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Abstract. In this paper we study bisimulations on dynamical systems
through a given partition. Our aim is to give a new vision of the notion
of bisimulation by using words. To achieve this goal, we encode the tra-
jectories of the transition system as words. This method was introduced
in our paper “On o-minimal hybrid systems” in order to give a new proof
of the existence of a finite bisimulation for o-minimal hybrid systems (as
previously proved in a paper by Lafferriere G., Pappas G.J. and Sastry
S.). Here we want to provide a systematic study of this method in order
to obtain a procedure for building finite bisimulations based on words.

1 Introduction

More and more real-life systems are automatically controlled. It is of a capital
importance to know whether the programs governing these systems are cor-
rect. In order to be able to manipulate these real-life systems, various mathe-
matical models have been introduced (timed automata [AD94], hybrid systems
[Hen96],...) making the study of the abstract systems a wide and interesting
domain of research. Unfortunately even the abstract systems are not always
that easy to handle, the main problem being their infinite size. One way to
solve this problem is to reduce these infinite systems to finite systems in such
a way that enough information is preserved. It is known that bisimulations
(see [Acz88,Cau95,Hen95]) are a “reduction” of particular interest since they pre-
serve a lot of interesting properties (reachability problem, model-checking branch-
ing logic... [HNSY94,ACH*95 AHLP00]). That is why we focus our attention on
systems admitting a finite bisimulation.

In [BMRTO04] in order to prove the existence of a finite bisimulation for an
extended class of o-minimal hybrid systems', we encode the continuous dynamics
through words (see also [BM04]). In the previous two papers we limit ourselves to
the encoding of o-minimal dynamical systems (i.e. dynamical systems definable
in an o-minimal structure; see [vdD98] for a nice overview on o-minimality.). In
particular we only had to manipulate finite words. Let us mention that some
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! introduced in [LPS00].



2 Thomas Brihaye

analogue already appears in the literature (the notion of signature for example
in [ASYO01]). Let us also notice that bisimulations of dynamical systems has been
studied independently in [JdS04] but in a different framework. They studied
dynamical system as defined in [Wil91].

Our technique was used by Korovina and Vorobjov in order to compute
a doubly exponential bound on the size of the coarsest finite bisimulation of
pfaffian hybrid systems (see [KV04]). They recently improved their results by
reducing the bound to a single exponential and prove that this bound is tight
(see [KVO05]).

In this paper, we want to give a systematic study of this encoding technique.
In particular we give a Procedure (Bisiw) that aims to build a bisimulation
on a dynamical system through a partition. Our hope is that this systematic
study will lead to the discovery of some new general classes of dynamical sys-
tems (through partition) which admit finite bisimulations. Beyond the fact that
dynamical systems are of interest in their own, they are an essential component
of hybrid systems. In particular, when strong reset conditions are assumed on
the hybrid system, finding finite bisimulations of the hybrid system reduces in
finding a finite bisimulation on each location (which is endowed with a dynamical
system) w.r.t. the partition induced by the guards, resets and invariant. It is the
case for o-minimal hybrid systems, see [LPS00]. Moreover a recent point of view
on the theory of hybrid systems allows to see an hybrid system as a dynamical
system (see the notion of hybrifold in [STSL0O0]).

The rest of the paper is organized as follows. In section 2, we recall classical
definitions and properties of bisimulations on a transition system, we also de-
scribe the well-known bisimulation algorithm ([BFH91,KS90,Hen96]), which is
in fact a semi-algorithm. We end this section by defining what we call a dynam-
ical system in this paper. Section 3 is the main section of the paper. We start by
explaining how to associate a word with a trajectory; we introduce the notion of
dynamical type which allows in some sense to recover the continuous dynamics
through the partition. These tools being formalized we introduce a conceptual
semi-algorithm called Procedure Bisiw and we prove that this procedure com-
putes a bisimulation. We also describe several variants of our procedure. Finally
we discuss in which case Bisiw provides the coarsest bisimulation of a dynamical
system through a given partition. In Section 4 we provide an extensive list of
examples.

2 Preliminaries

In this section, we recall some basic definitions and results concerning bisimu-
lations on a transition system (see [Acz88,Cau95,Hen95| for general references).
We also recall the well-known bisimulation algorithm ([BFH91,KS90,Hen96]).
Then we give definition of dynamical systems and associate with them a natural
transition system.
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2.1 Transition systems and bisimulation

Definition 21 A transition system T = (Q, X', —) consists of a set of states Q
(which may be uncountable), X a finite alphabet of events, and — C Q x X X Q
a transition relation.

A transition (q1, a,qz) € — is denoted by q1 — go. A transition system is said
finite if @ is finite. If the alphabet of events is reduced to a singleton, X = {a},
we will denote the transition system (@, —) and omit the event a.

Definition 22 Given a transition system T = (Q, X, —), a finite path in T is
a finite sequence of transitions qo q1 q2 -+ qn such that for alli=1,...,n there
exists a; € X such that ¢i—1 —= q;. We denote it as follows:

pP=aq 5 q g 2 gy

Definition 23 Given two transition systems on the same alphabet of events,
T = (Q1,X,—1) and Ty = (Q2, X, —2), a partial simulation of T} by Ts is a
binary relation ~ C Q1 X Q2 which satisfies the following condition:

vqlaqll S Qla qu S QQa Va € 27
(g1 ~ g2 and ¢1 51 ¢}) = (3db, 4} ~ g and g2 52 ¢b)

(1)
The condition (1) is read Ty partially simulates T .

Definition 24 Given ~ a partial simulation of T by Ts, we say that ~ is a
simulation of Ty by Tb if, for each g1 € Q1, there exists qa € Qo such that
q1 ~ q2.

Definition 25 Given two transition systems on the same alphabet of events,
T = (Q1,%,—1) and To = (Q2, X, —2), a bisimulation between T7 and T5 is a
relation ~ C Q1 X Q2 such that ~ is a simulation of T1 by Ty and the inverse
relation’ ~~1 is a simulation of Ty by Ti. In this case we say that Ti and T
are bisimilar.

Remark 26 One could consider a different notion of bisimulation, let us call it
back-bisimulation or backward bisimulation (see [HKPV98]). This would come
from the notion of partial backward-simulation defined as partial simulation
(Definition 23) where the condition (1) is replaced by:

vqlaqll € Qla vq/2 € Q25 Va € Ea
(¢ ~ b and 1 51 ¢;) = (B2, @1 ~ @2 and g2 2 ¢b)

We say that a bisimulation is a forward stable relation and that the back-
bisimulation is a backward stable relation. The difference between these two
notions is illustrated on Figures 1 and 2.

2If ~={(q1,2) € Q1 X Q2 | 1 ~ g2}, then ~'={(q2,q1) € Q2 x Q1 | 1 ~ g2}
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Definition 27 Given a transition system T = (Q, X, —), we can look at bisim-
ulations on Q X Q; they are called bisimulations on T'.

As already mentioned in the introduction, a motivation for the study of
bisimulation is the reachability problem. Let us make this problem more precise:

Reachability Problem 28 Given T = (Q, X, —) a transition system, Init C
Q and Fin C Q two subsets of states, is there a finite path® p from Init to Fin?

If T = (Q,—) is a reflevive* transition system then there exists several
trivial “partial” bisimulations on T given by ~,= {(q,¢') | ¢’ € Q} for ¢ € Q.
This implies that there exists a bisimulation between 7" and a one-state system
To, where To = (Qo, —0) with Qo = {go} and —o= {(g0,40)}. The bisimulation
between T' and T is given by ~o= {(¢,q0) | ¢ € Q}.

Regarding the reachability problem 28, the bisimulations ~, and ~¢ are com-
pletely irrelevant. One can have a bisimulation between a completely discon-
nected reflexive transition system and a single state system (7). This gives a
motivation for the definition of bisimulation w.r.t. a partition. This notion leads
to a preservation result on the Reachability Problem (see Lemma 215).

Moreover the study of finite bisimulation w.r.t. a partition on dynamical
systems leads to the existence of finite bisimulations on subclasses of hybrid
systems, for examples see [LPS00,Dav99,BMRT04,KV04,BM04,KV05].

Let us give the definition of bisimulation w.r.t. a partition.

Definition 29 Given T a transition system, P a partition of Q and ~ C Q X Q
a bisimulation, we say that the bisimulation ~ respects the partition P if given
any p,q € Q such that p ~ q then p and q belong to the same piece of the
partition P. We will speak of bisimulations w.r.t. P.

Definition 210 Given T a transition system, P a partition of Q) we can define
the coarsest bisimulation on T w.r.t. P, it is denoted ~p:

~p = U {~ | ~ is a bisimulation on T w.r.t. P}

3ie. P =qo lql a—2>q2~~~ i"—>qn with qo € Init and ¢, € Fin.
4i.e. for all ¢ € Q we have that ¢ — ¢.
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Remarks 211 Definition 210 makes sense since the union of bisimulations on
T w.r.t. P s still a bissmulation on T w.r.t. P.

One can show that the coarsest bisimulation on T w.r.t. P is an equivalence
relation, moreover each piece of the partition P is an union of equivalence classes

Of ~p.

In the case of bisimulations which are equivalence relations, we can define
the notion of quotient of a transition system by such a bisimulation.

Definition 212 Given a transition system T = (Q, X, —) and ~ a bisimulation
on T which is an equivalence relation. We can consider the quotient of T by ~,
denoted by T/ = (Q/~, X, —~) and defined as follows:

= Q/~=A{ld~ | ¢ € Q} where [g]~ ={q' | ¢~ ¢}
— [q1]~ = [g2]~ if and only if there exists ¢} € [q1]~ and gb € [ga]~ such that
a0 = o
Remark 213 Definition 212 makes sense even when we consider an equivalence
relation ~ which is not a bisimulation.

Lemma 214 Given T a transition system, ~ a bisimulation on T which is an
equivalence relation, then the graph of the natural map []~ : Q@ — Q/~ is a
functional bisimulation from T to its quotient transition system T/ .. (see [Cau95,
Lemma A.1 p. i]).

We end this subsection by making precise the folk result that states that
bisimulations preserve the Reachability Problem.

Lemma 215 Given T, Init, Fin as in the Reachability Problem 28, P a par-
tition of Q given by {Init N Fin, Fin \ Init, Init \ Fin,Q \ (Init U an)} and
~p a bisimulation on T which is an equivalence relation w.r.t. P. There exists
a finite path in T from Init to Fin if and only if there exists a finite path in
T/~p from Init/., to Fin/..

Let us notice that the same result holds for back-bisimulation.

2.2 Bisimulation Algorithm

As already mentioned previously, it is an important question to know whether a
given infinite system admits a finite bisimulation. Since, for example, the reach-
ability problem is decidable for a finite system effectively described. Moreover
it would be nice to have an automatic procedure to build this finite bisimula-
tion. These facts lead to the introduction of the bisimulation algorithm which
appeared in [BFH91,KS90,Hen96]. Given a transition system T' = (Q, X', —) and
Py a finite partition of @, the bisimulation algorithm iterates the computation
of predecessors® of the pieces of the partition, let us recall it:

5 Given T a transition system and ¢ € Q, the set of a-predecessors of ¢, denoted
Preq(q), is defined by Pre.(q) = {¢ € Q | ¢ % ¢}, and if P C Q, Pre,(P) =

qup Prea(q).
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Algorithm 216

Initialization: P := Py

While 3P, P’ € P Ja € X such that @ # P N Pre,(P') # P
Set P, = PN Prey(P') and P, = P\ Pre,(P’)
Refine P := (P\ {P})U{P, P2}

End while

Return P

The following are well-known results on the bisimulation algorithm.

Lemma 217 Given T a transition system and Py a finite partition of Q, the
bisimulation algorithm terminates if and only if there exists a finite bisimulation
onT w.r.t. Py.

Lemma 218 If the bisimulation algorithm terminates it provides the coarsest
bisimulation on T w.r.t. Pgy.

2.3 Dynamics
Definition 219 A dynamical system® is a pair (M,~) where:

— M = (M, <) is a totally ordered structure,
— v MR x M — M*2 is a function.

The function ~y is called the dynamics of the dynamical system. More generally,
we can consider the case where vy is defined on subsets of M that is~y: Vi XV —
Vo with Vi C M*, V C M and Vo C M*2.

In the sequel we assume the range of v is equal to M*2. Classically, when M
is the field of the reals, we see M as the time, M*' x M as the space-time, M*
as the (output) space and M*! as the input space. We keep this terminology in
the more general context of a structure M.

In this presentation time and space have the same underlying structure (i.e.
M) this comes from our presentation in [BMRT04] where we needed the whole
dynamical system to be definable in the o-minimal structure M. However we
can imagine dynamical system with dynamics v : V3 x V. — V5 where V is a
totally ordered set and V7, V3 are defined in completely different structure. This
should not affect the results presented in the sequel.

The definition of dynamical system encompasses a lot of different behaviors.
Let us give some examples.

Example 220 Let M = (N, <) and the dynamics v :{0,1} x {0,1} — {0,1} is
given by y(z,t) = (x +t) mod 2. The transition system associated with this dy-
namical system (see Definition 224) is in fact a finite automaton (see Figure 3).

5 Our definition of dynamical system is an attempt to generalize the continuous dy-
namics of hybrid systems ([Hen96]) with no explicit reference to differential equa-
tions. This definition, even if rather close, is different from the one given in [Wil91].
Deeper investigation on the links between the two definitions would be relevant work.
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Fig. 3. A finite automaton

Example 221 We can recover the continuous dynamics of the timed automaton
(see [AD94]). In this case, we have that M = (R,<) and the dynamics vy :
R™ x [0,400[— R™ is defined as follows.

V(@1 ooy Ty ) = (X1 + oy Ty + 1)

Example 222 Definition 219 also allows dynamical systems with non deter-
ministic’ behavior. Let us consider (M,~) where each point of the plane has two
possible behaviors: “to go to the right” or “to go up” (see Figure 4 on page 13).
More precisely we have that M = (R, <) and v : R? x R — R? is defined as
follows.
Cf(m+tw)  ifp>0

’7($1,$2,P7t)—{($17$2+t) ifp<0
Definition 223 If we fir a point x € M* | the set I', = {y(x,t) |t € M} C M*2
18 called the trajectory determined by x.

We define a transition system associated with the dynamical system, this
definition is an adaptation to our context of the classical continuous transition
in the case of hybrid system (see [LPS00] for example).

Definition 224 Given (M,v) a dynamical system, we define a transition sys-
tem T, = (Q, —,) associated with the dynamical system by:

— the set Q of states is M*?;
— the transition relation y; —~ y2 is given by:

Jz € M*, 3t1,t € M, (t1 <to and y(z,t1) = y1 and y(z,t2) = yg)
Remark 225 Let us notice that T, is a reflexive transition system.

Remark 226 The transition system T is in general not transitive. To illustrate
this fact, let us consider Example 222. Given the three points of the output space
y1 = (0,0), y2 = (0,1) and y3 = (1, 1), we clearly have that y1 +~ y3 since y1 —~
Y2 and ya —~ ys3. Indeed y1 = ~(0,0,—1,0), yo = v(0,0,—1,1) = v(0,1,1,0) and
ys =v(0,1,1,1).

" The non determinism comes in fact from the associated transition system, see Defi-
nition 224.
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3 Words and dynamics

Given a dynamical system (M,~) and P a finite partition of the space M*2,
an interesting question is to know if there exists a finite bisimulation of (M, )
w.r.t. P. If such a bisimulation exists the bisimulation algorithm 216 provides the
coarsest one by iterating the computation of the predecessors of the pieces of the
partition P. The goal of this section is to give another procedure that computes
the coarsest bisimulation on a dynamical system (M, ) (i.e. a bisimulation on
T.,) w.r.t. a partition P. Our approach is in some sense more global that the
bisimulation algorithm. We use the idea introduced in [BMRT04] which consists
in encoding the dynamics of (M,~) through the partition P by words on this
partition. Let us first explain how we associate a word with a trajectory.

3.1 Encoding trajectories by words

First let us define the notion of word in this general (possibly uncountable)
context. This definition is inspired from [BCO1], see also [Tru89,Rab03].

Definition 31 Given P a finite set (called the alphabet), M a totally ordered
set, a word w on P is a function from M to P; the word w is also denoted in
a sequence-like notation by (w;),c,, where w; € P is the image of the element i
under the function w.

We recover the classical finite words or w-words when the set M is respectively
finite or equal to N.

Example 32 Let us consider the finite set P = {A, B}. We give three examples
of words on P.

1. Given the finite set My = {1,2,3,4} equipped with the natural ordering and
the function wy : My — P such that w1(1) = A, w1(2) = B, w1(3) = A
and w1(4) = B, we recover an example of finite word. In this case wy is
classically denoted ABAB.

2. Given the set of natural number Ms = N equipped with the natural ordering
and the function wy : Ms — P such that wa(n) = A if n is even and
wa(n) = B if n is odd, we recover an example of w-word. In this case wo is
classically denoted (AB)“.

3. Given the set of real number M3 = R equipped with the natural ordering and
the function ws : M3 — P such that ws(n) = A if n € Q and wa(n) = B if
n € R\ Q, we have a “degenerated” example of word.

We need to introduce basic notions related to words in this general context.
For finite words, we adopt the classical notations.

Definition 33 Given w : M — P a word on P, a subword of w is given by
ws : M' — P where M' C M is an arbitrary subset of M considered with the
order induced from M.
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Definition 34 Given w: M — P a word on P, a suflix of w is a subword of a
particular form. A subword wg : M' — P is a suffix if and only if M = {t | t >
to} or M = {t | t > to} for some ty € M. In the same way we can define the
notion of prefix.

Definition 35 Given wy : M7 — P and wy : My — P two words on P, the
concatenation of the words w; and ws is defined by the word wiws : M{UMy — P
where wiwa [y, = w1 and wiwa [y, = we and where the order on M1UMs is the
order induced from My on My, the order induced from My on My andVmq € My,
VYma € My we have that mq < ma in MiUM;.

We are now ready to build words associated with trajectories. Given (M, ~)
a dynamical system and P a finite partition of M*2, given 2 € M*' we associate
a word with the trajectory I', in the following way. We consider the sets {t €
M | y(z,t) € P} for each P € P. This gives a partition of the time M. In order
to define a word on P associated with the trajectory determined by z, we need
to define the set of intervals F,.

Fo = {I } (I is a time interval or a point) and is maximal for the property
3P e P, Vtel, (z,t) € P}.
For each z, the set F, is totally ordered by the order induced from M. Let us

note that the set F, can be equal to M itself. This allows us to define the word
on P associated with I, denoted wy.

Definition 36 Given x € M*', the word associated with I, is given by the
function wy : Fy — P defined by:

we(I) =P where I € Fy is such that ¥t € I ~(z,t) € P.

Let us note that given € M*1, there exists a unique word w, on P associ-
ated with the trajectory I,. The intuition behind the introduction of F, is the
following. We want successive® letters of the words w, to be different.

Definition 37 We denote by £2p the set of words associated with (M, ) w.r.t.
P. We have that 2p is a set of words on P.

The set {2p gives in some sense a complete static description of the dynamical
system (M,~) through the partition P. In order to recover the dynamics, we
need further information. This is the object of the following subsection.

3.2 Dynamical type

Given a point x of the input space MF*', we have associated with x a trajectory
I, and a word w,. If we consider (z,t) a point of the space-time M* x M, it

8 The notion of successive letters is only defined for “well behaving” dynamical sys-
tems.
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corresponds to a point y(z,t) lying on I';. To recover in some sense the position
of y(z,t) on I, from w,, we associate with (z,t) a suffix of the word w, denoted
W(z,t)- The construction of w, ;) is similar to the construction of w,. We need
to introduce the set of intervals

Fapy ={IN{t' | t' 21t} | I € Fo}}.

For each (z,t), the set F(, ;) is totally ordered by the order induced from M.
This allows us to define the suffiz of the word w, associated with time t denoted

w(z’t).

Definition 38 Given (z,t) € M* x M, the suffix of the word w, associated
with time ¢ is given by the function w(y ) @ F(ep) — P defined by:

Wapy(I) =P where I € Fy 4y is such that Vt' € I ~(x,t') € P.

Due to the particular form of the suffixes w(, ;), it makes sense to define the
first letter of wy 1)-

Definition 39 Given (x,t) € M* x M, the first letter of the suffix W(g,t) 15
given by w,(I) where I is the interval of F, such thatt € I. We denote the first
letter of w1 by F(wix))-

Let us notice that given (x,t) a point of the space-time M*1 x M there is a
unique suffix w(, ;) of w, associated with (z,1).

Given a point y € M*2 it may have several (z,t) such that y(x,t) = y and so
several suffixes are associated with 3. In other words, given y € M*2, the future
of y is non deterministic, and so a single suffix w(, ;) is not enough to recover
the dynamics of the transition system through the partition P. To encode the
dynamical behavior of a point y of the output space M*2 through the partition
P, we introduce several notions of dynamical type of a point y w.r.t. P.

Definition 310 Given a dynamical system (M,7), a finite partition P of M*2,
a point y € M*2 the suffix dynamical type of y w.r.t. P is denoted Sufp(y) and
defined by:

Sufp(y) = {wr | v(z.t) =y}
We have that Sufp(y) is a subset of suffizes of words of Q2p.

Definition 311 Given a dynamical system (M,7), a finite partition P of M*2,
an integer n € N, a point y € M*? the n-subword dynamical type of y w.r.t. P
is denoted nSubp(y) and defined by:

nSubp(y) ={w | v(z,t) =y and w is a subword of w(, 4
and the length of w,|w| < n and F(w) = F(wx.t))}-
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Definition 312 Given a dynamical system (M,7), a finite partition P of M*2,
a point y € M*2 the subword dynamical type of y w.r.t. P is denoted Subp(y)
and defined by:
Subp(y) = | nSubp(y).
neN
We have that nSubp(y) is a subset of Subp(y) for all n € N.

Notations 313 If we want to talk about a dynamical type of the point y without
specifying if it is a subword, n-subword or suffix dynamical type, we use the
notation Tp(y).

Our goal is to refine the partition P in order to build a bisimulation w.r.t.
P. For this purpose we consider the equivalence relation between points of the
output space M*2 “to have same dynamical type w.r.t. P”. This equivalence
relation induces a new partition of the output space M*2 which refines P.

Definition 314 We denote by T (P) the refinement of the partition P obtained
by considering the equivalence relation =1 py on MP*2 given by:

y1 =7py Y2 if and only if  Tp(y1) = Tp(y2).

Notations 315 The partition T (P) is respectively denoted Suf(P), nSub(P)
and Sub (P) in the case of the suffiz, n-subword and subword dynamical type.

Remark 316 The nSub(P) partitions are only relevant for n > 2. Indeed,
0Sub(P) = {M*>} and 1Sub(P) = P. This is why in the sequel of the paper

when we talk about n-subword dynamical typen we always assume n > 2.

Remark 317 The different dynamical types induced different partitions. Those
partitions are related as follows in term of refinement.

P 2O25ub(P)2...2nSub(P)2D..2 ﬂ (1Sub (P)) = Sub(P) 2 Suf(P)
i€N

Once 7 (P) is computed? two possibilities can occur. On one hand we can
have that P = 7 (P), in this situation, we have that P is in fact a bisimulation
on (M,v) wr.t. P (see Theorem 327). On the other hand we can have that
P # T (P). In this case we can refine 7 (P) by considering the dynamical types
on 7 (P). We start by building words on 7 (P) associated with the trajectories
I'; to obtain {27(py and finally we obtain the different kinds of dynamical types
w.r.t. 7 (P). This leads to a third partition 7 (7 (P)) denoted 7?2 (P). Again
two situations can occur: 7 (P) = 72 (P) or 7 (P) # 72 (P). This allows us to
consider a general procedure that we describe in the following subsection.

Remark 318 The readers familiar with the classical bisimulation algorithm (216)
realised that the partition induced by 2Sub(P) is sufficent in order to compute
bisimulation. We investigate the other dynamical types in order to “accelerate”
in some sense the construction of the bisimulation, in particular when the bisim-
ulation algorithm does not terminate (see Corollary 337 and Example 41).

9 the meaning of the word “computed” is discussed in Remark 320.
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3.3 Procedure Bisiw

By starting with some initial partition Py we have seen how to build a new
partition 7 (Pg). We iterate the construction to obtain a sequence of partitions
(77 (Po)), Such that for each i € N we have that the partition (7°T" (Py)) =
T (Ti (Po)) corresponds to the partition induced by the dynamical types w.r.t.
T (Pp). This construction is summarized by the following procedure, we call
this procedure Bisiw.

Procedure 319
Initialization: P := Py
Do
Compute the set of words 2p
Associate Tp(y) with each y € M*2 use it to Build T (P)
IfP=T(P)
Then Return P
Else P :=T(P)
End Do

Remark 320 Procedure Bisiw is merely conceptual. Indeed in general it is far
to be computable. One main problem to be settled is to determine when two gen-
eral words, as defined in our context, are equal. Let us be more explicit, assume
that w, and wyr are words respectively associated with the trajectories I’y and
Iy. The problem is that w, and wyr are not equal as functions since their do-
mains are different: they are respectively F,, and F,/. Since the order on F, and
Fur is possibly not discrete, and even not well-founded, we need to introduce a
general notion of synchronization for ordered sets which is nothing else than an
isomorphism of ordered structures. So we will say that w, and w, are equal if
and only there exist an isomorphism o between the ordered structures F, and
Fur such that for all I € F, we have that wy(I) = wy (o(1)).

Let us remark that the partition T (P) is in general even not definable by a
first-order L-formula where L is the language given by the order and the initial
partition: L ={<,P,~v}.

However we have shown that in the case of o-minimal structures the first step of
Procedure Bisiw already provides interesting results. A discussion about compu-
tation of the words and the dynamical types in this particular case can be found
in [BM04].

Remark 321 Given P € T (P) it can be seen as a subset of M*2, or it can be
seen as a dynamical type w.r.t. P i.e. a set of words on P.

Lemma 322 Given y a point of the output space M*?, the first letter of each
w € Tp(y) is P where P € P and y € P. This is true for the each kind of
dynamical type defined previously.

Proof. This is an immediate consequence of the different definitions of the dy-
namical types.
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Lemma 323 Given a dynamical system (M,~) and P a partition of M*2 we
have that T (P) refines P.

Proof. This a direct consequence of Remark 317 and the fact that P = 1Sub(P).

Remark 324 By Lemma 323 we have that Procedure Bisiw generates a de-
creasing sequence of partitions:

PO2T(P)2T*(P)2--- 2T (P)2 -
To illustrate how Procedure Bisiw works, let us give an example.

Example 325 We consider the dynamical system (M,~) of Example 222. We
associate to (M,~) the initial partition P = {A1, As} where A1 = {(0,0)} and
Ay =R2\ {(0,0)} (see Figure 4). We apply Procedure Bisiw on (M,~) with P
as initial partition and using the suffix dynamical type.

——————— B e e
o i Ao
B e R e e Do
: A ; :
——————— e e
oA bk
7777777 e = e e e

Fig. 4. P = {Al, AQ}

First, we compute the set of words w.r.t. P,
Np ={As, A1 A3, As A1 Ao}
From 2p we see that there exist three dynamical types w.r.t. P:
By ={Ay, AyA1 Ay} 5 By = {A14s} ; By = {Ax}.

These dynamical types lead to the new partition Suf(P) = {Bi,Ba,Bs} (see
Figure 5) where By = {(y1,0) | y1 < 0} U {(0,32) | y2 < 0}, B = {(0,0)}
and By = R?\ (B1 U Bs). Notice that Suf(P) is a strict refinement of P, so we
iterate the construction. We compute the set of words w.r.t. Suf(P),

Qgupepy = {B1B2B3, B3B1 B3, By B3, B1 B3, B3}
From $2g,5p) we see that there exist four dynamical types w.r.t. Suf(P):

C1 = {B1B3B3,B1B3} ; Co = {BsB1B3} ; C5 = {B3B3} ; Cy = {Bs}
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Again these dynamical types lead to a new partition Suf* (P) = {Cy,Cy,Cs,
Cyu} (see Figure 6). Let us compute the set of words w.r.t. Suf® (P),

Qgupp) = {C201C4, C1C3C, C1Cy, C3Cy, Cu}.
From 2g,ppy we see that there exist four dynamical types w.r.t. Suf (P):
Dy ={C1C5Cy,C1Cy} ; Dy ={C3C1Cy} 5 D3 ={C5Cs} ; Dy = {C4s}

Bs Cy Dy

B; C1 D
BQ 03 DS

Bs s D>
By 1 D,

Fig. 5. Suf (P) Fig. 6. Suf? (P) Fig. 7. Suf® (P)

Those four dynamical types do not refine the partition Suf (P) (see Figure 7).
In other words, we have the following equality Suf* (P) = Suf* (P). One can check
that Suf’ (P) is a bisimulation on (M,~) w.r.t. P.

Remark 326 The dynamical system of Example 325 is non-deterministic. In-
deed two trajectories are associated with each point y of the output space M*2.
In the papers [BMRTO04,BM04], we were unable to deal with such situations.

The situation of Example 325 is not a particular case. Indeed if Procedure
Bisiw terminates, it provides a bisimulation. We can now state the main result
of the paper:

Theorem 327 Let (M,~) be a dynamical system, let T, be the associated tran-
sition system on M*2, and let Py be a finite partition of M*2. If Procedure Bisiw
terminates, then it provides a bisimulation on T, w.r.t. Py.

Proof. By hypothesis, Procedure Bisiw returns a partition P such that P =
T (P). To prove that the equivalence relation induced from P is a bisimulation
on T, w.r.t. Py. We will show that given any yi1,y2 € A and y; € B (for some
A, B € P) if y1 —, y; then there exists y, € B such that yo — y5.

Since P = 7 (P), A corresponds to a dynamical type on P (i.e. an element
of T (P)). Hence we have that Tp(y1) = Tp(y2). Depending of the kind of
dynamical type, the argument to find y} is slightly different. We do the rest of
the proof with the suffix dynamical type, the other'® cases are similar.

10 This of course does not hold for the 0-subword and the 1-subword dynamical types.
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Since y; —~ Y] there exists z; € MP*' and t1, t} € M with t; <t} such that
v(z1,t1) = y1 and y(x1,t)) = yi. By definition of the suffix dynamical type,
W(zy,4,) € Sufp(y1). Since y1 € A and 3| € B, we have that AB is a subword!!
of W(z,¢,)- Using the fact that Sufp(y1) = Sufp(y2), we can find x5 € M*t and
ta € M such that y(xo,t3) = y2 and W(wa,ts) = W(z1,t,)- Hence it is possible to
find an interval (or a point) I € F(4,+,) such that w(y, ) (I) = B. We pick any
point t5 € I and clearly we have that y} = y(x2,t5) is the desired point.

We have that P respects Py by iterating Lemma 323.

Corollary 328 Under the assumptions of Theorem 327 we have that if there
exists P} a refinement of Py such that Py =T (Py) then P} is a bisimulation on
T, w.r.t. Py.

Unfortunately, Procedure Bisiw does not provide in general the coarsest
bisimulation on T, w.r.t. P. Here are two examples that illustrate this fact.

Example 329 We consider a dynamical system where the output space consists
of two parallel straight lines and the dynamics is completely deterministic, given
a point on one of the lines, it goes to infinity without leaving the line. In other
words, we have that M = (R, <) and the dynamics v : Rx{0,1} xR — Rx{0,1}
is defined by y(x1,x2,t) = (x1 + t,x2). We associate with (M,~) the partition
P ={A, B} where B=R x {0,1}\ A and A is defined as follows:

A={(n—(1/m),0) [ neN,meN\{0}}U{(n,1) | neN}

Let us consider the suffix dynamical type of the two points y1 = (1/2,0) and
Y2 = (L 1)

Sufp (y1) = ((AB)*)"  and  Sufp (y2) = (AB)*.

Clearly, y1 and y2 do not have the same suffiz dynamical type w.r.t. P however
one can show that P is the coarsest bisimulation w.r.t. P.

Remark 330 In the previous example, the fact that the partition is too fine is
due to the fact that the bisimulation does not distinguish (AB)“ and ((AB)*)".
Indeed, in this case the transition system T, is completely deterministic, so the
bisimulation only need to know that the dynamics goes infinitely often from A to
B and from B to A. The bisimulation does not care about the “kind of infinity” .
It is well-known that in the case of deterministic finite transition systems, the
bisimulation and language correspond. Example 329 shows that considering more
complex system make not clear how the notions of language equivalence and
bisimulation are related.

Remark 331 Let us notice that if we consider n-subword or subword dynamical
type on Example 329 we obtain the coarsest bisimulation.

1 Formally, we have to take {t1,t,} = M’ C M.
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However when considering non deterministic system, the next example shows
that using 3-subword dynamical type leads already to a too fine analysis.

Example 332 Let us consider the dynamical system of Figure 8 with the par-
tition P = {A, B,C}. Let us consider the 3-subword dynamical type of the two
points y1 and yo.

3Subp (y1) = {ABC} and 3Subp (y2) = {AB, AC'}.

Clearly, y1 and y2 do mot have the same 3-subword dynamical type w.r.t. P,
however one can show that P is the coarsest bisimulation w.r.t. P.

A B c
Yie- |- I B
5 Y
ygo’:”a> 77777777777777 4>~~:\3>

Fig. 8. 3-subword dynamical types do not provide the coarsest bisimulation

Nevertheless if we look at the 2-subword dynamical type, we always obtain
the coarsest bisimulation as stated in the following theorem.

Theorem 333 Let (M, ) be a dynamical system, let T, be the associated tran-
sition system on M"*2, and let Py be a finite partition of M*2. If Procedure
Bisiw terminates with the 2-subword dynamical type, then it provides the coars-
est bisimulation on T, w.r.t. Py.

Proof. By Theorem 327 we already know that Procedure Bisiw provides a bisim-
ulation on T, w.r.t. Py, it remains to show that it is the coarsest. We proceed
ab absurdo. Hence we suppose there exists some step of Procedure Bisiw and
Y1, y2 € M*2 such that y; ~p, y2 and 2Subp (y1) # 2Subp (y2). We can choose
this step such that each piece of P is a union of equivalence classes for ~p,.
We have that y; € A for some A € P. Since 2Subp (y1) # 2Subp (y2), we can
suppose AB € 2Subp (y1) and AB ¢ 2Subp (y2) for some B € P. This means
that there exists y; € B with y; — ¥} and that it is impossible to find y5 € B
with yo —~ y5. Since y1 ~p, y2 and B is a union of equivalence classes for ~p,,
this contradicts that ~p, is a bisimulation.

Corollary 334 Let (M,~) be a dynamical system, let T, be the associated tran-
sition system on M*2, and let Py be a finite partition of M*2. Procedure Bisiw
terminates with the 2-subword dynamical type if and only if there exists a finite
bisimulation on Ty w.r.t. Py.
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Proof. If there exists a finite bisimulation on 7', w.r.t. Py, the proof of Theo-
rem 333 shows that Procedure Bisiw terminates.

Let us now suppose that Procedure Bisiw terminates. Since Py is finite, the
number of 2-subword dynamical types is finite, (i.e. 2Sub (Py) is finite). By an
easy induction using the same argument, one can see that 2Sub’ (Py) is finite
for all 9 € N. Hence if Procedure Bisiw terminates, we clearly have that there
exists a finite bisimulation on T, w.r.t. Py.

In the sequel, we investigate extra assumptions which provide that Procedure
Bisiw terminates with the coarsest bisimulation.

Theorem 335 Let (M, ) be a dynamical system and let Py be a finite partition
of M*2 such that for all n € N and for all y € M*? we have that Sufg,pm (py) (Y)
reduces to a singleton, and let T, be the associated transition system on M*= | If
Procedure Bisiw terminates with the subword dynamical type, then it provides
the coarsest bisimulation on T, w.r.t. Py.

Proof. The proof is similar to the proof of Theorem 333. We also proceed ab
absurdo. Hence we can find some step of Procedure Bisiw and y;, y; € M*2
such that y; ~p, ¥} and Subp (y1) # Subp (y1). We can choose this step such
that each piece of P is a union of equivalence classes for ~p,.
Given any w = A;...A,, € Subp (y1), we can build the following sequence of
transitions.
Y1 7y Y2 7y oo 7y Yn,

with y; € A; for i = 1,...,n. Since y; ~p y; we can build a similar sequence of
transitions.
Y1 =y Yo = - =y Yns

with y; ~p, yj for i = 1,...,n. Since each A; is a union of equivalence classes
for ~p,, we have that y; € A; for i = 1,...,n. Let us now prove that the suffix
uniqueness hypothesis implies that there exists € M*t and t1,....,t, € M with
t1 < ... < ty, such that y(z,¢;) € A; for i =1, ..., n ; meaning that w € Subp (y}).
Clearly we can find z, t1, to with t; < 2, y(2,t1) € A1 and y(x,t2) € Az (since
Y7 —~ v5). Let us suppose, for a contradiction, that given x, t1, t2 such that
t1 < to, y(x,t1) € Ay and y(z,t2) € Ay we have that y(x,t3) ¢ As for all t5 > ta.
In particular, using the suffix uniqueness hypothesis, this means that the unique
word of Sufp (y4) does not contain the letter As. This contradicts the existence
of the transition y5 — y5 where y5 € As. Thus we can find ¢3 with the desired
conditions. Iterating the same argument we find the other ¢;’s.

Similarly, given any w € Subp (y}), we can prove that w € Subp (y1). This
contradicts that Subp (y1) # Subp (v}).

The assumptions of Theorem 335 are very strong. To weaken these assump-
tions, one could investigate cases where T, is transitive or deterministic.

Corollary 336 Under the hypothesis of Theorem 335, if there exists a finite
bisimulation on T\, w.r.t. Py, Procedure Bisiw terminates with the subword dy-
namical type.
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Corollary 337 Under the hypothesis of Theorem 335, if some step of Procedure
Bisiw, with the subword dynamical type, provides an infinite partition P there
is no finite bisimulation on T, w.r.t. Py.

Corollary 338 Under the hypothesis of Theorem 335, when Procedure Bisiw
has terminated, we have that:

25ub(P) = ... = nSub(P) = ... = Sub(P) 2 Suf(P)

Remark 339 The assumptions of Theorem 335 are satisfied when ~(.,.) is a
flow of a wvector field F : R™ — R™ which does not depend on the time (this is
the assumption in [LPS00]). In this case, T is both transitive and deterministic.

Remark 340 An interesting question is of course to know when Procedure Bisiw
terminates. In [BM04] Theorem 4.21 gives a condition of termination for Pro-
cedure Bisiw.

Remark 341 Given (M,v) a dynamical system and P a finite partition of M*2
such that there is no finite bisimulation on T, w.r.t. P, there are examples where
Procedure Bisiw terminates with the subwords (or suffix) dynamical types (see
Ezample 41).

Remark 342 In order to obtain similar results on back-bisimulation, one could
apply an analog to Procedure Bisiw where the suffixes are replaced by the prefizes.

Remark 343 In [BMRTO0}] in order to define the dynamical type of a point
w.r.t. some partition, we introduced the notion of (multi)dotted words (instead of
the suffizes). One can show that the finite bisimulation obtained with (multi)dotted
words is both forward and backward stable. However the use of suffixes instead
of (multi)dotted words leads to a coarser bisimulation than the one obtained with
the suffizes. This is illustrated in Figures 9 and 10. In Figure 9, the partition
induced by the dotted words have nine pieces corresponding to the dotted words
A, ABA, ..., ABA, ABABA, ..., ABABA. In Figure 10, the partition induced
by the suffizes have five pieces corresponding to the mon empty suffizes of the
word ABABA.

Fig. 9. Dotted words partition Fig. 10. Suffixes partition
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4 Examples

This section illustrates Procedure Bisiw on some examples. In each case, we
give a dynamical system (M,~) and an initial partition P and we observe how
Procedure Bisiw behaves.

Example 41 We consider a dynamical system (M,) related to the spiral ex-
ample of [LPS00]. We have M = (R, <) and v : R> x R — R? are defined as
follows.

y(x,t) = e’ (xcost, rsint)
The dynamics 7 is a solution of the system of differential equations (2) which
is not time depending. Hence we can apply Corollary 337 (see Remark 339) to

this ezample.
)-07) ) @

The dynamics v describes spirals moving away from the origin when time
elapses. We associate with this dynamical system the partiton P = { A, B} where
A={(y1,0) | 0 <y1 <1} and B =R?\ {A}. Let us focus on the the trajectory
It = {(e'cost,e'sint) | t € R}. We divide the trajectory I'y into two distinct
parts:

I'T ={(e'cost,e'sint) | t <0} and I'}” = {(e' cost,e'sint) | t > 0}

We have that I'| is included in the ball of radius 1 centered at the origin (0,0)
and I';" has no interesection with this ball. In particular we have that the subword
dynamical type of any point y € Ffr is given by {B}. If we now consider points
on I'[", one can see that their subword dynamical consists of words in (AB)™ or
(BA)T. Let us now show that there are infinitely many subword dynamical types
by describing explicitely the dynamical types of the points on I'y . Giveny € I,
we have that y = v(1,t) for some t <0, two cases can occur.

Ift = —2km then (AB)**! € Subp(y) and (AB)**% ¢ Subp(y),
ift €] —2(k+1)m, —2kx| then (BA)*T'B € Subp(y) and (BA)* 2B ¢ Subp(y).

Hence the first step of Procedure Bisiw with subword dynamical types, already
provides an infinite partition Sub(P). This shows that there is no finite bisim-
ulation on T, w.r.t. P by Corollary 837. However one can see that Sub(P) =
Sub® (P). This means that Sub(P) is the coarsest bisimulation on T, w.r.t. P.

Remark 42 In Example 41, we have just seen that T, does not admit a finite
bisimulation w.r.t. P. However T, admits a finite back-bisimulation w.r.t. P.
In particular when considering points on the trajectory Iy, we only have two
prefizes to consider, (AB)¥ and (BA)¥. That justifies the interest of considering
both back-bisimulations and bisimulations given a dynamical system.

We now consider an example with self intersecting curve!2.

2 This kind of behavior motivated the notion of multidotted words in [BMRT04].
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Example 43 We consider the dynamical system of Figure 11 with initial par-
tition P = {A1, As}. There are four suffiz dynamical types w.r.t. P:

By = {A1A2A 1} ; By ={A2A} ; By ={A1}; Bys={A1,A1AA}.

This leads to the four pieces partition T (P). The set 27 (p) consists of the
unique word ByByB1ByBsByBs. There are siz dynamical types w.r.t. T (P):

Cy = {B1B4B1ByB3B4Bs} ; Cy = {B4B1B2B3B4 B3, B1Bs} ;
C3 = {B1B2B3B4B3} ; Cy = {B2B3B4Bs} ; C5 = {B3B4B3s} ; Cs = {Bs}.

We obtain the partition T2 (P). One can easily check that T? (P) = T3 (P).

Fig. 11. A simple loop

5 Conclusion

In this paper we introduced a merely conceptual algorithm called Procedure
Bisiw. This procedure aims to build a finite bisimulation of a given dynami-
cal system w.r.t. a given partition using words. Procedure Bisiw gives a more
“global” vision of the bisimulation than the well-known bisimulation algorithm.
The papers [KV04,KV05] illustrates that Procedure Bisiw can help to compute
complexity bound on the size of the coarsest bisimulation.

Two of the main challenges for futur work are the following questions, “When
is Procedure Bisiw effective?”, “When does Procedure Bisiw terminate?”.

Another question to address is the following. In Section 3, we introduced sev-
eral “intermediate” equivalence relations (see Definition 314). These equivalence
relations deserve to be investigate for their own. At present we did not manage
to find any relevant property of these equivalence relations.
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