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Abstract. Interface formalisms are able to model both the input requirements
and the output behavior of system components; they support both bottom-up
component-based design, and top-down design refinement. In this paper, we pro-
pose “sociable” interface formalisms, endowed with a rich compositional seman-
tics that facilitates their use in design and modeling. Specifically, we introduce
interface models that can communicate via both actions and shared variables, and
where communication and synchronization covers the full spectrum, from one-to-
one, to one-to-many, many-to-one, and many-to-many. Thanks to the expressive
power of interface formalisms, this rich compositional semantics can be realized
in an economical way, on the basis of a few basic principles. We show how the
algorithms for composing, checking the compatibility, and refining the resulting
sociable interfaces can be implemented symbolically, leading to efficient imple-
mentations.

1 Introduction

Interface theories are formal models of communicating systems. Compared to tradi-
tional models, the strength of interface theories lies in their ability to model both the
input requirements, and the output behavior, of a system. This gives rise to a compat-
ibility test when interface models are composed: two interfaces are compatible if there
is a way to use them (an environment) in which their input assumptions are simultane-
ously satisfied. This ability to model input assumptions and provide a compatibility test
makes interface models useful in system design. In particular, interface models support
both bottom-up, and top-down, design processes [6, 7]. In a bottom-up direction, the
compatibility test can be used to check that portions of the design work correctly, even
before all the components are assembled in the final design. In a top-down direction,
interface models enable the hierarchical decomposition of a design specification, while
providing a guarantee that if the components satisfy their specifications, then they will
interact correctly in the overall implementation.
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In this paper we present interfaces models that can communicate via both actions
and variables, and that provide one-to-one, many-to-one, one-to-many, and many-to-
many communication and synchronization. We show that this rich communication se-
mantics can be achieved by combining a small number of basic concepts, thanks to
the expressive power of interface models. This leads to an uniform, and conceptually
simple, communication model. We call this model sociable interfaces, underlining the
ease with which these interfaces can be composed into models of design. While socia-
ble interfaces do not break new ground in the conceptual theory of interface models,
we hope that they constitute a useful step towards a practical, interface-based design
methodology.

In sociable interfaces, synchronization and communication are based on two main
ideas. The first idea is that the same action can appear as a label of both input and output
transitions: when the action labels output transitions, it means that the interface can emit
the action; when the action labels an input transition, it means that the action can be
accepted if sent from other components. Depending on whether the action labels only
input transitions, only output transitions, or both kind of transitions, we have different
synchronization schemes. For instance, if an action a is associated only with output
transitions, it means that the interface can emit a, but cannot receive it, and thus it
cannot be composed with any other interface that emits a. Conversely, if a is associated
only with input transitions, it means that the interface accepts a from other interfaces,
but will not emit a. Finally, if a is associated both with input and output transitions, it
means that the interface can both emit a, and accept a when emitted by other interfaces.

The second idea is that global variables do not belong to specific interfaces: the
same global variable can be updated by multiple interfaces. In an interface, the output
transitions associated with an action specifies how global variables can be updated when
the interface emits the action; the input transition associated with an action specifies
constraints on how other interfaces can update the global variables when emitting the
action. By limiting the sets of variables whose value must be tracked by the interfaces,
and by introducing appropriate non-interference conditions among interfaces, we can
ensure that interfaces can participate in complex communication schemes with limited
knowledge about the other participants. In particular, interfaces do not need to know in
advance the number or identities of the other interfaces that take part in communication
schemes. This facilitates component reuse, as the same interface model can be used in
different contexts.

We show that the compatibility and refinement of sociable interfaces can be checked
via efficient symbolic algorithms. We have implemented these algorithms in a tool
called TIC (Tool for Interface Compatibility); the tool is written in Ocaml [10], and
the symbolic algorithms for interface compatibility and refinement are built on top of
the MDD/BDD Glue and Cudd packages [13, 12].

The paper is organized as follows. First, we introduce sociable interface automata,
which include actions, but not variables, and which are a more “sociable” version of
the interface automata of [6, 8]. After illustrating the various synchronization and com-
munication features for sociable interface automata, we endow them with variables in
Section 3, obtaining sociable interface modules. We describe the communication mech-
anisms of sociable interface modules via examples, and we show how the examples can
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Fig. 1. Sociable interface automata for a fire detection and reporting system.

be encoded in the input language of the tool TIC. The refinement of sociable interfaces
is discussed Section 4, and the symbolic implementation of the composition and re-
finement algorithms is in Section 5. We conclude with a comparison between sociable
interfaces and previous interface formalisms.

2 Sociable Interface Automata

Social interfaces communicate via both actions and variables. We first illustrate how
sociable interfaces communicate via actions; in the next section, we will augment them
with variables, obtaining the model implemented in the tool TIC. We begin with an
informal, intuitive preview, which will motivate the definitions.

2.1 Preview

To provide some intuition on sociable interfaces, we present an example: a very simple
model of a fire detection and reporting system. The sociable interfaces for this example
are depicted in Figure 1: D1 and D2 are the fire detectors (there could be more), and
C is the control unit. When the fire detectors D1 and D2 detect smoke (input events
smoke1?,smoke2?), they generate an output event fire!. The control unit, upon receiving
the input event fire?, issues a call for the fire department (output event FD!). Similar
to the original interface model [6, 8], the input and output transitions departing from a
state of a sociable interface denote the inputs that can be received, and the outputs that
can be generated, from that state. For instance, the sociable interface C (Figure 1(a))
specifies that input event fire? can be accepted at state 1, but not at state 2.

Product and composition. To compose two sociable interfaces, we first form their au-
tomata product. In the product, shared output/input events (such as the pair fire!–fire? in
Figure 1) synchronize: this models communication, or synchronization, initiated by the
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Fig. 2. Product of the automata D1, D2, and C.

interface issuing the output transition. Similarly, two interfaces can also synchronize on
shared inputs: when the environment generates an input, both interfaces will receive it
and take the corresponding input transition. However, interfaces do not synchronize on
shared outputs: as an example, D1 and D2 do not synchronize on the output event fire!
in their product D1

�
D2 (Figure 2(b)). The idea is that, in an asynchronous model, inde-

pendent components issue their output asynchronously, so that synchronization cannot
happen. As usual, interfaces do not synchronize on non-shared actions.

In the product of two interfaces, we distinguish between good and bad states. A
state is good if all the outputs produced by one component can be accepted as inputs
by the other component; a state is bad otherwise. For instance, in the product C

�
D1

(Figure 2(a)), the states � 2 � 2 � and � 3 � 2 � are bad, since from state 2 the detector D1 can
issue fire!, and this cannot be matched by an input transition fire? neither from state 2
nor from state 3 of the control unit.

A state of the product is compatible if there is an Input strategy that can avoid
all bad states: this means that starting from that state, there is an environment under
which the component interfaces interact correctly. The composition of two interfaces is
obtained by removing all incompatible states from the product. The composition C � D1
of C and D1 is depicted in Figure 3(a), and the composition of C � D1 � D2 is depicted
in Figure 3(b). Notice that in the composition C � D1 � D2, once smoke1 (resp. smoke2) is
received, smoke2 (resp. smoke1) is not allowed. This behavior results from the design of
the control unit which cannot accept more than one “smoke-input” before issuing FD!.

Multi-way communication. In a sociable interface, the same action can label both input
and output transitions: this is illustrated, for instance, by action fire in Figures 1(b)
and 1(c). Indeed, sociable interfaces do not have separate input and output transition
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Fig. 3. Composition of the automata D1, D2, and C.

alphabets: rather, they have a single action alphabet, and actions in this alphabet can
label edges both as inputs, giving rise to input transitions, and as outputs, giving rise to
output transitions. For example, the action fire at state 2 of D1 corresponds to both an
output, and to an input transition: this indicates that D1 can generate output fire, while at
the same time being composable with other interfaces that generate fire as output (such
as D2). Thus, if an action a is in the alphabet of an interface, there are four cases:

– If a is not associated with any transition, then the interface neither outputs a, nor
can it be composed with other interfaces that do.

– If a is associated with output transitions only, then the interface can generate a, but
it cannot be composed with interfaces that also output a.

– If a is associated with input transitions only, then the interface can receive a, but
not output it.

– If a is associated with both input and output transitions, then the interface can gen-
erate a, and it can be composed with other interfaces that do.

We notice how these four cases all arise in an uniform way from our interpretation
of input and output edges. All of these cases have a use in system modeling: the fire
detector example illustrated the non-exclusive generation of outputs, the next example
illustrates exclusive generation.

Figure 4 depicts a simple communication protocol. In this protocol, the sender Se,
after receiving information from the environment (label produce?), sends this informa-
tion to the receiver (label send!), and awaits for an acknowledge (label ack?). The lack
of input edges labeled with send in Se, and the lack of input edges labeled with ack in
Re indicate that the communication channel between Se and Re is not shared: only Se
can generate send actions, and only Re can generate ack actions.
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2.2 Definitions

Given two sets A and B, we denote with A � B the set of nondeterministic functions
from A to B, that is: A � 2B.

Definition 1 (Sociable Interface Automaton). A sociable interface automaton (au-
tomaton for short) is a tuple M ��� Act � S � τ I � τO � ϕ I � ϕO � , where:

– Act is a set of actions.
– S is a set of states.
– τ I : Act � S � S is the input transition function.
– τO : Act � S � S is the output transition function.
– ϕ I � S is the input invariant.
– ϕO � S is the output invariant.

We require τ I to be deterministic, that is: for all s � S and a � Act, 	 τ I � a � s � 	�
 1.

For all s � S and a � Act, we define �τ I � a � s � � τ I � a � s ��
 ϕ I , and �τO � a � s � � τO � a � s ��
 ϕO.
Together, S, τ I and τO define a graph whose edges are labeled with actions in Act. As
it was already informally done in the examples of Section 2.1, we therefore depict
interface automata as graphs. To distinguish input from output transitions, we add a tag
at the end of the name of the action: as in process algebra notation, we add “?” for input
transitions and “!” for output transitions. In all examples, it holds ϕ I � ϕO � S.

Example 1. Figure 1(b) is a graphical representation of a 3-state automaton whose ac-
tions are fire, and smoke1. For instance, from state 2, the automaton can take an input
transition fire?, as well as an output transition fire!.

The semantics of a sociable interface automaton can be described in terms of a
game between two players, Input and Output, played over the graph representation of
the automaton. At each round, from the current state in the graph, the Input player



chooses an outgoing input edge, and the Output player chooses an outgoing output
edge. In order to ensure that both players always have an enabled move, we introduce
a special move ∆0 which, when played, gives rise to a stuttering step, that is, a step
that does not change the current state of the automaton. Furthermore, we postulate that
player Output (resp. Input) can choose only edges that lead to states where the output
(resp. input) invariant holds. Thus, input and output invariants are used to restrict the
set of moves available to the players; their true usefulness will become clearer when
considering interfaces with variables, i.e. modules.

In the remaining of this section, we consider a fixed sociable interface automaton
M ��� ActM � SM � τ I

M � τO
M � ϕ I

M � ϕO
M
� . The sets of enabled moves can be defined as follows.

Definition 2 (Moves). For all s � SM, the set of moves for player Input at s is given by:

Γ I � M � s � ��� ∆0 ��� � � a � s � � � ActM � SM 	 s � � �τ I
M � a � s � ���

Similarly, the set of moves for player Output at s is given by:

Γ O � M � s � ��� ∆0 ��� � � a � s � � � ActM � SM 	 s � � �τO
M � a � s � ���

Example 2. Consider the automaton D1 of Example 1, we have that Γ I � D1 � 1 � �
� ∆0 � � fire � 1 � � � smoke1 � 2 � � , and Γ O � D1 � 2 � ��� ∆0 � � fire � 3 � � .
At each game round, both players choose a move from the corresponding set of enabled
moves. The outcome of their choice is defined as follows.

Definition 3 (Move Outcome). For all states s � SM and moves mI � Γ I � M � s � and
mO � Γ O � M � s � , the outcome δ � M � s � aI � aO � � SM of playing mI and mO at s can be
defined as follows, according to whether mI and mO are ∆0 or a move of the form

� a � s � � .

δ � M � s � ∆0 � ∆0
� ��� s � � δ � M � s � ∆0 � � a � s � � � ��� s � � �

δ � M � s � � a � s � � � ∆0
� ��� s � � � δ � M � s � � a � s � � � � b � t � � � ��� s � � t � �	�

A strategy represents the behavior of a player in the game. A strategy is a function that,
given the history of the game, i.e., the sequence of states visited in the course of the
game, yields one of the player’s enabled moves.

For s � SM, we define the set of finite runs starting from s as the set Runs � M � s � �
S 
M of all finite sequences s0s1s2 ����� sn, such that s0 � s, and for all 0 
 i � n, si 
 1 �
δ � M � si � mI � mO � , for some mI � Γ I � M � si

� , mO � Γ O � M � si
� . We also set Runs � M � ��

s � SM
Runs � M � s � .

Definition 4 (Strategy). A strategy for player p ��� I � O � in an automaton M is a func-
tion π p : Runs � M � � ActM � � ∆0 � that associates, with every run σ � Runs � M � whose
final state is s, a move πp � σ � � Γ p � M � s � . We denote by Π I

M and Π O
M the set of input

and output strategies for M, respectively.

An input and an output strategy jointly determine a set of outcomes in Runs � M � .



Definition 5 (Strategy Outcome). Given a state s � SM, an input strategy π I � Π I
M

and an output strategy πO � Π O
M, the set outcomes δ̂ � M � s � π I � πO � of π I and πO from

s consists of all finite runs σ � s0s1s2 � ��� sn such that s � s0, and for all 0 
 i � n,
si 
 1 � δ � M � si � π I � σ0:i

� � πO � σ0:i
� � , where σ0:i denotes the prefix s0s1s2 ��� � si of σ .

Definition 6 (Winning States). Given a state s � SM and a goal γ � Runs � M � s � , we
say that s is winning for input with respect to γ , and we write s � WinI � M � γ � , iff there
is π I � Π I

M such that for all πO � Π O
M , δ̂ � M � s � π I � πO � � γ . Similarly, we say that s is

winning for output with respect to γ , and we write s � WinO � M � γ � , iff there is πO � Π O
M

such that for all π I � Π I
M, δ̂ � M � s � π I � πO � � γ .

A state of an automaton is well-formed if both players have a strategy to always sat-
isfy their own invariant. Following temporal logic notation, for all X � SM, we de-
note by

�
X the set of all runs in Runs � M � all whose states belong to X . Formally,�

X ��� s0s1s2 � ��� sn � Runs � M � 	�� 0 
 i 
 n � si � X � .

Definition 7 (Well-formed State). We say that a state s � SM is well-formed iff s �
WinI � M � � ϕ I

M
� 
 WinO � M � � ϕO

M
� .

Notice that if s is well-formed, then s � ϕ I
M

 ϕO

M.

Definition 8 (Normal Form). We say that M is in normal form iff ϕ I
M �

WinI � M � � ϕ I
M
� , and ϕO

M � WinO � M � � ϕO
M
� .

Given an automaton M1, we can define an automaton M2 such that the well-formed
portion of M1 coincides with the one of M2, and M2 is in normal form. Let
M1 � � Act1 � S1 � τ I

1 � τO
1 � ϕ I

1 � ϕO
1
� , we set M2 � � Act1 � S1 � τ I

2 � τO
2 � ϕ I

2 � ϕO
2
� , where, ϕ I

2 �
WinI � M1 � � ϕ I

1
� and ϕO

2 � WinI � M1 � � ϕO
1
� . Thus, in the following, unless differently

specified, we only consider automata in normal form.

Definition 9 (Well-formed Automaton). We say that M is well-formed iff it is in nor-
mal form, and ϕ I

M

 ϕO

M
�� /0.

Lemma 1. If M is in normal form, then it holds:

� s � ϕ I
M � � a � Γ O � M � s � � �τO

M � a � s � � ϕ I
M

� s � ϕO
M � � a � Γ I � M � s � � �τO

M � a � s � � ϕO
M �

Proof. For the first statement, by contradiction, suppose there is s � ϕI
M and a �

Γ O � M � s � such that �τO
M � a � s � �� ϕ I

M . Then s
�� WinI � M � � ϕ I

M
� , because there is no way for

the Input player to prevent output a to be carried out (see Definition 3). This contrasts
with the assumption that M is in normal form. The second statement can be proven
along similar lines.



2.3 Compatibility and Composition

In this subsection, we define the composition of two automata M1 �
� Act1 � S1 � τ I

1 � τO
1 � ϕ I

1 � ϕO
1
� and M2 � � Act2 � S2 � τ I

2 � τO
2 � ϕ I

2 � ϕO
2
� . We first define the

product between M1
�

M2 as the classical automata-theoretic product, where M1 and
M2 synchronize on shared actions and evolve independently on non-shared ones. We
then identify a set of incompatible states where M1 can do an output transition that
is not accepted by M2 or vice-versa. Finally, we obtain the composition M1 � M2 from
M1

�
M2 by strengthening the input assumptions of M1

�
M2 in such a way that M1 and

M2 mutually satisfy their input assumptions.

Definition 10. We define the set of shared actions of M1 and M2 by:

Shared � M1 � M2
� � Act1


 Act2.

The product of two automata M1 and M2 is an automaton M1
�

M2, representing the
joint behavior of M1 and M2. Similarly to other interface models, for each shared ac-
tion, the output transitions of M1 synchronize with the input transitions of M2, and
symmetrically, the output transitions of M2 are synchronized with the input transitions
of M1. This models communication, and gives rise to output transitions in the product.
The input transitions of M1 and M2 corresponding to shared actions are also synchro-
nized, and lead to input transitions in the product. Output transitions, on the other hand,
are not synchronized. If both M1 and M2 can emit a shared action a, they do so asyn-
chronously, so that their output transitions interleave. As usual, the automata interleave
asynchronously on transitions labeled by non-shared actions.

Definition 11 (Product). The product M1
�

M2 is the automaton M12 �
� Act12 � S12 � τ I

12 � τO
12 � ϕ I

12 � ϕO
12
� , consisting of the following components.

– Act12 � Act1 � Act2; S12 � S1 � S2.

– ϕ I
12 � ϕ I

1 � ϕ I
2; ϕO

12 � ϕO
1 � ϕO

2 .

– For a � Shared � M1 � M2
� ,

� s � � t � � � τO
12 � a � � s � t � � iff

�
s � � τO

1 � a � s � and t � � τ I
2 � a � t � or

t � � τO
2 � a � t � and s � � τ I

1 � a � s �
� s � � t � � � τ I

12 � a � � s � t � � iff s � � τ I
1 � a � s � and t � � τ I

2 � a � t � �
– For a � Act1 � Act2,

� s � � t � � τO
12 � a � � s � t � � iff s � � τO

1 � a � s �

� s � � t � � τ I
12 � a � � s � t � � iff s � � τ I

1 � a � s � �
– For a � Act2 � Act1,

� s � t � � � τO
12 � a � � s � t � � iff t � � τO

2 � a � t �

� s � t � � � τ I
12 � a � � s � t � � iff t � � τ I

2 � a � t � �



Example 3. The sociable interface automaton depicted in Figure 2(a) is the product
C

�
D1 of the automata depicted in Figures 1(a) and 1(b). For instance, the input transi-

tion fire? from state � 1 � 1 � to state � 2 � 1 � is obtained by combining the input transition
fire? from state 1 to state 2 in C with the input transition fire? from state 1 to state 1 in
D1. The output transition FD! from state � 1 � 2 � to state � 2 � 3 � is obtained by combining
the input transition fire? from state 1 to state 2 in C with the output transition fire! from
state 2 to state 3 in D1.

We have the following theorem.

Theorem 1. The product is a commutative and associative operation, up to isomor-
phism.

The product M12 � M1
�

M2 may contain states in which one of the components, say
M1, can do an output transition labeled by a shared action while the other component
cannot do the corresponding input transition. This constitutes a violation of the input
assumptions of M2. We formalize such notion by introducing a local compatibility con-
dition. To this end, for p ��� I � O � , we denote by Enp � M � a � the set of states of M where
the action a is enabled as input if p � I, and as output if p � O. Formally,

Enp � M � a � ��� s � SM 	 �τ p
M � a � s � �� /0 ���

Definition 12 (Local Compatibility). Given � s � t � � S12, � s � t � � good � M1 � M2
� iff, for

all a � Shared � M1 � M2
� the following conditions hold:

s � EnO � M1 � a ��� t � EnI � M2 � a �
t � EnO � M2 � a ��� s � EnI � M1 � a � �

Example 4. Consider the product C
�

D1 of Example 4. The state � 3 � 2 � does not satisfy
the Local Compatibility condition because, from state 2, D1 can issue an output tran-
sition fire!, and this cannot be matched by an input transition fire? from state 3 of the
control unit.

The composition of M1 and M2 is obtained from the product M1
�

M2 by strengthening
the input assumptions of M1

�
M2 to avoid states that are not in good � M1 � M2

� . This is
done by restricting the input invariant ϕ I

12 as shown in the next definition. The reason
for restricting only the input behavior is that, when composing automata, only their
input assumptions can be strengthened to ensure that no incompatibility arises, while
their output behavior cannot be modified.

Definition 13 (Composition). Assume M1 and M2 are compatible. The composition
M1 � M2 is a sociable interface automaton identical to M1

�
M2, except that ϕ I

M1
�
M2
�

ϕ I
12

 WinI � M12 � � � ϕ I

12

 good � M1 � M2

� � � .

Definition 14 (Compatibility). We say that M1 and M2 are compatible if ϕ I
M1
�
M2



ϕO

M1
�
M2

�� /0.



The following theorem states that once the input transition relations have been strength-
ened, the automaton is in normal form: it is not necessary to also strengthen the output
transition relations. This result thus provides a sanity check, since strengthening the
output transitions means restricting the output behavior of the interfaces, which is not
reasonable.

Theorem 2. If M1 and M2 are compatible, and they are in normal form, then M1 � M2
is in normal form.

The following result implies that the automata can be composed in any order.

Theorem 3. The composition is a commutative and associative operation, up to iso-
morphism.

3 Sociable Interfaces with Variables

3.1 Preview

In modeling systems and designs, it is often valuable to have a notion of global state,
which can be read and updated by the various components of the system. A common,
and flexible, paradigm consists in having the global state consist of a value assignment
to a set of global variables. Once the global state is represented by global variables, it
is natural to encode also the local state of each component via (local) variables.

Previous interface models, such as interface automata [6, 8] and interface modules
[7, 3] were based on either actions, or variables, but not both. In sociable interfaces,
however, we want to have both: actions to model synchronization, and variables to
encode the global and local state of components. In this, sociable interfaces are closely
related to the I/O Automata Language (IOA) of [11].

Interface models are games between Input and Output, and in the models, it is es-
sential that Input and Output are able to choose their moves independently from one
another. To this end, in previous interface formalisms with variables, the variables were
partitioned into input and output variables [7, 3]. A move of Input consisted in choosing
the next value of the input variables, and a move of Output consisted in choosing the
next value of the output variables: this ensured the independence of the moves. Conse-
quently, interfaces sharing output variables could not be composed, and in a composite
system, every variable that was not input from the environment was essentially “owned”
by one of the component interfaces, which was the only one allowed to modify its value.

In sociable interface modules, we can leverage the presence of actions in order to
achieve a more general setting, in which variables can be modified by more than one
module. Informally, the model is as follows. With each action, we associate a set of
variables that can be modified by the action, as well as an output and an input transition
relation that describe the ways in which the variables can be modified when the com-
ponent, or its environment, output the action. When the Output player takes an action
a, the output transition relation associated with a specifies how the player can update
the variables associated with a. Symmetrically, when the Input player takes an action
a, the input transition relation associated with a specifies what changes to the variables
associated with a can be accepted by the module.
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Fig. 5. Informal depiction of the user process, printer, and printer adapter interfaces in the setting
with variables.

When modules are composed, actions synchronize in the same way as they do in
sociable interface automata. When an output event a! of module M synchronizes with an
input event a? of module N, we must check that all variable updates that can accompany
a! from M are acceptable to N, that is, that the output transition relation associated with
a in M respects the constraints specified by the input transition relation associated with
a in N. Empty transition relations are used to rule out the possibility of taking an action
as output or input.

3.2 An Example: Modeling a Print Server

We illustrate the main features of sociable interface modules through a very simple ex-
ample: a model of a shared print server. The model consists of modules representing
the print server, as well as user processes that communicate with the server to print
jobs. The modules composing this example are depicted in an intuitive fashion in Fig-
ure 5; the actual input to the tool TIC for this model is given in Figure 6, and it will be
described later.

The user module U1 (Figure 5(a)) communicates via two actions: an action print,
whose output represents a print request, and an action ack, whose input represents an
acknowledgment. When generating print as an output, U1 updates the global variables
user and size, which indicate the user who issued the request, and the size of the request.
The print server P (Figure 5(b)) synchronizes on ack and print, and also updates a global
state variable busy, indicating whether the printer is busy. To ensure compatibility, the
user module checks that busy � F before printing. In addition, to ensure compatibility
in presence of multiple user modules, the user module ignores inputs ack when idle
(s � 0), as these acknowledgments are directed to other users, and ignores all inputs
print, as these correspond to input requests from other users.

3.3 Definitions

We assume a fixed set
�

of variables. All variables in
�

are interpreted over a given
domain � . Given V � � , a state over V is a mapping s : V ��� that associates with



each x � V a value s � x � � � . For a set of variables U � V , and a state s � � �V � � , the
restriction of s to U is a state t � � �U � � denoted as s

�
U � . For two disjoint sets of variables

V1 and V2, and two states s1 �
� �
V1 � � and s2 �

� �
V2 � � , the operation � s1 � s2

� composes the
two states resulting in a new state s � s1 � s2 �

� �
V1 � V2 � � , such that s � x � � s1 � x � for all

x � V1 and s � x � � s2 � x � for all x � V2.
Our formal model with variables is called a sociable interface module. It is con-

venient to define sociable interface modules with respect to a predicate representation.
Given a set V of variables, we denote by Preds � V � the set of first-order predicate for-
mulas with free variables in V ; we assume that these predicates are written in some
specified first-order language with interpreted function symbols and predicates; in our
tool, the language contains some arithmetic operators, relational symbols, and boolean
connectives. Given a set of variables V , we let V � ��� x � 	 x � V � be the set consisting of
primed versions of variables in V . A variable x � � V � represents the next value of x � V .
Given a formula ψ � Preds � V � and a state s � � �V � � , we write s 	 � ψ if the predicate for-
mula ψ is true when its free variables are interpreted as specified by s. Given a formula
ρ � Preds � V � V � � and two states s � s � � � �V � � , we write � s � s � � 	 � ρ if the formula ρ holds
when its free variables x � V are interpreted as s � x � , and its free variables x � � V � are
interpreted as s � � x � . Given a set U of variables, we define the formula:

Unchgd � U � ���
x � U

� x � � x � �

which states that the variables in U do not change their value in a transition. Given a
predicate ψ � Preds � V � , we denote by ψ � the predicate obtained by substituting x with
x � in ψ , for all x � V .

With these definitions, we can define sociable interface modules as follows.

Definition 15 (Sociable Interface Module). A sociable interface module (module, for
short) is a tuple M � � Act � V G � V L � V H � W � ρ IL � ρ IG � ρO � ψ I � ψO � , where:

– Act is a set of actions.
– V G is a set of global variables, V L is a set of local variables, and V H � V G is

a set of history variables. We require V L 
 V G � /0. We set V all � V L � V G and
V � V L � V H .

– W : Act � V all associates with each a � Act the set of variables W � a � � V all that
can be modified by a.

– For each a � Act, the predicate ρ IL � a � � Preds � V all � � V all � � � is the input local
transition predicate for a. We require this transition predicate to be deterministic
w.r.t. variables in V L, that is, for all a � Act, all s � � �V all � � , and all t � � � � V G � � � � , there
is a unique u � � � � V L � � � � such that s � t � u 	 � ρ IL � a � .

– For each a � Act, the predicate ρ IG � a � � Preds � V all � � V G � � � is the input global
transition predicate for a.

– For each a � Act, the predicate ρO � a � � Preds � V all � W � a � � � is the output transition
predicate for a.

– ψ I � Preds � V all � is the input invariant predicate.
– ψO � Preds � V all � is the output invariant predicate.



A state is a value assignment to V all; we denote the set of states of the module by
S � � �V all � � . The invariant predicates define invariants

ϕ I ��� s � S 	 s 	 � ψ I � � ϕO ��� s � S 	 s 	 � ψO �	�
As a shorthand, for all a � Act we let ρ I � a � � ρ IL � a ��� ρ IG � a � , and we define

�ρ I � a � � ρ I � a ��� � ψ I � �
�ρO � a � � ρO � a ��� � ψO � � � Unchgd � V all � W � a � � �

Notice that �ρ I � a � and �ρO � a � are predicates over V all � � V all � � .
In our model, each module owns a set of local variables, that describe the internal

state of a component. We distinguish a set V H of history variables, and a set V G � V H of
history-free variables. A module must be aware of all actions that can modify its history
variables (see, in the following, the non-interference condition in Definition 19). On
the other hand, history-free variables can be modified by environment actions that are
not known to the module. The distinction between the history and history-free global
variables is thus used to limit the amount of actions a module should include; this point
will be clarified when we will discuss module composability.

The definitions of the input and output transition relations are similar to those of
Section 2. We require the input transition relation to be deterministic on local variables.
This assumption corresponds to the assumption, in the model without variables, that
input transitions are deterministic. In fact, we will see that when an output and an input
transitions synchronize, it is the output transition that selects the next value of the global
variables, and the input transition is used only to determine the next value of the local
variables.

In the remainder of this section we consider a fixed module M �
� ActM � V G

M � V L
M � V H

M � WM � ρ IL
M � ρ IG

M � ρO
M � ψ I

M � ψO
M
� , and we set VM � V L

M � V H
M , V all

M � V L
M �

V G
M , and correspondingly for the shorthands �ρ I

M and �ρO
M.

Definition 16 (Set of States). The set of states of the sociable interface module M is
given by SM �

� �
V all

M � � .
The sets of moves for players Input and Output are defined as follows. Note that, when
Input plays the move ∆0, Input can also choose a new assignment to the history-free
variables. This models the fact that history-free variables can be modified by environ-
ment actions that are not known to the module.

Definition 17 (Moves). The sets Γ I � M � s � and Γ O � M � s � of Input and Output moves at
s � SM are defined as follows:

Γ I � M � s � � � ∆0 � � � s � �
� �
V all

M � � 	 s � �VM � � s
�
VM � � �

� � a � s � � � ActM �
� �
Vall

M � � 	 � s � s � � 	 � �ρ I
M � a � �

Γ O � M � s � � � ∆0 � � � � a � s � � � ActM �
� �
V all

M � � 	 � s � s � � 	 � �ρO
M � a � ���

The outcome of the moves are as follows.



Definition 18 (Move Outcome). For all states s � SM and moves mI � Γ I � M � s � and
mO � Γ O � M � s � , the outcome δ � M � s � mI � mO � � SM of playing mI and mO at s can be
defined as follows.

δ � M � s � � ∆0 � s � � � ∆0
� ��� s � � � δ � M � s � � ∆0 � s � � � � a � t � � � ��� s � � t � � �

δ � M � s � � a � s � � � ∆0
� ��� s � � � δ � M � s � � a � s � � � � b � t � � � ��� s � � t � ���

The definitions of run, strategy, strategy outcome, winning state and well-formedness
are similar to the ones given in Section 2.

3.4 The Printer Example, Continued

Figure 6 presents our print-server example, encoded in the actual input language of the
tool TIC. The system consists of the global variables busy, size, user, of a printer mod-
ule, and of two user modules. In each module, we give the set of history-free variables
(called stateless in the language of the tool); the set of global variables of the module is
simply inferred as the set of global variables that appear anywhere in the module.

The module ���������
	�� communicates via two actions, ack and print. The transition
predicates of these actions are specified using a guarded-commands syntax, similar to
[4, 1]. Each guarded command has the form guard � command, where guard and com-
mand are formulas written over the set of primed and unprimed variables. A guarded
command guard � command can be taken when its guard is true; when taken, com-
mand specify how the variables are updated. For instance, the output transition print in
module ��
�	���� can be taken when s � 0 and � busy, and it leads to a state where s � 1
and user � 1. The value of size in the destination state is nondeterministic.

When specifying sociable interface modules in the tool TIC, we use several short-
hands to make the notation more pleasant:

– When we do not specify the input or output transition relation for an action, the
omitted transition relations are assumed to be false. For example, the action ack
has no input transition relation in the printer: this specifies that no other module
should be able to emit it. Similarly, the action ack has no output transition relation
in the user modules, specifying that modules do not generate it.

– When we specify a transition relation via an empty guarded command, the guard is
assumed to be always true, and the command is as follows:
� Output transition relations, and local part of input transitions: no variables are

changed.
� Global part of input transitions: the transition relation is considered to be true,

so that all state changes are accepted.
– In a guarded command guard � command, when guard is missing, it is assumed

to be true. If command is missing, then:
� Output transitions, and local part of input transitions: no variables are

changed.
� Global part of input transitions: the transition relation is considered to be true,

so that all state changes are accepted.
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Fig. 6. TIC input modeling a simple print server.
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Fig. 7. TIC input modeling a print server that rejects large jobs.



– In output transitions, and in the local part of input transitions, variables that are
not mentioned primed in the command portion of a guarded command guard �

command do not change their value.

As a more elaborate example, in Figure 7 we present the code of a print server that
can accept or reject jobs, depending on their length.

3.5 Compatibility and Composition

We now describe the composition of two modules. Due to the presence of variables,
this process is more involved than the one presented in Section 2.

The composition of two modules M1 and M2 is defined in four steps, in a similar
way as stated in [9]. First, we define when M1 and M2 are composable, and in the
affirmative case, we define their product M1

�
M2. On the resulting product module, we

identify a set of bad states: these are the states where M1 (resp. M2) can produce an
output that is not accepted by M2 (resp. M1). Finally, the composition M1 � M2 of M1 and
M2 is obtained from the product M1

�
M2 by strengthening the input transition relations

of M1
�

M2 in such a way that all bad states are avoided.
In the following, we consider two modules M1 and M2, where Mi �

� Acti � V G
i � V L

i � V H
i � Wi � ρ IL

i � ρ IG
i � ρO

i � ψ I
i � ψO

i
� , for i � 1 � 2, and we let Vi � V L

i � V H
i and

V all
i � V L

i � V G
i .

We say that two modules M1 and M2 are composable if they have disjoint sets of
local variables, and if they satisfy a non-interference condition, stating that if an action
of a module can modify a state variable of the other, then the action is shared. This
condition ensures that the set of actions of a module includes all the actions that can
modify its state variables. This condition is essential for modular reasoning. It ensures
that composition does not add behaviors: all changes in the state of m1 caused by mod-
ules with which M1 is composable can be already explained by the input transitions
associated with actions of M1.

Definition 19 (Composability). Two sociable interface modules M1 and M2 are com-
posable iff V L

1

 V L

2 � /0 and if the following non-interference conditions hold:

� a � Act2 � W2 � a � 
 V1
�� /0 � � a � Act1

� a � Act1 � W1 � a � 
 V2

�� /0 � � a � Act2 �
The non-interference condition is the main justification for distinguishing between

the sets of history and history-free variables. The non-interference condition states that
a module should know all actions of other modules that modify its history variables. If
we dropped the distinction, requiring that a module knows all actions of other modules
that can change any of its variables (history or history-free), we could greatly increase
the number of actions that must be known to the module.

As an example, consider a set of modules � Ni � i ��� 1 � � 100 � . Each module has an action
ai whose output transition relation sets index to i, and x to some content, where index and
x are global variables shared among all N1, . . . , N100. If module Ni does not need to keep
track of the value of index and x, as these variables are used as outputs only, then we can



let index
�� VNi

and x
�� VNi

, even though of course index � x � V all
Ni

. The non-interference
condition for Ni, stated in terms of VNi

, will not require Ni to know about a j for i
�� j.

This keeps the model of Ni simple and concise and, even more importantly, enables us
to model Ni before we know exactly how many other modules there are that can modify
index and x. Dropping the distinction between VNi

and V all
Ni

, on the other hand, would
force each Ni to have all the actions a1 � ����� � a100 in its set of actions, greatly complicating
the model, and forcing us to know in advance how many components there are, before
each of the components can be modeled. Similarly, if a module reads a variable x, but
does not need to know how and when the value of x is changed, then the variable x can
be declared to be history-free, so that the module does not have to know all the actions
that can modify x. Hence, the distinction between history and history-free variables is
at the heart of our “sociable” approach to compositional modeling.

We define the product of two sociable interface modules M1 and M2 as follows.

Definition 20 (Product). Assume that M1 and M2 are composable. The product M1
�

M2 is the interface M12 � � Act12 � V G
12 � V L

12 � V H
12 � W12 � ρ IL

12 � ρ IG
12 � ρO

12 � ψ I
12 � ψO

12
� , defined as

follows.

– Act12 � Act1 � Act2.

– V G
12 � V G

1 � V G
2 ; V L

12 � V L
1 � V L

2 ; V H
12 � V H

1 � V H
2 .

– W12 � a � �
�

W1 � a � � W2 � a � � V L
1 � V L

2 for a � Shared � M1 � M2
�

Wi � a � for a � Acti � Act3 � 1 � i � � 1 � 2 � .
– ψ I

12 � ψ I
1
� ψ I

2; ψO
12 � ψO

1
� ψO

2 .

– For a � Shared � M1 � M2
� , we let:

ρO
12 � a � �

�

��
�
� � V G

12
� � � W12 � a � � � ρO

1 � a ��� ρ IL
2 � a ��� ρ IG

2 � a ��� Unchgd � V all
12 � �W1 � a � � V L

2
� ��� � V G

12
� � � W12 � a � � � ρO

2 � a ��� ρ IL
1 � a ��� ρ IG

1 � a ��� Unchgd � V all
12 � �W2 � a � � V L

1
� �

���
	

ρ IL
12 � a � � ρ IL

1 � a ��� ρ IL
2 � a �

ρ IG
12 � a � � ρ IG

1 � a ��� ρ IG
2 � a � �

– For i ��� 1 � 2 � and a � Acti � Act3 � i we let:

ρO
12 � a � � ρO

i � a �

ρ IL
12 � a � � ρ IL

i � a ��� Unchgd � V L
3 � i
�

ρ IG
12 � a � � ρ IG

i � a ��� Unchgd � V H
3 � i
� �

We have the following result.



Theorem 4. Product between modules is a commutative and associative operation.

Similarly to Definition 12, we identify a set of locally incompatible states of the product
M1

�
M2.

Definition 21 (Local Compatibility). Given s � � �V all
12 � � , we say that s is good iff it

satisfies the predicate good � M1 � M2
� , defined as follows:

good � M1 � M2
� �

� �
a � Shared � M1 � M2 �

����
�
� � V all

12
� � �

���
�ρO

1 � a ��� Unchgd � V G
2 � W1 � a � ��� � � �ρ IG

2 � a ���
�

� � V all
12
� � �

� �
�ρO

2 � a ��� Unchgd � V G
1 � W2 � a � � � � � �ρ IG

1 � a ���

� ���
	 �

Using this condition, the composition M1 � M2 is obtained from M1
�

M2 by restricting
the input invariant of M12 to the set of well-formed states from where input has a strat-
egy to always stay in the good states good � M1 � M2

� , in analogy with Definition 13.

Theorem 5. Composition between modules is a commutative and associative opera-
tion.

4 Refinement

We wish to define a refinement relation between modules, such that when M1 re-
fines M2, M1 can be used as a replacement for M2 in any context. First, some
conditions should hold on the set of variables that the modules manipulate. In the
following, M1 and M2 are two modules in normal form. For i � � 1 � 2 � , let Mi �
� Acti � V G

i � V L
i � V H

i � Wi � ρ IL
i � ρ IG

i � ρO
i � ψ I

i � ψO
i
� , Vi � V H

i � V L
i and Si �

� �
Vi � � . The sets Acti,

V G
i , V H

i , and Wi jointly define the signature of a module Mi.

Definition 22 (Signature). The signature Sign � Mi
� of a module Mi � � Acti � V G

i � V L
i �

V H
i � Wi � ρ IL

i � ρ IG
i � ρO

i � ψ I
i � ψO

i
� , is the tuple � Acti � V G

i � V H
i � Wi

� .
The following result shows that signature equality preserves composability. It can be
proved by inspecting Definition 19.

Theorem 6. Let N1 � N2, and N3 be three modules, such that the Sign � N1
� � Sign � N2

� ,
and N2 and N3 are composable. For i � � 1 � 2 � 3 � , let V L

i be the set of local variables of
Ni. If V L

1

 V L

3 � /0, then N1 and N3 are composable.

To replace M2, M1 should also behave like it, from the point of view of the environment.
As usual in a game-theoretic setting such as ours, this constraint is captured by alter-
nating simulation [2]. Intuitively, M1 must be willing to accept at least all the inputs
that M2 accepts, and it should emit a subset of the outputs emitted by M2.

Definition 23 (Alternating Simulation). Assume that Sign � M1
� � Sign � M2

� . A rela-
tion � � S1 � S2 is an alternating simulation iff s � t implies:



1. s
�
V G

1 � � t
�
V G

1 � ;
2. for all a � Act1 and for all t � � S2 such that � t � t � � 	 � �ρ I

2 � a � there exists s � � S1 such
that � s � s � � 	 � �ρ I

1 � a � and s � � t � ;
3. for all a � Act1 and for all s � � S1 such that � s � s � � 	 � �ρO

1 � a � there exists t � � S2 such
that � t � t � � 	 � �ρO

2 � a � and s � � t � .
We say that s is similar to t, and we write s � t, if there exists an alternating simulation� such that s � t. Similarity is itself a simulation (the coarsest one). For M1 to refine
M2, M1 and M2 should have the same signature, and each well-formed state of M2 must
be similar to some well-formed state of M1.

Definition 24 (Refinement). We say that M1 refines M2 iff (i) Sign � M1
� � Sign � M2

� ,
and (ii) for all t 	 � ψ I

2
� ψO

2 there is s 	 � ψ I
1
� ψO

1 such that s � t.

Theorem 7. Let N1 � N2, and N3 be three modules, such that N1 refines N2, and N2 and
N3 are compatible. For i � � 1 � 2 � 3 � , let V L

i be the set of local variables of Ni. If V L
1



V L
3 � /0, then N1 and N3 are compatible.

We now introduce the related concept of bisimilarity. Bisimilarity between two modules
captures the intuitive concept that the environment cannot distinguish the two modules.

Definition 25 (Alternating Bisimulation). Assume that Sign � M1
� � Sign � M2

� . A re-
lation � � S1 � S2 is an alternating bisimulation iff it is a symmetrical alternating sim-
ulation.

We say that s and t are bisimilar, and we write s �� t, if there exists an alternating
bisimulation � such that s � t.

Definition 26 (Bisimilarity). We say that M1 and M2 are bisimilar iff (i) Sign � M1
� �

Sign � M2
� , and (ii) for all t 	 � ψ I

2
� ψO

2 there is s 	 � ψ I
1
� ψO

1 such that s �� t, and for all
s 	 � ψ I

1
� ψO

1 there is t 	 � ψ I
2
� ψO

2 such that s �� t.

Theorem 8. Let N1 � N2, and N3 be three modules, such that N1 is bisimilar to N2. For
i � � 1 � 2 � 3 � , let V L

i be the set of local variables of Ni. If V L
1

 V L

3 � /0 and V L
2

 V L

3 � /0,
then N1 and N3 are compatible iff N2 and N3 are compatible.

5 Symbolic Implementation

In this section, we examine the problem of efficiently implementing the following op-
erations: (i) module composition, (ii) verification of safety properties of modules (such
as well-formedness), and (iii) refinement and bisimilarity checking between modules.

Consider the module M � � ActM � V G
M � V L

M � V H
M � WM � ρ IL

M � ρ IG
M � ρO

M � ψ I
M � ψO

M
� , and set

V all
M � V L

M � V G
M .

A well-established technique for efficiently implementing finite transition systems
is based on MDDs [12, 14]. MDDs are graph-like data structures that allow us to repre-
sent and manipulate functions of the type A � � T � F � , for a finite set A (i.e. predicates
over A). Therefore, we assume that the variable domain � is finite, and we represent the
predicates ρ IL

M , ρ IG
M , ρO

M, ψ I
M , and ψO

M as MDDs. We now show that all the operations
involved in computing the composition of modules, checking their well-formedness,
checking safety properties, and checking refinement are computable on MDDs.



5.1 Safety Games

A basic operation on modules is computing the set of winning states for a player p �
� I � O � w.r.t. a safety goal, that is Winp � M � � ϕ � , for some set ϕ � � �V all

M � � . The operations
of checking well-formedness, putting a module in normal form, and computing the
composition of two modules, are all reducible to solving safety games.

By abuse of notation, we denote by Winp � M � � ϕ � both the set of states it denotes,
and its characteristic function, which is a predicate over V all

M .
It is well known that such set of winning states can be characterized as a fix-point

of an equation involving the so-called controllable predecessors operators. For a player
p � � I � O � and a predicate X � Preds � V all

M
� , the operator Cprep � X � returns the set of

states from which player p can force the game into X in one step, regardless of the
opponent’s moves. Formally, we have the following definition.

Definition 27 (Controllable Predecessor Operator). For a predicate X � Preds � V all
M
� ,

we have:

CpreI � X � � �
mI � Γ I � M � s � � � mO � Γ O � M � s � � � t � δ � M � s � mI � mO � � t 	 � X

CpreO � X � � �
mO � Γ O � M � s � � � mI � Γ I � M � s � � � t � δ � M � s � mI � mO � � t 	 � X �

Intuitively, CpreI � X � (resp.CpreO � X � ) holds true for the states from which the Input
(resp. Output) player has a move that leads to X for each possible counter-move of the
Output (resp. Input) player. For all ϕ � Preds � V all

M
� , we have:

WinI � M � � ϕ � � νX �
�
ϕ � CpreI � X � �

WinO � M � � ϕ � � νX �
�
ϕ � CpreO � X � � �

where νX � f � X � denotes the greatest fixpoint of the operator f . Since CpreI ��� � is mono-
tonic, the above fixpoints exist and can be computed by Picard iteration:

X0 � ϕ � Xi 
 1 � ϕ � CpreI � Xi
� � � ��� Xn � Xn 
 1 � WinI � M � � ϕ � � (1)

We now show how to compute CpreI � X � starting from the MDD representation of M.
Considering Definition 18, in order for a state s to satisfy CpreI � X � , two conditions
must hold. First, every output transition should lead to X . Second, either s 	 � X , in
which case Input can play � ∆0 � s � , or there must be an input transition that leads to X .
This observation allows us to express CpreI � X � as follows:

CpreI � X � � � PreO � X ��� �
PreI � X � �

where

� PreO � X � � �
a � ActM

� � V all
M
� � � � �ρO

M � a � � X � �

�
PreI � X � � X

� � � � V all
M
� � � X � � Unchgd � V H

M � V L
M
� � � �

a � ActM

� � V all
M
� � � � �ρ I

M � a ��� X � � �



Since boolean operations and quantifications of variables are computable on MDDs, the
operators above are computable. In a dual fashion, CpreO � X � can be computed from the
non-game operators � PreI � � � and

�
PreO � � � .

We can improve the efficiency of computing WinI � M � � ϕ � , by observing that,
since (1) is a decreasing sequence, it holds that νX �

�
ϕ � CpreI � X � � � νX �

�
ϕ � X �

CpreI � X � � . Since X � CpreI � X � � X � � PreO � X � , we obtain

WinI � M � � ϕ � � νX �
�
ϕ � X � � PreO � X � � � νX �

�
ϕ � � PreO � X � � �

In conclusion, we can then compute WinI � M � � ϕ � by iterating � PreO ��� � instead of
the more complicated CpreI � � � . A similar argument holds for the computation of
WinO � M � � ϕ � .

5.2 Composition

By inspecting Definition 20, it is clear that computing the product of two modules
M1 and M2 only involves simple boolean operations on the predicates that define the
modules. Such operations are computable on MDDs.

To obtain the composition M1 � M2, according to Definition 13, the in-
put invariant ψ I

12 of the product must be conjoined with the predicate
WinI � M1

�
M2 � � � ψ I

12
� good � M1 � M2

� � . To compute the above winning set, we first
compute the predicate good � M1 � M2

� following Definition 21, and then solve the safety
game as explained in Section 5.1.

5.3 Refinement

Let M1 and M2 be two modules in normal form, such that Sign � M1
� � Sign � M2

� .
For i � � 1 � 2 � , let Mi � � Act � V G � V L

i � V H � W � ρ IL
i � ρ IG

i � ρO
i � ψ I

i � ψO
i
� , V all

i � V G � V L
i and

Si �
� �
V all

i � � . Assume for simplicity that V L
1

 V L

2 � /0. We wish to compute the coarsest
alternating simulation � between S1 and S2. Consider the predicate ψ � over the set of
variables V all

1 � V all
2 , defined as the greatest fixpoint of the operator SimPre � � � , defined

as follows. For all X � Preds � V all
1 � V all

2
� , we have

SimPre � X � � X � �
a � Act

� � V all
2
� � � � � V L

1
� � �

�
�ρ I

2 � a � � � �ρ I
1 � a ��� X � �

� �
a � Act

� � V all
1
� � � � � V L

2
� � �

�
�ρO

1 � a � � � �ρO
2 � a ��� X � � �

The operator SimPre ��� � , and consequently its fixpoint ψ� , can be computed from the
MDD representation of M1 and M2. The following result states that ψ � can be used
to trivially obtain � . The result can be proven by induction, observing that SimPre ��� �
represents conditions 2 and 3 of Definition 23.

Theorem 9. Given s � S1 and t � S2, s � t iff s
�
V G � � t

�
V G � and s � t �VL

2 � 	 � ψ � .

A similar algorithm can be used to compute the coarsest bisimulation �� .



6 Comparison with Previous Interface Models

The sociable interface model presented in this paper is closely related to the I/O Au-
tomata Model (IOA) of [11]: sociable interfaces synchronize on actions and use vari-
ables to encode the state of components. However, sociable interfaces diverge from I/O
Automata in several ways. Unlike I/O Automata, where every state must be receptive to
every possible input event, sociable interfaces allow states to forbid some input events.
By not accepting certain inputs, sociable interfaces express the assumption that the en-
vironment never generates these inputs: hence, sociable interfaces (like other interface
models) model both the output behavior, and the input assumptions, of a component.
This approach implies a notion of composition (based on synthesizing the weakest en-
vironment assumptions that guarantee compatibility) which is not present in the I/O
Automata Model.

Interface models are the subject of many recent works. Previous interface models,
such as interface automata [6, 8] and interface modules [7, 3] were based on either ac-
tions, or variables, but not both. Sociable interfaces do not break new ground in the
conceptual theory of interface models. However, by allowing both actions and vari-
ables, they take advantage of the existing models and try to avoid their deficiencies.
The rest of this section is devoted to a quick presentation of existing interface models.

Variable-based interface formalisms. In variable-based interface formalisms, such as
the formalisms of [7, 3], communication is mediated by input and output variables, and
the system evolves in synchronous steps. It is well known that synchronous, variable-
based models can also encode communication via actions [1]: the generation of an
output a! is translated into the toggling of the value of an (output) boolean variable xa,
and the reception of an input a? is encoded by forcing a transition to occur whenever the
(input) variable xa is toggled. This encoding is made more attractive by syntactic sugar
[1]. However, this encoding prevents the modeling of many-to-one and many-to-many
communication.

In fact, due to the synchronous nature of the formalism, a variable can be modified
at most by one module: if two modules modified it, there would be no simple way
to determine its updated value.6 Since the generation of an output a! is modeled by
toggling the value of a boolean variable xa, this limitation indicates that an output action
can be emitted at most by one module. As a consequence, we cannot write modules that
can accept inputs from multiple sources: every module must know precisely which other
modules can provide inputs to it, so that distinct communication actions can be used.
The advance knowledge of the modules involved in communication hampers module
re-use.

Action-based interface formalisms. Action-based interfaces, such as the models of [6,
5, 8], enable a natural encoding of asynchronous communication. In previous proposal,
however, two interfaces could be composed only if they did not share output actions —
again ruling out many-to-one communication.

6 A possible way out would be to define that, in case of simultaneous updates, only one of the
updates occurs nondeterministically. This choice, however, would lead to a complex semantics,
and to complex analysis algorithms.



Furthermore, previous action-based formalisms lacked a notion of global variables
which are visible to all the modules of a system. Such global variables are a very pow-
erful and versatile modeling paradigm, providing a notion of global, shared state. Mim-
icking global variables in purely action-based models is rather inconvenient: it requires
encapsulating every global variable by a module, whose state corresponds to the value
of the variable. Read and write accesses to the variable must then be translated to ap-
propriate sequences of input and output actions, leading to cumbersome models.
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