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An E�e
tive De
ision Pro
edure for LinearArithmeti
 over the Integers and Reals ?BERNARD BOIGELOT, S�EBASTIEN JODOGNE y, and PIERRE WOLPERUniversit�e de Li�egeInstitut Monte�ore, B284000 Li�ege, BelgiumThis paper 
onsiders �nite-automata based algorithms for handling linear arithmeti
 with both realand integer variables. Previous work has shown that this theory 
an be dealt with by using �niteautomata on in�nite words, but this involves some diÆ
ult and deli
ate to implement algorithms.The 
ontribution of this paper is to show, using topologi
al arguments, that only a restri
ted 
lassof automata on in�nite words are ne
essary for handling real and integer linear arithmeti
. Thisallows the use of substantially simpler algorithms, whi
h have been su

essfully implemented.Categories and Subje
t Des
riptors: D.2.4 [Software Engineering℄: Software/Program Veri�
a-tion|Formal methods; F.1.1 [Computation by abstra
t devi
es℄: Models of 
omputation|Automata; F.4.1 [Mathemati
al Logi
 and formal languages℄: Mathemati
al Logi
|Com-putational logi
; F.4.3 [Mathemati
al Logi
 and formal languages℄: Formal languages|Classes de�ned by grammars or automata.General Terms: Algorithms, Theory.Additional Key Words and Phrases: De
ision pro
edure, Finite-state representations, Integer andreal arithmeti
, Weak !�automata.1. INTRODUCTIONAmong the te
hniques used to develop algorithms for de
iding or 
he
king logi
alformulas, �nite automata have played an important role in a variety of 
ases. Clas-si
al examples are the use of in�nite-word �nite automata by B�u
hi [B�u
hi 1962℄for obtaining de
ision pro
edures for the �rst and se
ond-order monadi
 theoriesof one su

essor, as well as the use of tree automata by Rabin [Rabin 1969℄ forde
iding the se
ond-order monadi
 theory of n su

essors. More re
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2 � B. Boigelot, S. Jodogne, and P. Wolperare the use of automata for obtaining de
ision and model-
he
king pro
edures fortemporal and modal logi
s [Vardi and Wolper 1986a; 1986b; 1994; Kupferman et al.2000℄. In this last setting, automata-based pro
edures have the advantage of mov-ing the 
ombinatorial aspe
ts of the pro
edures to the 
ontext of automata, whi
hare simple graph-like stru
tures well adapted to algorithmi
 developments. Thisseparation of 
on
erns between the logi
al and the algorithmi
 has been quite fruit-ful for instan
e in the implementation of model 
he
kers for linear-time temporallogi
 [Cour
oubetis et al. 1990; Holzmann 1997℄.As already noti
ed by B�u
hi [B�u
hi 1962; 1960℄, automata-based approa
hes arenot limited to sequential and modal logi
s, but 
an also be used for Presburgerarithmeti
. To a
hieve this, one adopts the usual en
oding of integers in a baser � 2, thus representing an integer as a word over the alphabet f0; : : : ; r � 1g. Byextension, n-
omponent integer ve
tors are represented by words over the alphabetf0; : : : ; r�1gn and a �nite automaton operating over this alphabet represents a setof integer ve
tors. Given that addition and order are easily represented by �niteautomata and that these automata are 
losed under Boolean operations as wellas proje
tion, one easily obtains a de
ision pro
edure for Presburger arithmeti
.This idea was �rst explored at the theoreti
al level, yielding for instan
e the veryni
e result that base-independent �nite-automaton representable sets are exa
tlythe Presburger sets [Cobham 1969; Semenov 1977; Bruy�ere et al. 1994℄. Later, ithas been proposed as a pra
ti
al means of de
iding and manipulating Presburgerformulas [Boudet and Comon 1996; Boigelot 1998; Shiple et al. 1998; Wolper andBoigelot 2000℄. The intuition behind this applied use of automata for Presburgerarithmeti
 is that �nite automata play with respe
t to Presburger arithmeti
 a rolesimilar to the one of Binary De
ision Diagrams (BDD) with respe
t to Booleanlogi
. These ideas have been implemented in the LASH tool [LASH ℄, whi
h hasbeen used su

essfully in the 
ontext of verifying systems with unbounded integervariables.It almost immediately 
omes to mind that if a �nite word over the alphabetf0; : : : ; r� 1g 
an represent an integer, an in�nite word over the same alphabet ex-tended with a fra
tional part separator (the usual dot) 
an represent a real number.Finite automata on in�nite words 
an thus represent sets of real ve
tors, and serveas a means of obtaining a de
ision pro
edure for real additive arithmeti
. Further-more, sin
e numbers with fra
tional parts equal to zero 
an easily be re
ognized byautomata, the same te
hnique 
an be used to obtain a de
ision pro
edure for a the-ory 
ombining the integers and the reals. This was not previously handled by anytool, but 
an be of pra
ti
al use, for instan
e in the veri�
ation of timed systemsusing integer variables [Boigelot et al. 1997℄. However, turning this into an e�e
-tive implemented system is not as easy as it might �rst seem. Indeed, proje
tingand 
omplementing �nite automata on in�nite words is signi�
antly more diÆ
ultthan for automata on �nite words. Proje
tion yields nondeterministi
 automataand 
omplementing or determinizing in�nite-word automata is a notoriously diÆ-
ult problem. A number of algorithms have been proposed for this [B�u
hi 1962;Sistla et al. 1987; Safra 1988; Klarlund 1991; Kupferman and Vardi 1997℄, but eventhough their theoreti
al 
omplexity remains simply exponential as in the �nite-word
ase, it moves up from 2O(n) to 2O(n logn) and none of the proposed algorithms areACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



An E�e
tive De
ision Pro
edure for Linear Arithmeti
 over the Integers and Reals � 3as easy to implement and �ne-tune as the simple Rabin-S
ott subset 
onstru
tionused in the �nite-word 
ase.However, it is intuitively surprising that handling reals is so mu
h more diÆ
ultthan handling integers, espe
ially in light of the fa
t that the usual polyhedra-based approa
h to handling arithmeti
 is both of lower 
omplexity and easier toimplement for the reals than for the integers [Ferrante and Ra
ko� 1979℄. Onewould expe
t that handling reals with automata should be no more diÆ
ult thanhandling integers1. The 
on
lusion that 
omes out of these observations is thatin�nite-word automata 
onstru
ted from linear arithmeti
 formulas must have aspe
ial stru
ture that makes them easier to manipulate than general automata onin�nite words. That this spe
ial stru
ture exists and that it 
an exploited to obtainsimpler algorithms is pre
isely the subje
t of this paper.As a starting point, let us look at the topologi
al 
hara
terization of the setsde�nable by linear arithmeti
 formulas. Let us �rst 
onsider a formula involvingsolely real variables. If the formula is quanti�er free, it is a Boolean 
ombinationof linear 
onstraints and thus de�nes a set whi
h is a �nite Boolean 
ombinationof open and 
losed sets. Now, sin
e real linear arithmeti
 admits quanti�er elim-ination, the same property also holds for quanti�ed formulas. Then, looking at
lasses of automata on in�nite words, one noti
es that the most restri
ted one that
an a

ept Boolean 
ombinations of open and 
losed sets is the 
lass of determin-isti
 weak automata [Staiger and Wagner 1974; Staiger 1983℄. These a

ept all!-regular sets in the Borel 
lass F� \ GÆ and hen
e also �nite Boolean 
ombina-tions of open and 
losed sets. So, with some 
are about moving from the topologyon ve
tors to the topology on their en
oding as words, one 
an 
on
lude that thesets representable by arithmeti
 formulas involving only real variables 
an alwaysbe a

epted by deterministi
 weak automata on in�nite words. If integers are alsoinvolved in the formula, a similar argument 
an be used, invoking a re
ently pub-lished quanti�er elimination result for the 
ombined theory [Weispfenning 1999℄.However, initially unaware of this result, we developed a di�erent argument toprove that sets de�nable by quanti�ed linear arithmeti
 formulas involving bothreal and integer variables are within F� \ GÆ and thus are representable by weakdeterministi
 automata. This proof relies on separating the integer and fra
tionalparts of variables and on topologi
al properties of F� \GÆ . It has the advantage ofbeing mu
h more dire
t than a proof relying on a quanti�er elimination result.The problemati
 part of the operations on automata used for de
iding a �rst-ordertheory is the sequen
e of proje
tions and 
omplementations needed to eliminate astring of quanti�ers alternating between existential and universal ones. The se
ondresult of this paper shows that for sets de�ned in linear arithmeti
 this 
an be donewith 
onstru
tions that are simple adaptations of the ones used for automata on�nite words. Indeed, deterministi
 weak automata 
an be viewed as either B�u
hi or
o-B�u
hi automata. The interesting fa
t is that 
o-B�u
hi automata 
an be deter-minized by the \breakpoint" 
onstru
tion [Miyano and Hayashi 1984; Kupfermanand Vardi 1997℄, whi
h basi
ally amounts to a produ
t of subset 
onstru
tions.1Note that one 
annot expe
t reals to be easier to handle with automata than integers sin
e,by nature, this representation in
ludes expli
it information about the existen
e of integer valuessatisfying the represented formula.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



4 � B. Boigelot, S. Jodogne, and P. WolperThus, one has a simple 
onstru
tion to proje
t and determinize a weak automaton,yielding a deterministi
 
o-B�u
hi automaton, whi
h is easily 
omplemented into adeterministi
 B�u
hi automaton. In the general 
ase, another round of proje
tionwill lead to a nondeterministi
 B�u
hi automaton, for whi
h a general determiniza-tion pro
edure has to be used. However, we have the result that for automataobtained from linear arithmeti
 formulas, the represented sets stay within thosea

epted by deterministi
 weak automata. We prove that this implies that theautomata obtained after determinization will always be weak.Note that this 
annot be dire
tly 
on
luded from the fa
t that the representedsets stay within those representable by deterministi
 weak automata. Indeed, eventhough the represented sets 
an be a

epted by deterministi
 weak automata, theautomata that are obtained by the determinization pro
edure might not have thisform. Fortunately, we 
an prove that this is impossible. For this, we go ba
k to thelink between automata and the topology of the sets of in�nite words they a

ept.The argument is that !-regular sets in F� \ GÆ have a topologi
al property thatfor
es the automata a

epting them to be inherently weak, i.e. not to have strongly
onne
ted 
omponents 
ontaining both a

epting and non a

epting 
y
les.Finally, an important additional bene�t of working with weak deterministi
 au-tomata is that they admit a 
anoni
al minimal normal form that 
an be obtainedeÆ
iently [Maler and Staiger 1997; L�oding 2001℄. This brings us even 
loser to thesituation of working with �nite-work automata, and is a property that is not avail-able when working either with general in�nite-word automata, or with formulas asdone in [Weispfenning 1999℄.As a 
onsequen
e of our results, we obtain a simple de
ision pro
edure for thetheory 
ombining integer and real linear arithmeti
. The fa
t that this theory isde
idable using automata-based methods was known [Boigelot et al. 1997℄, butthe results of this paper make it possible to implement a tool that 
an handle ite�e
tively.2. AUTOMATA-THEORETIC AND TOPOLOGICAL BACKGROUNDIn this se
tion we re
all some automata-theoreti
 and topologi
al 
on
epts that areused in the paper.2.1 Automata on In�nite WordsAn in�nite word (or !-word) w over an alphabet � is a mapping w : N 7! � fromthe natural numbers to �. A B�u
hi automaton on in�nite words is a �ve-tupleA = (Q;�; Æ; q0; F ), where|Q is a �nite set of states;|� is the input alphabet;|Æ is the transition fun
tion and is of the form Æ : Q�� 7! 2Q if the automaton isnondeterministi
 and of the form Æ : Q�� 7! Q if the automaton is deterministi
;|q0 is the initial state;|F is a set of a

epting states.A run � of a B�u
hi automaton A = (Q;�; Æ; q0; F ) on an !-word w is a mapping� : N 7! Q that satis�es the following 
onditions :ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



An E�e
tive De
ision Pro
edure for Linear Arithmeti
 over the Integers and Reals � 5|�(0) = q0, i.e. the run starts in the initial state;|for all i � 0, �(i + 1) 2 Æ(�(i); w(i)) (nondeterministi
 automata) or �(i +1) = Æ(�(i); w(i)) (deterministi
 automata), i.e. the run respe
ts the transitionfun
tion.Let inf (�) be the set of states that o

ur in�nitely often in a run �. A run �is said to be a

epting if inf (�) \ F 6= ;. An !-word w is a

epted by a B�u
hiautomaton if that automaton has some a

epting run on w. The language L!(A)of in�nite words de�ned by a B�u
hi automaton A is the set of !-words it a

epts.The !�regular languages are de�ned as the languages of in�nite words that 
an bea

epted by a nondeterministi
 B�u
hi automaton.A 
o-B�u
hi automaton is de�ned exa
tly as a B�u
hi automaton ex
ept that itsa

epting runs are those for whi
h inf (�) \ F = ;.We will also use the notion of weak automata [Muller et al. 1986℄. For a B�u
hiautomaton A = (Q;�; Æ; q0; F ) to be weak, there has to be a partition of its stateset Q into disjoint subsets Q1; : : : ; Qm su
h that|for ea
h of the Qi either Qi � F or Qi \ F = ;, and|there is a partial order � on the sets Q1; : : : ; Qm su
h that for every q 2 Qi andq0 2 Qj for whi
h, for some a 2 �, q0 2 Æ(q; a) (q0 = Æ(q; a) in the deterministi

ase), Qj � Qi.Note that, in order to 
omply with this de�nition, ea
h Qi has to be a unionof strongly 
onne
ted 
omponents. Thus, the strongly 
onne
ted 
omponents of aweak automaton 
onsist solely of either a

epting or reje
ting states.For more details, a survey of automata on in�nite words 
an be found in [Thomas1990℄.2.2 TopologyGiven a set S, a distan
e d(x; y) de�ned on this set indu
es a metri
 topology onsubsets of S. A neighborhood N"(x) of a point x 2 S with respe
t to " 2 R+ is theset N"(x) = fy j d(x; y) < "g. A set C � S is said to be open if for all x 2 C, thereexists " > 0 su
h that the neighborhood N"(x) is 
ontained in C. A 
losed set is aset whose 
omplement with respe
t to S is open. We will be referring to the �rstfew levels of the Borel hierar
hy whi
h are shown in Figure 1. The notations usedare the following :|F are the 
losed sets,|G are the open sets,|F� is the 
lass of 
ountable unions of 
losed sets,|GÆ is the 
lass of 
ountable interse
tions of open sets,|F�Æ is the 
lass of 
ountable interse
tions of F� sets,|GÆ� is the 
lass of 
ountable unions of GÆ sets,|B(X) represents the �nite Boolean 
ombinations of sets in X .An arrow between 
lasses indi
ates proper in
lusion.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



6 � B. Boigelot, S. Jodogne, and P. Wolper

F \G GF B(F ) = B(G)F� \GÆ GÆB(F�) = B(GÆ)F�Æ \GÆ�
F�
F�Æ GÆ�...

Fig. 1. The �rst few levels of the Borel hierar
hy in a metri
 topology.3. TOPOLOGICAL CHARACTERIZATION OF ARITHMETIC SETSWe 
onsider the theory hR;Z;+;�i, where + represents the predi
ate x + y = z.Sin
e any linear equality or order 
onstraint 
an be en
oded into this theory, werefer to it as additive or linear arithmeti
 over the reals and integers. It is theextension of Presburger arithmeti
 that in
ludes both real and integer variables.We provide the spa
e Rn (n � 0) with the 
lassi
al Eu
lidean distan
e betweenve
tors de�ned by d(~x; ~y) =  nXi=1(xi � yi)2!1=2 :The topology indu
ed by this metri
 will be referred to as the natural topology ofRn .In this se
tion, we prove that the sets representable in the additive linear arith-meti
 over the reals and integers belong to the topologi
al 
lass F�\GÆ . This resultis formalized by the following theorem.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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tive De
ision Pro
edure for Linear Arithmeti
 over the Integers and Reals � 7Theorem 3.1. Let S � Rn , with n > 0, be a set de�ned in the theory hR;Z;+;�i. This set belongs to the 
lass F� \GÆ of the natural topology of Rn .Proof. Sin
e hR;Z;+;�i is 
losed under negation, it is a
tually suÆ
ient toshow that ea
h formula of this theory de�nes a set that belongs to F� , i.e., a setthat 
an be expressed as a 
ountable union of 
losed sets.Let ' be a formula of hR;Z;+;�i. To simplify our argument, we will assumethat all free variables of ' are reals. This 
an be done without loss of generalitysin
e quanti�ed variables 
an range over both R and Z. We introdu
e u < v as ashorthand for u � v ^ :(u = v).The �rst step of our proof 
onsists of modifying ' in the following way. Werepla
e ea
h variable x that appears in ' by two variables xI and xF representingrespe
tively the integer and the fra
tional part of x. Formally, this operation re-pla
es ea
h o

urren
e in ' of a free variable x by the sum xI + xF while addingto ' the 
onstraints 0 � xF and xF < 1, and transforms the quanti�ed variables of' a

ording to the following rules :(9x 2 R)� �! (9xI 2 Z)(9xF 2 R)(0 � xF ^ xF < 1 ^ �[x=xI + xF ℄)(8x 2 R)� �! (8xI 2 Z)(8xF 2 R)(xF < 0 _ 1 � xF _ �[x=xI + xF ℄)(Qx 2 Z)� �! (QxI 2 Z)�[x=xI℄;where Q 2 f9;8g, � is a subformula, and �[x=y℄ denotes the result of repla
ingby y ea
h o

urren
e of x in �. The transformation has no in
uen
e on the setrepresented by ', ex
ept that the integer and fra
tional parts of ea
h value are nowrepresented by two distin
t variables.Now, the atomi
 formulas of ' are of the form p = q+r, p = q or p � q, where p; qand r are either integer variables, sums of an integer and of a fra
tional variable, orinteger 
onstants. The se
ond step 
onsists of expanding these atomi
 formulas soas to send into distin
t atoms the o

urren
es of the integer and of the fra
tionalvariables. This is easily done with the help of simple arithmeti
 rules, for the truthvalue of the atomi
 formulas that involve both types of variables has only to bepreserved for values of the fra
tional variables that belong to the interval [0; 1).The set of expansion rules2 (up to 
ommutability of members and terms) is givenin Figure 2.After the transformation, ea
h atomi
 formula of ' is either a formula �I in-volving only integer variables or a formula �F over fra
tional variables. We nowdistribute existential (resp. universal) quanti�ers over disjun
tions (resp. 
onjun
-tions), after rewriting their argument into disjun
tive (resp. 
onjun
tive) normalform, and then apply the simpli�
ation rules(QxI 2 Z)(�I ��F ) �! (QxI 2 Z)(�I) � �F(QxF 2 R)(�I ��F ) �! �I � (QxF 2 R)(�F );where Q 2 f9;8g and � 2 f_;^g.Repeating this operation, we eventually get a formula '0 equivalent to ' that2In these rules, the expression p = q + r + s is introdu
ed as a shorthand for (9u 2 R)(u =q + r ^ p = u+ s). ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



8 � B. Boigelot, S. Jodogne, and P. WolperxI = (yI + yF ) �! xI = yI ^ yF = 0(xI + xF ) = (yI + yF ) �! xI = yI ^ xF = yFxI = yI + (zI + zF ) �! xI = yI + zI ^ zF = 0xI = (yI + yF ) + (zI + zF ) �! (xI = yI + zI ^ yF + zF = 0) _(xI = yI + zI + 1 ^ yF + zF = 1)(xI + xF ) = yI + zI �! xI = yI + zI ^ xF = 0(xI + xF ) = yI + (zI + zF ) �! xI = yI + zI ^ xF = zF(xI + xF ) = (yI + yF ) + (zI + zF ) �! (xI = yI + zI ^ xF = yF + zF ) _(xI = yI + zI + 1 ^ xF = yF + zF � 1)xI � (yI + yF ) �! xI � yI(xI + xF ) � yI �! xI < yI _ (xI = yI ^ xF = 0)(xI + xF ) � (yI + yF ) �! xI < yI _ (xI = yI ^ xF � yF )Fig. 2. Expansion rules.takes the form of a �nite Boolean 
ombinationB(�(1)I ; �(2)I ; : : : ; �(m)I ; �(1)F ; �(2)F ; : : : ; �(m0)F )of subformulas �(i)I and �(i)F that involve respe
tively only integer and fra
tionalvariables.Let x(1)I ; x(2)I ; : : : ; x(k)I be the free integer variables of '0 (k � m). For ea
hassignment of values to these variables, the subformulas �(i)I are ea
h identi
allytrue or false, hen
e we have' � _(a1;:::;ak)2Zk�(x(1)I ; : : : ; x(k)I ) = (a1; : : : ; ak) ^ B(a1;:::;ak)(�(1)F ; : : : ; �(m0)F )� :Ea
h subformula �(i)F belongs to the theory hR;+;�; 1i, whi
h admits the elimina-tion of quanti�ers [Ferrante and Ra
ko� 1979℄. The sets of real ve
tors satisfyingthese formulas are thus �nite Boolean 
ombinations of linear 
onstraints with openor 
losed boundaries. It follows that, for ea
h (a1; : : : ; ak) 2 Zk, the set des
ribedby B(a1;:::;ak) is a �nite Boolean 
ombination of open and 
losed sets, that is a setbelonging to the topologi
al 
lass B(F ) = B(G). Sin
e, a

ording to properties ofthe Borel hierar
hy, this 
lass forms a subset of F� , the set des
ribed by ' is a
ountable union of 
ountable unions of 
losed sets and also lies within F� .4. REPRESENTING SETS OF INTEGERS AND REALS WITH FINITE AUTOMATAIn this se
tion, we re
all the �nite-state representation of sets of real ve
tors asintrodu
ed in [Boigelot et al. 1997℄. A similar approa
h for representing ve
tors inthe unit 
ube is also pursued in [J�urgensen and Staiger 2001℄.In order to make a �nite automaton re
ognize numbers, one needs to establisha mapping between these and words. Our en
oding s
heme 
orresponds to theusual notation for reals and relies on an arbitrary integer base r > 1. We en
odea number x in base r, most signi�
ant digit �rst, by words of the form wI ? wF ,where wI en
odes the integer part xI of x as a �nite word over f0; : : : ; r � 1g, thespe
ial symbol \?" is a separator, and wF en
odes the fra
tional part xF of x asan in�nite word over f0; : : : ; r � 1g. Negative numbers are represented by their r'sACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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omplement. The length p of jwI j, whi
h we refer to as the integer-part length ofw, is not �xed but must be large enough for �rp�1 � xI < rp�1 to hold.A

ording to this s
heme, ea
h number has an in�nite number of en
odings, sin
etheir integer-part length 
an be in
reased unboundedly. In addition, the rationalnumbers whose denominator has only prime fa
tors that are also fa
tors of r havetwo distin
t en
odings with the same integer-part length. For example, in base10, the number 11/2 has the en
odings 005 ? 5(0)! and 005 ? 4(9)!, \ !" denotingin�nite repetition.To en
ode a ve
tor of real numbers, we represent ea
h of its 
omponents by wordsof identi
al integer-part length. This length 
an be 
hosen arbitrarily, provided thatit is suÆ
ient for en
oding the ve
tor 
omponent with the highest magnitude. Anen
oding of a ve
tor ~x 2 Rn 
an indi�erently be viewed either as a n-tuple of wordsof identi
al integer-part length over the alphabet f0; : : : ; r � 1; ?g, or as a singleword w over the alphabet f0; : : : ; r � 1gn [ f?g.Sin
e a real ve
tor has an in�nite number of possible en
odings, we have to
hoose whi
h of these the automata will re
ognize. A natural 
hoi
e is to a

ept allen
odings. This leads to the following de�nition.De�nition 4.1. Let n > 0 and r > 1 be integers. A Real Ve
tor Automaton(RVA) A in base r for ve
tors in Rn is a B�u
hi automaton over the alphabetf0; : : : ; r � 1gn [ f?g, su
h that|every word a

epted by A is an en
oding in base r of a ve
tor in Rn , and|for every ve
tor ~x 2 Rn , A a

epts either all the en
odings of ~x in base r, or noneof them.An RVA is said to represent the set of ve
tors en
oded by the words that belongto its a

epted language.EÆ
ient algorithms have been developed for 
onstru
ting RVA representing thesets of solutions of systems of linear equations and inequations [Boigelot et al. 1998℄.Boolean operations 
an easily be a
hieved on RVA by applying the 
orrespondingexisting algorithms for in�nite-word automata.Furthermore, a set represented as an RVA 
an be quanti�ed existentially withrespe
t to its i�th ve
tor 
omponent over the real domain, by repla
ing ea
h symbolin f0; : : : ; r�1gn read by the automaton with the same symbol out of whi
h the i�th
omponent has been removed. This produ
es a nondeterministi
 automaton thatmay only a

ept some en
odings of ea
h ve
tor in the quanti�ed set, but generallynot all of them. Su
h a situation 
an arise if the 
omponent of highest magnitudefor some ve
tors in the set is proje
ted out3. The se
ond step 
onsists thus ofmodifying the automaton so as to make it a

ept every en
oding of ea
h ve
torthat it re
ognizes. Algorithms have been developed for this purpose in the 
ase of�nite-word automata [Boigelot 1998; Boigelot and Latour 2001℄. These algorithmsalso apply to RVA, sin
e the behavior of the underlying B�u
hi automaton beforereading the separator \?" is identi
al to that of a �nite-word automaton re
ognizingthe integer part of the ve
tors in the represented set.3For instan
e, proje
ting out the �rst 
omponent of the set f(8; 1)g in binary would produ
e anautomaton that does not a

ept en
odings of 1 having less than �ve bits in their integer part.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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e it is immediate to 
onstrain a number to be an integer with an RVAby imposing its fra
tional part to be either 0! or (r � 1)! (i.e. by interse
ting itsa

epted language with f0; r� 1gn � (f0; : : : ; r � 1gn)� � f?g � f0; r� 1gn), it followsthat one 
an 
onstru
t an RVA for any formula of the arithmeti
 theory we are
onsidering.5. WEAK AUTOMATA AND THEIR PROPERTIESIf one examines the 
onstru
tions given in [Boigelot et al. 1998℄ to build RVA forlinear equations and inequations, one noti
es that they have the property that allstates within the same strongly 
onne
ted 
omponent are either a

epting or nona

epting. This implies that these automata are weak in the sense of [Muller et al.1986℄ (see Se
tion 2.1).5.1 Determinizing Weak AutomataWeak automata have a number of interesting properties. A �rst one is that they
an be represented both as B�u
hi and 
o-B�u
hi. Indeed, a weak automaton A =(Q;�; Æ; q0; F ) is equivalent to the 
o-B�u
hi automaton A = (Q;�; Æ; q0; Q n F ),sin
e a run eventually remains within a single 
omponent Qi in whi
h all stateshave the same status with respe
t to being a

epting. A 
onsequen
e of this is thatweak automata 
an be determinized by the fairly simple \breakpoint" 
onstru
-tion [Kupferman and Vardi 1997; Miyano and Hayashi 1984℄ that 
an be used for
o-B�u
hi automata. This 
onstru
tion is the following.Let A = (Q;�; Æ; q0; F ) be a nondeterministi
 
o-B�u
hi automaton. The deter-ministi
 
o-B�u
hi automaton A0 = (Q0;�; Æ0; q00; F 0) de�ned as follows a

epts thesame !-language :|Q0 = 2Q � 2Q, i.e. the states of A0 are pairs of sets of states of A.|q00 = (fq0g; ;).|For (S;R) 2 Q0 and a 2 �, the transition fun
tion is de�ned by|if R = ;, then Æ((S;R); a) = (T; T n F ) where T = fq j (9p 2 S) q 2 Æ(p; a)g :T is obtained from S as in the 
lassi
al subset 
onstru
tion, and the se
ond
omponent of the pair of sets of states is obtained from T by eliminating statesin F ;|if R 6= ;, then Æ((S;R); a) = (T; U n F ) where T = fq j (9p 2 S) q 2 Æ(p; a)g,and U = fq j (9p 2 R) q 2 Æ(p; a)g : the subset 
onstru
tion set is now appliedto both S and R and the states in F are removed from U .|F 0 = 2Q � f;g.When the automaton A0 is in a state (S;R), R represents the states of A that
an be rea
hed by a run that has not gone through a state in F sin
e the last\breakpoint", i.e. state of the form (S; ;). So, for a given word, A has a run thatdoes not go in�nitely often through a state in F if and only if A0 has a run thatdoes not go in�nitely often through a state in F 0. Noti
e that the diÆ
ulty thatexists for determinizing B�u
hi automata, whi
h is to make sure that the same runrepeatedly rea
hes an a

epting state, disappears sin
e, for 
o-B�u
hi automata, weare just looking for a run that eventually avoids a

epting states.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



An E�e
tive De
ision Pro
edure for Linear Arithmeti
 over the Integers and Reals � 11It is interesting to noti
e that the 
onstru
tion implies that all rea
hable states(S;R) of A0 satisfy R � S. The breakpoint 
onstru
tion 
an thus be implemented asa subset 
onstru
tion in whi
h the states in R are simply tagged, whi
h implies thatthe worst-
ase 
omplexity of the 
onstru
tion is 2O(n). This makes the 
onstru
tionbehave in pra
ti
e very similarly to the traditional subset 
onstru
tion for �nite-word automata.5.2 Topologi
al Chara
terizationAnother property of weak automata that will be of parti
ular interest to us is thetopologi
al 
hara
terization of the sets of words that they 
an a

ept. We 
onsiderthe topology on the sets of in�nite words over an alphabet � indu
ed by the distan
eon the !�words d(w;w0) = � 1j
ommon(w;w0)j+1 if w 6= w00 if w = w0;where j
ommon(w;w0)j denotes the length of the longest 
ommon pre�x of w andw0. The open sets in su
h a topologi
al spa
e are the sets of the form X � �!,where X � �+ is a language of �nite words. Relations between this topology andautomata are well understood. For instan
e, it has been proved that the languagesof in�nite words that 
an be a

epted by a deterministi
 B�u
hi automaton areexa
tly the !�rational languages belonging to the 
lass GÆ [Landweber 1969℄. Byduality, deterministi
 
o-B�u
hi automata a

ept exa
tly the !-regular languagesthat belong to F� .As weak deterministi
 automata 
an be seen both as deterministi
 B�u
hi anddeterministi
 
o-B�u
hi, they a

ept exa
tly the !-regular languages that are in F�\GÆ . This follows from the results on the Staiger-Wagner 
lass of automata [Staigerand Wagner 1974; Staiger 1983℄, whi
h 
oin
ides with the 
lass of deterministi
weak automata, as 
an be inferred from [Staiger and Wagner 1974℄ and is shownexpli
itly in [Maler and Staiger 1997℄.5.3 Inherently Weak AutomataGiven the result proved in Se
tion 3, it is tempting to 
on
lude that the en
odingsof sets de�nable in the theory hR;Z;+;�i 
an always be a

epted by weak deter-ministi
 automata. This 
on
lusion is 
orre
t, but requires shifting the result fromthe topology on numbers to the topology on words, whi
h we will do in the nextse
tion. In the meantime, we need one more result in order to be able to bene�talgorithmi
ally from the fa
t that we are dealing with F� \ GÆ sets, i.e. that anydeterministi
 automaton a

epting a F� \GÆ set is essentially a weak automaton.Consider the following de�nition.De�nition 5.1. A B�u
hi automaton is inherently weak if none of the rea
hablestrongly 
onne
ted 
omponents of its transition graph 
ontains both a

epting (in-
luding at least one a

epting state) and non a

epting (not in
luding any a

eptingstate) 
y
les.Clearly, if an automaton is inherently weak, it 
an dire
tly be transformed intoa weak automaton : the partition of the state set is its partition into stronglyACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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onne
ted 
omponents and all the states of a 
omponent are made a

epting ornot, depending on whether the 
y
les in that 
omponent are a

epting or not.The following theorem 
an be inferred from results in [Landweber 1969; Wagner1979℄. We give a dire
t proof.Theorem 5.2. Any deterministi
 B�u
hi automaton that a

epts a language inF� \GÆ is inherently weak.To prove this, we use the fa
t that the language a

epted by an automaton thatis not inherently weak must have the following property.De�nition 5.3. A language L � �! has the dense os
illating sequen
e prop-erty if, w1; w2; w3; : : : being words and "1; "2; "3; : : : being distan
es, one has that9w18"19w28"2 : : : su
h that d(wi; wi+1) � "i for all i � 1, wi 2 L for all odd i, andwi 62 L for all even i.Showing that this in�nitesimal os
illation is in
ompatible with the stru
ture of weakdeterministi
 automata will allow us to 
on
lude. The proof of Theorem 5.2 
anthus be split into the two following lemmas.Lemma 5.4. Ea
h !�language a

epted by an B�u
hi automaton that is not in-herently weak has the dense os
illating sequen
e property.Proof. Consider a rea
hable strongly 
omponent that 
ontains both an a

ept-ing and a non a

epting 
y
le, and 
all p a �nite word that allows to rea
h the �rststate of the a

epting 
y
le from the initial state of the automaton. Let 
A (resp.
N ) be the �nite word that labels the a

epting (resp. non a

epting) 
y
le, andtA (resp. tN ) a �nite word that labels the path from the �rst state of the a

epting(resp. non a

epting) 
y
le to the �rst state of the non a

epting (resp. a

epting)
y
le.Given an in�nite sequen
e of distan
es "1; "2; "3; : : :, we are now ready to 
on-stru
t a dense os
illating sequen
e for the language L a

epted by the automaton.If k2; k3; k4; : : : is a sequen
e of natural numbers, de�ne u1 = p, and for all i > 1 :ui = � ui�1 
kiN tN if i is oddui�1 
kiA tA if i is even.wi (i � 1) is then de�ned as follows :wi = � ui 
!A if i is oddui 
!N if i is even.Given i � 1, it is always possible to �nd an integer ki+1 large enough ford(wi; wi+1) < "i to hold. Indeed, the length of the 
ommon pre�x between wiand wi+1 in
reases with ki+1. Furthermore, wi loops either in an a

epting 
y
leif i is odd, or in a non a

epting 
y
le if i is even, hen
e, wi 2 L if and only if i isodd. Thus, the sequen
e of wi's is dense os
illating for the language a

epted bythe automaton.Lemma 5.5. An !-regular language that has the dense os
illating sequen
e prop-erty 
annot be a

epted by a weak deterministi
 automaton and hen
e is not inF� \GÆ.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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eed by 
ontradi
tion. Assume that a language L having thedense os
illating sequen
e property is a

epted by a weak deterministi
 automatonA. Consider the �rst word w1 in a dense os
illating sequen
e for L. This wordeventually rea
hes an a

epting 
omponent Qi1 of the partition of the state setof A and will stay within this 
omponent. Sin
e "1 
an be 
hosen freely, it 
anbe taken small enough for the run of A on w2 to also rea
h the 
omponent Qi1before it starts to di�er from w1. Sin
e w2 is not in L, the run of A on w2 has toeventually leave the 
omponent Qi1 and will eventually rea
h and stay within a nona

epting 
omponent Qi2 < Qi1 . Repeating a similar argument, one 
an 
on
ludethat the run of A on w3 eventually rea
hes and stays within an a

epting 
omponentQi3 < Qi2 . Carrying on with this line of reasoning, one 
on
ludes that the state setof A must 
ontain an in�nite de
reasing sequen
e of distin
t 
omponents, whi
h isimpossible given that it is �nite.5.4 Minimizing Weak Deterministi
 AutomataThe breakpoint 
onstru
tion redu
es mu
h of the determinization of weak automatato that of �nite-word automata. The similarity 
an be 
arried on. Indeed, like �nite-word automata, weak deterministi
 automata admit a normal form unique up toisomorphism [Staiger 1983; Maler and Staiger 1997℄.This normal form 
an be obtained eÆ
iently using an algorithm proposed in [L�o-ding 2001℄. The minimization algorithm 
onsists in lo
ating the strongly 
onne
ted
omponents of the graph of the automaton that do not 
ontain any 
y
le, thenattributing them a new a

epting status, a

ording to a rule involving strongly
onne
ted 
omponents that are deeper in the graph. This operation does not a�e
tthe language a

epted by the automaton, sin
e for any run � of the automaton,� 
annot loop in su
h strongly 
onne
ted 
omponents, leaving inf (�) un
hanged.Hop
roft's 
lassi
al algorithm for minimizing �nite-word automata [Hop
roft 1971℄
an then be applied dire
tly to the modi�ed weak deterministi
 automaton in orderto get an equivalent minimal weak deterministi
 automaton.When suitably implemented, this algorithm 
an be run in time O(n logn), movingus still 
loser to the 
ase of automata on �nite words.6. DECIDING LINEAR ARITHMETIC WITH REAL AND INTEGER VARIABLESLet us show that the result of Se
tion 3 also applies to the sets of words thaten
ode sets de�ned in hR;Z;+;�i. In order to do so, we need to establish thatthe topologi
al 
lass F� \ GÆ de�ned over sets of reals is mapped to its !-word
ounterpart by the en
oding relation des
ribed in Se
tion 4.Theorem 6.1. Let n > 0 and r > 1 be integers, and let L(S) � (f0; : : : ; r �1gn [ f?g)! be the set of all the en
odings in base r of the ve
tors belonging to theset S � Rn . If the set S belongs to F� \ GÆ (with respe
t to Eu
lidean distan
e),then the language L(S) belongs to F� \GÆ (with respe
t to !-word distan
e).Proof. Not all in�nite words over the alphabet � = f0; : : : ; r�1gn [ f?g en
odea real ve
tor. A
tually, every arbitrary small neighborhood of a word en
odingvalidly a ve
tor of Rn 
ontains words that are not valid en
odings, namely the ones
ontaining multiple o

urren
es of the separator \?" that are far enough in theword. ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



14 � B. Boigelot, S. Jodogne, and P. WolperLet V be the set of all the valid en
odings of ve
tors in base r. The mapping V !Rn that transforms ea
h word in V into the real ve
tor it en
odes is 
ontinuous,i.e., for ea
h open set (w.r.t. Eu
lidean distan
e) S � Rn , the language L(S) isopen (w.r.t. !-word distan
e) in V . Equivalently, for ea
h 
losed set S � Rn , thelanguage L(S) is 
losed in V . Hen
e, for ea
h S � Rn that belongs to F� \GÆ, thelanguage L(S) belongs to F� \GÆ in V .The language V 
an be expressed as the interse
tion of an open set (the languageof all the words starting with valid sign digits and 
ontaining at least one o

urren
eof the separator \?") and of a 
losed set (the language of all the words 
ontainingless than two o

urren
es of the separator). Therefore, V belongs to F� \ GÆ in�!, hen
e ea
h language that is F� \GÆ in V also belongs to F� \GÆ in �!. Thus,for ea
h S � Rn that is F� \GÆ , the language L(S) belongs to F� \GÆ in �!.Knowing that the language of the en
odings of any set de�nable in the theoryhR;Z;+; �i belongs to F� \ GÆ , we use the results of Se
tion 5 to 
on
lude thefollowing.Theorem 6.2. Every deterministi
 RVA representing a set de�nable in hR;Z;+;�i is inherently weak.This property has the important 
onsequen
e that the 
onstru
tion and the ma-nipulation of RVA obtained from arithmeti
 formulas 
an be performed e�e
tivelyby algorithms operating on weak deterministi
 automata. Pre
isely, to obtain anRVA for an arithmeti
 formula one 
an pro
eed as follows.For equations and inequations, one uses the 
onstru
tions given in [Boigelot et al.1998℄ to build weak RVA. Computing the interse
tion, union, and Cartesian produ
tof sets represented by RVA simply redu
es to performing similar operations withthe languages a

epted by the underlying automata, whi
h 
an be done by simpleprodu
t 
onstru
tions. These operations preserve the weak nature of the automata.To 
omplement a weak RVA, one determinizes it using the breakpoint 
onstru
tion,whi
h is guaranteed to yield an inherently weak automaton (Theorem 6.2) that iseasily 
onverted to a weak one. This deterministi
 weak RVA is then 
omplementedby inverting the a

epting or non-a

epting status of ea
h of its 
omponents, andthen removing from its a

epted language the words that do not en
ode validly ave
tor (whi
h is done by means of an interse
tion operation).An existential quanti�er 
an be applied to a set represented as an RVA by usingthe 
onstru
tion detailed in Se
tion 4. This operation does not a�e
t the weaknature of the automaton, whi
h 
an then be determinized by the breakpoint 
on-stru
tion. The determinization algorithm has to produ
e an inherently weak RVAeasily 
onverted to a weak automaton.Thus, in order to de
ide whether a formula of hR;Z;+; �i is satis�able, onesimply builds an RVA representing its set of solutions, and then 
he
k whether thisautomaton a

epts a nonempty language. This also makes it possible to 
he
k thein
lusion or the equivalen
e of sets represented by RVA. The main result of thispaper is that, at every point of the interpretation of a formula, the 
onstru
ted au-tomaton remains weak and thus only the simple breakpoint 
onstru
tion is neededas a determinization pro
edure.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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Fig. 3. Periodi
 tiling with triangles.Finally, as weak deterministi
 automata 
an be eÆ
iently minimized, ea
h 
on-stru
ted automaton 
an be redu
ed down to a normal form. This is parti
ularlyuseful from a pra
ti
al point of view, sin
e it speeds up the 
omparisons betweensets by redu
ing them to stru
tural tests on the automata, and sin
e it preventsthe representations from be
oming unne
essarily large.7. EXPERIMENTSThe de
ision pro
edure proposed in this paper has been implemented su

essfullyin the LASH toolset, a pa
kage based on �nite-state automata for representingin�nite sets and exploring in�nite state spa
es [LASH ℄.Various experiments have been a
hieved with the RVA pa
kage. For instan
e, itis possible to represent the set of Figure 3, whi
h 
ombines dis
rete and 
ontinuousfeatures, by a weak RVA. Indeed, this set is de�ned by the following formula of theadditive theory over the reals and integers :f(x1; x2) 2 R2 j (9x3; x4 2 R)(9x5 ; x6 2 Z)(x1 = x3 + 2x5 ^ x2 = x4 + 2x6 ^ x3 � 0 ^ x4 � 1 ^ x4 � x3)g:This set admits the 
ompa
t minimal representation of Figure 4.One might fear that the exponential worst-
ase 
omplexity of the breakpointdeterminization algorithm makes our de
ision pro
edure unusable. Experimentalresults however show that su
h a blow-up does not frequently o

ur in pra
ti
alappli
ations. As an illustration, Figure 5 shows the 
ost of proje
ting and then de-terminizing the �nite-state representations of some periodi
 subsets of R3 obtainedby 
ombining linear 
onstraints with arbitrary 
oeÆ
ients, and then by indu
inga periodi
ity by means of an integer quanti�
ation. The interesting observationis that the �nite-state representations have always less states after the proje
tionthan before, whereas an exponential blow-up 
ould have been feared.Another �nite-state representation system, the NDD (Number De
ision Dia-gram) [Wolper and Boigelot 1995; Boigelot 1998℄, is based on �nite-word automataACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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Fig. 4. Weak RVA representing the periodi
 tiling in binary.and is able to represent the subsets of Zn that 
an be expressed in an extensionof the �rst-order theory hZ;+;�i. Figure 6 
ompares the size of weak RVA withthat of NDD representing the same subsets of Z3 obtained by 
ombining linear 
on-straints with arbitrary 
oeÆ
ients. One noti
es that the behavior of RVA is verysimilar to that of NDD, that are reputed to behave quite well in pra
ti
e [Wolperand Boigelot 2000℄.These observations make one think that the pathologi
al 
onditions that lead thebreakpoint 
onstru
tion to blow-up are seldom met in pra
ti
e.8. CONCLUSIONSA probably unusual aspe
t of this paper is that it does not introdu
e new algo-rithms, but rather shows that existing algorithms 
an be used in a situation wherea priori they 
ould not be expe
ted to operate 
orre
tly. To put it in other words,the 
ontribution is not the algorithm but the proof of its 
orre
tness.The 
riti
al reader might be wondering if all this is really ne
essary. After all,algorithms for 
omplementing B�u
hi automata exist, either through determiniza-tion [Safra 1988℄ or dire
tly [B�u
hi 1962; Sistla et al. 1987; Kupferman and Vardi1997; Klarlund 1991℄ and the more re
ent of these are even fairly simple and poten-tially implementable. There are no perfe
tly obje
tive grounds on whi
h to evaluate\simpli
ity" and \ease of implementation", but it is not diÆ
ult to 
onvin
e oneselfACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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