one letter ‘a’. Firing t

from 〈q, W 〉 leads to states 〈q′, W ′〉 (noted 〈q, W 〉t 〈q
′, W ′〉) such that q′ =

q2 and there exist W ∈ subword(W) and W ′ with W ′ ∈ subword(W ′) such that
∀f ∈ F : Op(f) =?a implies W (f) = a ·W ′(f), Op(f) =!a implies W ′(f) =

24

W (f) ·a and Op(f) = nop implies W (f) = W ′(f). Given a set S of states and
a transition t, Post(S, t) = {s′ | ∃s ∈ S : s t s′}. A LCS C = 〈Q, qi, F, Σ, T 〉
defines a transition system 〈SC, s0,→〉 where s0 = 〈qi, Wi〉 such that Wi(f) = ε

for all f ∈ F and for all s1, s2 ∈ SC : s1 → s2 if and only if ∃t ∈ T : s1 t s2.
It is well-known that transition relations defined by LCS are --monotonic.

In the following, we always consider a LCS C = 〈Q, qi, F, Σ, T 〉.

Domain of limits. Let L(Σ) be the set of --downward-closed regular ex-
pressions (dc-re) {(a1 + . . . + an)∗ | ∀1 ≤ i ≤ n : ai ∈ Σ, ∀i, j : i 6=
j implies that ai 6= aj} ∪ {(a + ε) | a ∈ Σ} ∪ {ε}. A simple regular ex-
pression (sre) is either a dc-re or an expression d1 · . . . · dn where ∀1 ≤
i ≤ n : di is a dc-re. The size of a sre is the number of dc-re that com-
pose it. The set of limits is the set L(Σ, Q) = {〈q, E〉 | q ∈ Q, E : F 7→
L(Σ)∗ assigns a sre to each channel 5 } ∪ {⊤}. For 〈q, E〉 ∈ L(Σ, Q): [[〈q, E〉]]
denotes the set of pairs 〈q, W 〉 ∈ SC such that W (f) is a word in the language
generated by the regular expression E(f) for all f ∈ F . We define the function
γ : SC∪L(Σ, Q) 7→ 2SC such that (i) for all 〈q, W 〉 ∈ SC : γ(〈q, W 〉) = {〈q, W ′〉 |
〈q, W ′〉 - 〈q, W 〉}, (ii) γ(⊤) = {〈q, W 〉 | q ∈ Q, W (f) ∈ Σ∗ for all f ∈ F}
and (iii) for all 〈q, E〉 ∈ L(Σ, Q) \ {⊤} : γ(〈q, E〉) = [[〈q, E〉]]. We define
⊑ : (SC∪L(Σ, Q))×(SC∪L(Σ, Q)) as follows : c1⊑c2 if and only if γ(c1) ⊆ γ(c2).
The following theorem holds:

Theorem 5 (L(Σ, Q),⊑, γ) is an adequate domain of limits for (SC, -).

Proof. We establish this result by proving the four points of Definition 1:

(L1) It is easy to show that for any 〈q, E〉 ∈ SC ∪ L(Σ, Q), γ(〈q, E〉) is --
downward-closed (see [5]);

(L2) the element ⊤ is such that γ(⊤) is the whole set of states SC;
(L3) by definition c1⊑c2 if and only if γ(c1) ⊆ γ(c2) for all c1, c2 ∈ SC ∪L(Σ, Q);
(L4) from Theorem 1 of [5] we deduce that if S ⊆ SC is --downward-closed, then

there exists S ′ ⊆ SC ∪ L(Σ, Q) such that S ′ is finite and γ(S ′) = S.

2

Moreover, the following theorem says that any LCS C with the adequate do-
main of limits (L(Σ, Q),⊑, γ) are effective.

Theorem 6 Any LCS C with the adequate domain of limits (L(Σ, Q),⊑, γ)
are effective.

5 We also require that E does not assign ε to all the channels because we require
in Definition 1 that the set of limits is disjoint from SC .

25

Proof. We establish the theorem by proving that the four properties of
Definition 3 hold:

(E1) it is easy to show that SC and L(Σ, Q) are recursively enumerable;
(E2) it is shown in [5] that the transition relation of LCS is decidable;
(E3) it is shown in [5] how to compute an operator that returns, given c ∈

SC ∪L(Σ, Q), c′ ∈ SC ∪L(Σ, Q) such that γ(c′) = Post(γ(c)). By using that
operator and since ⊑ is decidable following [5], we conclude that we can
decide whether Post(γ(c)) ⊆ γ(c′) for any c, c′ ∈ SC ∪ L(Σ, Q);

(E4) as noticed in the previous point, an algorithm is given in [5] to decide
whether c1⊑c2 for any c1, c2 ∈ SC ∪ L(Σ, Q). Moreover, for any C1, C2 ⊆
SC∪L(Σ, Q), γ(C1) ⊆ γ(C2) if and only if for all c ∈ C1, there exists c′ ∈ C2

such that c - c′ (see [5] for proofs). Hence, we can decide for any finite sets
C1, C2 ⊆ SC ∪ L(Σ, Q) whether γ(C1) ⊆ γ(C2).

2

Construction of the Ci’s and the Li’s. We construct the sequences of
the Ci’s and Li’s as follows. Ci = {〈q, W 〉 ∈ SC | q ∈ Q, ∀f ∈ F : W (f) =
ε or W (f) = a1 · . . . · an with ∀1 ≤ j ≤ n : aj ∈ Σ, n ≤ i}. That is, Ci is
the set of states where the contents of the channels are words of size at most
i. Similarly, Li = {〈q, E〉 ∈ L(Σ, Q) | q ∈ Q, ∀f ∈ F : E(f) = ε or E(f) =
d1 · . . . · dn with ∀1 ≤ j ≤ n : dj ∈ L(Σ), n ≤ i} ∪ {⊤}. That is, Li is the set
of limits that assign sre of size of most i to channels (plus the ⊤ element).

It is easy to see that (i) Ci ⊆ Ci+1 and Li ⊆ Li+1 for all i ≥ 0, (ii) for all
c ∈ SC there exists i ≥ 0 such that c ∈ Ci and for all ℓ ∈ L(Σ, Q) there exists
i ≥ 0 such that ℓ ∈ Li, (iii) 〈qi, Wi〉 ∈ C0 where ∀c ∈ C : Wi(c) = ε and (iv),
by construction ⊤ ∈ L0.

Construction of the And-Or graph. In order to construct the And-Or
graph, we need to construct the set of Or-nodes (point A1), the set of And-
nodes (point A2) and the transition relation between nodes (points A4.1 and
A4.2). The two first points are obvious. Let us focus on the construction of the
transition relation. Given the two sets Ci and Li as defined above, the succes-
sors of And-nodes are computed as follows. For any And-node n ∈ 2Li∪Ci \{∅},
we have (n, n′) ∈⇒ if and only if n′ ∈ n. In order to define the successors of an

Or-node, we need the following functions. Let P̃ost(., .) : (SC∪L(Σ, Q))×T 7→
SC ∪ L(Σ, Q) be the partial function defined in [5] that returns the element
ℓ′ in SC ∪ L(Σ, Q) such that γ(ℓ′) is the set of successors of γ(ℓ) by firing t

(P̃ost(ℓ, t) is undefined when t is not firable from γ(ℓ)). The partial function
App(ℓ, t, i) : (SC ∪ L(Σ, Q)) × T × N 7→ 2SC∪L(Σ,Q) is such that App(ℓ, t, i)

is defined iff t is firable from γ(ℓ). In that case, App(ℓ, t, i) = P̃ost(ℓ, t) if

P̃ost(ℓ, t) ∈ Ci∪Li, otherwise App(ℓ, t, i) = {ℓ′ ∈ Li∪Ci | P̃ost(ℓ, t)⊑ℓ′,¬∃ℓ′′ ∈

26

Li ∪ Ci : P̃ost(ℓ, t)⊑ℓ′′⊏ℓ′}. Otherwise stated, when App(ℓ, t, i) is defined, it

returns P̃ost(ℓ, t) if this latter set is in the set Li ∪ Ci of states and limits
that we consider during the construction of the graph, otherwise it returns
the set of all the ℓ′ ∈ Li ∪ Ci such that each γ(ℓ′) is one of the best overap-

proximations of γ(P̃ost(ℓ, t)). Notice that we can always construct App(ℓ, t, i)

since P̃ost(ℓ, t) is constructible [5], Ci and Li are finite and ⊑ is decidable.
Let Firable(ℓ) = {t1, . . . , tkℓ

} be the set of kℓ transitions that are firable from
γ(ℓ) and Post(ℓ, i) = {{c1, . . . , ckℓ

} ⊆ Li ∪ Ci | Firable(ℓ) = {t1, . . . , tkℓ
}, ∀1 ≤

j ≤ kℓ : cj ∈ App(ℓ, tj, i)}, that is, Post(ℓ, i) is the set of sets of elements in
Li ∪Ci that represent an over-approximation of the successors of γ(ℓ). Sets in
Post(ℓ, i) satisfy the covering property of point A4.2, but they may not be min-
imal, because they could contain two elements that are ordered, and they may
not represent most precise overapproximations of the set of successors. For any
n ∈ VO, we define the set of And-nodes that are successor of n as: Succ(n, i) =
{S ⊆ Li ∪ Ci | ∃S

′ ∈ Post(n, i) : S ⊆ S ′, γ(S) = γ(S ′), ∀c1, c2 ∈ S : c1 6= c2

implies c1 6⊑c2,¬∃S
′′ ∈ Post(n, i) : γ(S ′′) ⊂ γ(S)}. That is Succ(n, i) is the

set of most precise and minimal approximations of the set of successors of
γ(n). That set is constructible since Post(ℓ, i) is constructible and, following
Theorem 6 and so E4 of Definition 3, γ(S) ⊆ γ(S ′) is decidable for any finite
S, S ′ ⊆ SC ∪ L(Σ, Q).

Remark 4 Contrary to the SMPN, an And-Or graph is necessary in the
present case to ensure the termination of our algorithm. Let us illustrate
this thanks to the LCS of Fig. 3. It is made up of one automaton and a sin-
gle channel. Its set of reachable configurations is the --downward-closure of
{〈1, ε〉} ∪ {〈2, c · wab〉}, where wab can be any word made up of an arbitrary
number of a and b’s.

Let us suppose we want to prove that the number of c in the channel is always
bounded, when the LCS reaches state 2. This property holds on the LCS of Fig 3,
and it corresponds to showing that the --upward-closed set {c|〈2, cc〉 - c}
is not reachable. Let us further suppose we are trying to compute an over-
approximation of the LCS for some value i ≥ 2 of the bound 6 . At some point,
we will end up computing the set of successors of the configuration 〈2, c·aj ·bk〉
with |c ·aj ·bk| = j+k+1 = i, j ≥ 1 and k ≥ 0. Remark that this configuration
is in Ci, but its successors are not. Hence we need to use limit elements to
represent them.

Actually, two incomparable set of limit elements can be used for this purpose:
ℓ1 =

{〈
2, (c + a)∗ · (b + ε)k+1

〉
,
〈
2, (c + a)∗ · (b + ε)k · (a + ε)

〉}
and ℓ2 ={〈

2, (c + ε) · (a + b)∗
〉}

. If we represent the over-approximation by an And-

6 It is easy to see that the algorithm can’t prove the safety of the system for i = 1.
For this value, the only limit that contains a, b and c is (a+b+c)∗, which is clearly
too coarse.

27

Or graph, this is not a problem, since we can choose between ℓ1 and ℓ2, and
ℓ2 allows us to prove the safety of the system (under the hypothesis that the
other branches of the unfolding are also safe). On the other hand, if we use a
plain graph, we have to guess which limit is the good one. By choosing ℓ1, we
are not able to prove the safety, which compels the algorithm to build another
graph. As stated in Remark 3, one could imagine two different ways to do
this. The first solution would be to keep the same value of i, and build another
graph (in which ℓ2, for instance, will be chosen). It is not difficult to see that
such a procedure could have to build an number of graphs that is exponential
in the size of Li ∪ Ci. This solution is clearly less efficient than the PTime

algorithm that explores And-Or graphs. The other solution could be to try to
refine the bound, and build a new approximation for the value i + 1. However,
suppose now that the bad guess occurs repeatedly for any i. In this case, it
is not difficult to see that the algorithm will fail to terminate and prove the
safety of the system, although the system is safe !

!c

!a

!b

1 2

Fig. 3. A LCS with one channel: locations are represented by circles (location 1 is
initial); transitions by arrows. The labels are the operations on the channel.

7 Conclusion

In this paper, we have defined ‘Expand, Enlarge and Check’, a new approach
to solve the coverability problem of WSTS. The main idea of this new ap-
proach consists in building, in parallel, two sequences of approximations of
the system considered. The first sequence provides more and more precise
under-approximations of the system. They allow us to decide the positive in-
stances of the coverability problem. Similarly, the second sequence is made up
of successive over-approximations of the system, which allow us to decide the
negative instances of the problem. These sequences of approximations have
been thoroughly defined and studied in section 3, leading to the schema of
algorithms of section 4.

Although the ‘Expand, Enlarge and Check’ approach is a general and the-
oretical schema of algorithm, it can be easily adapted to several practically
interesting classes of WSTS, in order to produce efficient algorithms. In par-
ticular, we have explained, in section 5, how to obtain an algorithm that uses
forward analysis to decide the coverability problem for a large class of mono-
tonic counter systems (the strongly monotonic Self-modifying Petri nets). Up

28

to now, such a forward approach was known only for Petri nets (the Karp and
Miller algorithm), a restricted subclass of strongly monotonic SMPN. Similarly,
we have showed in section 6 that the ‘Expand, Enlarge and Check’ algorithm
can also be applied to the important class of Lossy Channel Systems.

In this paper, we have intendedly kept a purely theoretical point of view
along the whole discussion. However, prototypes implementations of ‘Expand,
Enlarge and Check’ have been realized, and their performances are really
promizing. Our new prototypes are able to analyze a whole set of classical
examples of SMPN and LCS from the literature, on which a previous fine-tuned
prototype, based on backward-search, does not always terminate. We refer the
interested reader to [27], in which we present several additional optimizations
of the algorithm, and report on the practical performances of our prototypes.

Acknowledgements. The authors are deeply grateful to Ahmed Bouajjani
and Mihaela Sighireanu, who gave them access to their very neat implemen-
tation of a C++ library that manipulates Simple Regular Expressions. This
piece of work greatly eased the implementation of the aforementioned LCS

prototype.

References

[1] G. Geeraerts, J.-F. Raskin, L. Van Begin, Expand, enlarge and check: new
algorithms for the coverability problem of WSTS, in: Proceedings of the 24th
International Conference on Fondation of Software Technology and Theoretical
Computer Science (FSTTCS 04), Vol. 3328 of LNCS, Springer, 2004, pp. 287–
298.

[2] R. Alur, D. Dill, A Theory of Timed Automata, Theoretical Computer Science
126 (2) (1994) 183–236.

[3] T. A. Henzinger, The theory of hybrid automata, in: Proceedings of the 11th
Symposium on Logic in Computer Science (LICS ’96), IEEE Computer Society,
1996, p. 278.

[4] P. Abdulla, B. Jonsson, Verifying Programs with Unreliable Channels, in:
Proceedings of the 8th IEEE International Symposium in Logic in Computer
Science (LICS’93), IEEE Computer Society Press, 1993, pp. 160–170.

[5] P. Abdulla, A. Bouajjani, B. Jonsson, On-the-Fly Analysis of Systems with
Unbounded, Lossy FIFO Channels, in: Proceedings of the 10th International
Conference on Computer Aided Verification (CAV’98), Vol. 1427 of LNCS,
Springer, 1998, pp. 305–318.

[6] P. Abdulla, A. Annichini, A. Bouajjani, Symbolic verification of lossy channel
systems: Application to the bounded retransmission protocol, in: Proc. 5th

29

Intern. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’99), no. 1579 in LNCS, Springer-Verlag, 1999, pp. 208–222.

[7] G. Delzanno, J.-F. Raskin, L. Van Begin, Towards the Automated Verification of
Multithreaded Java Programs, in: Proceedings of the International Conference
on Tools and Algorithms for Construction and Analysis of Systems (TACAS
2002), Vol. 2280 of LNCS, Springer, 2002, pp. 173–187.

[8] S. Bardin, A. Finkel, J. Leroux, L. Petrucci, Fast: Fast acceleration of symbolic
transition systems, in: Proceedings of the 15th International Conference on
Computer Aided Verification (CAV’03), will be published in LNCS, Springer,
2003.

[9] J. Esparza, A. Finkel, R. Mayr, On the Verification of Broadcast Protocols,
in: Proceedings of the 14th Annual Symposium on Logic in Computer Science
(LICS’99), IEEE Computer Society Press, 1999, pp. 352–359.

[10] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall,
1981.

[11] G. Ciardo, Petri nets with marking-dependent arc multiplicity: properties and
analysis, in: Proceedings of the 15th International Conference on Applications
and Theory of Petri Nets (ICATPN 94), Vol. 815 of LNCS, Springer, 1994, pp.
179–198.

[12] C. Dufourd, A. Finkel, P. Schnoebelen, Reset Nets Between Decidability and
Undecidability, in: In Proceedings of the 25th International Colloquium on
Automata, Languages, and Programming (ICALP’98), Vol. 1443 of LNCS,
Springer, 1998, pp. 103–115.

[13] J.-F. Raskin, L. Van Begin, Petri Nets with Non-blocking Arcs are Difficult to
Analyse, in: Proceedings of the 5th International Workshop on Verification of
Infinite-state Systems (INFINITY 2003), Vol. 96 of ENTCS, Elsevier, 2003.

[14] E. A. Emerson, K. S. Namjoshi, On Model Checking for Non-deterministic
Infinite-state Systems, in: Proceedings of the 13th Annual Symposium on Logic
in Computer Science (LICS ’98), IEEE Computer Society Press, 1998, pp. 70–
80.

[15] P. A. Abdulla, K. Cerans, B. Jonsson, Y.-K. Tsay, General Decidability
Theorems for Infinite-state Systems, in: Proceedings of the 11th Annual
Symposium on Logic in Comuter Science (LICS’96), IEEE Computer Society
Press, 1996, pp. 313–321.

[16] A. Finkel, P. Schnoebelen, Well-structured transition systems everywhere!,
Theoretical Computer Science 256 (1-2) (2001) 63–92.

[17] T. A. Henzinger, O. Kupferman, S. Qadeer, From prehistoric to postmodern
symbolic model checking, Formal Methods in System Design 23 (3) (2003) 303–
327.

[18] R. M. Karp, R. E. Miller, Parallel Program Schemata, Journal of Computer
and System Sciences 3 (1969) 147–195.

30

[19] A. Finkel, Reduction and Covering of Infinite Reachability Trees, Information
and Computation 89 (2) (1990) 144–179.

[20] A. Bouajjani, B. Jonsson, M. Nilsson, T. Touili, Regular Model Checking,
in: Proceedings of the 2th International Conference on Computer Aided
Verification (CAV 2000), Vol. 1855 of LNCS, Springer, 2000, pp. 403–418.

[21] A. Finkel, J.-F. Raskin, M. Samuelides, L. Van Begin, Monotonic Extensisions
of Petri Nets : Forward and Backward Search Revisited, in: Proceedings of the
4th international workshop on verification of infinite-state systems (INFINITY
2002), Vol. 68 of ENTCS, Elsevier, 2002.

[22] N. Immerman, Number of quantifiers is better than number of tape cells,
Journal of Computer and System Sciences 22 (3) (1981) 384–406.

[23] R. Milner, Communication and Concurrency, Prentice-Hall International series
in computer science, Prentice Hall, New York, 1989.

[24] R. Valk, On the computational power of extended petri nets, in: Proceedings of
the 7th symposium on Mathematical Foundations of Computer Science, Vol. 64
of LNCS, Springer, 1978, pp. 527–535.

[25] T. Araki, T. Kasami, Some decision problems related to the reachability
problem for petri nets, Theoretical Computer Science 3 (1) (1977) 85–104.

[26] A. Bouajjani, R. Mayr, Model Checking Lossy Vector Addition Systems,
in: Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’99), Vol. 1563 of LNCS, Springer, 1999, pp. 323–
333.

[27] G. Geeraerts, J.-F. Raskin, L. Van Begin, Expand, enlarge and check... made
efficient, no. 3576 in Lecture Notes in Computer Science, Springer Verlag, 2005,
pp. 394–404, to appear.

31

