
���������	� 
��������� ��� � �������������������

 "!$#&%('*)+#-,(.0/0!2143(5768'(9(:<;*!&5>=*?*?4@BADC(E

FHGJILK>MONQPRKTSVU WXN Y[Z\MON]M_^`KaPRKbSVcd^ cfe�ghMiP�Zkj0l�SmNnM o c�p[MOZqI

r�,2576s)t'Hua!Jvw9(. xzy|{4,(9(5}!&'~6�ua3~��!2'�y	�~!$,('$�X�(5�,('&��3�) �f/",�����)�'

%~6�6�1����*�������8Ak9(.�;�A�,&#4A�;*!$�4��)D�&�������4#�x��
 `%*)+�b��3(5�����,��J1&,25q6s)�,(.t. �O�X9(1(1*3(576z!-�d;���,H��/��(����5},�'~6���=BA�C*@(�4?BA�?4=



Systematic Implementation of

Real-Time Models ∗†

Martin De Wulf Laurent Doyen ‡ Jean-François Raskin

Département d’Informatique

Faculté des Sciences
Université Libre de Bruxelles

Abstract

Recently we have proposed the ”almost ASAP” semantics as an alternative
semantics for timed automata. This semantics is useful when modeling real-
time controllers : control strategies modeled with this semantics are robust
and implementable (without making the synchrony hypothesis). We show in
this paper how to effectively encode this semantics using timed automata along
with their classical semantics. We have implemented a tool set that allows us
to verify, using HyTech and Uppaal, the almost ASAP behavior of controllers
and generate automatically provably correct code from verified models. To
illustrate the applicability of our results, we show how we have synthesized
the code for the Philips Audio Control Protocol for Lego Mindstorms

TM.

1 Introduction

Timed automata are an important formal model for the specification and analysis of
real-time systems. Formalisms like timed automata and hybrid automata are central
in the so-called model-based development methodology for embedded controllers.
The steps underlying that methodology can be summarized as follows: (i) construct
a (timed/hybrid automaton) model Env of the environment in which the controller
will be embedded; (ii) make clear what is the control objective: for example, prevent
the environment to enter a set of Bad states; (iii) design a (timed automaton) model
Cont of the control strategy; (iv) verify that Reach(JEnv ‖ ContK) ∩Bad = ∅. When
Cont has been proven correct, it would be valuable to ensure that an implementation
Impl of that model can be obtained in a systematic way in order to ensure the
conservation of correctness, that is to ensure that Reach(JEnv ‖ ImplK) ∩ Bad = ∅ is
obtained by construction.

Unfortunately, this is often not possible for several fundamental and/or tech-
nical reasons. First, the notion of time used in the traditional semantics of timed
automata is continuous and defines perfect clocks with infinite precision while imple-
mentations can only access time through digital and finitely precise clocks. Second,

∗This is the extended version of the paper with the same title to appear in Proc. of Formal
Methods 2005 (FM’05), Newcastle upon Tyne, UK, Jul. 2004, LNCS, Springer, 2004

†Supported by the FRFC project “Centre Fédéré en Vérification” funded by the Belgian Na-
tional Science Foundation (FNRS) under grant nr 2.4530.02

‡Research fellow supported by the Belgian National Science Foundation (FNRS)

1



timed automata react instantaneously to events and time-outs while implementa-
tions can only react within a given, usually small but not zero, reaction delay.
Third, timed automata may describe control strategies that are unrealistic, like
zeno-strategies or strategies that ask the controller to act faster and faster [CHR02].
For one of those three reasons, a model for a digital controller that has been proven
correct may not be implementable (at all) or it may not be possible to turn it
systematically into an implementation that is proven correct w.r.t. this model.

To overcome those problems, we recently proposed an alternative semantics to
timed automata in [DDR04]. This semantics is called the Almost ASAP semantics,

AASAP for short. The AASAP semantics of a timed automaton A, noted JAKAAsap
∆ ,

is a parametric semantics that leaves as a parameter ∆, which takes value δ ∈ Q≥0,
the reaction delay of the controller. This semantics relaxes the classical semantics of
timed automata in that it does not impose on the controller to react instantaneously
but imposes on the controller to react within δ time units. We have proven that
a timed controller is implementable with a sufficiently fast hardware if there exists
δ ∈ Q>0 such that Reach(JEnvK ‖ JContKAAsap

δ ) ∩ Bad = ∅.
To use the AASAP semantics in practice, we need tool support. In [DDR04],

we have shown that the AASAP semantics of a controller can be encoded using a
single parameter timed automaton. Unfortunately, this construction is exponential
in all cases, which makes it useless for all but the toy examples. In this paper,
we define a new compositional construction that avoids the exponential blow-up.
The exponential behavior can still appear during the verification phase but only in
the worst case. Thanks to this new construction, we have implemented a tool set
in order to manipulate the AASAP semantics on top of HyTech [HHWT95] and
Uppaal [PL00]. We show the practical interest of our construction by applying our
tool set to a non-trivial example: the Philips Audio Control Protocol [BPV94]. We
show how the AASAP semantics can be used to produce provably correct executable
code for this protocol. The code that we have produced automatically can be run on
Lego MindstormsTM. With this case study, we believe that we have shown that
the AASAP semantics is useful when supported by computer aided verification tools
and that it can be used to produce correct code for non-trivial embedded controllers
without making the synchrony hypothesis. To the best of our knowledge, this is
the first time that provably correct (without making the synchrony hypothesis)
real-time code is produced for a non-trivial case study.

The rest of the paper is organized as follows. In Section 2, we recall some
preliminary notions. In Section 3, we review the syntax and classical semantics of
timed automata. In Section 4, we recall the AASAP semantics and summarize its
properties. In Section 5, we present our compositional construction. In Section 6,
we present our tool set. In Section 7, we show how to apply the AASAP semantics
to synthesize provably correct code for a real-time protocol.

2 Preliminaries

Definition 1 [STTS] A structured timed transition system T is a tuple 〈S, ι, Σin,
Σout, Στ ,→〉, where S is a (possibly infinite) set of states, ι ∈ S is the initial state,
the set of labels is structured in three disjoint components: Σin is the finite set
of incoming labels, Σout is the finite set of outgoing labels, Στ is the finite set of
internal labels, and →⊆ S × Σin ∪ Σout ∪ Στ ∪ R≥0 × S is the transition relation.

A state s ∈ S of a STTS T = 〈S, ι, Σin, Σout, Στ ,→〉 is reachable if there exists a
finite sequence s0s1 . . . sn of states such that s0 = ι, sn = s and for any i, 0 ≤ i < n,

2



there exists σ ∈ Σin∪Σout∪Στ ∪R≥0 such that (si, σ, si+1) ∈→. The set of reachable
states of T is noted Reach(T ).

Some more notions. We only present intuitively other notions that are useful
in the sequel. The formal definitions can be found in appendix. We use a natural
definition of the composition T 1‖T 2 of two STTS T 1 and T 2 with synchronizations
similar to the ones in the input-output automata framework [LT87]: a common
label must be an output label (sending) in one of the STTS and an input label
(receiving) in the other. The composition T 1‖T 2 is a STTS where synchronized
labels are considered as internal.

Such syncronizations is a blocking communication mechanism. This may be
problematic as on one hand we want to verify that the controller does not control
the environment by refusing to synchronize on its output, and on the other hand,
we do not want our controller to issue outputs that can not be accepted by the
environment. To avoid such problems we impose input enabledness of the STTS

that we compose, which means that input labels have the property of being enabled
in every state. In this point, the presentation differs from [DDR04].

Finally, given two input enabled STTS T 1 (the controller) with state space S1,
T 2 (the environment) with state space S2 and a set B ⊆ S2 of bad states, we say
that T 1 controls T 2 to avoid B if Reach(T 1‖T 2) ∩ S1×B is empty.

3 Timed Automata and Urgency

Let X be a finite set of real-valued variables. A valuation for X is a function v :
X → R. We write [X → R] for the set of all valuations for X . Let ∆ be a parameter.
Define the set of terms to be T = Q∪{+∞}, and the set of parametric terms to be
PT = T ∪ {c + ∆, c − ∆ | c ∈ Q}. A (parametric) rectangular constraint over X is
a formula of the form ϕ ≡ a ∼1 x ∼2 b where x ∈ X , ∼1,∼2∈ {<,≤} and a, b are
(parametric) terms. Let lb(ϕ) = a and rb(ϕ) = b denote the left (resp. right) bound
of ϕ. A (parametric) rectangular predicate is a finite set of (parametric) rectangular
constraints interpreted as a conjunction. A (parametric) multirectangular predicate
is a finite set of (parametric) rectangular predicates interpreted as a disjunction.
Given δ ∈ Q and a parametric term a, let JaKδ = a if a ∈ T and JaKδ = c + δ
(resp. c − δ) if a = c + ∆ (resp. c − ∆). For a parametric rectangular predicate
p, a valuation v and a rational δ ∈ Q, we write v |=δ p iff JaKδ ∼1 v(x) ∼2 JbKδ for
all “a ∼1 x ∼2 b” in p. For a parametric multirectangular predicate q, we write
v |=δ q iff there exists p ∈ q such that v |=δ p. For a parametric (multi)rectangular
predicate p, let JpKδ denote the set {v | v |=δ p}. We sometimes write v |= p instead
of v |=0 p.

We say that a rectangular predicate over X is in normal form if it contains
at most one rectangular constraint for each variable x ∈ X , with the convention
that the empty predicate p (such that JpK = ∅) is represented by {x ∈ [+∞, +∞] |
x ∈ X}; any rectangular predicate can be put in that normal form. Let g be a
rectangular predicate in normal form, then g(x) denotes the rectangular constraint
“a ∼1 x ∼2 b” if it is the constraint over x in g and true if there is no constraint over
x in g. We defined predicates as sets because it is useful in the sequel for manip-
ulating the predicates that appear in timed automata. However, some operations
are easier to represent with classical boolean operations (∧, ∨, ¬). It is easy to
extend the definition of such operators to our set-predicates. For example, for two
multirectangular predicates q and r, the multirectangular predicate q ∧ r is the set

3



⋃

p1∈q,p2∈r{p1 ∪ p2}.
We note Rect(X) the set of rectangular predicates built using variables in X ,

PRect(X) the set of parametric rectangular predicates, MultPRect(X) the set of
parametric multirectangular predicates and Rectc(X) the set of rectangular predi-
cates containing only closed rectangular constraints (∼1,∼2∈ {≤}).

Let v : E1 → R be a valuation, let E2 ⊆ E1, and c ∈ R, then v[E2 := c] denotes
the valuation v′ such that v′(e) = c if e ∈ E2 and v′(e) = v(e) if e 6∈ E2. In
the sequel, we sometimes write v[e := c] instead of v[{e} := c]. Let v : X → R

be a valuation, for any t ∈ R≥0, v − t is a valuation such that for any x ∈ X ,
(v − t)(x) = v(x)− t. We define v + t in a similar way. We extend this definition to
valuations v in [X → R≥0 ∪ {⊥}] as follows: (v + t)(x) = v(x) + t, if v(x) ∈ R≥0,
and (v + t)(x) = ⊥ otherwise. We are now equipped to define our flavor of timed
automata [AD94] (with one parameter and a urgency flag Asap) and their classical
semantics.

Definition 2 [Single parametric timed automata] A single parametric timed au-
tomaton1 is a tuple 〈Loc, l0, Var, Inv, Lab, Edg, Asap〉 where (i) Loc is a finite set
of locations representing the discrete states of the automaton. (ii) l0 ∈ Loc is the
initial location. (iii) Var = {x1, . . . , xn} is a finite set of real-valued clocks whose
values continuously increase as time passes with first derivative equal to one. (iv)
Inv : Loc → MultPRect(Var) is the invariant condition. The automaton can stay
in location l as long as the tuple of values of the variables x1, . . . , xn lies in Inv(l).
To ensure the existence of an initial state, we require that the valuation v0 such
that v0(x) = 0 for every x ∈ Var lies in Inv(l0). (v) Lab = Labin ∪ Labout ∪ Labτ is a
structured finite alphabet of labels, partitioned into input labels Labin, output labels
Labout, and internal labels Labτ . (vi) Edg ⊆ Loc×Loc×PRect(Var)×Lab×2Var is a
set of edges. An edge (l, l′, g, σ, R) represents a discrete transition from location l to
location l′ with guard g, event σ and a subset R ⊆ Var of the variables to be reset.
The guard g is a rectangular predicate. (vii) Asap : Edg → {>,⊥} is a special flag
used to model urgency.

Definition 3 [Semantics of single parametric timed automata] Let A = 〈Loc, l0,
Var, Inv, Lab, Edg, Asap〉 be a timed automaton and δ ∈ Q≥0. The semantics of A
is the STTS JAKδ = (S, ι, Σin, Σout, Στ ,→) where: (i) S = {(l, v) | l ∈ Loc ∧ v ∈
JInv(l)Kδ}. (ii) ι = (l0, v0) such that for any x ∈ Var : v0(x) = 0. (iii) Σin = Labin,
Σout = Labout, and Στ = Labτ . (iv) the transition relation → is defined as follows:

(a) For the discrete transitions, ((l, v), σ, (l′, v′)) ∈→ iff there exists an edge
(l, l′, g, σ, R) ∈ Edg such that v |=δ g, v′ = v[R := 0].

(b) For the continuous transitions ((l, v), t, (l′, v′)) ∈→ iff first l = l′, second for
any edge e = (l1, l2, g, σ, R) ∈ Edg: if l1 = l then Asap(e) = ⊥ and third
∀x ∈ Var, t ∈ R≥0 : v′(x) = v(x) + t and ∀t′ ∈ [0, t] : v + t′ ∈ JInv(l)Kδ

For simplicity, we often say timed automaton instead of single parametric timed
automaton. We use the classical definition of the synchronized product A1 × A2

of two timed automata. For the urgency flag, an edge in the product is flagged
Asap if one of the corresponding edges in A1 or A2 is flagged. This is the semantics
used in the HyTech tool for the Asap flag [HHWT95]. Notice that (in the final
product only), the Asap flag can be replaced by a clock which is reset on every
transition, and forced by an invariant to stay nil in every location with an outgoing

1In this paper, single parametric timed automata always use the parameter ∆.

4



Asap edge, showing that Asap is a feature that does not add expressive power to
timed automata, but just allows us to design timed automata in a modular way.

4 Elastic Controllers and AASAP Semantics

Controllers are specified using a subclass of timed automata, called Elastic2, with-
out invariants and with only closed guards. In general, invariants are used to express
urgency but in Elastic urgency is implicit : a controller shall make an action (al-
most) as soon as it becomes possible. Formally, this almost urgency is defined in the
AASAP semantics of the controller by allowing some delay (bounded by a parameter
∆) before forcing an enabled transition.

Definition 4 [Elastic Controllers] An Elastic controller A is a tuple 〈Loc, l0, Var,
Lab, Edg〉 where Loc is a finite set of locations, l0 ∈ Loc is the initial location,
Var = {x1, . . . , xn} is a finite set of clocks, Lab is a finite structured alphabet of
labels, partitioned into input labels Labin, output labels Labout, and internal labels
Labτ , Edg is a set of edges of the form (l, l′, g, σ, R) where l, l′ ∈ Loc are locations,
σ ∈ Lab is a label, g ∈ Rectc(Var) is a guard and R ⊆ Var is a set of clocks to be
reset.

Notations. We define the function TrueSince: [Var → R≥0]×Rectc(Var) → R≥0∪
{−∞}, noted TS, as follows: either v |= g and TS(v, g) = t where t is s.t. v − t |=
g ∧ ∀t′ > t : v − t′ 6|= g, or v 6|= g and TS(v, g) = −∞.

Let p ≡ a ∼1 x ∼2 b be a rectangular constraint. Given ∆1, ∆2 ∈ PT, the
symbol 〈 standing either for [ or ( and the symbol 〉 standing either for ] or ), we
define the notation ∆1

〈p〉∆2
for the parametric rectangular constraint:

a − ∆1 ∼′
1 x ∼′

2 b + ∆2

where ∼′
1 stands either for ≤ if 〈 is [, or for < if 〈 is (, and ∼′

2 is interpreted
symetrically. For example, let p ≡ 2 ≤ x ≤ 5, then − 1

3

(p]∆ ≡ 2 + 1
3 < x ≤ 5 + ∆.

The notation is naturally extended to rectangular predicates.
With those two additional notations we are now ready to define the AASAP

semantics [DDR04].

Definition 5 [AASAP semantics] Given an Elastic controller A = 〈Loc, l0, Var,
Labin, Labout, Labτ , Edg〉 and δ ∈ Q≥0, the AASAP semantics of A is the STTS JA

KAAsap
δ = 〈S, ι, Σin, Σout, Στ ,→〉 where:

(A1) S is the set of tuples (l, v, I, d) where l ∈ Loc, v ∈ [Var → R≥0], I ∈ [Σin →
R≥0 ∪ {⊥}] and d ∈ R≥0;

(A2) ι = (l0, v, I, 0) where v is such that for any x ∈ Var : v(x) = 0, and I is such
that for any σ ∈ Σin, I(σ) = ⊥;

(A3) Σin = Labin, Σout = Labout, and Στ = Labτ ∪ Labin ∪ {ε};

(A4) The transition relation is defined as follows:

– for the discrete transitions, we distinguish five cases:

(A4.1) let σ ∈ Labout. We have ((l, v, I, d), σ, (l′, v′, I, 0)) ∈→ iff there exists
(l, l′, g, σ, R) ∈ Edg such that v |=δ ∆[g]∆ and v′ = v[R := 0] ;

2Event-based LAnguage for Simple TImed Controllers.

5



(A4.2) let σ ∈ Labin. We have ((l, v, I, d), σ, (l, v, I ′, d)) ∈→ iff

· either I(σ) = ⊥ and I ′ = I [σ := 0];

· or I(σ) 6= ⊥ and I ′ = I .

(A4.3) let σ̄ ∈ Labin. We have ((l, v, I, d), σ̄, (l′, v′, I ′, 0)) ∈→ iff there exists
(l, l′, g, σ, R) ∈ Edg, v |=δ ∆[g]∆, I(σ) 6= ⊥, v′ = v[R := 0] and
I ′ = I [σ := ⊥] ;

(A4.4) let σ ∈ Labτ . We have ((l, v, I, d), σ, (l′, v′, I, 0)) ∈→ iff there exists
(l, l′, g, σ, R) ∈ Edg, v |=δ ∆[g]∆, and v′ = v[R := 0] ;

(A4.5) let σ = ε. We have for any (l, v, I, d) ∈ S : ((l, v, I, d), ε, (l, v, I, d))
∈→.

– for the continuous transitions:

(A4.6) for any t ∈ R≥0, we have ((l, v, I, d), t, (l, v + t, I + t, d + t)) ∈→ iff
the two following conditions are satisfied:

· for any edge (l, l′, g, σ, R) ∈ Edg with σ ∈ Labout ∪ Labτ , we have
that: ∀t′ : 0 ≤ t′ ≤ t : (d + t′ ≤ δ ∨ TS(v + t′, g) ≤ δ)

· for any edge (l, l′, g, σ, R) ∈ Edg with σ ∈ Labin, we have that:

∀t′ : 0 ≤ t′ ≤ t : (d + t′ ≤ δ ∨ TS(v + t′, g) ≤ δ ∨ (I + t′)(σ) ≤ δ)

Comments on the AASAP semantics. Rule (A1) defines the states that are
tuples of the form 〈l, v, I, d〉. The first two components, location l and valuation v,
are the same as in the classical semantics; I and d are new. The function I records,
for each input event σ, the time elapsed since its oldest “untreated” occurrence. The
treatment of an event σ happens when a transition labelled with σ̄ is fired. Once
this oldest occurence is treated, the function returns ⊥ for σ until a new occurence
of σ, forgetting about the σ’s that happened between the oldest occurence and
the treatment. The time elapsed since the last location change in the controller is
recorded by d. Rule (A2) and (A3) are straightforward. Rules (A4.1 − 6) require
more explanations. Rule (A4.1) defines when it is allowed for the controller to
emit an output event. The only difference with the classical semantics is that we
enlarge the guard by the parameter ∆. Rules (A4.2) defines how inputs from the
environment are received by the controller. The controller maintains, through the
function I , a list of events that have occurred and are not treated yet. An input
event σ can be received at any time, but only the age of the oldest untreated σ
is stored in the I function. Note that the rule ensures input enabledness of the
controller. Rule (A4.3) defines when inputs are treated by the controller. An input
σ is treated when a transition with an enlarged guard and labelled with σ̄ is fired.
Once σ has been treated, the value of I(σ) goes back to ⊥. Rule (A4.4) is similar
to (A4.1). Rule (A4.5) expresses that the ε event can always be emitted. Rule
(A4.6) specifies how much time can elapse. Intuitively, time can pass as long as no
transition starting from the current location is urgent. A transition labeled with an
output or an internal event is urgent in a location l when the control has been in
l for more than δ time units (d + t′ ≥ δ) and the guard of the transition has been
true for more than δ time units (TS(v + t′, g) ≥ δ). A transition labeled with an
input event σ is urgent in a location l when the control has been in l for more than
δ time units (d + t′ ≥ δ), the guard of the transition has been true for more that δ
time units (TS(v + t′, g) ≥ δ) and the last untreated occurrence of σ event has been
emitted by the environment at least δ time units ago (I + t′(σ) ≥ δ) (we define ⊥ to
be smaller than any rational value). This notion of urgency parameterized by ∆ is
the main difference between the AASAP semantics and the usual ASAP semantics.

6



Properties We informally recall the main properties of the AASAP semantics
which have been established in [DDR04].

First, the AASAP semantics has the desirable property that ”faster is better”: if
a controller with reaction time bounded by δ1 safely controls an environment, then
so does the same controller with a reaction time bounded by any δ2 < δ1.

Second, we can implement a controller that has been proven correct (that is,
such that for some δ > 0 its AASAP semantics safely controls the environment).
The correctness of the controller is preserved by the implementation provided the
hardware is sufficiently fast and has a sufficiently precise digital clock. This has
been formally proven by showing that the AASAP semantics can simulate (in the
formal sense) a program semantics which defines what is an implementation of an
Elastic controller. Intuitively, it is a procedure that repeats forever execution
rounds defined as follows: (i) first, the current time is read in the clock register
of the CPU and stored in a variable, say T; (ii) the list of input events to treat is
updated: the input sensors are checked for new events issued by the environment;
(iii) guards of the edges of the current locations are evaluated with the value stored
in T. If at least one guard evaluates to true then take nondeterministically one of
the enabled transitions; (iv) the next round is started. All we require from the
hardware is to respect the following two requirements: (i) the clock register of the
CPU is incremented every ∆P time units and (ii) the time spent in one loop is
bounded by a fixed value ∆L. We choose this semantics for its simplicity and also
because it is obviously implementable. The condition for the preservation of the
correctness is that δ > 3∆L + 4∆P .

Third, the AASAP semantics can be encoded by a classical single parameter
timed automaton, so that it can by analyzed automatically by timed automata
model-checkers like HyTech or Uppaal. However, this encoding has a limited
interest in practice because its size is always exponential in |Labin|, the number of
input labels of the controller. We solve this problem in the next section by giving
a new translation which is compositional and at most quadratic in the size of the
controller.

5 Compositional Construction for the AASAP Se-

mantics

The main idea underlying our compositional construction is to treat the incoming
events (issued by the environment) independently of the control structure of the
Elastic controller, with a network of automata. This leads to technical difficulties
we explain and address in this section.

Following the rule (A4.6) defining almost urgency of the AASAP semantics, there
are essentially three reasons for allowing time to pass: (i) either the controller has
been in its current location for less than ∆ time units, (ii) or all last untreated
occurences of an event have been issued by the environment less than ∆ time units
ago, (iii) or finally the guard of the outgoing transitions have not been enabled
for more than ∆ time units. Roughly, those conditions will be checked in our
compositional construction by respectively A2, which is a transformation of the
Elastic controller A, and two types of widgets: the event-watchers and the guard-
watchers.

In timed automata, there is essentially one way for modeling urgency: invariants
on locations. Roughly, if we have a transition guarded by a lower bound constraint
g, it can be forced as soon as it is enabled by adding as invariant in its source

7



W0

zα ≤ ∆

W1

W2

α

zα := 0

ε

α

ᾱ α

Asap

Figure 1: Event-Watcher
Wα.

U0

U1 U2

ϕ̄evt(l, α)

U3

u = 0

ᾱ

inl
outl

ε

ε

ᾱ

u := 0

outl

Figure 2: Guard-Watcher
W l

α(ϕ̄evt(l, α)).

location the closure of ¬g. E.g. for a guard x ≥ 3 we can add the invariant x ≤ 3.
This way, time is blocked when the guard is satisfied and the discrete transition is
forced. If we enlarge the invariant by ∆ (x ≤ 3+ ∆), we get the almost urgency we
need. To formalize this idea, we will need to introduce some more notations:

Additional notations (i) Given an Elastic controller A = 〈Loc, l0, Var, Lab, Edg〉
and a location l ∈ Loc, let Gact(l) = {g | (l, l′, g, σ, R) ∈ Edg ∧ σ ∈ Labout ∪ Labτ}
be the set of guards labelling output transitions or internal transitions, and for
α ∈ Lab1

in, let Gevt(l, α) = {g | (l, l′, g, α, R) ∈ Edg} be the set of guards labelling
event transitions. (ii) Then define ϕ̄a(l) =

∧

g∈Gact(l)
¬(−∆(g)0) and ϕ̄e(l, α) =

∧

g∈Gevt(l,α) ¬(−∆(g)0). For example, let Gact(l) = {2 ≤ x ≤ 5, 0 ≤ y ≤ 1}, then

ϕ̄a(l) ≡ (x ≤ 2 + ∆ ∨ x ≥ 5) ∧ (y ≤ ∆ ∨ y ≥ 1).

Those constraints will be used as invariant to match the third part of rule (A4.6).
The constraint ϕ̄a(l) will be used as an invariant for location l in A2 to force an
output transition when it becomes possible. The constraint ϕ̄e(l, α) will be used in
the guard-watchers, to ensure that when a guard has been true for enough time, the
corresponding transition becomes urgent (as long as it is allowed by other parts of
rule (A4.6) ).

Those invariants are central to our construction, but if we want a compositional
construction (a product of automata), invariants are too restrictive to express ur-
gency since urgency also depends on the current state of the other automata offering
enabled synchronizations in the product. Hence, we should not block time simply
when a transition is enabled in one automaton but only when it is enabled in every
automaton of the product. Therefore, some compositional mechanism is needed to
model urgency in a product: we will use the Asap flag. Remember that this flag
expresses the fact that a transition is urgent as soon as it is enabled in the whole
product.

The formal definition of our construction is given in Definition 6. From an
Elastic controller A and a parameter ∆ we construct F(A, ∆) as a product of three
types of components: event-watchers, guard-watchers and A2 directly obtained from
A. We omit the formal definitions of event-watchers and guard watchers which
should be clear from the figures and anyway can be found in the appendix..

Event-Watcher Associated to an event α ∈ Σin, we define Wα (see Figure 1)
that records the event α. It has a clock zα encoding the value of I(α) in the AASAP

8



l

l′

l′′

σ!

y ≥ 3

α?

x ≥ 2

Figure 3: An Elas-

tic con-
troller
A.

Inl

d ≤ ∆

Outl

d ≤ ∆ ∨

y ≤ 3 +∆

d = 0

PostOutl,l′

d = 0

PostOutl,l′′

d = 0

PreInl′

d = 0

PreInl′′

Inl′

Inl′′

ε

σ

y ≥ 3 −∆
d := 0

ᾱ

x ≥ 2 −∆
d := 0

Outl

Outl

Inl′

Inl′′

Figure 4: The timed automaton A2 associated to the Elastic controller A of
Figure 3.

semantics. zα records the time elapsed since the last untreated event α was issued
by the environment. When I(α) 6= ⊥, the value of the clock zα is equal to I(α).

This widget is intended to record the occurrence of the events α (as expressed
by rule (A4.2) in the definition of the AASAP semantics), and then to propose a
synchronization on ᾱ with an Asap flag in location W2. Remember that the notation
ᾱ corresponds to the detection of event α by the controller. From the invariant of
location W1, this synchronization will not become urgent before ∆ time units.

Guard-Watchers. We introduce Guard-Watchers (see Figure 2) to monitor the
truth value of a set of guards. They are associated to an event α ∈ Σin and a location
l ∈ Loc. When the controller is not in location l, the guard-watchers W l

α(G) do not
influence the execution, being in location U0 and offering a self-loop synchronization
on ᾱ. When location l is reached, the synchronization on inl forces W l

α(G) enter
location U1 and to become active. The watcher get back in U0 as soon as l is exited
by outl. Thus, it is active when it is not in U0. Its role is then to prevent the
label ᾱ to become urgent whenever there is no transition labeled with ᾱ that has
been enabled for more than ∆ units of time. Hence, we use W l

α(G) with the set of
guards G = ϕ̄e(l, α).

Controller transformation We illustrate the transformation of the Elastic

controller with an example. The timed automaton A2 corresponding to the Elastic

controller A of Figure 3 is depicted on Figure 4. The automaton A2 has a similar
structure to A. It is used to (i) guarantee a maximum delay of ∆ when location
changes (as modeled by the variable d in the AASAP semantics) (ii) make transitions
labeled with actions σ ∈ Labout ∪ Labτ urgent when their guard has been satisfied
for more than ∆ time units (through invariant of Outl) and (iii) enlarge the guards
of the controller’s transitions (as expressed by rules (A4.1), (A4.3) and (A4.4)).

Definition 6 [Compositional construction F ] Let A = 〈Loc1, l10, Var1, Lab1, Edg1〉

9



be an Elastic controller. The compositional construction F(A, ∆) is the synchro-
nized product of the following timed automata:

• the event-watchers Wα for every α ∈ Lab1
in,

• the guard-watchers W l
α(Gevt(l, α)) for every α ∈ Lab1

in, l ∈ Loc1,

• and the timed automaton A2 = 〈Loc2, l20, Var2, Inv2, Lab2, Edg2, Asap2〉 where:

– Loc2 = {PreInl, Inl, Outl, P ostOutl,l′ | l, l′ ∈ Loc1};

– l20 = Inl1
0
;

– Var2 = Var1 ∪ {d};

– Lab2
out = Lab1

out, Lab2
in = ∅ and Lab2

τ = Lab1
τ ∪ Lab1

in ∪ {ε, inl, outl};

– Edg2 contains (a) the edges (Outl, P ostOutl,l′ , ∆[g]∆, σ, R ∪ {d}) such
that there exists (l, l′, g, σ, R) ∈ Edg1 with σ ∈ Lab1

out∪Lab1
τ (b) the edges

(Outl, P ostOutl,l′ , ∆[g]∆, ᾱ, R∪{d}) such that there exists (l, l′, g, α, R) ∈
Edg1 with α ∈ Lab1

in and (c) the edges (PostOutl,l′ , P reInl′ , ∅, outl, ∅) for
each l, l′ ∈ Loc1, and the edges (PreInl, Inl, ∅, inl, ∅) and (Inl, Outl, ∅, ε, ∅)
for each l′ ∈ Loc1.

– Asap2(e) = ⊥ for every e ∈ Edg2;

– The function Inv2 is defined as follows. For each l, l′ ∈ Loc1, (a) Inv2(Inl) =

{{d ≤ ∆}} (b) Inv2(Outl) = {{d ≤ ∆ ∨ ϕ̄a(l)}} and (c) Inv2(PreInl) =
Inv2(PostOutl, l′) = {{d = 0}}.

In summary, F(A, ∆) = A2 ×
∏

α∈Lab1
in
Wα ×

∏

α∈Lab1
in
,l∈Loc1 W l

α(Gevt(l, α)).

The correctness of our compositional construction is established by the following
theorem.

Theorem 1 For any Elastic controller A, for any environment STTS E and a set
Bad of its states, for any δ ∈ Q>0, JAKAAsap

δ controls E to avoid Bad iff JF(A, ∆)Kδ

controls E to avoid Bad.

The proof can be found in appendix. Since the correctness of AASAP semantics of A
implies its implementability, we can verify the compositional construction with an
automatic tool and generate systematically the implementation code. In the second
part of this paper, we show how we have applied this methodology in practice on a
real-world protocol.

6 Tool Set

We briefly describe the tool set that we have implemented. The structure of the
tool set is depicted in Figure 5 and it consists of three tools: (i) ELASTIC2HYTECH,
(ii) HYTECH2UPPAAL, and (iii) ELASTIC2BRICK.

ELASTIC2HYTECH is the main component of the tool set: it implements the com-
positional construction of Section 5. Given an Elastic controller Cont (expressed
in an HyTech like syntax), it produces a one-parameter HyTech specification
Cont′(∆) following the construction defined in the previous section. To obtain a
model of the entire system, this specification of the controller has to be composed
with a model of the environment (in which the controller is embedded). This is

10



Parameter Value Environment Elastic Controller

ELASTIC2HYTECHHYTECH2UPPAAL ELASTIC2BRICK

HyTech spec.Uppaal spec. BrickOs C code

Figure 5: Structure of our tool set.

given as a product of rectangular automata (in HyTech syntax). The environ-
ment is noted Env in the sequel. We can then use HyTech to reason about the
system. The following three correctness problems can be formulated and answered
with HyTech (if the analysis terminates):

• [Fixed] Given a set of bad states Bad, a value δ ∈ Q≥0, does the con-
troller, when reacting within δ, control the environment to avoid Bad, that is:
Reach(JCont′(∆)‖EnvK∆) ∩ Bad = ∅

• [Existence] Given a set of bad states Bad, does there exist a value δ ∈ Q such
that when the controller reacts within δ, it controls the environment to avoid
Bad, that is: ∃δ > 0 : Reach(JCont′(∆)‖EnvKδ) ∩ Bad = ∅

• [Maximization] Given a set of Bad, what is the largest value for δ ∈ Q≥0 such
that when the controller reacts within δ, it controls the environment to avoid
Bad, that is: max{δ > 0 : Reach(JCont′(∆)‖EnvKδ) ∩ Bad = ∅}

To tackle large examples, we also use Uppaal. The tool HYTECH2UPPAAL trans-
lates HyTech specifications into Uppaal specifications. As Uppaal is restricted
to the analysis of timed automata (and it does that very efficiently), it is only ap-
plicable if the environment can be modeled as a product of timed automata and
the parameter ∆ is fixed. Obviously, this allows us to answer the [fixed] version of
the correctness problem. Thanks to the “faster is better” property of the AASAP

semantics, by doing a binary search on the value space of the parameter δ, we can
approximate the maximal value of δ for which the controller is correct up to any
precision.

The main purpose of the AASAP semantics is to give a way to synthesize exe-
cutable code for a controller from its model and to ensure that the properties that
have been proved on the model are preserved on the code (without making the
synchrony hypothesis). To obtain executable code from the Elastic model of a
controller, we use the tool ELASTIC2BRICK that produces C-code from an annotated
Elastic specification. The annotations assign to each transition a piece of code
that has to be executed when the transition is fired. The translation is very sim-
ple: we assign to each edge of the Elastic controller a thread that is ran when
the associated input event is perceived or when the associated output event has to
be produced. We have chosen to produce code for Lego MindstormsTM running

11



BrickOs3. Lego MindstormsTM are toys but the internals are a fully functional
micro-computer linked with sensor and actuators. When running BrickOs, we
can use priorities to ensure real-time properties of the code that is executed on the
Brick. Details can be found in [Doy03].

7 Case Study: the “Philips Audio Control Proto-

col”

Introduction Bosscher et al study in [BPV94] “a simple protocol for the physical
layer of an interface bus that connects the devices of a stereo equipment”. This
protocol was proposed by Philips engineers. The protocol is based on Manchester
encoding to transmit binary sequences on a wire between a single sender and a
single receiver.

In our case study, we will use Lego MindstormsTM Bricks to implement the
sender and the receiver. To connect the two Bricks, we use a wire plugged to an
output gate of the sender and to an input gate of the receiver. The difficulties here
to implement the protocol are similar to the ones that the engineers in Philips were
facing: (i) although the receiver knows the length of a time slot, it does not know
when it begins (the two Bricks are running asynchronously); (ii) a receiver does
not know the length of the bit string it is receiving; (iii) only UP signals can be
reliably detected by our sensors (this constraint is taken to fit with the case study
of [BPV94]); (iv) the sender and the receiver have digital clocks that have finite
granularity, so there will be imprecision in both sending and receiving times; (v) in
BrickOs sensors are polled periodically. As a consequence, the moment at which a
bit is perceived can be substantially later than the moment it has been sent. The
first three difficulties should be solved by the logic of the protocol. The last two
difficulties are much lower level and we would like to forget them when designing a
high level version of the protocol. This is exactly what the AASAP semantics allows
us to do.

Next, we present the idealized version of the protocol and how we modeled it
with two Elastic controllers: one for the sender and one for the receiver. Here, the
environment is an observer that compares the sequence of bits sent by the sender
with the sequence of bits decoded by the receiver. The observer reaches the location
error whenever the two sequences do not match.

Afterwards, we explain how we can use the AASAP semantics during the ver-
ification process and verify the robustness of the protocol. The verification phase
allows us to generate code that is correct by construction.

Elastic models. An idealized version of the protocol uses evenly spaced time
slots. To transmit a 1, the sender must let the signal go from low voltage to high in
the middle of a slot and from high to low for a 0. To repeat a bit, the sender is thus
forced between two slots to turn the signal off for a 1 or on for a 0. The receiver
is not able to detect precisely moments when the signal goes down and then only
relies on the UP signals to decode the messages. This implies that a message has to
begin by a 1 and that messages ending in 10 or in 1 are not distinguishable without
adding information bits. Rather than adding bits, the protocol restricts messages
to be either odd in length or to end in 00.

3http://brickos.sourceforge.net/

12



Idle OneSent

ZeroSent

WaitOne

WaitZero

x := 0
p := 0

leng := 0

x := 0, p := 0
doublezero := 0
c := 1, leng := 1

UP!
x ≥ 12

DOWN!

i = 1 ∧ x = 2
x := 0

UP!
x = 2

x := 0, p :=¬p
c := 2c + 1, leng++

i = 0 ∧ x = 2 UP!

x := 0

DOWN!
x = 2

x := 0, p :=¬p
c := 2c, leng++
doublezero := 1

DOWN!

i = 0 ∧ x = 4
x := 0, p :=¬p

c := 2c, leng++

UP!i = 1 ∧ x = 4
x := 0, p :=¬p

c := 2c + 1
leng++

doublezero := 0

p = 1

x := 0, p := 0

p = 1 ∨ doublezero = 1
x := 0, p := 0

doublezero := 0

Figure 6: The Sender automaton.

Idle last is 1

last is 0

y := 0
m := 0
r := 0

y := 0
m := 1, r := 1

UP?

UP?
3 ≤ y ≤ 5

y := 0
m :=¬m, r := 1

UP?

7 ≤ y
y := 0

m :=¬m
r := 2

UP?
5 ≤ y ≤ 7

y := 0
m :=¬m

r := 0

9 ≤ y ∧ m = 1

y := 0

FINALZERO
9 ≤ y ∧ m = 0

y := 0
m =¬m, r := 0

UP?
3 ≤ y ≤ 5

y := 0
m :=¬m

r := 0

UP?
5 ≤ y ≤ 7

y := 0
r := 2

FINALZERO
7 ≤ y
y := 0
r := 0

Figure 7: The Receiver automaton.

13



check

z ≤ 0

treating error

rcvOk =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(r = 0 ∧ leng = 1 ∧ c = 0)
∨ (r = 0 ∧ leng = 2 ∧ c ≤ 1)
∨ (r = 0 ∧ leng = 3 ∧ c ≤ 3)
∨ (r = 1 ∧ leng = 1 ∧ c = 1)
∨ (r = 1 ∧ leng = 2 ∧ c > 1)
∨ (r = 1 ∧ leng = 3 ∧ c > 3)
∨ (r = 2 ∧ leng = 2 ∧ c = 1)
∨ (r = 2 ∧ leng = 3 ∧ c = 2)
∨ (r = 2 ∧ leng = 3 ∧ c = 3)

updates =

8

<

:

z := 0
leng := leng − (1 + (r div 2))
erase leftmost bit of c

FINALZERO

z := 0

UP
z := 0

rcvOk

updates

¬ rcvOk

Figure 8: The Observer automaton.

Our modelisation of the protocol can be found in Figure 6 for the sender and
Figure 7 for the receiver. There is an additional observer automaton playing the
role of the environment on Figure 8 that allows us to verify the correct transmission
of the bits (this observer was proposed by Ho and Wong-Toi in [HWT95]). The
unit of time of the model, noted U , is a quarter of the time slot. This unit is not
written in the constraints, to alleviate the presentation.

One can easily check that the sender automaton can send any sequence conform-
ing to the protocol restrictions. Arrival in location OneSent (ZeroSent) means the
signal for a 1 (a 0) has just been sent. The clock x is used for the timing of the
sequence. The discrete variable i is non-deterministically set to 1 or 0 each time
a bit is sent (not shown on the figures). Its value determines which shall be the
next bit. The discrete variables p and doublezero encode respectively if the current
sequence is odd in length and if it ends in 00. Finally, the discrete variables c and
leng are used to encode the bits that have been sent but not decoded by the receiver
yet. c simply encodes in an integer the binary word composed of the last such bits
and leng is the number of those bits. The decrementing of c and leng is done by the
observer automaton every time it succeeds in matching a sent bit with a received
bit.

The receiver automaton decodes its incoming UP signals by rounding its local
time for when it received the signal to the nearest possible time it expects a signal.
This is what makes the protocol robust. If no signal is received in due time, the
sequence is interpreted as being complete. The discrete variable m is used to encode
parity of the received sequence. It allows the receiver to know if it has to complete a
sequence with an additional 0 to conform to the protocol restrictions. The discrete
variable r encodes the one or two bits that were last received. This variable is
checked by the observer automaton against c and leng of the sender to verify if
the sent bits are the same as the received ones. The label FINALZERO does not
correspond to an event. It is an internal action done when the receiver understands
it must add a 0 to the sequence to end it. The observer automaton then synchronizes
on this label to know a new bit has been decoded. As said before, the receiver does
not synchronize on DOWN signals.

This modelisation uses finite range discrete variables, which are not present in
the formal definitions. This is not a problem since all those discrete variables are
bounded and thus could be encoded in locations. For the sake of clarity, we did not
do this. Furthermore, the tools that we are using allow the use of such finite range

14



discrete variables.

Parametric verification Let us now turn to the use of the AASAP semantics dur-
ing the verification phase. We take the opportunity here to present some method-
ological aspects too.

Using ELASTIC2HYTECH, we generate for the sender and the receiver the HyTech

specification of their AASAP semantics following Definition 6. Those two semantics
are noted JSender(∆)KAAsap

δ1
and JReceiver(∆)KAAsap

δ2
.

We can first check that if the protocol executed in an idealized setting, that is
for δ1 = 0 and δ2 = 0, is correct. This is formalized by the following question:
Reach(JSender(∆)KAAsap

0 ‖JReceiver(∆)KAAsap
0 ‖JObserverK) ∩ Bad =? ∅, where Bad are

the states in which the observer is in location error. With HyTech (or Uppaal),
we can easily show that this test is passed successfully by our modelisation of the
protocol. If this verification had failed then we should have concluded that the
protocol was flawed in its logic.

To continue the study of the protocol and determine if it can be implemented,
we should check its robustness. In our context, we must determine what are the
maximum values of δ1 and δ2 which ensure that the system JSender(∆)KAAsap

δ1
‖

JReceiver(∆)KAAsap
δ2

‖JObserverK∩Bad = ∅. Those maximal value will be expressed in
the unit of time U of the system that we have not fixed so far. Remember U is a
quarter of a timeslot. By tuning this value, we can then maximize the throughput
of the protocol. We should then look for the smallest implementable U on our
implementation platform. For BrickOs, the value ∆LU (length of the loop in the
execution procedure) and ∆P U (precision of the clocks) can be set to as low as 6 ms
and 1 ms. To guarantee a correct implementation of Sender(∆) (and Receiver(∆)),
we need to have ∆ > 3∆L + 4∆P , and so ∆U > 22ms.

So, we know that δ1U and δ2U should be srictly below 22 ms. If δ1 ≤ δ2, the
infimum for U is 22 ms

δ1
else it is 22 ms

δ2
. Now if we increase the value of one of the

parameters δi, the correct value for the other decreases. This is because increasing
the parameter value for the AASAP semantics of a controller strictly increases its
looseness, forcing the other to be more precise as compensation, which corresponds
to a smaller value for its parameter. Using this fact, we can conclude that the best
U for the system will be obtained when δ1 and δ2 are equal.

Guiding HyTech with this information, by a parametric search, we found that,
for ensuring correctness, the parameters must be strictly less than 1

4U . In fact,
we proved that a sufficient condition to avoid the error state is that δ1 + δ2 < 1

2 .
Execution times of different analysis are given in Figure 9. Note that to make
HyTech terminate, we needed to give some initial constraints. Execution times
with Uppaal are very encouraging: the problems solved are simpler as the models
are not parametric but this problems are those to be solved in practice as a precise
parametric analysis is nice in theory but not required in practice (if the target
platform is fixed).

Implementation From annotated models of the sender and the receiver, we have
generated, using ELASTIC2BRICK the C-code for the sender and the receiver. The C
files are about 500 lines long for each controller. The annotations of the models are
very natural. Here are some examples of annotations. Assume that we want to use
the protocol to exchange variable length strings of bits that are stored in an array,
say A in the sender and B in the receiver. Instead of assigning the bit variable i non-
deterministically, we should execute the annotation {i := A[j]; j++;}, and in the

15



Tool Constraint Result Time

HyTech

δ1 + δ2 < 1/2 Safe 55s
δ1 = δ2 = 1/5 Safe 50s
δ1 = δ2 = 1/4 Unsafe 90s

Uppaal
δ1 = δ2 = 1/5 Safe < 1s
δ1 = δ2 = 1/4 Unsafe < 1s

Figure 9: Execution times for the different models.

Receiver automaton, we add the code {B[k]:= α; k++;} to transitions setting r to
α ∈ {0, 1}, and the code {B[k]:=0; B[k+1]:=1; k+=2;} to the transition setting
r to 2.

Evaluation The code that we have obtained is correct by construction and can
safely be executed on Lego MindstormsTM Brick as an alternative communica-
tion mean with real-time guarantees. For that, it suffices to give the highest level
of priority to the protocol to ensure its real-time behavior. This should not spoil
the behavior of other applications running on the Brick as the resources needed by
the protocol are very low. Now, let us look at the performance of the protocol in
our implementation. The throughput obtained, when the length of the sequence
goes to infinity, is around 2.84 bits per seconds. This may look quite low and we
could think that far better throughput could be obtained by a hand-made imple-
mentation. But this is not the case. Indeed, we can show using the results of Ho
and Wong-Toi [HWT95] and by taking into account only the imprecision due to
reading on digital clocks every time slice, that the throughput of the protocol on
Lego MindstormsTM is bounded from above by around 4.16 bits per seconds. So,
the price in term of performance loss to obtain automatically generated and correct
code is not too high in our opinion. Let us also note that we were only able to
find error by testing when the throughput was set around 7 bits per seconds. That
shows the limit of testing at least when done in a naive way.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an Audio
Control Protocol. In H. Langmaack, W.-P. de Roever, and J. Vytopil,
editors, Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 863, pages 170–192, Lübeck, Germany, 1994. Springer-Verlag.

[CHR02] F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control
problems for timed and hybrid systems. In HSCC 02: Hybrid Systems—
Computation and Control, Lecture Notes in Computer Science 2289,
pages 134–148. Springer-Verlag, 2002.

[DDR04] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics:
From timed models to timed implementations. In HSCC 04: Hybrid
Systems—Computation and Control, Lecture Notes in Computer Sci-
ence 2993, pages 296–310. Springer-Verlag, 2004.

16



[Doy03] Laurent Doyen. A systematic implementation of simple timed con-
trollers. Technical Report 504, U.L.B., 2003.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech:
The next generation. In 16th Annual Real-Time Systems Symposium
(RTSS), pages 56–65. IEEE Computer Society Press, 1995.

[HWT95] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control
protocol. In P. Wolper, editor, Proceedings of the 7th International
Conference On Computer Aided Verification, volume 939, pages 381–
394, Liege, Belgium, 1995. Springer Verlag.

[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In 6th ACM Symp. on Principles of Distributed Computing,
pages 137–151, 1987.

[PL00] Paul Pettersson and Kim G. Larsen. Uppaal2k. Bulletin of the Euro-
pean Association for Theoretical Computer Science, 70:40–44, February
2000.

17



A Preliminary Definitions

Below, we give the definitions of input enabledness, composition and safety con-
trol which we have informally introduced in Section 2. We also introduce weak
simulation and hiding, which we will need to prove Theorem 1.

Definition 7 [Input enabled STTS] A STTS T = 〈S, ι, Σin, Σout, Στ ,→〉 is input
enabled if for all σ ∈ Σin, for all s1 ∈ S there exists s2 ∈ S such that (s1, σ, s2) ∈→.

Definition 8 [Weak simulation relation for STTS] Given two STTS T 1 = 〈S1, ι1,
Σ1

in, Σ
1
out, Σ

1
τ ,→1〉 and T 2 = 〈S2, ι2, Σ2

in, Σ
2
out, Σ

2
τ ,→2〉, let Σ = Σ1

out ∪ Σ1
in ∪ Σ1

τ , we
say that T 1 is weakly simulable by T 2, noted T 1 v T 2, if there exists a relation
R ⊆ S1 × S2 (called a weak simulation relation) such that :

• (ι1, ι2) ∈ R

• for any (s1
1, s

2
1) ∈ R, for any σ ∈ Σ\{ε} ∪ R≥0, for any s1

2 s.t. (s1
1, σ, s1

2) ∈→
1,

there exists s2
2, s

2
3, . . . , s

2
n ∈ S2 s.t. for some j, (s2

j , σ, s2
j+1) ∈→2 and for any

i 6= j, (s2
i , ε, s

2
i+1) ∈→

2 and (s1
2, s

2
n) ∈ R;

In definitions and theorems of [DDR04], we used a classical simulation relation
(without the possibility of using ε transitions). The results we have obtained are not
affected by this new definition because weak simulation preserve observable labels
as simulation does.

Definition 9 [Hiding] Given a STTS T = 〈S, ι, Σin, Σout, Στ ,→〉 and a subset H ⊆
Στ of its internal labels, define the hiding of H in T by T ↓H = 〈S, ι, Σin, Σout, Στ\H,→′

〉 where (s, σ, s′) ∈→′ iff either σ ∈ Σin ∪ Σout ∪ Στ\H , σ 6= ε and (s, σ, s′) ∈→ or
σ = ε and there exists σ′ ∈ H such that (s, σ′, s′) ∈→.

Definition 10 [Composition of STTS] Let T 1 = 〈S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1〉 and

T 2 = 〈S2, ι2, Σ2
in, Σ

2
out, Σ

2
τ ,→2〉 be two STTS. Let Σ1 = Σ1

in ∪ Σ1
out ∪ Σ1

τ and Σ2 =
Σ2

in ∪ Σ2
out ∪ Σ2

τ . We say that T 1 and T 2 are composable if whenever σ ∈ Σ1 ∩ Σ2

then either σ ∈ Σ1
in ∩ Σ2

out or σ ∈ Σ1
out ∩ Σ2

in.
Their composition, noted T 1‖T 2 is the STTS T = 〈S, ι, Σin, Σout, Στ ,→〉 such

that:
let Σ12

in = Σ1
in ∪ Σ2

in, Σ12
out = Σ1

out ∪ Σ2
out and Σ12

τ = Σ1
τ ∪ Σ2

τ

S = S1 × S2, ι = (ι1, ι2), Σin = Σ12
in \Σ

12
out, Σout = Σ12

out\Σ
12
in , Στ = Σ12

τ ∪
(

Σ12
in \Σin

)

,
and → is such that ((s1

1, s
2
1), σ, (s1

2, s
2
2)) ∈→ iff one of the following three assertions

holds:

• σ ∈
(

Σ12
in \Σin

)

∪ R≥0 and (s1
1, σ, s1

2) ∈→
1 and (s2

1, σ, s2
2) ∈→

2

• σ ∈ Σ1 ∩
(

Σin ∪ Σout ∪ Σ12
τ

)

and (s1
1, σ, s1

2) ∈→
1 and s2

1 = s2
2

• σ ∈ Σ2 ∩
(

Σin ∪ Σout ∪ Σ12
τ

)

and (s2
1, σ, s2

2) ∈→
2 and s1

1 = s1
2

Definition 11 [Safety Control] Let T 1 = 〈S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1〉 and T 2 = 〈S2, ι2,

Σ2
in, Σ

2
out, Σ

2
τ , →2〉 be two composable STTS. Let B ⊆ S2, we say that T 1 controls

T 2 to avoid B if the following condition holds:
Reach(T 1‖T 2) ∩ {(s1, s2) | s1 ∈ S1 ∧ s2 ∈ B} is empty.

Theorem 2 ([DDR04]) Let T 1 and T 2 be two composable STTS, let T 3 be a
STTS such that T 3 v T 1, and let B ⊆ S2, if T 1 controls T 2 to avoid B then T 3

controls T 2 to avoid B.

18



B Proof of Theorem 1

Before proving Theorem 1, we need some preliminary lemmas and definitions pre-
sented below.

First, we add to the notations introduced in Section 4 the following short-
cuts: given an Elastic controller A = 〈Loc, l0, Var, Lab, Edg〉, a location l ∈ Loc,
and an input label α ∈ Lab1

in, let ϕa(l) =
∧

g∈Gact(l)
¬(−∆(g ]0); and ϕe(l, α) =

∧

g∈Gevt(l,α) ¬(−∆(g]0). Thus, ϕ̄a(l) and ϕ̄e(l, α), defined in section 5, are the closure

of ϕa(l) and ϕe(l, α) respectively.

Lemma 1 Let g ∈ Rect(Var) be a guard and let δ ∈ Q≥0. For any valuation v, we
have:

(a) TS(v, g) ≤ δ iff v |=δ ¬(−∆(g ]0)

(b) v |=δ ¬(−∆(g)0) iff v |=δ ¬(−∆(g ]0) ∨ ∀t ∈ R>0 : v + t |=δ ¬(−∆(g ]0)

Proof. (a) See also Figure 10. For x ∈ Var, let ax = lb(g(x)) and bx = rb(g(x))).
TS(v, g) ≤ δ

↔ (v |=δ g) → ∃x ∈ Var : v(x) − δ ≤ ax

↔ (v |=δ g) → (∃x ∈ Var : ax ≤ v(x) ≤ bx ∧ v(x) − δ ≤ ax)
↔ (v 6|=δ g) ∨ (∃x ∈ Var : ax ≤ v(x) ≤ min(bx, ax + δ))
↔ (∃x ∈ Var : v(x) < ax ∨ v(x) > bx)

∨(∃x ∈ Var : ax ≤ v(x) ≤ min(bx, ax + δ))
↔ ∃x ∈ Var : v(x) ≤ ax + δ ∨ v(x) > bx

↔ ∃x ∈ Var : v(x) /∈ (ax + δ, bx]
↔ v 6|=δ −∆(g ]0
↔ v |=δ ¬(−∆(g ]0)

(b) The second part of the Lemma can be rewritten: v |=δ −∆(g)0 iff v |=δ

(−∆(g ]0) ∧ ∃t ∈ R>0 : v + t |=δ −∆(g ]0. If v |=δ −∆(g)0, then ∀x ∈ Var : a +
δ < v(x) < b which implies that ∀x ∈ Var we have both a + δ < v(x) ≤ b and
∃t ∈ R>0 : a + δ < v(x) + t ≤ b. The converse holds obviously.

Definition 12 [Right-closed predicates] A (parametric) rectangular constraint “a ∼1

x ∼2 b” is right-closed if ∼2=
′≤′. A (parametric) rectangular predicate is right-

closed if it is a finite set of right-closed (parametric) rectangular constraints. A
(parametric) multirectangular predicate is right-closed if it is a finite set of right-
closed (parametric) rectangular predicates.

Notice that ϕa(l), ϕ̄a(l), ϕe(l, α) and ϕ̄e(l, α) are right-closed parametric multi-
rectangular predicates.

Lemma 2 Let g be a right-closed parametric multirectangular predicate and let
δ ∈ Q≥0. For any valuation v, if for some t1, t2 ∈ R, t1 < t2, we have ∀t ∈ [t1, t2) :
v + t |=δ g, then v + t2 |=δ g.

Proof. The proof of this lemma is left to the reader.

To prove Theorem 1, we will need to formally define what is a watcher and
what is a guard-watcher. A graphic representation of those two definitions are
respectively given in figure 1 and 2

19



b − a

v(x)

TS(v, a ≤ x ≤ b)

ba0

−∞ −∞

a + δ

δ

Figure 10: The function TS(v, a ≤ x ≤ b) is strictly above δ iff v(x) ∈ (a + δ, b].

Definition 13 [Event-Watcher] Given an Elastic controller A = 〈Loc1, l0, Var1,
Lab1, Edg1〉, for α ∈ Labin define the timed automaton Event-Watcher Wα =
〈Loc, W0, Var, Inv, Lab, Edg, Asap〉 where:

• Loc = {W0, W1, W2}

• Var = {zα}

• Inv(W0) = Inv(W2) = {∅} and Inv(W1) = {{zα ≤ ∆}}

• Labin = {α}, Labout = ∅ and Labτ = {ε, ᾱ}

• Edg = {ei|1 ≤ i ≤ 5} where:

– e1 = (W0, W1, ∅, α, {zα})

– e2 = (W1, W2, ∅, ε, ∅)

– e3 = (W2, W0, ∅, ᾱ, ∅)

– e4 = (W1, W1, ∅, α, ∅)

– e5 = (W2, W2, ∅, α, ∅).

• Asap(e1) = Asap(e2) = Asap(e4) = Asap(e5) = ⊥ and Asap(e3) = >.

Definition 14 [Guard-Watchers] Given an Elastic controller A = 〈Loc1, l0, Var1,
Lab1, Edg1〉, for an event α ∈ Labin, a location l ∈ Loc1 and a set of guards G ⊆
Rectc(Var), define the timed automaton Guard-Watcher W l

α(G) = 〈Loc, Uinit, Var,
Inv, Lab, Edg, Asap〉 where:

• Loc = {U0, U1, U2, U3};

• Uinit = U1 if l = l0 and Uinit = U0 otherwise;

• Var = Var1 ∪ {u};

20



• Inv(U0) = Inv(U1) = {∅}, Inv(U2) =
∧

g∈G ¬(−∆(g)0) and Inv(U3) = {{u =
0}};

• Labin = ∅, Labout = ∅ and Labτ = {ᾱ, inl, outl, ε};

• Edg = {ei|1 ≤ i ≤ 7} where:

– e1 = (U0, U1, ∅, inl∅)

– e2 = (U1, U0, ∅, outl, ∅)

– e3 = (U1, U2, ∅, ε, ∅)

– e4 = (U2, U1, ∅, ε, ∅)

– e5 = (U1, U3, ∅, ᾱ, {u})

– e6 = (U3, U0, ∅, outl, ∅)

– e7 = (U0, U0, ∅, ᾱ, ∅);

• Asap(e) = ⊥ for every e ∈ Edg.

For the simplicity of the presentation, we define the meta-transitions associated
to an STTS so that there will be a 1−to−1 correspondance between the steps in
the AASAP semantics and the compositional construction. This is correct since we
consider weak simulation relations.

Definition 15 [Meta-transition] Given a STTS 〈S, ι, Σin, Σout, Στ ,→〉 such that ε ∈
Στ , define the meta-transition relation ⇒⊆ S × Σin ∪ Σout ∪ Στ ∪ R≥0 × S by:

• (s, ε, s′) ∈⇒ iff s = s′ or there exist some states s1, . . . , sn ∈ S such that
s1 = s, sn = s′ and for every i, 1 ≤ i < n, we have (si, ε, si+1) ∈→;

• For σ ∈ Σin, (s, σ, s′) ∈⇒ iff (s, σ, s′) ∈→;

• For σ ∈ Σout ∪ Στ\{ε}, (s, σ, s′) ∈⇒ iff there exist some states s1, s2, s3 ∈ S
such that (s, ε, s1) ∈⇒, (s1, σ, s2) ∈→, (s2, ε, s3) ∈→ and (s3, ε, s

′) ∈→.

• For t ∈ R≥0, (s, t, s′) ∈⇒ iff there exist some states s1, s
′
1, s2, s

′
2 . . . , sn ∈ S

such that s1 = s and sn = s′ and some real numbers t1, . . . , tn ∈ R≥0 such
that t =

∑n
i=1 ti and for every i, 1 ≤ i < n, (si, ti, s

′
i) ∈→ and (s′i, ε, si+1) ∈⇒;

The third item of the definition above imposes two ε transitions after an action
because after having output σ, the automaton A2 changes its location, and doing so
it issues two ε transitions for (i) getting out of its current location l (synchronizing
on outl) and (ii) getting in its target location l′(synchronizing on inl′) .

Proof of Theorem 1.
Let us first remind to the reader that, at the beginning of Section 5, we have

tried to give intuitions to facilitate the understanding of this proof.
The proof is by establishing that the two STTS F(A, ∆) and JAKAAsap

δ are mu-
tually similar. Since we have used in F(A, ∆) the labels inl, outl (l ∈ Loc) for
synchronizing the location changes, we hide those labels in the simulation’s proof
since they do not appear in the AASAP semantics.

Further, we use the following notations: for a location ` = (l1, . . . , ln) of a
synchronized product A1 × · · · × An of timed automata, we define `(A1) = l1,

`(A2) = l2, . . . , `(An) = ln. Let l̂ ∈ Loci be a location of Ai, we define `[Ai := l̂] to

be the location `′ such that `′(Ai) = l̂ and `′(Aj) = lj for j 6= i.
Let A be the tuple 〈Loc1, l10, Var1, Lab1, Edg1〉. To prove that the compositional

construction is correct, we have to show that:

21



(A) JAKAAsap
δ v JF(A, ∆)Kδ ↓{inl, outl | l ∈ Loc1}

(B) JF(A, ∆)Kδ ↓{inl, outl | l ∈ Loc1} v JAKAAsap
δ

Let JAKAAsap
δ be the STTS (S1, ι1, Σ1

in, Σ
1
out, Σ

1
τ ,→1) and JF(A, ∆)Kδ ↓{inl, outl |

l ∈ Loc1} be the STTS (S2, ι2, Σ2
in, Σ

2
out, Σ

2
τ ,→2). In the proof, we consider instead

of →2 the transition relation ⇒2 defined as follows: let ⇒2′

be the meta-transition
relation associated to JF(A, ∆)Kδ ↓{inl, outl | l ∈ Loc1} (in the sense of Defini-

tion 15). Then (s, σ, s′) ∈⇒2 iff either σ 6= ε and (s, σ, s′) ∈⇒2′

or σ = ε and
s = s′.

To establish (A), we use the relationR ⊆ S1×S2 such that ((l1, v1, I1, d1), (`2, v2))
∈ R iff:

1. `2(A2) =

{

Inl1 if d1 ≤ δ
Outl1 otherwise

2. For any α ∈ Lab1
in: `2(Wα) =







W0 if I1(α) = ⊥
W1 if I1(α) 6= ⊥ ∧ I1(α) ≤ δ
W2 otherwise

3. For any α ∈ Lab1
in, l ∈ Loc1: `2(W l

α) =

{

U1 if l = l1
U0 otherwise

4. ∀x ∈ Var1 : v2(x) = v1(x);

5. v2(d) = d1;

6. For every α ∈ Lab1
in, if I1(α) 6= ⊥ then v2(zα) = I1(α).

Let us show that R is a weak simulation relation, in the sense of Definition 8.

• It appears obviously that (ι1, ι2) ∈ R.

• Assume that (s1
1, s

2
1) = ((l11, v

1
1 , I1

1 , d1
1), (`

2
1, v

2
1)) ∈ R and that (s1

1, σ, s1
2) ∈→1

(with s1
2 = (l12, v

1
2 , I

1
2 , d1

2)).

We must prove that the following assertion holds:

(A1) There exists a state s2
2 ∈ S2 such that (s2

1, σ, s2
2) ∈⇒

2 and (s1
2, s

2
2) ∈ R.

To prove (A1) we work case by case on the different possible types of σ :

– If σ ∈ Σ1
in.

By definition of the AASAP semantics, rule (A4.2), since (s1
1, σ, s1

2) ∈→
1

we have two possible cases :

∗ I1
1 (σ) = ⊥ and s1

2 = (l11, v
1
1 , I1

1 [σ := 0], d1
1). Then, by definition

of the relation R, we know from (s1
1, s

2
1) ∈ R that `2

1(Wα) = W0.
Therefore, there is a transition (s2

1, σ, s2
2) ∈⇒2 with s2

2 = (`2
2, v

2
2)

where `2
2 = `2

1[Wσ := W1] and v2
2 = v2

1 [zσ := 0]. This is because
there is an edge (W0, W1, ∅, σ, {zσ}) in Wσ : the guard is trivially
satisfied and the variable zσ is reset, so that the invariant zσ ≤ ∆
of W1 is satisfied by v2

2 . Note that Wσ is the only automaton in
F(A, ∆) synchronizing on σ.
Finally, it is easy to see from the definition of R that (s1

2, s
2
2) ∈ R

(in particular, v2
2(zσ) = I1

2 (σ) = 0).

22



∗ I1
1 (σ) 6= ⊥ and s1

2 = s1
1. Then, by definition of the relation R, we

know from (s1
1, s

2
1) ∈ R that `2

1(Wα) = W1 ∨ `2
1(Wα) = W2. In both

cases there exists a transition (s2
1, σ, s2

2) ∈⇒
2. Those are the self-loop

on the location W1 and W2: (W1, W1, ∅, σ, ∅} and (W2, W2, ∅, σ, ∅}.
After any of those transitions we get s2

2 = s2
1, which implies that

(s1
2, s

2
2) ∈ R since (s1

1, s
2
1) ∈ R and s1

1 = s1
2.

– If σ ∈ Σ1
out.

By definition of the AASAP semantics, rule (A4.1), since (s1
1, σ, s1

2) ∈→
1

we know that there exists an edge (l11, l
1
2, g, σ, R) ∈ Edg1 such that v1

1 |=δ

∆[g]∆ and v1
2 = v1

1 [R := 0]. Also I1
2 = I1

1 and d1
2 = 0. Since (s1

1, s
2
1) ∈ R,

we have either `2
1(A

2) = Inl1
1

or `2
1(A

2) = Outl1
1
. If `2

1(A
2) = Inl1

1
,

we use the ε-edge (Inl1
1
, Outl1

1
, ∅, ε, ∅) of A2 to get into Outl1

1
. This can

be achieved since JInv2(Inl1
1
)Kδ ⊆ JInv2(Outl1

1
)Kδ . From Outl1

1
, we can

take the edge (Outl1
1
, P ostOutl1

1
,l1

2
, ∆[g]∆, σ, R ∪ {d}). This is because

the guard is satisfied by v2
1 (v1

1 satisfies the guard and agrees with v2
1 on

the variables in Var1), and d is reset so that the invariant of PostOutl1
1
,l1

2

is also satisfied. Then we can go to PreInl1
2

(invariant d = 0) and Inl1
2

(invariant containing d ≤ ∆ disjunctively) by synchronizing on outl1
1

and

inl1
2

. This makes the location of the guard-watchers W
l1
1

α and W
l1
2

α (for
each α ∈ Labin) change to U0 and U1 respectively.

Finally, it is easy to see from the definition of R that (s1
2, s

2
2) ∈ R (in

particular, v2
2(d) = d1

2 = 0 and for every x ∈ R : v2
2(x) = v1

2(x) = 0).

– If σ ∈ Σ1
τ . Recall that Σ1

τ = Lab1
τ ∪ Lab1

in ∪ {ε}.

∗ If σ ∈ Lab1
τ , the proof is identical to the previous case.

∗ If σ = ᾱ ∈ Lab1
in.

By definition of the AASAP semantics, rule (A4.3), since (s1
1, σ, s1

2) ∈→
1

we know that there exists an edge (l11, l
1
2, g, σ, R) ∈ Edg1 such that

v1
1 |=δ ∆[g]∆ and v1

2 = v1
1 [R := 0]. Also I1

1 (σ) 6= ⊥, I1
2 = I1

1 [σ := ⊥]
and d1

2 = 0.
We show below that there exists a transition (s2

1, σ, s2
2) ∈⇒2 such

that s2
2 = (`2

2, v
2
2) with v2

2 = v2
1 [R ∪ {d} := 0] and `2

2 is such that

`2
2(A

2) = Inl1
2
, `2

2(Wα) = W0, and for each β ∈ Lab1
in, `2

2(W
l1
1

β ) = U0

and `2
2(W

l1
2

β ) = U1. Finally, `2
2 agrees with `2

1 on location of other

automata in F(A, ∆). Note that the guard-watchers W l
α associated

with locations l 6= l11 are in location U0 so that they can synchronize
on ᾱ without changing location.
First, we show that A2 can move: since (s1

1, s
2
1) ∈ R, we have ei-

ther `2
1(A

2) = Inl1
1

or `2
1(A

2) = Outl1
1
. If `2

1(A
2) = Inl1

1
, we use the

ε-edge (Inl1
1
, Outl1

1
, ∅, ε, {d}) of A2 to get into Outl1

1
. This can be

achieved since JInv2(Inl1
1
)Kδ ⊆ JInv2(Outl1

1
)Kδ . From Outl1

1
, we can

take the edge (Outl1
1
, P ostOutl1

1
,l1

2
, ∆[g]∆, ᾱ, R ∪ {d}). This is be-

cause the guard is satisfied by v2
1 (v1

1 satisfies the guard and agrees
with v2

1 on the variables in Var1), and d is reset so that the invariant
of PostOutl1

1
,l1

2
is also satisfied. Then we can go to PreInl1

2
(invari-

ant d = 0) and Inl1
2

(invariant containing d ≤ ∆ disjunctively) by
synchronizing on outl1

1

and inl1
2

.

23



Second, the synchronizations in A2 (on ᾱ, outl1
1

and inl1
2
) make the

location of the guard-watchers W
l1
1

β and W
l1
2

β (for each β ∈ Lab1
in)

change to U0 and U1 respectively. In particular, for β = α, the

guard-watcher W
l1
1

β passes through U3.

Third, we show that the event-watcher Wα can move: since (s1
1, s

2
1) ∈

R and I1
1 (σ) 6= ⊥, we have either `2

1(Wα) = W1 or `2
1(Wα) = W2.

In the case `2
1(Wα) = W1, we use the ε-edge (W1, W2, ∅, ε, ∅) of Wα

to get into W2 which has a trivial invariant. From W2, we take the
edge (W2, W0, ∅, ᾱ, ∅), synchronizing with A2 on ᾱ. Those edges are
enabled since their guard and the invariant of their target location
are trivial.
Finally, notice that the labels outl1

1
and inl1

2
being hidden, we have

two ε transition after ᾱ. It is easy to see from the definition of
R that (s1

2, s
2
2) ∈ R (in particular, v2

2(d) = d1
2 = 0 and for every

x ∈ R : v2
2(x) = v1

2(x) = 0).

∗ If σ = ε. Then s1
1 = s1

2. This case is trivial since (s2
1, ε, s

2
1) ∈⇒

2.

– If σ = t ∈ R≥0.

By definition of the AASAP semantics, rule (A4.6), since (s1
1, t, s

1
2) ∈→

1

we have:

(H1) for any edge (l11, l
′, g, σ, R) ∈ Edg1 with σ ∈ Lab1

out ∪ Lab1
τ :

∀t′ : 0 ≤ t′ ≤ t : (d1
1 + t′ ≤ δ ∨ TS(v1

1 + t′, g) ≤ δ)

(H2) for any edge (l11, l
′, g, σ, R) ∈ Edg1 with σ ∈ Lab1

in:

∀t′ : 0 ≤ t′ ≤ t : d1
1 + t′ ≤ δ ∨ TS(v1

1 + t′, g) ≤ δ ∨ (I1
1 + t′)(σ) ≤ δ

From the definition of R, we have for any t′ ∈ R≥0:

(P1) d1
1 + t′ ≤ δ ↔ v2

1(d) + t′ ≤ δ

(P2) For any α ∈ Lab1
in: (I1

1 + t′)(α) ≤ δ ↔ v2
1(zα) + t′ ≤ δ (provided

(I1
1 + t′)(α) 6= ⊥)

(P3) For any g ∈ Rectc(Var1): TS(v1
1 + t′, g) ≤ δ ↔ v2

1 + t′ |=δ ¬(−∆(g ]0)

The third proposition is established by applying Lemma 1(a) since v1
1

and v2
1 agree on the variables in Var1.

We must show that F(A, ∆) can let time pass up to t. For this, we
show that (i) each automaton in F(A, ∆) can let time pass and that (ii)
the synchronized product of those automata can avoid staying in urgent
locations.

(i) Let us successively consider each automaton in F(A, ∆):

∗ Event-Watcher Wα, for α ∈ Lab1
in. If `2

1(Wα) = W0 or `2
1(Wα) = W2,

then time can pass since the invariant is trivial. Assume `2
1(Wα) =

W1. If t ≤ δ − v2
1(zα), then we can stay waiting in this location.

Otherwise, we wait δ − v2
1(zα) time units in W1 so that the value

of zα is δ. Using an ε-edge, we jump to W2 where the invariant is
trivial.

∗ Guard-Watchers W l
α, for l ∈ Loc1 and α ∈ Lab1

in. We have `2
1(W

l1
1

α ) =
U1 and for l 6= l11, `2

1(W
l
α) = U0. Both U0 and U1 have a trivial

invariant.

∗ A2. Assume `2
1(A

2) = Inl1
1
. If t ≤ δ−v2

1(d), then we can stay waiting

in this location. Otherwise, we wait δ−v2
1(d) time units, and then we

24



take the ε-edge in A2 to location Outl1
1
. This is possible since now the

value of d is δ and the expression “d ≤ ∆” appears disjunctively in
the invariant of Outl1

1
. We claim that in this location, we can let the

remaining time t−(δ−v2
1(d)) pass. This is because (H1) is equivalent

to ∀g ∈ Gact(l
1
1) ∀t′ : 0 ≤ t′ ≤ t : (v2

1(d)+t′ ≤ δ∨v2
1+t′ |=δ ¬(−∆(g]0))

from the (P1) and (P3). Therefore, we have v2
1+t′ |=δ d ≤ ∆∨ϕa(l

1
1),

which implies v2
1 + t′ |=δ d ≤ ∆∨ ϕ̄a(l

1
1) that is v2

1 + t′ |=δ Inv2(Outl1
1
)

for every 0 ≤ t′ ≤ t. The proof is similar for when `2
1(A

2) = Outl1
1

.

(ii) It remains to check that we do not let time pass in a urgent location.
The urgent locations we could enter by letting time pass in F(A, ∆)
are the locations `α (for each α ∈ Lab1

in) such that `α(A2) = Outl1
1

,

`α(Wα) = W2 and `α(W
l1
1

α ) = U1.

Assume that after t′ < t time units, we get into such a urgent location
`α (for some α ∈ Lab1

in). Then, we necessarily have v2
1(d) + t′ ≥ δ

and v2
1(zα) + t′ ≥ δ. From (P1) and (P2), for every t′′ > t′ we have

d1
1 + t′′ > δ and (I1

1 + t′′)(α) > δ. Therefore, (H2) where σ = α reduces
to ∀g ∈ Gevt(l

1
1, α)∀t′′ : t′ < t′′ ≤ t : TS(v1

1 + t′′, g) ≤ δ, which entails
by (P3) that v2

1 + t′′ |=δ ¬(−∆(g ]0) and finally v2
1 + t′′ |=δ ϕe(l

1
1, α)

for t′ < t′′ ≤ t. Since ϕ̄e(l
1
1, α) is the closure of ϕe(l

1
1, α), we also have

v2
1 + t′ |=δ ϕ̄e(l

1
1, α). Hence, we can jump to U2 in W

l1
1

α and continue
waiting there during the remaining t − t′ time units.

Since the number of urgent locations `α is equal to |Lab1
in| and we do

not get back into a location `α we have left earlier, there will be a finite
number of ’jumps to U2’ (at most|Lab1

in|). Hence, by applying a finite
number of times the above reasoning we can finally wait the whole t
time units.

The reader can easily check that we have (s1
2, s

2
2) ∈ R.

To establish (B), we use the relationR ⊆ S2×S1 such that ((`2, v2), (l1, v1, I1, d1))
∈ R iff:

1. One of the following assertions holds for every α ∈ Lab1
in:

(a) `2(A2) = Inl1 , `2(W l1

α ) 6= U0 and `2(W l
α) = U0 for any l 6= l1;

(b) or `2(A2) = Outl1 , `2(W l1

α ) 6= U0 and `2(W l
α) = U0 for any l 6= l1.

2. For any α ∈ Lab1
in: I1(α) =

{

⊥ if `2(Wα) = W0

v2(zα) otherwise

3. ∀x ∈ Var1 : v1(x) = v2(x);

4. d1 = v2(d).

Let us show that R is a weak simulation relation, in the sense of Definition 8.

• It appears obviously that (ι1, ι2) ∈ R.

• Assume that (s2
1, s

1
1) = ((`2

1, v
2
1), (l

1
1, v

1
1 , I

1
1 , d1

1)) ∈ R and that (s2
1, σ, s2

2) ∈⇒2

(with s2
2 = (`2

2, v
2
2)).

We must prove that the following assertion holds:

25



(B1) There exists a state s1
2 ∈ S1 such that (s1

1, σ, s1
2) ∈→

1 and (s2
2, s

1
2) ∈ R.

To prove (B1) we work case by case on the different possible types of σ :

– If σ ∈ Σ2
in.

Since Wσ is the only automaton in F(A, ∆) that synchronizes on σ, we
know from (s2

1, σ, s2
2) ∈⇒

2 that there are two possible cases :

∗ `2
1(Wσ) = W0, `2

2(Wσ) = W1, and v2
2 = v2

1 [zσ := 0]. Then, by
definition of R, we have I1

1 (σ) = ⊥. Therefore, there is a transition
(s1

1, σ, s1
2) ∈→

1 with s1
2 = (l11, v

1
1 , I

1
1 [σ := 0], d1

1) (from rule (A4.2) of
the AASAP semantics). Hence, we have (s2

2, s
1
2) ∈ R (in particular,

I1
2 (σ) = v2

2(zσ) = 0).

∗ `2
1(Wσ) = W1 ∨ `2

1(Wσ) = W2. In this case, s2
1 = s2

2. Furthermore,
since (s1

1, s
2
1) ∈ R, we know that I1

1 6= ⊥, which implies from rule
(A4.2) that there exists (s1

1, s
1
2) ∈⇒1 and that s1

1 = s1
2. It is then

immediate that (s1
2, s

2
2) ∈ R.

– If σ ∈ Σ2
out.

In this case, A2 is the only automaton synchronizing on σ. Clearly,
there exists an edge (l11, l

1
2, g, σ, R) ∈ Edg1 such that v2

1 |=δ ∆[g]∆ and
v2
2 = v2

1 [R ∪ {d} := 0]. Also, `2
2(A

2) = Inl1
2

.

Then, by definition of R, v1
1 |=δ ∆[g]∆, and there is a transition (s1

1, σ, s1
2)

∈→1 with s1
2 = (l12, v

1
1 [R := 0], I1

1 , 0) (from rule (A4.1) of the AASAP

semantics). Hence, we have (s2
2, s

1
2) ∈ R (in particular, d1

2 = v2
2(d) = 0

and for every x ∈ R : v1
2(x) = v2

2(x) = 0).

– If σ ∈ Σ2
τ . Recall that Σ2

τ = Lab1
τ ∪ Lab1

in ∪ {ε}.

∗ If σ ∈ Lab1
τ , the proof is identical to the previous case.

∗ If σ = ᾱ ∈ Lab1
in.

The automata in F(A, ∆) that are synchronizing on ᾱ are: A2,
Wα and W l

α for every l ∈ Loc1. By definition of the semantics
of timed automata and by construction of A2, since (s2

1, σ, s2
2) ∈⇒

2

we know that there exists an edge (l11, l
1
2, g, ᾱ, R) ∈ Edg1 such that

v2
1 |=δ ∆[g]∆ and v2

2 = v2
1 [R∪{d} := 0]. Also, `2

2(A
2) = Inl1

2
. By con-

struction of Wα, it must be that `2
1(Wα) = W2 and `2

2(Wα) = W0.
Hence, by definition of R, we have v1

1 |=δ ∆[g]∆ and I1
1 (α) 6= ⊥.

Thus there is a transition (s1
1, σ, s1

2) ∈→1 with s1
2 = (l12, v

1
1 [R :=

0], I1
1 [α := ⊥], 0) (from rule (A4.3) of the AASAP semantics) and

we have (s2
2, s

1
2) ∈ R (in particular, d1

2 = v2
2(d) = 0 and for every

x ∈ R : v1
2(x) = v2

2(x) = 0)..

∗ If σ = ε. Then s2
1 = s2

2. This case is trivial since (s1
1, ε, s

1
1) ∈→1

(from rule (A4.5) of the AASAP semantics).

– If σ = t ∈ R≥0.

Consider the possible cases for the current location `2
1:

1. Assume `2
1(A

2) = Inl1
1
. By definition of the semantics of timed

automata, we have: ∀t′ ∈ [0, t] : v2
1 + t′ ∈ JInv2(Inl1

1
)Kδ . Therefore,

we have v2
1(d) + t′ ≤ δ and hence d1

1 + t′ ≤ δ for any t′ ∈ [0, t].
Hence, by definition of the AASAP semantics, there is a transition
(s1

1, t, s
1
2) ∈→

1 and (s2
2, s

1
2) ∈ R.

26



2. Assume `2
1(A

2) = Outl1
1

We have to show that the rule (A4.6) of the definition of the AASAP

semantics holds.
(i) Consider the edges with a label in Labout ∪ Labτ . We know that
v2
1 + t′ ∈ JInv2(Outl1

1
)Kδ for any t′ ∈ [0, t]. Since Inv2(Outl1

1
) = d ≤

δ ∨ ϕ̄a(l
1
1), from Lemma 1(b) this implies that for any t′ ∈ [0, t], we

have either:

(E1) v2
1(d) + t′ ≤ δ

(E2) or v2
1 + t′ |=δ ϕa(l

1
1)

(E3) or ∀t′′ > t′ : v2
1 + t′′ |=δ ϕa(l

1
1)

Below, we show that (E1) ∨ (E2) holds for any t′ ∈ [0, t]. From
the preliminaries (P1) and (P3), this implies that for any edge
(l1, l′, g, σ, R) ∈ Edg1 with σ ∈ Labout ∪ Labτ we have that:

∀t′ : 0 ≤ t′ ≤ t : (d1
1 + t′ ≤ δ ∨ TS(v1

1 + t′, g) ≤ δ)

which completes the proof of (A4.6) for edges with a label in Labout∪
Labτ .
To show that (E1) ∨ (E2) holds for any t′ ∈ [0, t], let us assume
that (E1) and (E2) are falsified for some t̂ ∈ [0, t] and let show that
this leads to a contradiction. First, (E1) and (E2) cannot be both
falsified for any other t∗ 6= t̂. Indeed, if it was the case, assuming wlog
that t∗ > t̂, we would have a contradiction from (E3) when t′′ = t∗

((E3) saying that v2
1 + t∗ |=δ ϕa(l

1
1) which is (E2) for t′ = t∗).

It cannot be that t̂ > 0 since the predicate p := (E1) ∨ (E2) is
right-closed, by Lemma 2 (with t1 = 0 and t2 = t̂), we would have p
satisfied in t̂, a contradiction.
It is also impossible that t̂ = 0 because of the following: consider the
last continuous transition that occurred in JF(A, ∆)Kδ . Since that
last continuous transition, there cannot have been a discrete jump
in A2 (since then we would have v2

1(d) ≤ δ, that is (E1) satisfied for
t′ = t̂ = 0). Hence, since only A2 could reset d and the variables
appearing in ϕa(l

1
1), we must conclude that (E1) ∨ (E2) ∨ (E3) was

in fact true for every t′ ∈ [−t̃, t] (where t̃ > 0 is the duration of the
last continuous transition).
Clearly, for t′ ∈ [−t̃, 0), (E3) cannot be true (if it was true, then
(E2) would be true for t′ = t̂ = 0). Therefore, we have for t′ ∈
[−t̃, 0): (E1) ∨ (E2). Since (E1) and (E2) are both right-closed,
their disjunction must also hold for t′ = 0 (by Lemma 2). This
contradicts our assumption.
(ii) Now, consider edges labeled by α ∈ Lab1

in.

(a) Assume `2
1(Wα) = W0. By definition of R, we have I1

1 (α) = ⊥.
Hence, for the edges labeled with α, we have trivially that ∀t′ :
0 ≤ t′ ≤ t : (d1

1 + t′ ≤ δ ∨ TS(v1
1 + t′, g) ≤ δ ∨ (I1

1 + t′)(α) ≤ δ).
Hence, there is a transition (s1

1, t, s
1
2) ∈→

1 and (s2
2, s

1
2) ∈ R.

(b) Assume `2
1(Wα) = W1. Since v2

1 |=δ (zα ≤ δ) and I1
1 (α) =

v2
1(zα), we get the same conclusion as in the previous subcase.

(c) Assume `2
1(Wα) = W2 and `2

1(W
l1

α ) = U2. By definition of the
semantics of timed automata, the invariant of `2

1 is satisfied by
v2
1 + t′ for every t′ ∈ [0, t]. In particular, in U2: v2

1 + t′ |=δ

ϕ̄e(l
1
1, α) for any t′ ∈ [0, t]. Therefore, similarly as in the proof

27



for edges with a label in Labout ∪ Labτ , we have for any edge
(l1, l′, g, α, R) ∈ Edg1:

∀t′ : 0 ≤ t′ ≤ t : (d1
1+t′ ≤ δ∨TS(v1

1 +t′, g) ≤ δ∨(I1
1 +t′)(α) ≤ δ)

Hence, time can pass in the AASAP semantics: there is a transi-
tion (s1

1, t, s
1
2) ∈→

1 and (s2
2, s

1
2) ∈ R.

(d) Assume `2
1(Wα) = W2 and `2

1(W
l1

α ) = U1.
Since time can pass in `2

1, it cannot be a urgent location. Hence,
there is no outgoing edge labeled by ᾱ in location Outl1

1
and

therefore, there is no edge labeled by α in Edg1. Consequently,
the conditions for having a transition (s1

1, t, s
1
2) ∈→

1 are trivially
satisfied and (s2

2, s
1
2) ∈ R.

The other cases are either impossible or do not allow time passing.

The insightful reader has probably noticed that the use of ϕ̄a and ϕ̄e instead of
instead of ϕa and ϕe somewhat complicates the proof. The reason for this follows:
in Definition 2, invariants of timed automata can be a disjunction of rectangular
predicates. It allows to define any boolean combination of rectangular constraint as
invariant by converting it into DNF. However, in general the verification tools (like
HyTech or Uppaal) accept only rectangular predicates as invariant. In practice,
we have to split the locations: a location l with invariant Inv(l) = {p1, . . . , pn} is
replaced by n locations li with invariants Inv(li) = {pi} for 1 ≤ i ≤ n. Those
locations are connected to each other by empty edges. The initial location and the
edges of the automaton are modified as expected.

In the compositional construction F(A, ∆), the obvious would be to model the
fact that TS(v, g) ≤ δ by an invariant ¬(−∆(g]0) (as in Lemma 1(a)). However, the
verification tools do not accept disjunctions, and hence we must split the disjunctive
invariants. This can be done safely (with conservation of the behaviors) when
predicates in disjunctions are all closed. Otherwise, correctness is not guaranteed
(e.g., splitting the invariant x < 1∨x ≥ 1 is not safe because from the location with
invariant x < 1, it is impossible to reach the location with invariant x ≥ 1 and thus
time is blocked, which was not the case in the unsplitted location). To guarantee
safe splitting, we use the closure of the expression ¬(−∆(g ]0) in invariants (that is
ϕ̄a instead of ϕa and ϕ̄e instead of ϕe).

28


