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2 � B. Boigelot, S. Jodogne, and P. Wolperare the use of automata for obtaining deision and model-heking proedures fortemporal and modal logis [Vardi and Wolper 1986a; 1986b; 1994; Kupferman et al.2000℄. In this last setting, automata-based proedures have the advantage of mov-ing the ombinatorial aspets of the proedures to the ontext of automata, whihare simple graph-like strutures well adapted to algorithmi developments. Thisseparation of onerns between the logial and the algorithmi has been quite fruit-ful for instane in the implementation of model hekers for linear-time temporallogi [Couroubetis et al. 1990; Holzmann 1997℄.As already notied by B�uhi [B�uhi 1962; 1960℄, automata-based approahes arenot limited to sequential and modal logis, but an also be used for Presburgerarithmeti. To ahieve this, one adopts the usual enoding of integers in a baser � 2, thus representing an integer as a word over the alphabet f0; : : : ; r � 1g. Byextension, n-omponent integer vetors are represented by words over the alphabetf0; : : : ; r�1gn and a �nite automaton operating over this alphabet represents a setof integer vetors. Given that addition and order are easily represented by �niteautomata and that these automata are losed under Boolean operations as wellas projetion, one easily obtains a deision proedure for Presburger arithmeti.This idea was �rst explored at the theoretial level, yielding for instane the verynie result that base-independent �nite-automaton representable sets are exatlythe Presburger sets [Cobham 1969; Semenov 1977; Bruy�ere et al. 1994℄. Later, ithas been proposed as a pratial means of deiding and manipulating Presburgerformulas [Boudet and Comon 1996; Boigelot 1998; Shiple et al. 1998; Wolper andBoigelot 2000℄. The intuition behind this applied use of automata for Presburgerarithmeti is that �nite automata play with respet to Presburger arithmeti a rolesimilar to the one of Binary Deision Diagrams (BDD) with respet to Booleanlogi. These ideas have been implemented in the LASH tool [LASH ℄, whih hasbeen used suessfully in the ontext of verifying systems with unbounded integervariables.It almost immediately omes to mind that if a �nite word over the alphabetf0; : : : ; r� 1g an represent an integer, an in�nite word over the same alphabet ex-tended with a frational part separator (the usual dot) an represent a real number.Finite automata on in�nite words an thus represent sets of real vetors, and serveas a means of obtaining a deision proedure for real additive arithmeti. Further-more, sine numbers with frational parts equal to zero an easily be reognized byautomata, the same tehnique an be used to obtain a deision proedure for a the-ory ombining the integers and the reals. This was not previously handled by anytool, but an be of pratial use, for instane in the veri�ation of timed systemsusing integer variables [Boigelot et al. 1997℄. However, turning this into an e�e-tive implemented system is not as easy as it might �rst seem. Indeed, projetingand omplementing �nite automata on in�nite words is signi�antly more diÆultthan for automata on �nite words. Projetion yields nondeterministi automataand omplementing or determinizing in�nite-word automata is a notoriously diÆ-ult problem. A number of algorithms have been proposed for this [B�uhi 1962;Sistla et al. 1987; Safra 1988; Klarlund 1991; Kupferman and Vardi 1997℄, but eventhough their theoretial omplexity remains simply exponential as in the �nite-wordase, it moves up from 2O(n) to 2O(n logn) and none of the proposed algorithms areACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



An E�etive Deision Proedure for Linear Arithmeti over the Integers and Reals � 3as easy to implement and �ne-tune as the simple Rabin-Sott subset onstrutionused in the �nite-word ase.However, it is intuitively surprising that handling reals is so muh more diÆultthan handling integers, espeially in light of the fat that the usual polyhedra-based approah to handling arithmeti is both of lower omplexity and easier toimplement for the reals than for the integers [Ferrante and Rako� 1979℄. Onewould expet that handling reals with automata should be no more diÆult thanhandling integers1. The onlusion that omes out of these observations is thatin�nite-word automata onstruted from linear arithmeti formulas must have aspeial struture that makes them easier to manipulate than general automata onin�nite words. That this speial struture exists and that it an exploited to obtainsimpler algorithms is preisely the subjet of this paper.As a starting point, let us look at the topologial haraterization of the setsde�nable by linear arithmeti formulas. Let us �rst onsider a formula involvingsolely real variables. If the formula is quanti�er free, it is a Boolean ombinationof linear onstraints and thus de�nes a set whih is a �nite Boolean ombinationof open and losed sets. Now, sine real linear arithmeti admits quanti�er elim-ination, the same property also holds for quanti�ed formulas. Then, looking atlasses of automata on in�nite words, one noties that the most restrited one thatan aept Boolean ombinations of open and losed sets is the lass of determin-isti weak automata [Staiger and Wagner 1974; Staiger 1983℄. These aept all!-regular sets in the Borel lass F� \ GÆ and hene also �nite Boolean ombina-tions of open and losed sets. So, with some are about moving from the topologyon vetors to the topology on their enoding as words, one an onlude that thesets representable by arithmeti formulas involving only real variables an alwaysbe aepted by deterministi weak automata on in�nite words. If integers are alsoinvolved in the formula, a similar argument an be used, invoking a reently pub-lished quanti�er elimination result for the ombined theory [Weispfenning 1999℄.However, initially unaware of this result, we developed a di�erent argument toprove that sets de�nable by quanti�ed linear arithmeti formulas involving bothreal and integer variables are within F� \ GÆ and thus are representable by weakdeterministi automata. This proof relies on separating the integer and frationalparts of variables and on topologial properties of F� \GÆ . It has the advantage ofbeing muh more diret than a proof relying on a quanti�er elimination result.The problemati part of the operations on automata used for deiding a �rst-ordertheory is the sequene of projetions and omplementations needed to eliminate astring of quanti�ers alternating between existential and universal ones. The seondresult of this paper shows that for sets de�ned in linear arithmeti this an be donewith onstrutions that are simple adaptations of the ones used for automata on�nite words. Indeed, deterministi weak automata an be viewed as either B�uhi oro-B�uhi automata. The interesting fat is that o-B�uhi automata an be deter-minized by the \breakpoint" onstrution [Miyano and Hayashi 1984; Kupfermanand Vardi 1997℄, whih basially amounts to a produt of subset onstrutions.1Note that one annot expet reals to be easier to handle with automata than integers sine,by nature, this representation inludes expliit information about the existene of integer valuessatisfying the represented formula.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



4 � B. Boigelot, S. Jodogne, and P. WolperThus, one has a simple onstrution to projet and determinize a weak automaton,yielding a deterministi o-B�uhi automaton, whih is easily omplemented into adeterministi B�uhi automaton. In the general ase, another round of projetionwill lead to a nondeterministi B�uhi automaton, for whih a general determiniza-tion proedure has to be used. However, we have the result that for automataobtained from linear arithmeti formulas, the represented sets stay within thoseaepted by deterministi weak automata. We prove that this implies that theautomata obtained after determinization will always be weak.Note that this annot be diretly onluded from the fat that the representedsets stay within those representable by deterministi weak automata. Indeed, eventhough the represented sets an be aepted by deterministi weak automata, theautomata that are obtained by the determinization proedure might not have thisform. Fortunately, we an prove that this is impossible. For this, we go bak to thelink between automata and the topology of the sets of in�nite words they aept.The argument is that !-regular sets in F� \ GÆ have a topologial property thatfores the automata aepting them to be inherently weak, i.e. not to have stronglyonneted omponents ontaining both aepting and non aepting yles.Finally, an important additional bene�t of working with weak deterministi au-tomata is that they admit a anonial minimal normal form that an be obtainedeÆiently [Maler and Staiger 1997; L�oding 2001℄. This brings us even loser to thesituation of working with �nite-work automata, and is a property that is not avail-able when working either with general in�nite-word automata, or with formulas asdone in [Weispfenning 1999℄.As a onsequene of our results, we obtain a simple deision proedure for thetheory ombining integer and real linear arithmeti. The fat that this theory isdeidable using automata-based methods was known [Boigelot et al. 1997℄, butthe results of this paper make it possible to implement a tool that an handle ite�etively.2. AUTOMATA-THEORETIC AND TOPOLOGICAL BACKGROUNDIn this setion we reall some automata-theoreti and topologial onepts that areused in the paper.2.1 Automata on In�nite WordsAn in�nite word (or !-word) w over an alphabet � is a mapping w : N 7! � fromthe natural numbers to �. A B�uhi automaton on in�nite words is a �ve-tupleA = (Q;�; Æ; q0; F ), where|Q is a �nite set of states;|� is the input alphabet;|Æ is the transition funtion and is of the form Æ : Q�� 7! 2Q if the automaton isnondeterministi and of the form Æ : Q�� 7! Q if the automaton is deterministi;|q0 is the initial state;|F is a set of aepting states.A run � of a B�uhi automaton A = (Q;�; Æ; q0; F ) on an !-word w is a mapping� : N 7! Q that satis�es the following onditions :ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



An E�etive Deision Proedure for Linear Arithmeti over the Integers and Reals � 5|�(0) = q0, i.e. the run starts in the initial state;|for all i � 0, �(i + 1) 2 Æ(�(i); w(i)) (nondeterministi automata) or �(i +1) = Æ(�(i); w(i)) (deterministi automata), i.e. the run respets the transitionfuntion.Let inf (�) be the set of states that our in�nitely often in a run �. A run �is said to be aepting if inf (�) \ F 6= ;. An !-word w is aepted by a B�uhiautomaton if that automaton has some aepting run on w. The language L!(A)of in�nite words de�ned by a B�uhi automaton A is the set of !-words it aepts.The !�regular languages are de�ned as the languages of in�nite words that an beaepted by a nondeterministi B�uhi automaton.A o-B�uhi automaton is de�ned exatly as a B�uhi automaton exept that itsaepting runs are those for whih inf (�) \ F = ;.We will also use the notion of weak automata [Muller et al. 1986℄. For a B�uhiautomaton A = (Q;�; Æ; q0; F ) to be weak, there has to be a partition of its stateset Q into disjoint subsets Q1; : : : ; Qm suh that|for eah of the Qi either Qi � F or Qi \ F = ;, and|there is a partial order � on the sets Q1; : : : ; Qm suh that for every q 2 Qi andq0 2 Qj for whih, for some a 2 �, q0 2 Æ(q; a) (q0 = Æ(q; a) in the deterministiase), Qj � Qi.Note that, in order to omply with this de�nition, eah Qi has to be a unionof strongly onneted omponents. Thus, the strongly onneted omponents of aweak automaton onsist solely of either aepting or rejeting states.For more details, a survey of automata on in�nite words an be found in [Thomas1990℄.2.2 TopologyGiven a set S, a distane d(x; y) de�ned on this set indues a metri topology onsubsets of S. A neighborhood N"(x) of a point x 2 S with respet to " 2 R+ is theset N"(x) = fy j d(x; y) < "g. A set C � S is said to be open if for all x 2 C, thereexists " > 0 suh that the neighborhood N"(x) is ontained in C. A losed set is aset whose omplement with respet to S is open. We will be referring to the �rstfew levels of the Borel hierarhy whih are shown in Figure 1. The notations usedare the following :|F are the losed sets,|G are the open sets,|F� is the lass of ountable unions of losed sets,|GÆ is the lass of ountable intersetions of open sets,|F�Æ is the lass of ountable intersetions of F� sets,|GÆ� is the lass of ountable unions of GÆ sets,|B(X) represents the �nite Boolean ombinations of sets in X .An arrow between lasses indiates proper inlusion.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



6 � B. Boigelot, S. Jodogne, and P. Wolper

F \G GF B(F ) = B(G)F� \GÆ GÆB(F�) = B(GÆ)F�Æ \GÆ�
F�
F�Æ GÆ�...

Fig. 1. The �rst few levels of the Borel hierarhy in a metri topology.3. TOPOLOGICAL CHARACTERIZATION OF ARITHMETIC SETSWe onsider the theory hR;Z;+;�i, where + represents the prediate x + y = z.Sine any linear equality or order onstraint an be enoded into this theory, werefer to it as additive or linear arithmeti over the reals and integers. It is theextension of Presburger arithmeti that inludes both real and integer variables.We provide the spae Rn (n � 0) with the lassial Eulidean distane betweenvetors de�ned by d(~x; ~y) =  nXi=1(xi � yi)2!1=2 :The topology indued by this metri will be referred to as the natural topology ofRn .In this setion, we prove that the sets representable in the additive linear arith-meti over the reals and integers belong to the topologial lass F�\GÆ . This resultis formalized by the following theorem.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



An E�etive Deision Proedure for Linear Arithmeti over the Integers and Reals � 7Theorem 3.1. Let S � Rn , with n > 0, be a set de�ned in the theory hR;Z;+;�i. This set belongs to the lass F� \GÆ of the natural topology of Rn .Proof. Sine hR;Z;+;�i is losed under negation, it is atually suÆient toshow that eah formula of this theory de�nes a set that belongs to F� , i.e., a setthat an be expressed as a ountable union of losed sets.Let ' be a formula of hR;Z;+;�i. To simplify our argument, we will assumethat all free variables of ' are reals. This an be done without loss of generalitysine quanti�ed variables an range over both R and Z. We introdue u < v as ashorthand for u � v ^ :(u = v).The �rst step of our proof onsists of modifying ' in the following way. Wereplae eah variable x that appears in ' by two variables xI and xF representingrespetively the integer and the frational part of x. Formally, this operation re-plaes eah ourrene in ' of a free variable x by the sum xI + xF while addingto ' the onstraints 0 � xF and xF < 1, and transforms the quanti�ed variables of' aording to the following rules :(9x 2 R)� �! (9xI 2 Z)(9xF 2 R)(0 � xF ^ xF < 1 ^ �[x=xI + xF ℄)(8x 2 R)� �! (8xI 2 Z)(8xF 2 R)(xF < 0 _ 1 � xF _ �[x=xI + xF ℄)(Qx 2 Z)� �! (QxI 2 Z)�[x=xI℄;where Q 2 f9;8g, � is a subformula, and �[x=y℄ denotes the result of replaingby y eah ourrene of x in �. The transformation has no inuene on the setrepresented by ', exept that the integer and frational parts of eah value are nowrepresented by two distint variables.Now, the atomi formulas of ' are of the form p = q+r, p = q or p � q, where p; qand r are either integer variables, sums of an integer and of a frational variable, orinteger onstants. The seond step onsists of expanding these atomi formulas soas to send into distint atoms the ourrenes of the integer and of the frationalvariables. This is easily done with the help of simple arithmeti rules, for the truthvalue of the atomi formulas that involve both types of variables has only to bepreserved for values of the frational variables that belong to the interval [0; 1).The set of expansion rules2 (up to ommutability of members and terms) is givenin Figure 2.After the transformation, eah atomi formula of ' is either a formula �I in-volving only integer variables or a formula �F over frational variables. We nowdistribute existential (resp. universal) quanti�ers over disjuntions (resp. onjun-tions), after rewriting their argument into disjuntive (resp. onjuntive) normalform, and then apply the simpli�ation rules(QxI 2 Z)(�I ��F ) �! (QxI 2 Z)(�I) � �F(QxF 2 R)(�I ��F ) �! �I � (QxF 2 R)(�F );where Q 2 f9;8g and � 2 f_;^g.Repeating this operation, we eventually get a formula '0 equivalent to ' that2In these rules, the expression p = q + r + s is introdued as a shorthand for (9u 2 R)(u =q + r ^ p = u+ s). ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



8 � B. Boigelot, S. Jodogne, and P. WolperxI = (yI + yF ) �! xI = yI ^ yF = 0(xI + xF ) = (yI + yF ) �! xI = yI ^ xF = yFxI = yI + (zI + zF ) �! xI = yI + zI ^ zF = 0xI = (yI + yF ) + (zI + zF ) �! (xI = yI + zI ^ yF + zF = 0) _(xI = yI + zI + 1 ^ yF + zF = 1)(xI + xF ) = yI + zI �! xI = yI + zI ^ xF = 0(xI + xF ) = yI + (zI + zF ) �! xI = yI + zI ^ xF = zF(xI + xF ) = (yI + yF ) + (zI + zF ) �! (xI = yI + zI ^ xF = yF + zF ) _(xI = yI + zI + 1 ^ xF = yF + zF � 1)xI � (yI + yF ) �! xI � yI(xI + xF ) � yI �! xI < yI _ (xI = yI ^ xF = 0)(xI + xF ) � (yI + yF ) �! xI < yI _ (xI = yI ^ xF � yF )Fig. 2. Expansion rules.takes the form of a �nite Boolean ombinationB(�(1)I ; �(2)I ; : : : ; �(m)I ; �(1)F ; �(2)F ; : : : ; �(m0)F )of subformulas �(i)I and �(i)F that involve respetively only integer and frationalvariables.Let x(1)I ; x(2)I ; : : : ; x(k)I be the free integer variables of '0 (k � m). For eahassignment of values to these variables, the subformulas �(i)I are eah identiallytrue or false, hene we have' � _(a1;:::;ak)2Zk�(x(1)I ; : : : ; x(k)I ) = (a1; : : : ; ak) ^ B(a1;:::;ak)(�(1)F ; : : : ; �(m0)F )� :Eah subformula �(i)F belongs to the theory hR;+;�; 1i, whih admits the elimina-tion of quanti�ers [Ferrante and Rako� 1979℄. The sets of real vetors satisfyingthese formulas are thus �nite Boolean ombinations of linear onstraints with openor losed boundaries. It follows that, for eah (a1; : : : ; ak) 2 Zk, the set desribedby B(a1;:::;ak) is a �nite Boolean ombination of open and losed sets, that is a setbelonging to the topologial lass B(F ) = B(G). Sine, aording to properties ofthe Borel hierarhy, this lass forms a subset of F� , the set desribed by ' is aountable union of ountable unions of losed sets and also lies within F� .4. REPRESENTING SETS OF INTEGERS AND REALS WITH FINITE AUTOMATAIn this setion, we reall the �nite-state representation of sets of real vetors asintrodued in [Boigelot et al. 1997℄. A similar approah for representing vetors inthe unit ube is also pursued in [J�urgensen and Staiger 2001℄.In order to make a �nite automaton reognize numbers, one needs to establisha mapping between these and words. Our enoding sheme orresponds to theusual notation for reals and relies on an arbitrary integer base r > 1. We enodea number x in base r, most signi�ant digit �rst, by words of the form wI ? wF ,where wI enodes the integer part xI of x as a �nite word over f0; : : : ; r � 1g, thespeial symbol \?" is a separator, and wF enodes the frational part xF of x asan in�nite word over f0; : : : ; r � 1g. Negative numbers are represented by their r'sACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



An E�etive Deision Proedure for Linear Arithmeti over the Integers and Reals � 9omplement. The length p of jwI j, whih we refer to as the integer-part length ofw, is not �xed but must be large enough for �rp�1 � xI < rp�1 to hold.Aording to this sheme, eah number has an in�nite number of enodings, sinetheir integer-part length an be inreased unboundedly. In addition, the rationalnumbers whose denominator has only prime fators that are also fators of r havetwo distint enodings with the same integer-part length. For example, in base10, the number 11/2 has the enodings 005 ? 5(0)! and 005 ? 4(9)!, \ !" denotingin�nite repetition.To enode a vetor of real numbers, we represent eah of its omponents by wordsof idential integer-part length. This length an be hosen arbitrarily, provided thatit is suÆient for enoding the vetor omponent with the highest magnitude. Anenoding of a vetor ~x 2 Rn an indi�erently be viewed either as a n-tuple of wordsof idential integer-part length over the alphabet f0; : : : ; r � 1; ?g, or as a singleword w over the alphabet f0; : : : ; r � 1gn [ f?g.Sine a real vetor has an in�nite number of possible enodings, we have tohoose whih of these the automata will reognize. A natural hoie is to aept allenodings. This leads to the following de�nition.De�nition 4.1. Let n > 0 and r > 1 be integers. A Real Vetor Automaton(RVA) A in base r for vetors in Rn is a B�uhi automaton over the alphabetf0; : : : ; r � 1gn [ f?g, suh that|every word aepted by A is an enoding in base r of a vetor in Rn , and|for every vetor ~x 2 Rn , A aepts either all the enodings of ~x in base r, or noneof them.An RVA is said to represent the set of vetors enoded by the words that belongto its aepted language.EÆient algorithms have been developed for onstruting RVA representing thesets of solutions of systems of linear equations and inequations [Boigelot et al. 1998℄.Boolean operations an easily be ahieved on RVA by applying the orrespondingexisting algorithms for in�nite-word automata.Furthermore, a set represented as an RVA an be quanti�ed existentially withrespet to its i�th vetor omponent over the real domain, by replaing eah symbolin f0; : : : ; r�1gn read by the automaton with the same symbol out of whih the i�thomponent has been removed. This produes a nondeterministi automaton thatmay only aept some enodings of eah vetor in the quanti�ed set, but generallynot all of them. Suh a situation an arise if the omponent of highest magnitudefor some vetors in the set is projeted out3. The seond step onsists thus ofmodifying the automaton so as to make it aept every enoding of eah vetorthat it reognizes. Algorithms have been developed for this purpose in the ase of�nite-word automata [Boigelot 1998; Boigelot and Latour 2001℄. These algorithmsalso apply to RVA, sine the behavior of the underlying B�uhi automaton beforereading the separator \?" is idential to that of a �nite-word automaton reognizingthe integer part of the vetors in the represented set.3For instane, projeting out the �rst omponent of the set f(8; 1)g in binary would produe anautomaton that does not aept enodings of 1 having less than �ve bits in their integer part.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



10 � B. Boigelot, S. Jodogne, and P. WolperFinally, sine it is immediate to onstrain a number to be an integer with an RVAby imposing its frational part to be either 0! or (r � 1)! (i.e. by interseting itsaepted language with f0; r� 1gn � (f0; : : : ; r � 1gn)� � f?g � f0; r� 1gn), it followsthat one an onstrut an RVA for any formula of the arithmeti theory we areonsidering.5. WEAK AUTOMATA AND THEIR PROPERTIESIf one examines the onstrutions given in [Boigelot et al. 1998℄ to build RVA forlinear equations and inequations, one noties that they have the property that allstates within the same strongly onneted omponent are either aepting or nonaepting. This implies that these automata are weak in the sense of [Muller et al.1986℄ (see Setion 2.1).5.1 Determinizing Weak AutomataWeak automata have a number of interesting properties. A �rst one is that theyan be represented both as B�uhi and o-B�uhi. Indeed, a weak automaton A =(Q;�; Æ; q0; F ) is equivalent to the o-B�uhi automaton A = (Q;�; Æ; q0; Q n F ),sine a run eventually remains within a single omponent Qi in whih all stateshave the same status with respet to being aepting. A onsequene of this is thatweak automata an be determinized by the fairly simple \breakpoint" onstru-tion [Kupferman and Vardi 1997; Miyano and Hayashi 1984℄ that an be used foro-B�uhi automata. This onstrution is the following.Let A = (Q;�; Æ; q0; F ) be a nondeterministi o-B�uhi automaton. The deter-ministi o-B�uhi automaton A0 = (Q0;�; Æ0; q00; F 0) de�ned as follows aepts thesame !-language :|Q0 = 2Q � 2Q, i.e. the states of A0 are pairs of sets of states of A.|q00 = (fq0g; ;).|For (S;R) 2 Q0 and a 2 �, the transition funtion is de�ned by|if R = ;, then Æ((S;R); a) = (T; T n F ) where T = fq j (9p 2 S) q 2 Æ(p; a)g :T is obtained from S as in the lassial subset onstrution, and the seondomponent of the pair of sets of states is obtained from T by eliminating statesin F ;|if R 6= ;, then Æ((S;R); a) = (T; U n F ) where T = fq j (9p 2 S) q 2 Æ(p; a)g,and U = fq j (9p 2 R) q 2 Æ(p; a)g : the subset onstrution set is now appliedto both S and R and the states in F are removed from U .|F 0 = 2Q � f;g.When the automaton A0 is in a state (S;R), R represents the states of A thatan be reahed by a run that has not gone through a state in F sine the last\breakpoint", i.e. state of the form (S; ;). So, for a given word, A has a run thatdoes not go in�nitely often through a state in F if and only if A0 has a run thatdoes not go in�nitely often through a state in F 0. Notie that the diÆulty thatexists for determinizing B�uhi automata, whih is to make sure that the same runrepeatedly reahes an aepting state, disappears sine, for o-B�uhi automata, weare just looking for a run that eventually avoids aepting states.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



An E�etive Deision Proedure for Linear Arithmeti over the Integers and Reals � 11It is interesting to notie that the onstrution implies that all reahable states(S;R) of A0 satisfy R � S. The breakpoint onstrution an thus be implemented asa subset onstrution in whih the states in R are simply tagged, whih implies thatthe worst-ase omplexity of the onstrution is 2O(n). This makes the onstrutionbehave in pratie very similarly to the traditional subset onstrution for �nite-word automata.5.2 Topologial CharaterizationAnother property of weak automata that will be of partiular interest to us is thetopologial haraterization of the sets of words that they an aept. We onsiderthe topology on the sets of in�nite words over an alphabet � indued by the distaneon the !�words d(w;w0) = � 1jommon(w;w0)j+1 if w 6= w00 if w = w0;where jommon(w;w0)j denotes the length of the longest ommon pre�x of w andw0. The open sets in suh a topologial spae are the sets of the form X � �!,where X � �+ is a language of �nite words. Relations between this topology andautomata are well understood. For instane, it has been proved that the languagesof in�nite words that an be aepted by a deterministi B�uhi automaton areexatly the !�rational languages belonging to the lass GÆ [Landweber 1969℄. Byduality, deterministi o-B�uhi automata aept exatly the !-regular languagesthat belong to F� .As weak deterministi automata an be seen both as deterministi B�uhi anddeterministi o-B�uhi, they aept exatly the !-regular languages that are in F�\GÆ . This follows from the results on the Staiger-Wagner lass of automata [Staigerand Wagner 1974; Staiger 1983℄, whih oinides with the lass of deterministiweak automata, as an be inferred from [Staiger and Wagner 1974℄ and is shownexpliitly in [Maler and Staiger 1997℄.5.3 Inherently Weak AutomataGiven the result proved in Setion 3, it is tempting to onlude that the enodingsof sets de�nable in the theory hR;Z;+;�i an always be aepted by weak deter-ministi automata. This onlusion is orret, but requires shifting the result fromthe topology on numbers to the topology on words, whih we will do in the nextsetion. In the meantime, we need one more result in order to be able to bene�talgorithmially from the fat that we are dealing with F� \ GÆ sets, i.e. that anydeterministi automaton aepting a F� \GÆ set is essentially a weak automaton.Consider the following de�nition.De�nition 5.1. A B�uhi automaton is inherently weak if none of the reahablestrongly onneted omponents of its transition graph ontains both aepting (in-luding at least one aepting state) and non aepting (not inluding any aeptingstate) yles.Clearly, if an automaton is inherently weak, it an diretly be transformed intoa weak automaton : the partition of the state set is its partition into stronglyACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



12 � B. Boigelot, S. Jodogne, and P. Wolperonneted omponents and all the states of a omponent are made aepting ornot, depending on whether the yles in that omponent are aepting or not.The following theorem an be inferred from results in [Landweber 1969; Wagner1979℄. We give a diret proof.Theorem 5.2. Any deterministi B�uhi automaton that aepts a language inF� \GÆ is inherently weak.To prove this, we use the fat that the language aepted by an automaton thatis not inherently weak must have the following property.De�nition 5.3. A language L � �! has the dense osillating sequene prop-erty if, w1; w2; w3; : : : being words and "1; "2; "3; : : : being distanes, one has that9w18"19w28"2 : : : suh that d(wi; wi+1) � "i for all i � 1, wi 2 L for all odd i, andwi 62 L for all even i.Showing that this in�nitesimal osillation is inompatible with the struture of weakdeterministi automata will allow us to onlude. The proof of Theorem 5.2 anthus be split into the two following lemmas.Lemma 5.4. Eah !�language aepted by an B�uhi automaton that is not in-herently weak has the dense osillating sequene property.Proof. Consider a reahable strongly omponent that ontains both an aept-ing and a non aepting yle, and all p a �nite word that allows to reah the �rststate of the aepting yle from the initial state of the automaton. Let A (resp.N ) be the �nite word that labels the aepting (resp. non aepting) yle, andtA (resp. tN ) a �nite word that labels the path from the �rst state of the aepting(resp. non aepting) yle to the �rst state of the non aepting (resp. aepting)yle.Given an in�nite sequene of distanes "1; "2; "3; : : :, we are now ready to on-strut a dense osillating sequene for the language L aepted by the automaton.If k2; k3; k4; : : : is a sequene of natural numbers, de�ne u1 = p, and for all i > 1 :ui = � ui�1 kiN tN if i is oddui�1 kiA tA if i is even.wi (i � 1) is then de�ned as follows :wi = � ui !A if i is oddui !N if i is even.Given i � 1, it is always possible to �nd an integer ki+1 large enough ford(wi; wi+1) < "i to hold. Indeed, the length of the ommon pre�x between wiand wi+1 inreases with ki+1. Furthermore, wi loops either in an aepting yleif i is odd, or in a non aepting yle if i is even, hene, wi 2 L if and only if i isodd. Thus, the sequene of wi's is dense osillating for the language aepted bythe automaton.Lemma 5.5. An !-regular language that has the dense osillating sequene prop-erty annot be aepted by a weak deterministi automaton and hene is not inF� \GÆ.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



An E�etive Deision Proedure for Linear Arithmeti over the Integers and Reals � 13Proof. We proeed by ontradition. Assume that a language L having thedense osillating sequene property is aepted by a weak deterministi automatonA. Consider the �rst word w1 in a dense osillating sequene for L. This wordeventually reahes an aepting omponent Qi1 of the partition of the state setof A and will stay within this omponent. Sine "1 an be hosen freely, it anbe taken small enough for the run of A on w2 to also reah the omponent Qi1before it starts to di�er from w1. Sine w2 is not in L, the run of A on w2 has toeventually leave the omponent Qi1 and will eventually reah and stay within a nonaepting omponent Qi2 < Qi1 . Repeating a similar argument, one an onludethat the run of A on w3 eventually reahes and stays within an aepting omponentQi3 < Qi2 . Carrying on with this line of reasoning, one onludes that the state setof A must ontain an in�nite dereasing sequene of distint omponents, whih isimpossible given that it is �nite.5.4 Minimizing Weak Deterministi AutomataThe breakpoint onstrution redues muh of the determinization of weak automatato that of �nite-word automata. The similarity an be arried on. Indeed, like �nite-word automata, weak deterministi automata admit a normal form unique up toisomorphism [Staiger 1983; Maler and Staiger 1997℄.This normal form an be obtained eÆiently using an algorithm proposed in [L�o-ding 2001℄. The minimization algorithm onsists in loating the strongly onnetedomponents of the graph of the automaton that do not ontain any yle, thenattributing them a new aepting status, aording to a rule involving stronglyonneted omponents that are deeper in the graph. This operation does not a�etthe language aepted by the automaton, sine for any run � of the automaton,� annot loop in suh strongly onneted omponents, leaving inf (�) unhanged.Hoproft's lassial algorithm for minimizing �nite-word automata [Hoproft 1971℄an then be applied diretly to the modi�ed weak deterministi automaton in orderto get an equivalent minimal weak deterministi automaton.When suitably implemented, this algorithm an be run in time O(n logn), movingus still loser to the ase of automata on �nite words.6. DECIDING LINEAR ARITHMETIC WITH REAL AND INTEGER VARIABLESLet us show that the result of Setion 3 also applies to the sets of words thatenode sets de�ned in hR;Z;+;�i. In order to do so, we need to establish thatthe topologial lass F� \ GÆ de�ned over sets of reals is mapped to its !-wordounterpart by the enoding relation desribed in Setion 4.Theorem 6.1. Let n > 0 and r > 1 be integers, and let L(S) � (f0; : : : ; r �1gn [ f?g)! be the set of all the enodings in base r of the vetors belonging to theset S � Rn . If the set S belongs to F� \ GÆ (with respet to Eulidean distane),then the language L(S) belongs to F� \GÆ (with respet to !-word distane).Proof. Not all in�nite words over the alphabet � = f0; : : : ; r�1gn [ f?g enodea real vetor. Atually, every arbitrary small neighborhood of a word enodingvalidly a vetor of Rn ontains words that are not valid enodings, namely the onesontaining multiple ourrenes of the separator \?" that are far enough in theword. ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



14 � B. Boigelot, S. Jodogne, and P. WolperLet V be the set of all the valid enodings of vetors in base r. The mapping V !Rn that transforms eah word in V into the real vetor it enodes is ontinuous,i.e., for eah open set (w.r.t. Eulidean distane) S � Rn , the language L(S) isopen (w.r.t. !-word distane) in V . Equivalently, for eah losed set S � Rn , thelanguage L(S) is losed in V . Hene, for eah S � Rn that belongs to F� \GÆ, thelanguage L(S) belongs to F� \GÆ in V .The language V an be expressed as the intersetion of an open set (the languageof all the words starting with valid sign digits and ontaining at least one ourreneof the separator \?") and of a losed set (the language of all the words ontainingless than two ourrenes of the separator). Therefore, V belongs to F� \ GÆ in�!, hene eah language that is F� \GÆ in V also belongs to F� \GÆ in �!. Thus,for eah S � Rn that is F� \GÆ , the language L(S) belongs to F� \GÆ in �!.Knowing that the language of the enodings of any set de�nable in the theoryhR;Z;+; �i belongs to F� \ GÆ , we use the results of Setion 5 to onlude thefollowing.Theorem 6.2. Every deterministi RVA representing a set de�nable in hR;Z;+;�i is inherently weak.This property has the important onsequene that the onstrution and the ma-nipulation of RVA obtained from arithmeti formulas an be performed e�etivelyby algorithms operating on weak deterministi automata. Preisely, to obtain anRVA for an arithmeti formula one an proeed as follows.For equations and inequations, one uses the onstrutions given in [Boigelot et al.1998℄ to build weak RVA. Computing the intersetion, union, and Cartesian produtof sets represented by RVA simply redues to performing similar operations withthe languages aepted by the underlying automata, whih an be done by simpleprodut onstrutions. These operations preserve the weak nature of the automata.To omplement a weak RVA, one determinizes it using the breakpoint onstrution,whih is guaranteed to yield an inherently weak automaton (Theorem 6.2) that iseasily onverted to a weak one. This deterministi weak RVA is then omplementedby inverting the aepting or non-aepting status of eah of its omponents, andthen removing from its aepted language the words that do not enode validly avetor (whih is done by means of an intersetion operation).An existential quanti�er an be applied to a set represented as an RVA by usingthe onstrution detailed in Setion 4. This operation does not a�et the weaknature of the automaton, whih an then be determinized by the breakpoint on-strution. The determinization algorithm has to produe an inherently weak RVAeasily onverted to a weak automaton.Thus, in order to deide whether a formula of hR;Z;+; �i is satis�able, onesimply builds an RVA representing its set of solutions, and then hek whether thisautomaton aepts a nonempty language. This also makes it possible to hek theinlusion or the equivalene of sets represented by RVA. The main result of thispaper is that, at every point of the interpretation of a formula, the onstruted au-tomaton remains weak and thus only the simple breakpoint onstrution is neededas a determinization proedure.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



An E�etive Deision Proedure for Linear Arithmeti over the Integers and Reals � 15y
11 x

Fig. 3. Periodi tiling with triangles.Finally, as weak deterministi automata an be eÆiently minimized, eah on-struted automaton an be redued down to a normal form. This is partiularlyuseful from a pratial point of view, sine it speeds up the omparisons betweensets by reduing them to strutural tests on the automata, and sine it preventsthe representations from beoming unneessarily large.7. EXPERIMENTSThe deision proedure proposed in this paper has been implemented suessfullyin the LASH toolset, a pakage based on �nite-state automata for representingin�nite sets and exploring in�nite state spaes [LASH ℄.Various experiments have been ahieved with the RVA pakage. For instane, itis possible to represent the set of Figure 3, whih ombines disrete and ontinuousfeatures, by a weak RVA. Indeed, this set is de�ned by the following formula of theadditive theory over the reals and integers :f(x1; x2) 2 R2 j (9x3; x4 2 R)(9x5 ; x6 2 Z)(x1 = x3 + 2x5 ^ x2 = x4 + 2x6 ^ x3 � 0 ^ x4 � 1 ^ x4 � x3)g:This set admits the ompat minimal representation of Figure 4.One might fear that the exponential worst-ase omplexity of the breakpointdeterminization algorithm makes our deision proedure unusable. Experimentalresults however show that suh a blow-up does not frequently our in pratialappliations. As an illustration, Figure 5 shows the ost of projeting and then de-terminizing the �nite-state representations of some periodi subsets of R3 obtainedby ombining linear onstraints with arbitrary oeÆients, and then by induinga periodiity by means of an integer quanti�ation. The interesting observationis that the �nite-state representations have always less states after the projetionthan before, whereas an exponential blow-up ould have been feared.Another �nite-state representation system, the NDD (Number Deision Dia-gram) [Wolper and Boigelot 1995; Boigelot 1998℄, is based on �nite-word automataACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.
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Fig. 4. Weak RVA representing the periodi tiling in binary.and is able to represent the subsets of Zn that an be expressed in an extensionof the �rst-order theory hZ;+;�i. Figure 6 ompares the size of weak RVA withthat of NDD representing the same subsets of Z3 obtained by ombining linear on-straints with arbitrary oeÆients. One noties that the behavior of RVA is verysimilar to that of NDD, that are reputed to behave quite well in pratie [Wolperand Boigelot 2000℄.These observations make one think that the pathologial onditions that lead thebreakpoint onstrution to blow-up are seldom met in pratie.8. CONCLUSIONSA probably unusual aspet of this paper is that it does not introdue new algo-rithms, but rather shows that existing algorithms an be used in a situation wherea priori they ould not be expeted to operate orretly. To put it in other words,the ontribution is not the algorithm but the proof of its orretness.The ritial reader might be wondering if all this is really neessary. After all,algorithms for omplementing B�uhi automata exist, either through determiniza-tion [Safra 1988℄ or diretly [B�uhi 1962; Sistla et al. 1987; Kupferman and Vardi1997; Klarlund 1991℄ and the more reent of these are even fairly simple and poten-tially implementable. There are no perfetly objetive grounds on whih to evaluate\simpliity" and \ease of implementation", but it is not diÆult to onvine oneselfACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.
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