
���������	�
���
������ ��� � �������������������

 "!$#&%('*)+#-,(.0/0!2143(5768'(9(:<;*!&5>=*?*?4@BADC(E

F�GIH J�KMLONQPSR TVU PXW Y�K[Z�Z]\^G`_aWcb�d T[PXe f ghb2GIH \iWjLk\
b2WcJab2WO\iWcPlL>Wle mjn opK�H mqWabsrtWluXN7\vNwGIP rxN�TMRyb*T[Hz\

{23|9*) }`{4,~6�3|9(5

%~6�6�1����*�������8A�9(.�;�A�,A�;*!$�4��)D�&}�}����4#����
 M%*)+}j��3(5��`��,�}�1&,25]6�)�,(.�. �c}�9(1(1*3(576�!-�I;���,���/��(���|5�,�'~6���=BA�C*@(4?BA�?4=

Computing affine hulls over Q and Z from sets
represented by Number Decision Diagrams

Louis Latour

Université de Liège
Institut Montefiore, B28

4000 Liège, Belgium
latour@montefiore.ulg.ac.be

Abstract. Number Decision Diagrams (NDD) are finite automata representing
sets of integer vectors and have recently been proposed as an efficient data struc-
ture for representing sets definable in Presburger arithmetic. In this context, some
work has been done in order to generate formulas or sets of generators from the
NDDs. Taking another step in this direction, this paper present algorithms that
takes as input an NDD and computes the affine hull over Q or over Z of the set
represented by the NDD, i.e., the smallest set defined by a conjunction of equa-
tions or by a conjunction of equations and congruence relations that includes the
set represented by the NDD. Our algorithms run in time O(|Q| · |Σn

r | · n) and
O(|Q|3 · |Σn

r | · n3) respectively, where n is the number of components of the
vectors represented by the NDD, and |Q| and Σn

r are the number of states and
the alphabet of the NDD. On a prototype implementation, the computations of
affine hulls of NDDs with more than 100000 states are done in seconds.

1 Introduction

It has been known for a long time that finite automata can be used for representing
sets of integer vectors (see [BHMV94]). In particular, sets definable in Presburger arith-
metic [Pre29], i.e., first-order logic over the integers with addition and the order relation,
can be represented by finite automata. Many applications rely on Presburger arithmetic,
including integer programming problems, compiler optimization techniques, program
analysis tools and model-checking.

There exist different equivalent representations of Presburger definable sets (see
[BHMV94]), including formulas, semi-linear sets and finite automata, and different ap-
proaches have been developed for handling Presburger definable sets. Finite automata
have recently been investigated as an efficient data structure for representing Presburger
definable sets in practical applications [WB95,BC96]. Finite automata present two main
advantages, there is a canonical representation and efficient procedures exist for set op-
erations and inclusion tests. However, simple arithmetic operations, such as affine trans-
formation, can be costly if performed on automata. Therefore, it may appear efficient
to handle both automaton and formula representations of the set and perform the oper-
ations on the most appropriate representation. Also, having access to a simple formula
representation of the sets can shed light on the sometimes hidden relationships between

variables, or give a useful broad view of the set. It also provides a link to theorem
provers.

Working with both automata and formulas implies being able to move from one
representation to the other. While generating automata from formulas is now well un-
derstood [Kla04], the issue of generating formulas from automata has only been dealt
with more recently. Algorithm for restricted classes of sets appeared in [Ler03], [Lat04]
and [Lug04], and a solution for the general case has been presented in [Ler04b]. In this
paper, we approach the problem of extracting information from automata differently,
and instead of generating a formula matching exactly the set represented, we compute
the affine hull over Q and over Z, i.e., the smallest affine space over Q or affine module
over Z that includes the set represented by the automaton. The main interests are that the
computations are fast (linear if arithmetic operations are performed in constant time),
and affine spaces and affine modules are easily dealt with since they can be represented
by n equations and congruence relations or by n generators together with an element of
the set, where n is the number of vector components. Furthermore, for a number of ap-
plications, affine hulls already provide useful information. For example, in the context
of verification, one could simplify a model by removing some variables via the equa-
tions and congruence relations. Finally, the algorithms presented in this paper could be
integrated in a more general algorithm computating exact formulas for sets represented
by automata, as it is done in [Lat04] where affine hulls are computed in order to identify
the left-hand sides (i.e. the vector of coefficients) of the inequations occurring in the
formula.

An algorithm computing the affine hull over Q of sets of positive vectors repre-
sented by finite automata (with a least significant digit first encoding) has been already
presented in [Ler04a]. The time complexity of this algorithm is O(|Q| · |Σn

r | · n3),
where |Q| is the number of states, n is the number of components in the vectors of
the represented set and Σn

r is the alphabet of the automaton. Also, a finite automaton
representing a set of integer vectors can be viewed as a program, the states being the
control locations and the transitions being affine assignments since adding a digit d to
an encoding of a number z is equivalent to multiply z by the encoding basis and adding
d (when using a most significant digit first encoding scheme), some results in the field
of static analysis of program can be applied, and in particular, the method proposed in
[MH04] for computing affine relations among variables in a program can be used with
minor adaptations for computing the affine hull over Q of sets represented by finite au-
tomata. The time complexity is then O(|Q| · |Σn

r | ·n3). In this paper, we present a more
efficient algorithm whose time complexity is O(|Q| · |Σn

r | · n), and O(|Q| · |Σn
r | · n2)

if a minimal set of generators is required.

Regarding the affine hull over Z, nothing has been done directly on sets represented
by finite automata. In the context of static analysis, an algorithm for computing the
affine and congruence relations satisfied in a control point of an affine programs has
been presented in [Gra91]. Although the computation is proved to be finite, there is
no bound on the number of operations required. More recently, [MH05] describes a
polynomial time algorithm for computing affine relations over Zm, i.e. integer arith-
metic modulo m, satisfied by the variables at a given control location. In this paper,
we give the first polynomial time algorithm for computing the affine hull over Z of

2

sets represented by finite automata. The exact time complexity of our algorithm is
O(|Q|3 · |Σn

r | · n3). Note that our algorithm for computing affine hulls over Q is part
of our algorithm for computing the affine hulls over Z.

This paper is organized as follows. In Section 2, we recall basic properties regarding
automata theory as well as linear algebra. In Section 3, we show how finite automata
can represent sets of integer vectors. In Section 4, we present an efficient representation
for generators of vector spaces, Z-modules and Zm-modules. In Sections 5 and 6, we
present our algorithms for computing affine hulls over Q and over Z respectively. Some
experimental results are provided in Section 7, and we conclude in Section 8.

2 Preliminaries

We start with some preliminaries from linear algebra and automata theory. In what
follows, for any finite set S, the number of elements in S will be denoted by |S|.

2.1 Finite automata

An alphabet is a finite nonempty set of symbols. A word over an alphabet Σ is a finite
sequence of symbols taken from Σ. The symbol ε denotes the empty word, i.e., the
word containing no symbol. The length of a word w, denoted by |w|, is the number of
symbols in w. A language over Σ is a set of words over Σ, and Σ∗ denotes the set of
all words over Σ.

A deterministic finite automaton (DFA) A is a quintuple (Q, Σ, δ, sinit , QF), where
Q is a finite set of states, Σ is the input alphabet, δ : Q × Σ → Q is the transition
function, sinit ∈ Q is the initial state and QF ⊆ Q is the set of final states.

The function δ is extended to words : δ̂(s, ε) = {s} and δ̂(s, uw) =
⋃

s′∈δ(s,u) δ̂(s′, w).
If s′ = δ(s, u) for s, s′ ∈ Q and u ∈ Σ, then we say that there is a transition from s to
s′ labeled by u. By extension, there is a path from s to s′ labeled by w if s′ = δ̂(s, w).
The language of A, denoted by L(A) is the set of words labeling paths from the initial
state to a final state. The set of words labeling paths from a state s1 to a state s2 in A is
denoted as LA(s1 → s2).

The DFA A = (Q, Σ, δ, sinit , QF) is reduced if for all words w 6= ε labeling a path
rooted at sinit , there exists a word v ∈ Σ∗ such that wv ∈ L(A).

2.2 Basics on linear algebra

The following definitions and results can be found in elementary linear algebra text-
books, such as [Jac89].

As usual, Q, Z and N denote the sets of rational numbers, integers and naturals, and
Zm = Z/(mZ), i.e., the equivalence classes of Z modulo m. In the following, D will
denote any set among Q, N, Z and Zm. In the case of Zm, any addition or multiplication
of elements in Zm correspond to addition or multiplication in Z modulo m so that the
result is in {0, . . . , m − 1}. The set of vectors with n components in D is denoted Dn.
The i-component of a vector x is written x[i]. The superscript ·T denotes transposition.

3

For any set S ⊆ Dn, vector a ∈ Dn and scalar γ ∈ D, we denote by a + S and γS the
sets {a + x | x ∈ S} and {γx | x ∈ S} respectively.

For m, n ∈ N, m, n ≥ 1, Dm×n is the set of m × n-matrices with entry in D. For
a matrix A ∈ Dm×n, the row index set of A is {1, . . . , m} and the column index set
is {1, . . . , n}, and the entry located in the ith row and jth column is written A[i, j].
The ith row of A is denoted A[i, ∗] and similarly, the jth column is denoted A[∗, j]. Let
S ⊆ Dn. The D-linear hull of S, denoted linD(S), and the D-affine hull of S, denoted
affD(S), are defined as follows.

linD(S) = {
n

∑

i=1

λixi | λi ∈ D, xi ∈ S}, (1)

affD(S) = {
n

∑

i=1

λixi | λi ∈ D, xi ∈ S,

n
∑

i=1

λi = 1}. (2)

Example 1. Let S = {(1, 0), (1, 2), (1, 4)}. affQ(S) = {(1, k) | k ∈ Q} and affZ(S) =
{(1, 2 ∗ k) | k ∈ Z}.

The vectors x1, . . . , xn ∈ Dn are linearly independent over D iff
∑n

j=1 αjxj = 0
with αj ∈ D implies that αj = 0 for j = 1, . . . , n. If the vectors are not linearly
independent, they are linearly dependent over D. A set of vectors G is free over D iff
the vectors in G are linearly independent over D. A set G ⊆ Dn D-generates a set
S ⊆ Dn iff linD(G) = S. If in addition, G is free over D, then G is a D-basis of S.

A subset M ⊆ Dn of vectors with entries in D is a D-module iff M 6= ∅ and
M = linD(M). A subset S ⊆ Dn is a D-affine module iff S = a + M , where a ∈ Dn

and M is a D-module.

Proposition 1 Let S ⊆ Dn. The set linD(S) (resp. affD(S)) is the smallest D-module
(resp. D-affine module) containing S. The D-module M such that affD(S) = a + M
for some a ∈ Dn is unique.

Proposition 2 Any D-module S ⊆ Dn has a D-basis, and all D-basis of S have the
same number of elements d ≤ n called the dimension of S.

Since Q is a field, Q-modules and Q-affine modules have more properties than their
counterparts over the rings Z and Zm (except if m is prime, in which case Zm is also
a field). Consequently, Q-modules and Q-affine modules are called vector space and
affine space respectively. The most relevant property of vector spaces is expressed in
the following proposition.

Proposition 3 Let S ⊆ Qn be a vector space. If x1, . . . , xk ∈ S are linearly indepen-
dent over Q, then there exists y1, . . . , yt ∈ S such that {x1, . . . , xk, y1, . . . , yt} is a
Q-basis of S.

2.3 Size and complexity

We define the size of numbers as follows. The size of an integer number a ∈ Z is 1 if
a = 0, and 1+ blog |a|c otherwise. The size of a rational a/b where a ∈ Z, b ∈ N \ {0}
and gcd(a, b) = 1 is 1 if a = 0 and b1 + log |a| + log |b|c otherwise.

4

In order to reason about the complexity of the algorithms presented in this paper, we
assume that direct memory accesses are performed in constant time and that arithmetic
operations are perform in unit time.

3 Automata-based representation of integer vector sets

In this section, we explain how automata can represent sets of integer vectors. The
main idea consists in establishing a mapping between vectors and words. Our encoding
scheme of vectors is based on the positional expression of numbers (most significant
digit first) with a signed-complement system for negative integers.

Given an encoding basis r ∈ N, with r > 1, an r-encoding of an integer a ∈ Z is a
word w over Σr, such that if w = upup−1 . . . u0 where each ui ∈ Σr = {0, . . . , r−1},
up = 0 if a ≥ 0 and up = r − 1 if a < 0, and a = −rp · up

r−1 +
∑p−1

i=0 uir
i.

In order to encode a vector z ∈ Zn, one simply reads synchronously one digit
from the encodings of all its components, provided that these encodings share the same
length. This requirement can always be met by prefixing the encoding by a sequence
of copies of the leading digit of the initial encoding. So, an r-encoding of an integer
vector z ∈ Zn is a word w over Σn

r , such that if w = upup−1, . . . u0 where each

ui ∈ (Σn
r , up ∈ (0, r− 1)n, and for each j ∈ {1, . . . , n}, we have z[j] = −rp · up[j]

r−1 +
∑p−1

i=0 ui[j]r
i.

The fact that w is an r-encoding of z is denoted by 〈w〉r = z. Also, we simply write
0 for the symbol (0, . . . , 0) ∈ Σn

r .
Based on the definition of the encoding scheme, for all encodings u ∈ (Σn

r)+ and
words v ∈ (Σn

r)∗, we have 〈uv〉r = r|v|〈u〉r + 〈0v〉r .
Let S ⊆ Zn. If the language L(S) containing all the encodings of all the vectors in

S is regular, then any DFA A accepting L(S), i.e. such that L(A) = L(S), is a Number
Decision Diagram (NDD), and we say that A represents S. In this paper, we use the
following notations. We denote by SA(sinit→s) the set of vectors whose encoding labels
paths from sinit to s in the NDD A, and by SA the set represented by the NDD A. The
encoding scheme that we use here is the same as the one proposed in [BHMV94] and
extended to Z in [WB95].

It is known (see [Boi99]) that the sets definable in the first order theory 〈Z, +, <, Vr〉
correspond exactly to the sets that can be represented by finite-state automata using the
r-encoding scheme that has just been discussed. Note that 〈Z, +, <, Vr〉 is the first-
order logic over the integers with addition and the ordering relation, with an additional
predicate Vr(x, y) returning true if y is the greatest power of r dividing x and false
otherwise.

In the remaining of this paper, r-encodings are simply called encodings since we
will always use the same encoding basis r.

4 Triangular sets

The algorithms presented in this paper manipulate intensively vector spaces, Z-modules
and Zm-modules. In order to have more efficient procedures, we maintain sets of gen-
erators in a particular form : the triangular form [MH05]. For a non-zero vector x, we

5

call i the leading index of x and x[i] the leading entry of x if x[i] 6= 0 and x[j] = 0 for
j ∈ {1, . . . , i−1}. A set of non-zero vectors T is triangular iff the leading entries of all
vectors in T are positive and for all distinct vectors x, x′ ∈ T , the leading indices of x
and x′ are distinct. Intuitively, a set is triangular if the vectors are the rows of a echelon
matrix A with no zero-row, i.e. each row of A has a non-zero element and if A[i, k] and
A[j, k′] are the first non-zero element of the ith and jth rows respectively with j > i,
then k′ > k. Note that a triangular set of integer vectors is a set of linearly independent
vectors over Q and Z.

Efficient procedures for generating an integer basis in triangular form of a vector
space or of a Z-module given a set of integer generators are readily available from the
current literature (see [Sto00]). In particular, we have the following results.

Proposition 4 There exists an algorithm GetTriangQBasis which, given a finite
set G ⊆ Zn as input, generates a triangular set G ⊆ Zn such that the sizes of the
components of vectors in G are bounded by n · (k + log n) where k is the bound on
the component size of vectors in G, and linQ(G) = linQ(G). In addition, the time
complexity of GetTriangQBasis is O(|G| · n2).

Proof. It suffices to apply the general Gaussian elimination to the matrix A whose rows
are the vectors in G. ut

Proposition 5 There exists an algorithm GetTriangZBasis which, given a finite
set G ⊆ Zn as input, generates a triangular set G ⊆ Zn such that the sizes of the
components of vectors in G are bounded by k · n · log(

√
n), where k is the bound

on the component size of vectors in G, and linZ(G) = linZ(G). In addition, the time
complexity of GetTriangZBasis is O(|G| · k · n3 · log(

√
n)).

Proof. It suffices to generate the matrix A whose rows are the vectors in the set S, and
then to compute the Hermite form H of A [Sto00], i.e., the matrix H such that H is in
Hermite form1 and H = UA for some square integer matrix U whose determinant is
1. ut

Note that computing a basis is more difficult over Z than over Q since a set of linearly
independent vectors over Z cannot be extended to form a basis as it is the case over Q.

Proposition 6 Given a triangular set T ⊆ Zn and a vector x0 ∈ Zn, there exists an
algorithm that generates a set of congruences and a set of equations whose modulo
and coefficient sizes are bounded by O(n log n + nk), k being a bound on the size
of the numbers in the vectors in T and x0, such that the solutions of the system of
equations (resp. equations and congruences) are exactly the elements in x0 + linQ(T)
(resp. x0 + linZ(T)).

Proof. See Appendix, Section 9.1. ut

For a triangular set T = {y1, . . . , yk} in Zn
pq , we define rank(T) as

∑

i qi + qn−k

where dip
qi is the leading entry of yi, with gcd(di, p). Clearly, 0 ≤ rank(T) ≤ n · q.

1 A matrix H is in Hermite form over Z if H is in echelon form and if H[i, ji] denotes the first
non-zero elements of the ith row, one has 0 ≤ H[i′, ji] < H[i, ji] for all i′ < i.

6

Proposition 7 There exists an algorithm UpdateTriangZm, which, given a prime
number p, a positive integer q, a triangular set T ⊆ Zn

pq and a vector x ∈ Zn
pq , such

that if T ′ = UpdateTriangZm(p, q, T, x), then the following assertions are valid.

– T ′ ⊆ Zn
pq and T ′ is triangular.

– linZpq (T ′) = linZpq (T ∪ {x}).
– If T ′ 6= T , then rank(T ′) < rank(T).
– The time complexity of UpdateTriangZm is O(n2 · q).

Proof. See [MH05]. ut

5 Affine hulls over Q

In this section, we present an algorithm which takes as input a reduced NDD A =
(Q, Σn

r , δ, sinit , QF) and generates the affine hull over Q of the set represented by A.
We briefly present the algorithm based on [MH04], and then present a more efficient

algorithm which takes advantage of the special affine transformation corresponding to
transitions in NDDs. In addition, this more efficient version is also part of the more
sophisticated algorithm for computing the affine hull over Z.

The idea of the algorithm based on [MH04] is to explore the paths of A rooted
at the initial state sinit and to compute for each state s a vector xs and a triangular
set of vectors Gs such that xs ∈ SA(sinit→s) and xs + linQ(Gs) ⊆ affQ(SA(sinit→s)).
When handling a path labeled by w from sinit to s, the algorithm applies the following
recursive procedure.

– If xs has not yet been set, one sets xs equal to 〈w〉r and we propagate w from s, that
is, we apply the procedure to all paths from sinit to s′ labeled by wu with u ∈ Σn

r

such that δ(s, u) = s′.
– Otherwise, if 〈w〉r ∈ xs + linQ(Gs), then we do not propagate w. If on the other

hand, 〈w〉r 6∈ xs + linQ(Gs), one has to add 〈w〉r − xs to Gs and to propagate w
from s.

Since for each s, one sets at most once xs and one adds at most n vectors to Gs, the
number of iterations is bounded, and at some point, no more path needs to be explored.
It can be proved that at this point, xs + linQ(Gs) = affQ(SA(sinit→s)) for all states s.
Finally, one has to take the union of the affine hulls corresponding to final states and
again, take the affine hull over Q of this set.

We can improve the algorithm presented above. The main property is expressed in
the following lemma.

Lemma 8 Let s, s′ ∈ Q with δ̂(s, v) = s′ for some v, and let V, Vs′ ⊆ Qn be vector
spaces such that affQ(SA) = xF + V and affQ(SA(sinit→s′)) = x′ + Vs′ for some
xF , x′ ∈ Zn. For all x1, x2 ∈ SA(sinit→s), we have x1 − x2 ∈ Vs′ ⊆ V .

Proof. By definition, there exist encodings u1, u2 such that u1, u2 ∈ LA(sinit → s)
and 〈u1〉r = x1 and 〈u2〉r = x2. By definition, u1v, u2v ∈ LA(sinit → s′) and
r|v|x1 + 〈0v〉r, r|v|x2 + 〈0v〉r ∈ SA(sinit→s′). Therefore, (r|v|x1 + 〈0v〉r)− (r|v|x2 +

7

〈0v〉r) ∈ linQ(SA(sinit→s′)), and so, by definition, x1 − x2 ∈ Vs′ . Since A is reduced,
there exists a word w with u1vw, u2vw ∈ L(A). So, applying the same reasoning, we
find that Vs′ ⊆ V . ut

Thanks to the previous property, we note that in the algorithm sketched above, if
〈w〉r − xs is added to Gs, then 〈w〉r − xs can be added to all Gs′ where s′ is reachable
from s. We deduce that it is not necessary to compute at each individual state s one
basis Gs and one element xs such that xs + linQ(Gs) = linQ(SA(sinit→s). One only
needs to consider one element xs per state and one basis G for the whole NDD. Also,
from each state, one has to propagate only path. Indeed, if w1, w2 ∈ LA(sinit → s)
and 〈w1〉r − 〈w2〉r is added to G, then for v ∈ Σn

r , 〈w1v〉r − 〈w2v〉r ∈ linQ(G).
Finally, in the above description, we did not specify the order with which one consider
the propagated paths. Adopting a breadth first search approach allows us to manipulate
smaller numbers.

Our algorithm QAffineHull takes a reduced NDD as input and it works as fol-
lows.

1. Initially, the set G is empty. Also, for each state, one stores a vector xs ∈ Zn which
is initially set to ⊥.

2. It considers paths of increasing length originating from sinit , starting with all paths
of length 1, and at the kth iteration, it handles paths of length k that have been
propagated so far. When handling a path labeled by w from sinit to s, there are two
possibilities.

– If xs = ⊥, xs is set to 〈w〉r , and one will consider at the next iteration the
paths labeled by wu for all u ∈ Σn

r with δ(s, u) = s′ for some s′.
– If xs 6= ⊥, then we add 〈w〉r − xs to G.

3. When all states have been visited once, we pick one final state sF ∈ QF and we
add to G all vectors xs − xsF

where s ∈ QF . Then, the algorithm terminates and
it returns G as well as the vector xsF

.

The formal algorithm is described in Appendix, Section 9.2.

Theorem 9 Let lmin ≤ |Q| be the smallest positive integer such that for all states
s ∈ Q, there exists an encoding ws such that δ̂(sinit , ws) = s with |ws| ≤ lmin. Let
xF ∈ Zn and G ⊆ Zn such that (G, xF) = QAffineHull(A). We have

– xF + linQ(G) = affQ(SA),
– |G| ≤ |Q| · Σn

r ,
– The time complexity of QAffineHull is O(|Q| · |Σn

r | · n),
– The size of the numbers in G are bounded by O(lmin).

Proof. See Appendix, Section 9.3. ut
Finally, according to Proposition 4, we can compute a triangular set G of at most n

generators from the set G computed via the algorithm QAffineHull. The sizes of the
numbers in G are then bounded by O(n · (|Q|+log n)) and the time complexity for the
call GetTriangQBasis(G) is O(|Q| · |Σn

r | ·n2). In addition, thanks to Proposition 6,
we can compute a system of linear equations aix = 0, i = |G| + 1, . . . , n such that
x ∈ xF + linQ(G) ⇔ ∧

i=|G|+1,...,n ai(x − xF) = 0.

8

6 Affine hulls over Z

In this section, we give an algorithm for computing the affine hull in Zn of the set
represented by a reduced NDD A = (Q, Σn

r , δ, sinit , QF).
Note first that in general, if (G, xF) = QAffineHull(A), the set xF + linZ(G)

is not equal to affZ(SA). This stems from the fact that Lemma 8 does not hold in the
integer case because it does not consider the factor r|v| of the affine transformations
corresponding to the path from s1 to s2. Taking this factor into consideration leads to
the following lemma.

Lemma 10 Let s ∈ Q with δ̂(s, v) ∈ QF for some v, and let M ⊆ Zn be the Z-module
such that affZ(SA) = xF + M for some xF ∈ Zn. For all x1, x2 ∈ SA(sinit→s), we
have r|v| · (x1 − x2) ∈ M .

Proof. The proof is similar to the proof of Lemma 8, except that we do not get rid of
the factor r|v|. ut

Based on the above lemma, we can extend Theorem 9 and prove the following
property regarding the output of algorithm QAffineHull.

Lemma 11 Let dmin be the smallest positive integer such that for all states s ∈ Q, there
exists an encoding ws such that δ̂(s, ws) ∈ QF with |ws| ≤ dmin. Let M, G ⊆ Zn and
xF ∈ Zn such that affZ(SA) = xF + M and (G, xF) = QAffineHull(A).

– for all s ∈ Q, for all x1, x2 ∈ SA(sinit→s), x1 − x2 ∈ linZ(G), and,
– for all g ∈ G, rdming ∈ M .

Proof. See Appendix, Section 9.5. ut

We now turn on the actual computation of affZ(SA). A first approach, similar to
what is done in [MH04] for the affine hull over Q, is to compute a finite Gs for each
state s such that if xs ∈ SA(sinit→s), then xs + linZ(Gs) ⊆ affZ(SA(sinit→s)). This
can be done by keeping a basis of Gs and considering paths of increasing length until
reaching a fixpoint at which for all states s, for all w ∈ LA(sinit → s), 〈w〉r ∈ xs +
linZ(Gs). The problems with this approach are that numbers in the basis of Gs can grow
exponentially, and secondly, there is no bound on the length of the paths before reaching
the fixpoint. Based on Lemma 11, those two problems can be solved in the following
way. Let Gpre , M ⊆ Zn and xF ∈ Zn such that (Gpre , xF) = QAffineHull(A),
and affQ(SA) = xF + M . Since for all states s and xs ∈ SA(sinit→s), 〈w〉r − xs ∈
linZ(Gpre), 〈w〉r−xs is a linear combination over Z of vectors in Gpre , for any Z-basis
Gpre of linZ(Gpre), the decomposition of 〈w〉r − xs with respect to Gpre is unique.
Also, since for all g ∈ Gpre , rdming ∈ M , this also holds for vectors g ∈ Gpre , and
adding any combination of rdming to any 〈w〉r −xs does not change the affine hull over
Z. So, once the decomposition of 〈w〉r − xs with respect to Gpre has been performed,
we can work in Zrdmin , i.e. work in integer arithmetic modulo rdmin .

Based on the above considerations, our algorithm ZAffineHull takes a reduced
NDD as input and works as follows.

9

1. Via the algorithm QAffineHull, one computes a set Gpre and a vector xF . Then,
one computes a basis Gpre of linZ(Gpre) and set p = |Gpre |. Then for each state
s, one associates a triangular set Γs ⊆ Z

p

rdmin
initially empty.

2. One considers paths of increasing length originating from sinit , starting with all
paths of length 1. Given the label w of a path from sinit to s, the procedure works
as follows.

– If xs = ⊥, then xs is set to 〈w〉r and one propagates w from s, that is, for all
u ∈ Σn

r with δ(s, u) = s′ for some s′ ∈ Q, one handles the path labeled by
wu at the next iteration.

– If xs 6= ⊥, then one decomposes 〈w〉r−xs into a linear combination
∑

gi∈Gpre
γigi,

which is always possible with γi ∈ Z. Let c ∈ Zp with c[i] = γi mod rdmin

and c[i] ∈ {0, . . . , rdmin − 1}, and let Γ ′
s = UpdateTriangZm(r, dmin, Γs,

c). There are 2 possibilities.
• If Γ ′

s 6= Γs, then Γs is set to Γ ′
s and one propagates w from s.

• Otherwise, one does nothing and w is not propagated.
3. One updates a triangular set Γ ⊆ Z

p

rdmin
, initially empty, via UpdateTriangZm

with all vectors c ∈ Γs for all s ∈ QF .
4. Finally one generates the set G ⊆ Zn by adding the vectors g ∈ Zn such that

g =
∑

gi∈Gpre
c[i] · gi for some c ∈ Γ , g = rdmingi for some gi ∈ Gpre , or

g = xs − xF for some final state s ∈ QF . Then, one returns G together with xF .

The formal algorithm is described in Appendix, Section 9.4.

Theorem 12 Let lmin, dmin ≤ |Q| be the smallest positive integers such that for all
states s ∈ Q, there exist encodings wl, wd such that δ̂(sinit , wl) = s with |wl| ≤ lmin

and δ̂(s, wd) = sF for some sF ∈ QF with |wd| ≤ dmin. Let xF ∈ Zn, G ⊆ Zn such
that (G, xF) = ZAffineHull(A). We have

– xF + linZ(G) = affZ(SA),
– |G| ≤ |Q| + 2n,
– Size of numbers in G are bounded by O(n · log(

√
n) · lmin + dmin),

– The time complexity of ZAffineHull is O(|Q|·|Σn
r |·(log(

√
n)·lmin+d2

min)·n3).

Proof. See Appendix, Section 9.6.

Note that if (G, xF) = ZAffineHull(A), then by applying the function
GetTriangZBasis to G, we can generate a basis G of linZ(G) in time O(|Q| ·
(lmin+dmin)·n5) and the size of the numbers in G are bounded by O((lmin+dmin)·n3).
Also, thanks to Proposition 6, from G and xF , we can generate a set of equations and
congruence relations describing affZ(SA).

7 Experimental results

The algorithms presented in this paper have been implemented within the LASH library
[LAS]. Note that the algorithms have been slightly modified in order to use the serial
encoding as presented in [BL04], which significantly decreases the running time. By us-
ing the serial encoding, we simplify the transition relation at the expense of additional

10

states. As a rule of thumb, the number of states is multiplied by the number of com-
ponents of the represented vectors, and the number of transition can be exponentially
decreased. As encoding basis, we have taken r = 2.

The time and memory used for the computation of the algorithms QAffineHull
and ZAffineHull in a prototype implementation running on a pentium-M at 1,5
GHz are given in the table below. The computations include the generation of a trian-
gular set G such that xF + linQ(G) = affQ(SA) or xF + linZ(G) = affZ(SA). The
columns indicate successively the set on which the computation is performed, the num-
ber of components of the vectors in the set, the number of states in the corresponding
NDD (with alphabet Σ2), the values of lmin and dmin (see Theorems 9 and 12), and
finally, the time and memory requirement for the computation of QAffineHull and
ZAffineHull successively. Note that all sets S1, . . . , S12 are defined by a boolean
combination of several equations, inequations and congruence relations but S1, . . . , S6

are Z-affine modules which is not the case of S7, . . . , S12.

A QAffineHull ZAffineHull

Set n Nb. States lmin dmin Time (sec.) Mem (Mb) Time (sec.) Mem (Mb)
S1 7 64874 3 12 1.0 6.1 3.5 46.7
S2 6 115727 2 15 1.6 10.4 4.6 64.5
S3 6 287713 6 27 3.3 27.4 22.5 162.1
S4 6 215685 4 4 3.3 22.5 10.8 123.4
S5 10 281135 4 5 3.1 31.4 119.9 379.3
S6 11 112754 2 5 2.3 13.1 10.9 183.4
S7 7 279598 4 7 4.3 29.2 63.2 203.8
S8 7 42067 5 10 0.8 4.3 6.4 30.6
S9 6 54186 5 5 1.2 5.4 6.6 30.8
S10 7 50580 5 6 0.7 5.1 7.2 36.7
S11 6 52177 4 8 0.9 4.9 4.2 29.3
S12 6 44920 6 7 1.0 4.4 4.5 25.4

In the above table, we note that in the sets considered, the values of lmin and dmin

are small compared to |Q|, even more so if one uses the serialized encoding. There
exist sets for which the values of lmin and dmin have the same magnitude as |Q|. For
example, the NDDs representing the sets x = 0 mod 2k in base 2 have k states and
lmin ' dmin ' k. Our intuition is that whenever the characteristics numbers of a set
(i.e., the maximal value for finite set, the coefficient of the inequation in a quantifier-free
Presburger formula, . . .) are small then, lmin and dmin are also small and our algorithms
perform very well.

8 Conclusion

In this paper, we have presented two algorithms, QAffineHull and ZAffineHull,
that take a reduced NDD A as input and compute the affine hull over Q and over Z

respectively of the set represented by A. More precisely, they generate a pair (G, xF)
with a finite set G ⊆ Zn and xF ∈ Zn such that xF + linQ(G) (resp. xF + linZ(G))
is the affine hull over Q (resp. Z) of the set represented by A. The size of the numbers

11

manipulated in QAfineHull (resp. ZAffineHull) are bounded by O(|Q|) (resp.
O(n log(

√
n) · |Q|)) and the time complexity is O(|Q| · |Σn

r | · n) (resp. O(|Q|3 · |Σn
r | ·

n3)). The algorithms perform very well for NDDs such that the distances from the initial
state to each state and the distances from each state to an accepting state are small, as
we have shown in a prototype implementation.

References

[BC96] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite
automata. In Proceedings of CAAP’96, number 1059 in Lecture Notes in Computer
Science, pages 30–43. Springer-Verlag, 1996.

[BHMV94] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable
sets of integers. Bulletin of the Belgian Mathematical Society, 1(2):191–238, March
1994.

[BL04] B. Boigelot and L. Latour. Counting the solutions of presburger equations without
enumerating them. Theoretical Computer Science, 313(1):17–29, February 2004.

[Boi99] B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD Thesis, Uni-
versité de Liège, Belgium, 1999.

[Gra91] P. Granger. Static analysis of linear congruence equalitites among variables of a
program. In S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91: Proc. of
the International Joint Conference on Theory and Practice of Software Development,
pages 169–192. Springer, Berlin, Heidelberg, 1991.

[Jac89] Nathan Jacobson. Basic algebra, I. W. H. Freeman and Company, New York, second
edition, 1989.

[Kla04] Felix Klaedtke. On the automata size for Presburger arithmetic. In Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pages
110–119. IEEE Computer Society Press, 2004.

[LAS] The Liège Automata-based Symbolic Handler (LASH). Available at
http://www.montefiore.ulg.ac.be/˜boigelot/research/lash/.

[Lat04] L. Latour. From automata to formulas: Convex integer polyhedra. In Proceedings of
19th IEEE Symposium on Logic in Computer Science (LICS 2004), pages 120–129.
IEEE Computer Society Press, 2004.

[Ler03] J. Leroux. Algorithmique de la vérification des systèmes à compteurs. Approxima-
tion et accélération. Implémentation de l’outil FAST. PhD Thesis, Ecole Normale
Supérieure de Cachan, Cachan, France, 2003.

[Ler04a] J. Leroux. The affine hull of a binary automaton is computable in polynomial time.
Electr. Notes Theor. Comput. Sci., 98:89–104, 2004.

[Ler04b] J. Leroux. A polynomial time Presburger criterion and synthesis for number decision
diagram. Technical report, Université de Montréal, 2004.

[Lug04] D. Lugiez. From automata to semi-linear sets: a solution for polyhedra and even more
general sets. Technical Report 21-2004, Laboratoire d’informatique de Marseilles,
2004.

[MH04] M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In Josep Diaz, Juhani
Karhumk̈i, and Arto Lepist0̈, editors, Proceedings of the 31st International Collo-
quium on Automata, Languages and Programming (ICALP 2004), volume 3142 of
Lecture Notes in Computer Science. Springer-Verlag Heidelberg, 2004.

[MH05] M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In To appear in the
European Symposium on Programming (ESOP 2005), Lecture Notes in Computer
Science. Springer-Verlag Heidelberg, 2005.

12

[Pre29] M. Presburger. Über die Volständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes
Rendus du Premier Congrès des Mathématiciens des Pays Slaves, pages 92–101, 395,
Warsaw, Poland, 1929.

[Sto00] A. Storjohann. Algorithms for matrix canonical forms. PhD Thesis, Swiss federal
institute, Zurich, 2000.

[WB95] P. Wolper and B. Boigelot. An automata-theoretic approach to Presburger arith-
metic constraints. In Proceedings of Static Analysis Symposium, volume 983 of Lec-
ture Notes in Computer Science, pages 21–32, Glasgow, September 1995. Springer-
Verlag.

9 Appendix

9.1 Proof of Proposition 6

Proposition 13 Given a triangular set T ⊆ Zn with |T | = q, and a vector x0 ∈ Zn,
there exists an algorithm that generates a set of congruences ai.x ≡ βi mod mi,
i = 1, . . . , q, and a set of equations ai.x = βi, i = q + 1, . . . , n, where numbers are
bounded by O(n log n + nk), k being a bound on the size of the numbers in the vectors
in T and x0, such that

x ∈ x0 + linZ(T) ⇔
∧

i=1,...,q

ai.x ≡ βi mod mi ∧
∧

i=q+1,...,n

ai.x = βi,

and
x ∈ x0 + linQ(T) ⇔

∧

i=q+1,...,n

ai.x = βi.

Proof. Without loss of generality, we may assume that T can be represented in matrix

form as

[

B
C

]

such that B ⊆ Zq×q is not singular, i.e., there exists a matrix B−1 such

that B−1B = Iq where Iq is the identity matrix with q rows and columns.
So, we have for all x ∈ Zn,

x ∈ x0 + linZ(T) ⇔ (x − x0) =

[

B
C

]

λ for some λ ∈ Zq . (3)

Since B is not singular,

[

B−1 0
CB−1 In−q

]

is not singular, and we have

[

B
C

]

λ ⇔
[

B−1 0
CB−1 In−q

]

(x − x0) =

[

Iq

0

]

λ. (4)

If the ith row of
[

B−1 0
]

is ai

mi
, with ai ∈ Zn and mi ∈ N\{0}, the set of congruences

is then ai(x − x0) ≡ 0 mod mi, i = 1, . . . , q, and if the ith row of
[

CB−1 In−q

]

is
aq+i

mq+i
, with aq+i ∈ Zn and mq+i ∈ N\{0}, then the set of equations is aj(x−x0) = 0,

j = q + 1, . . . , n.

13

It is well-known that the coefficients of B−1 are quotients of determinants of sub-
matrices of B. Since the determinant of B is a n! sum of products of n elements of B,
its size is bounded by n logn + kn, and therefore, the sizes of the elements in B−1 are
bounded by O(n log n + nk), and the sizes of the elements in CB−1 are bounded by
O(n log n + nk).

Note finally that x ∈ x0 + linQ(T) ⇔ ∧

i=q+1,...,n aix ≡ βi. ut

9.2 Formal description of the algorithm QAffineHull

Algorithm QAffineHull

input: reduced NDD A = (Q, Σn
r , δ, sinit , QF) representing set SA ∈ Zn

output: set of vector G and sequence xs1
, . . . , xs|Q|

, such that xs ∈ SA(sinit→s) for each
state s ∈ Q, and xs + linQ(G) = affQ(SA) for any s ∈ QF .

1: W := ∅

2: for each s ∈ Q do xs :=⊥; od

3: B := ∅

4: for each s ∈ Q, for each u ∈ Σn
r such that δ(sinit , u) = s do W := W ∪ {(s, 〈u〉r))} od

5: while W 6= ∅ do

6: C := W ;

7: W := ∅;

8: for each (s, x) ∈ C do

9: if (xs = ⊥) then

10: xs := x;

11: for each s′ ∈ Q, for each u ∈ Σn
r such that δ(s, u) = s′ do

12: W := W ∪ {(s′, r · x + 〈0u〉r)};

13: od

14: fi

15: G := G ∪ {x − xs};

16: od

17: od

18: xF :=⊥;

19: for each s ∈ QF do

20: if xF = ⊥ then xF := xs fi ;

21: G := G ∪ {xs − xF}

22: od

23: return (G, xF);

14

9.3 Proof of Theorem 9

Lemma 14 In algorithm QAffineHull, all pairs (s, x) added to W before the kth
iteration of the main while -loop are such that s ∈ Q and there exists w ∈ LA(sinit →
s) with 〈w〉r = x and |w| ≤ k.

Proof. This is proved by induction on the number of iteration of the main while -loop.
Before the first iteration, all pairs (s, x) added W are such that there exists u ∈ Σn

r

with δ(sinit , u) = s and 〈u〉r = x.
Suppose the property holds after k iterations and let W (i) denotes the set W after

i iterations. If (s′, x′) is added to W during the k + 1 iteration, by construction, there
exists (s, x) ∈ W (i) and u ∈ Σn

r such that δ(s, u) = s′ and x′ = r · x + 〈0u〉r. By
inductive hypothesis, there exists w ∈ LA(sinit → s) such that 〈w〉r = x and |w| ≤ k.
Therefore, x′ = r ·〈w〉r +〈0u〉r and by definition of the encoding scheme, x′ = 〈wu〉r,
with wu ∈ LA(sinit , s

′ →) and |wu| ≤ k + 1. ut

Lemma 15 In algorithm QAffineHull, for all states s, if the smallest non-empty
path from sinit to s is of length ls, then xs is set during the ls iteration of the while -
loop and for all states s′ and u ∈ Σn

r with δ(s, u) = s′, (s′, r · xs + 〈0u〉r) is added to
W during the ls iteration.

Proof. We prove the claim by induction.
From Lemma 14, for all pair (s, x) stored in W , x ∈ SA(sinit→s). Therefore, for all

states s, xs is not set after i iterations if i < ls.
By inspection the claim holds for the states reachable from sinit via a path of length

1. If the property holds for states reachable via paths of length of at most k, then, for
all states sk+1 reachable via a path of length k + 1 but not via smaller paths, there is a
state sk such that (δ(sk, u) = sk+1 for some u ∈ Σn

r and the smallest path reaching sk

is of length k. By inductive hypothesis, (sk+1, r · xsk
+ 〈0u〉r) is added to W during

iteration k, and therefore, xsk+1
is set at iteration k+1 and for all states s′ and u′ ∈ Σn

r

with δ(sk+1, u
′) = s′, (s′, r · xsk+1

+ 〈0u′〉r) is added at iteration k + 1. ut

Lemma 16 Let lmin ≤ |Q| be the smallest positive integer such that for all states
s ∈ Q, there exists an encoding ws such that δ̂(sinit , ws) = s with |ws| ≤ lmin.

The algorithm QAffineHull terminates after lmin + 1 iterations of the main
while -loop, and, if (G, xF) = QAffineHull(A), then,

xF + linQ(G) = affQ(SA).

Proof. Thanks to Lemma 15, we note that the algorithm terminates after lmin + 1 itera-
tions since for all states s ∈ Q, xs is set only once and pairs are added to W only when
some xs is set.

We now prove that affQ(SA) = xF + linQ(G). Note first that xF = xsF
for some

state sF ∈ QF , and therefore, thanks to Lemma 14, xF ∈ SA.

– By construction, for all g ∈ G, either g = x − xs for some s ∈ Q such that (s, x)
has been added to W , or g = xs − xF such that s ∈ QF .

15

• If g = x− xs, then, from Lemma 14, x, xs ∈ SA(sinit→s), and from Lemma 8,
x − xs + xF ∈ affQ(SA), i.e., xF + g ∈ affQ(SA).

• If g = xs − xF , then xs ∈ SA and it is immediate that xF + g ∈ affQ(SA).
We deduce that for each g ∈ G, xF + g ∈ affQ(SA), and therefore, we have

affQ(SA) ⊇ xsF
+ linQ(G) (5)

– We prove that for all s ∈ Q and w ∈ LA(sinit → s) with |w| ≥ 1, 〈w〉r ∈
xs + linQ(G) by induction on the size of w. If |w| = 1, then if δ̂(sinit , w) = s,
then (s, 〈w〉r) is stored in W before the first iteration, and therefore, by inspection,
xs − 〈w〉r ∈ G.
Suppose the property holds for encodings of length smaller of equal to k, and let
wk+1 = wku with wk ∈ (Σn

r)k, u ∈ Σn
r , and let sk+1 = δ̂(sinit , wk+1). By

definition, there is a state sk ∈ Q such that sk = δ̂(sinit , wk). Since sk and sk+1

are reachable via non-zero paths, thanks to Lemma 15, xsk
and xsk+1

are set and
by inspection, (sk+1, r · xsk

+ 〈0u〉r) is added to W , and we have

r · xsk
+ 〈0u〉r − xsk+1

∈ G. (6)

In addition, by inductive hypothesis, we have

〈wk〉r ∈ xsk
+ linZ(G). (7)

Also, by definition of the encoding scheme,

〈wku〉r = r · 〈wk〉r + 〈0u〉r (8)

Combining (6), (7) and (8), we conclude that

〈wku〉r ∈ xsk+1
+ linQ(G). (9)

By definition, for all x ∈ SA, there exists an encoding w and a state sF ∈ QF such that
〈w〉r = x and δ̂(sinit , w) = sF . From above, we have that 〈w〉r ∈ xsF

+ linZ(G). By
inspection, we see that xsF

−xF ∈ G, and so, we conclude that 〈w〉r ∈ xF +linQ(G).
ut

We can now prove the correctness of QAffineHull and its complexity.

Theorem 17 Let lmin ≤ |Q| be the smallest positive integer such that for all states
s ∈ Q, there exists an encoding ws such that δ̂(sinit , ws) = s with |ws| ≤ lmin. Let
xF ∈ Zn and G ⊆ Zn such that (G, xF) = QAffineHull(A). We have

– xF + linQ(G) = affQ(SA),
– |G| ≤ |Q| · Σn

r ,
– The time complexity of QAffineHull is O(|Q| · |Σn

r | · n),
– The size of the numbers in G are bounded by O(lmin).

Proof. The first assertion is a direct consequence of Lemma 16. Then, we note that one
explores transitions outgoing from a state s only when s is met for the first time, and
each state is reached after at most lmin iterations according to Lemma 16, and therefore
numbers in xs are bounded rlmin . Since all vectors g ∈ G are such that either g = x−xs

such that (s, xs) as been added to W or g = xs − xF for some accepting state s, the
number of vectors stored in G bounded by O(|Q| · |Σn

r |) and the sizes of numbers in G
are bounded by O(|lmin|). ut

16

9.4 Formal description of the algorithm ZAffineHull

In the description below, the function DistanceToFinal takes a reduced NDD A
as input and returns the smallest number dmin such that for each state s, there is a path
of length smaller or equal to dmin from s to an accepting state.

Algorithm ZAffineHull
input: reduced NDD A = (Q, Σn

r , δ, sinit , QF) representing set SA ∈ Zn

output: vector g0, set of vectors G ⊆ Zn such that g0 ∈ SA, and g0 +linZ(G) = affZ(SA)
1: (Gpre , xF) :=QAffineHull(A);

2: Gpre :=GetTriangZBasis(Gpre);

3: W := ∅;

4: for each s ∈ Q do Γs := ∅ od ;

5: dmin :=DistanceToFinal(A);

6: for each s′ ∈ Q, for each u ∈ Σn
r such that δ(sinit , u) = s′ do W := W ∪ (s, 〈w〉r) od ;

7: while W 6= ∅ do

8: C := W ; W := ∅;

9: for each (s, x) ∈ C do

10: if xs = ⊥ then

11: xs := x;

12: For each s′ ∈ Q, u ∈ Σn
r with δ(s, u) = s′ do W := W ∪ {(s′, r · x + 〈0u〉r)} od

13: fi

14: Let γ1, . . . , γ|Gpre |
such that 〈u〉r − xs′ =

P

gi∈Gpre
γigi;

15: Γ ′
s :=UpdateTriangZm(r, dmin, Γs, (γ1 mod rdmin , . . . , γ|Gpre |

mod rdmin));

16: if Γ ′
s 6= Γs then

17: Γs := Γ ′
s;

18: for each s′ ∈ Q, u ∈ Σn
r such that δ(s, u) = s′ do

19: W := W ∪ {(s′, r · x + 〈0u〉r)}

20: od

21: fi

22: od ;

23: od ;

24: Γ := ∅; G := ∅;

25: for each s ∈ QF , for each c ∈ Γs do Γ :=UpdateTriangZm(r, dmin, Γ , c) od ;

26: for each (γ1, . . . , γ|Gpre |
) ∈ Γ do G := G ∪ {

P

gi∈Gpre
γigi} od ;

27: for each g ∈ Gpre do G := G ∪ {rdming} od ;

28: for each s 6= sF ∈ QF with sF ∈ QF do G := G ∪ {xs − xsF
} od ;

29: return (G, xsF
);

17

9.5 Proof of Lemma 11

Lemma 18 Let dmin be the smallest positive integer such that for all states s ∈ Q,
there exists an encoding ws such that δ̂(s, ws) ∈ QF with |ws| ≤ dmin. Let M ⊆ Zn

such that affZ(SA) = xF + M for some xF ∈ Zn.
If (G, xF) = QAffineHull(A), then

– for all s ∈ Q, for all x1, x2 ∈ SA(sinit→s), x1 − x2 ∈ linZ(G), and,
– for all g ∈ G, rdming ∈ M .

Proof.

– We prove that for all s ∈ Q and w ∈ LA(sinit → s) with |w| ≥ 1, 〈w〉r ⊆
xs + linZ(G) by induction on the size of w, where xs is the vector associated to s
in QAffineHull.
If |w| = 1 and δ̂(sinit , w) = s, then (s, 〈w〉r) is stored in W before the first
iteration, and therefore, xs − 〈w〉r ∈ G ∈ linZ(G).
Suppose the property holds for encodings of length smaller of equal to k, and let
wk+1 = wku with wk ∈ (Σn

r)k, u ∈ Σn
r , and let sk+1 = δ̂(sinit , wk+1). By

definition, there is a state sk ∈ Q such that sk = δ̂(sinit , wk). Since sk and sk+1

are reachable via non-zero paths, thanks to Lemma 15, xsk
and xsk+1

are set and
by inspection, (s, r · xsk

+ 〈0u〉r) has been added to W , and we have

r · xsk
+ 〈0u〉r − xsk+1

∈ G. (10)

In addition, by inductive hypothesis, we have

xsk
− 〈wk〉r ∈ linZ(G). (11)

Finally, by definition of the encoding scheme,

〈wku〉r = r · 〈wk〉r + 〈0u〉r (12)

Combining (10), (11) and (12), we conclude that

〈wku〉r − xsk+1
∈ linZ(G). (13)

If x1, x2 ∈ SA(sinit→s), by definition, there exist w1, w2 ∈ LA(sinit → s) with
〈w1〉r = x1 and 〈w2〉r = x2. From above, we deduce that x1, x2 ∈ xs + linQ(G),
and therefore, x1 − x2 ∈ linQ(G).

– For all g ∈ G, either g = x − xs for some state s such that (s, x) was added to W ,
or g = xs − xsF

for some final states s and sF . Thanks to Lemma 14, for all states
s, if xs 6= ⊥ then xs ∈ SA(sinit→s).
• If g = x − xs, then, x, xs ∈ SA(sinit→s), and from Lemma 10, rk(x − xs) +

xs′
F
∈ affZ(SA) where k is the length of the shortest path from s to a final state,

and s′F is the corresponding final state. By definition, k ≤ dmin, xs′
F
, xsF

∈
SA. So, rdming + xsF

∈ affZ(SA).
• If g = xs − xsF

, then xs ∈ SA. So, it is immediate that xsF
+ g ∈ affZ(SA).

We deduce that for each g ∈ G, xsF
+ rdming ∈ affZ(SA), and by definition,

rdming ∈ M .
ut

18

9.6 Proof of Theorem 12

Lemma 19 For each pair (s, x) added to W in the algorithm ZAffineHull, we have
x ∈ SA(sinit→s) and x − xs = linZ(Gpre).

Proof. Proving that x ∈ SA(sinit→s) is done by induction on the iteration of the main
while -loop, as it is done for the proof of Lemma 14. The second assertion is a conse-
quence of Lemma 11 since x, xs ∈ SA(sinit→s). ut

In the following lemmas, for each s ∈ Q, we denote by Gs the set {∑gi∈Gpre
c[i] ·

gi | c ∈ Γs} when the algorithm ZAffineHull terminates. Also, for each s, we
denote by Ms the Z-module such that affZ(s) = xs + Ms for some xs ∈ SA(sinit→s)

and we p = |Gpre |.
Lemma 20 For each pair (s, x) added to W ,

x − xs ∈ linZ(Gs ∪ rdminGpre).

Proof. From Lemma 19, there exist c, b ∈ Zp with c[i] ∈ {0, . . . rdmin − 1} and

x − xs =
∑

gi∈Gpre

(c[i] + b[i]rdmin) · gi. (14)

By inspection and thanks to Proposition 7, c ∈ linZ
r

dmin
(Γs), and therefore, by

definition,
∑

gi∈Gpre

c[i] · gi ∈ linZ(Gs + rdminGpre). (15)

From (14) and (15), we conclude that x − xs ∈ linZ(Gs ∪ rdminGpre). ut
Lemma 21 When the algorithm ZAffineHull terminates, for each s ∈ Q, for each
g ∈ Gs, we have

– g ∈ linZ(Ms ∪ rdminGpre), and
– r · g ∈ linZ((Gs′ ∪ rdminGpre), for all s′ ∈ Q with δ(s, u) = s′ for some u ∈ Σn

r .

Proof. – By inspection, Γs is updated via calls to the function UpdateTriangZm
with r, dmin, the current value of Γs and c as arguments, such that c ∈ Zp,
c[i] ∈ {0, . . . , rdmin − 1} and there exists a pair (s, x) added to W with x − xs =
∑

gi∈Gpre
(c[i]+b[i]rdmin)gi, with b ∈ Zp and x ∈ SA(sinit→s) thanks to Lemma 19.

So, we have
∑

gi∈Gpre

c[i] · gi = x − xs +
∑

gi∈Gpre

b[i]rdmin · gi. (16)

Therefore, thanks to Lemma 7, for all c ∈ Γs, we have
∑

gi∈Gpre

c[i] · gi =
∑

j

λj(xj − xs) +
∑

gi∈Gpre

b[i]rdmin · gi, with b ∈ Zp. (17)

By definition, since for each g ∈ Gs, gs =
∑

gi∈Gpre
c[i] · gi for some c ∈ Γs, we

conclude that
g ∈ linZ(Ms ∪ rdminGpre). (18)

19

– By inspection, whenever Γs is modified, the modification resulted of a call to the
function UpdateTriangZm with r, dmin, the current value of Γs and c as argu-
ments, such that c ∈ Zk, c[i] ∈ [0, rdmin] and there exists a pair (s, x) added to W
with

x − xs =
∑

gi∈Gpre

(c[i] + b[i]rdmin)gi, (19)

with b ∈ Zp and x ∈ SA(sinit→s) thanks to Lemma 19.
By inspection, (s′, r · x + 〈0u〉r) is then added to W , and also, (s′, r · xs + 〈0u〉r)
has been previously added to W . So, thanks to Lemma 20, we deduce that

r · xs + 〈0u〉r − xs′ ∈ linZ(Gs′ ∪ rdminGpre), (20)

and
r · x + 〈0u〉r − xs′ ∈ linZ(Gs′ ∪ rdminGpre). (21)

From (20) and (21), we find that

r · (x − xs) ∈ linZ(Gs′ ∪ rdminGpre). (22)

Therefore, from (19), we deduce that
∑

gi∈Gpre

(r · c[i])gi =
∑

g′
i
∈Gs′

λi · g′i +
∑

gi∈Gpre

b′[i]rdmin · gi, (23)

with λi ∈ Z and b′ ∈ Zp.
By definition and thanks to Proposition 7, for all g ∈ Gs, we have

g =
∑

j

ζj(
∑

gi∈Gpre

cj [i] · gi) +
∑

gi∈Gpre

b
′′

[i]rdmin · gi, (24)

with ζj ∈ Z, b
′′ ∈ Zp and such that Γs has been updated by cj .

From (23) and (24), we conclude that r · g ∈ linZ(Gs′ ∪ rdminGpre). ut

Lemma 22 Let x ∈ Zn, G ⊆ Zn such that (G, xF) = ZAffineHull(A).
For all g ∈ G, xF + g ∈ affZ(SA).

Proof. By construction, xF = xsF
for some s ∈ QF , and therefore, from Lemma 11,

xF ∈ SA.
Regarding g there are 3 possibilities.

– g = rdmingi for some gi ∈ Gpre . Thanks to Lemma 11, x + g ∈ affZ(SA).
– g = xs − x for some s ∈ QF . So, x + g ∈ SA ⊆ affZ(SA).
– g =

∑

gi∈Gpre
c[i]gi for some c ∈ Γ . Thanks to Proposition 7 and by definition of

Γ ,
g =

∑

j

λj

∑

gi∈Gpre

cj [i] · gi +
∑

gi∈Gpre

(b[i]rdmin) · gi, (25)

where cj ∈ Γsj
for some sj ∈ QF , b ∈ Zp and λj ∈ Z.

20

Thanks to Lemma 21, we conclude that

g =
∑

j

λj(x1,j − x2,j) +
∑

gi∈Gpre

(b′[i]rdmin) · gi, (26)

where λj ∈ Z, b′ ∈ Zp and x1,j , x2,j ∈ SA, and from above, we deduce that
x + g ∈ affZ(SA).

ut

Lemma 23 When the algorithmZAffineHull terminates, we have that for all s ∈ Q
and for all encoding w ∈ LA(sinit → s),

〈w〉r = xs + linZ(Gs ∪ rdminGpre).

Proof. The proof is done on the size of |w|.
If |w| = 1, then, (s, 〈w〉r) is added to W at line 6 in the formal description of

ZAffineHull, and thanks to Lemma 20,

〈w〉r − xs ∈ linZ(Gs ∪ rdminGpre).

Suppose the claim holds for all w with |w| ≤ k, and let wku ∈ LA(sinit → s) with
|wk| = k and u ∈ Σn

r . Let sk = δ̂(sinit , wk). By inductive hypothesis,

〈wk〉r ∈ xsk
+ linZ(Gsk

∪ rdminGpre). (27)

Therefore, we have

〈wku〉r ∈ r · xsk
+ 〈0u〉r + linZ(rGsk

∪ rdmin+1Gpre). (28)

By hypothesis, δ(sk, u) = s, and by inspection, (s, r · xs + 〈0u〉r) has been added to
W . So, from Lemma 20, we have

r · xsk
+ 〈0u〉r ∈ xs + linZ(Gs ∪ rdminGpre). (29)

In addition, from Lemma 21, we have

rGsk
⊆ linZ(Gs ∪ rdminGpre). (30)

Combining (28), (29) and (30), we find

〈wku〉r ∈ xs + linZ(Gs ∪ rdminGpre). (31)

ut

Lemma 24 Let x ∈ Zn, G ⊆ Zn such that (G, x) = ZAffineHull(A).
For all y ∈ SA, y ∈ x+ ∈ linZ(G).

21

Proof. By definition, if y ∈ SA, then there is an encoding w ∈ (Σn
r)∗ such that y =

〈w〉r and δ̂(sinit , w) = sF for some sF ∈ QF . Therefore, thanks to Lemma 23, when
ZAffineHull terminates, we have

〈w〉r ∈ xsF
+ linZ(GsF

∪ rdminGpre).

By definition of G, GsF
⊆ G, rdminGpre ⊆ G, and x−xsF

∈ G, and we conclude that

y = 〈w〉r ∈ x + linZ(G).

ut

Theorem 25 Let lmin, dmin ≤ |Q| be the smallest positive integers such that for all
states s ∈ Q, there exist encodings wl, wd such that δ̂(sinit , wl) = s with |wl| ≤ lmin

and δ̂(s, wd) = sF for some sF ∈ QF with |wd| ≤ dmin. Let xF ∈ Zn, G ⊆ Zn such
that (G, xF) = ZAffineHull(A). We have

– xF + linZ(G) = affZ(SA),
– |G| ≤ |Q| + 2n,
– Size of numbers in G are bounded by O(n · log(

√
n) · lmin + dmin),

– The time complexity of ZAffineHull is O(n3 ·|Q|·|Σn
r |·(log(

√
n)·lmin+d2

min)).

Proof. The first assertion is a direct consequence of Lemmas 22 and 24. From The-
orem 9, |Gpre | ≤ |Q| · Σn

r and the size of the numbers are bounded by O(lmin).
From Proposition 5, the time complexity of the call GetTriangZBasis is there-
fore O(n3 log(

√
n)|Q| · |Σn

r | · lmin) and the sizes of numbers in Gpre are bounded by
O(lmin · n log(

√
n)).

The call DistanceToFinal can be complete in time proportional to |Q| · |Σn
r |

by performing a backward breadth first search from the final states, and by definition.
According to Proposition 7, for each state s, the set Γs is updated at most n · dmin

times (since rank(Γs) ≤ ndmin and it is decreased whenever Γ ′
s 6= Γs) and therefore,

the number of pairs (s, 〈w〉r) added to W is bounded by O(n ·dmin · |Q| · |Σn
r |). So, the

number of calls to UpdateTriangZm at line 15 is bounded by O(n ·dmin · |Q| · |Σn
r |).

The time spend in the main while -loop is therefore bounded by O(n3 ·d2
min · |Q| · |Σn

r |).
Finally, for all g ∈ G, either g = xs − xsF

for some accepting states s and sF ,
g = rdmingi with gi ∈ Gpre or g =

∑

gi∈Gpre
γigi for (γ1, . . . , γ|Gpre|

) ∈ Γ . So, |G| ≤
|Q|+2n and the size of the numbers in G are bounded by O(lmin ·n · log(

√
n)+dmin).

ut

9.7 Formulas of sets used in the experimental results

The following formulas correspond to the sets S1, . . . , S12 presented in Section 7.

22

S1
3x0 +2x1 −5x2 +6x3 −10x4 +3x5 +2x6 = 2 ∧ 1x0 +1x1 +3x2 +2x3 +
7x4 + 15x5 − 20x6 = 2 ∧ 10x0 + 20x1 + 30x2 = 0

S2
3x0 +2x1−5x2 +6x3−10x4 +3x5 = 2 ∧ 1x0 +1x1 +3x2 +2x3 +7x4 +15x5 = 2
∧ 10x0 + 20x1 + 30x2 = 0 ∧ x0 + 2x1 = 0 mod 5

S3
(21x0+3x1−5x2+2x3+4x4−1x5 = 24 ∧ 5x0+1x1−2x2−2x3+6x4+3x5 = 11
∧ x0 = 0 mod 128 ∧ x0 + x1 + x2 = 3 mod 49)

S4
11x0 + 5x1 + 9x2 + 19x3 + 5x4 + 6x5 = 0 mod 33 ∧ 2x0 + 1x1 + 3x2 + 4x3 +
6x4 + 2x5 = 0 mod 33 ∧ 5x0 + 21x1 + 1x2 + 8x3 + 0x4 + 1x5 = 0 mod 33

S5

x0 + x1 − x2 + 3x3 + 4x4 + x5 + 5x6 + x7 + 3x8 + x9 = 2 mod 7 ∧ x0 − 3x2 =
3 ∧ 4x3 − 5x4 = 0 ∧ x7 + x8 = 10 mod 20 ∧ 10x2 − 5x9 = 1 mod 16 ∧
2x1 + 3x5 + x6 = 12 ∧ x7 = 0 mod 3

S6

1x0+2x1−1x4+1x5 = 3∧ 1x2+2x4−1x9 = 2∧ 2x1+1x3+2x5+1x6−1x7 = 5∧
1x1+1x4+2x6+8x8+1x10 = 12 mod 13 ∧ 2x0+3x2+1x4+1x7+8x8+4x9 = 0
mod 5

S7
((x0 + 2x1 + 3x2 − 4x5 = 2 ∧ 3x0 + 3x2 + 1x3 + 5x4 − 6x5 + 3x6 ≤ 10) ∨
(4x0 + 5x2 + 2x3 − 6x4 + 3x5 + 4x6 = 2)) ∧ x0 + 1x1 + 1x3 + 3x4 + 4x5 = 4

S8

(3x0+1x1+8x2+1x4+1x5+8x6 = 2 ∨ 3x0+1x1+8x2+1x4+1x5+8x6 = 27 ∨
3x0 +1x1 +8x2 +1x4 +1x5 +8x6 = 52) ∧ 4x0 +7x1 +2x2−8x3−1x4 +4x5 = 0
∧ x0 ≥ 10 ∧ x1 ≥ 15

S9

12x0 − 9x1 + 11x3 − 2x4 = 5 mod 28 ∧ 3x1 + x2 + 2x3 + 5x5 = 1 mod 30 ∧
1x0 + 2x1 +5x2 +4x4 +1x5 = 0 ∧ (x0 ≤ −10∨x0 ≥ 20) ∧ (x0 +x1 + x2 +x3 +
x4 + 3x5 ≥ 0 ∨ x0 + x1 + x2 + x3 + x4 + 3x5 ≤ 50)

S10
3x1 +2x2+x3+2x6 = 2 mod 36 ∧ x1−6x2+x4+x6 = 0 ∧ (x1 ≥ 10∨x1 ≤ 10)
∧ (x2 + x3 = 20 ∨ x2 + x3 ≤ −10) ∧ (x1 + 4x2 − 10x5 ≤ 0)

S11

2x0 +3x1 +15x2 +11x4 +6x5 = 10 mod 20 ∧ 1x0 +x1 −6x2 +1x3 +x4 = 0 ∧
(x0 + 4x1 −x2 + x3 = 10 ∨ x0 + 4x1 − x2 + x3 = 18 ∨ x0 + 4x1 −x2 + x3 = 32)
∧ (x1 + 4x2 − 10x5 ≤ 10)

S12

2x0+3x1+15x2+11x4+6x5 = 3∧ 1x0+x1−6x2+x3+x4 = 0∧ (x0+4x1+6x5 =
3 mod 4 ∨ −x2 + x3 + 3x4 = 10 mod 16 ∨ x0 + 5x1 + 6x2 + 3x4 = 2 ∨ x0 = 0
)

23

