Centre Fédéré en Veérification

Technical Report number 2005.45

Almost ASAP_Semantics: from Timed Models to
Timed Implementations

Martin De Wulf, Laurent Doyen, Jean-Francois Raskin

ik 1
j UMH '
o -
et] R
UAEERSTTE de Liege UNIVERSITE DE MONS-HAINAUT

This work was partially supported by a FRFC grant: 2.4530.02

http://www.ulb.ac.be/di/ssd/cfv

Almost ASAP Semantics: from Timed Models to Timed
Implementations *

Martin De Wulf, Laurent Doyenfand Jean-Francois Raskin

Département d’Informatique

Faculté des Sciences
Université Libre de Bruxelles

Abstract

In this paper, we introduce a parametric semantics for timed controllers called the Almost ASAP
semantics. This semantics is a relaxation of the usual ASAP! semantics (also called the mazimal progress
semantics) which is a mathematical idealization that can not be implemented by any physical device no
matter how fast it is. On the contrary, any correct Almost ASAP controller can be implemented by a
program on a hardware if this hardware is fast enough. We study the properties of this semantics and
show how it can be analyzed using the tool HYTECH.

1 Introduction

Timed and hybrid systems are dynamical systems with both discrete and continuous components. A paradig-
matic example of a hybrid system is a digital embedded control program for an analog plant environment,
like a furnace or an airplane: the controller state moves discretely between control modes, and in each control
mode, the plant state evolves continuously according to physical laws. A natural model for hybrid systems
is the hybrid automaton [Hen96], which represents discrete components using finite-state machines and con-
tinuous components using real-numbered variables which evolution is governed by differential equations or
differential inclusions. Several verification and control problems have been studied for hybrid automata and
interesting subclasses have been identified (see for example [HKPV98]). Tools like HYTECH [HHWT95]
have proven useful to analyze high-level descriptions of embedded controllers in continuous environments.

When a high level description of a controller has been proven correct it would be valuable to ensure that
an implementation of that design can be obtained in a systematic way in order to ensure the conservation of
correctness. This is often called program refinement: given a high-level description P; of a program, refine
that description into another description P> such that the “important” properties of P; are maintained.
Usually, P» is obtained from P; by reducing nondeterminism. To reason about the correctness of P> w.r.t.
Py, we often use a notion of simulation [Mil80] which is powerful enough to ensure conservation of LTL
properties for example.

In this paper, we show how to adapt this elegant schema in the context of real-time embedded controllers.
To reach this goal, there are several difficulties to overcome. First, the notion of time used by hybrid automata
is based on a dense set of values (usually the real numbers). This is unarguably an interesting notion of
time at the modeling level but when implemented, a digital controller manipulates timers that are digital
clocks. Digital clocks have finite granularity and take their values in a discrete domain. Furthermore, those

*This is a preliminary version of a paper accepted for publication in the Formal Aspects of Computing journal, (©Springer-
Verlag. The final version of this publication will be available at http://www.springerlink.com.

TResearch fellow supported by the Belgian National Science Fundation (FNRS).

LTASAP stands for “as soon as possible”

clocks may also be subject to drifts and so may not be perfectly accurate. As a consequence, any control
strategy that requires clocks with infinite precision can not be implemented. Second, hybrid automata
can be called “instantaneous devices” in that they are capable of instantaneously react to time-outs or
incoming events by taking discrete transitions without any delay. Again, while this is a convenient way to
see reactivity and synchronization at the modeling level, any control strategy that relies for its correctness on
that instantaneity can not be implemented by any physical device no matter how fast it is. Those problems
are known and have already attracted some attention from our research community. For example, it is
well-known that timed automata may describe controllers that control their environment by playing a so
called zeno strategy, that is, by taking an infinite number of actions in a finite amount of time. This is widely
considered as unacceptable even by authors making the synchrony hypothesis [AFP103]. But even if we
prove our controller model non-zeno, that does not mean that it can be implemented. In fact, we recently
showed in [CHRO2] that there are (very simple) timed automata that enforce faster and faster reactions,
say at times 0, %, 1, 1%, 2, 2%, 3, 3%, So, timed automata may model control strategies that can not be
implemented because the control strategy does not maintain a minimal bound between two control actions.
A direct consequence is that we can not hope to define for the entire class of timed automata (using the
traditional semantics) a notion of refinement such that if a model of a real-time controller has been proven
correct then it can be systematically implemented in a way that preserves its correctness.

The infinite precision and instantaneity characteristics of the traditional semantics given to timed au-
tomata is very closely related to the synchrony hypothesis that is commonly adopted in the community of
synchronous languages [Ber00]. Roughly speaking, the synchrony hypothesis can be stated as follows: “the
program reacts to inputs of the environment by emitting outputs instantaneously”. The rationale behind the
synchrony hypothesis is that the speed at which a digital controller reacts is usually so high w.r.t. the speed
of the environment that the reaction time of the controller can be neglected and considered as nil. This
hypothesis greatly simplifies the work of the designer of an embedded controller: he/she does not have to
take into account the performances of the platform on which the system will be implemented. We agree
with this view at the modeling level. But as any hypothesis, the synchrony hypothesis should be validated
not only by informal arguments but formally if we want to transfer correctness properties from models to
implementations. We show in this paper how this can be done formally and elegantly using a semantics
called the Almost ASAP semantics (AASAP-semantics).

The AASAP-semantics is a parametric semantics that leaves as a parameter the reaction time of the
controller. This semantics relaxes the synchrony hypothesis in that it does not impose the controller to
react instantaneously but imposes on the controller to react within A time units when a synchronization or
a control action has to take place (is urgent). The designer acts as if the synchrony hypothesis was true,
i.e. he/she models the environment and the controller strategy without referring to the reaction delay. This
reaction delay is taken into account during the verification phase: we compute the largest A for which the
controller is still correct w.r.t. to the properties that it has to enforce (to avoid the environment to enter
bad states for example).

We show that the AASAP semantics has several important and interesting properties. First, the semantics
is such that “faster is better”. That is, if the controller is correct for a reaction delay bounded by A then
it is correct for any smaller A’. Second, any controller which is correct for a reaction delay bounded by
A > 0 can be implemented by a program on a hardware provided that the hardware is fast enough and
provides sufficiently fine granular digital clocks. Third, the semantics can be analyzed using existing tools
like HYTECH.

Structure of the paper. The paper is organized as follows. In section 2, we recall the notions of timed
transition systems and safety control. We also define a notion of simulation that will ensure the conservation
of safety properties imposed by the controller. In section 3, we review the syntax and classical semantics of
timed automata. In section 4, we define formally the AASAP semantics and study some of its properties. In
section 5, we introduce a very simple and naive notion of real-time program to make clear that any correct
real-time controller for the AASAP semantics can be implemented. In section 6 we enrich this notion of real-
time program with a modelization of clock drifts and prove that even with this additional issue, the AASAP

semantics remains implementable. In section 7, we explain how the AASAP semantics can be analyzed and
used in practice.

2 Preliminaries

In this section, we introduce the definition of timed transition systems and how to compose them. We recall
the notion of simulation which will be the formal basis for our notion of refinement. Finally, we introduce
the problem of safety control and show how the notion of simulation can be used in that context.

Definition 1 [TTS] A timed transition system T is a tuple (S, ¢, 2, —) where S is a (possibly infinite) set
of states, € S is the initial state, 3 is a finite set of labels, and —C S x X URZY x § is the transition
relation where RZY is the set {x € R | x > 0} of the nonnegative real numbers. O

A state s € Sof a TTS T = (S, 1,2, —) is reachable if there exists a finite sequence sgsi ... s, of states
such that so = ¢, s, = s and for any i, 0 < i < n, there exists 0 € ¥ UR=? such that (s;,o,s;+1) €. The
set of reachable states of T is noted Reach(T).

We need to compose TTS. For that purpose, we need TTS with structured set of labels. We say that
a finite set of labels ¥ is structured if it is partitioned into three subsets: X" the set of input labels, 3°Ut
the set of output labels, and X7 the set of internal labels. Let ¥ be a structured alphabet and ¥/ C X be
a subset of labels, then we note ¥/ for the set {7 | ¢ € ¥'}, and assume this set is such that ' NY = @.
This operator on alphabets will be used later: intuitively, for an event, o represents its occurrence in the
environment and & its perception by a controller.

Definition 2 [STTS] A structured timed transition system T is a tuple (S, ¢, X", ¥°Ut %17) where S is a
(possibly infinite) set of states, ¢ € S is the initial state, the set of labels is partitioned into three subsets:
¥ is the finite set of incoming labels, ¥° is the finite set of outgoing labels, X7 is the finite set of internal
labels, and —C S x X" U XUt U X" URZ? x § is the transition relation. O

In the sequel, we use one STTS to model a timed controller and one to model the environment in which
the controller is embedded. We model the communication between the two STTS using the mechanism of
synchronization on common labels. This is a blocking communication mechanism. Nevertheless, on one
hand we want to verify that the controller does not control the environment by refusing to synchronize on its
output, and on the other hand, we do not want our controller to issue outputs that can not be accepted by
the environment. To avoid such problems we impose input enabledness of the STTS that we compose, which
means that input labels have the property of being enabled in every state. Input enabledness is a concept
introduced in [LT87]. Formally :

Definition 3 [Input enabled STTS] A STTS 7 = (S,, X", ¥°Ut $7) is input enabled if for all ¢ € X",
for all s; € S there exists sy € S such that (s1,0,s2) €—. O

We chose this semantics for inputs because it clarifies the presentation, but other semantics are possible:
for instance in a preliminary version of this work [DDR04], we imposed receptiveness of controllers. Under
this assumption, a controller must be fast enough to treat each occurrence of an event before the next
occurrence arrives. One could also imagine a semantics where inputs arriving at the wrong time are simply
ignored. Those aspects are orthogonal to the implementability aspects of the AASAP semantics.

We now define when and how two input enabled STTS can be composed to define a timed transition
system.

Definition 4 [Composition of STTS] Two input enabled STTS 7; = (Sy,1, X, 34 37 —1) and T =
(Sa, 12,200 TQUE ST o) are composable if XM = %194t and LI = 39Ut Their composition, noted 7; |73 is the
TTS 7 = (5,1, %, —) such that S = {(s1,82) | 51 € S1 and sz € Sa}, ¢t = (11,¢2), T = LU X" U XT U X7,
and — is such that for any o € ¥ URZ?, we have that ((s1,s2), 0, (s}, s2)) €— iff one of the following three
assertions holds:

o o€ XU NS URZ? and (s1,0,s82) €—1 and (s}, 0,8h) €
e g€ X7 and (s1,0,s)) €—1 and sp = s)
e g€ X7 and (sg2,0,85) €2 and 51 = §)

O

For the sake of simplicity, we defined composition of two STTS only. The construction can be easily
generalized if we assume that two STTS never share an output label as in [LT87].

Implementations of controllers are also formalized using STTS. To reason about the correctness of im-
plementations w.r.t. higher level models, we use a notion of simulation [Mil80].

Definition 5 [Simulation relation for STTS] Given two STTS T3 = (Si,u1, XN, XU BT, —1) and T =
(So, 12, XN MU T o), let ¥ = XUt U XN U XT, we say that Ty is simulable by 7y, noted T, C Ty, if there
exists a relation R C So x S7 (called a simulation relation) such that:

° (LQ, Ll) S R,

e for any (so,s1) € R, for any o0 € X URZY, for any s such that (so,0,sh) €—a,
there exists s} € S such that (s1,0,5]) €—1 and (s}, s]) € R.

O

Simulation can be used to define a notion of refinement. We say that the STTS 75 refines the STTS
71, if 7o C 77. In the following, we use simulation relations because they preserve safety properties [AL91],
but they also preserve stronger properties such as the ones expressed in the logics LTL [Pnu77] or ACTL
[CBG8S.

We are now equipped to define the notion of safety control. This notion together with the notion
of refinement we have introduced above allow us to formalize in section 4 and 5, the notion of correct
implementation of an embedded timed controller.

Definition 6 [Safety Control] Let 73 = (S1,t1, 31", 94, $7, —1) (the controller) and 73 = (S2, 1o, B, 3194t,
37, —2) (the environment) be two composable STTS. Let B C Sy, we say that 7; controls 73 to avoid B if
Reach(71]|72) N {(s1,s2) | s1 € S1 A s2 € B} is empty. O

We can now state two theorems linking our notion of refinement with the notion of safety control.

Theorem 1 Let 77 and 73 be two composable STTS, let T3 be a STTS such that T3 E 77, and let B C S,
if T1 controls 15 to avoid B then T3 controls 15 to avoid B.

Theorem 2 Let Ty = (Sy,11, X1, 59U BT, —1) and T = (Sa, 12, 20, 23U BT —9) be two composable STTS,
let T3 be a STTS such that T3 C T3, and let B C S3 C Sa, if Ty controls T3 to avoid B then Ty controls T3
to avoid B.

Theorem 1 shows that safety control is preserved by refinements of the controller. This has practical interest
since it may require less resources (time, memory) for automatic tools to check safety control of a coarser
model of the controller. In the same way, an over-approximation of the environment can be sufficient for
proving safety in practice. In this case, we can also infer safety control for the refined environment, as stated
by Theorem 2. Again this can be useful in practice.

3 Timed automata

The STTS of previous section are specified using the formalism of timed automata. We recall their definition
in this section.

Let X be a finite set of real-valued variables. A valuation for X is a function v : X — R2%. We
write [Y — E] for the set of all valuations of set of variables Y to domain E. For a set V C [X — R=]
of valuations, and z € X, define V(z) = {v(z) | v € V}. A rectangular constraint over X is a formula
of the form “z € I” where x belongs to X, and I is one of the intervals (a,b),[a,b), (a,b] or [a,b] where
a,b € QZ%U{+oo}. Q=0 denotes the positive rational numbers and, in the sequel, we also use Q>° to denote
the strictly positive rational numbers. A rectangular predicate is a finite set of rectangular constraints. For
a rectangular predicate p and a valuation v, we write v = p if v(z) € I for all “o € I” appearing in p.
For a rectangular predicate p, [p] denotes the set {v | v = p}. We say that a rectangular predicate over
X is in normal form if it contains at most one rectangular constraint for each variable z € X, with the
convention that the empty predicate p (such that [p]= @) is represented by {x € [+00,+00] | z € X}; any
rectangular predicate can be put in that normal form. Let g be a rectangular predicate in normal form,
then g(x) denotes the rectangular constraint « € I if “z € I” is the constraint over z in g and true if there
is no constraint over x in g. We note Rect(X) the set of rectangular predicates built using variables in X.
Rect.(X) is the subset of rectangular predicates containing only closed rectangular constraints. Let g(z)
denote the closed rectangular constraints “x € [a,b]”, Ib(g(x)) denotes the value a and rb(g(x)) denotes the
value b. Let v : 1 — F» be a valuation, let F3 C Ej, and ¢ € Fy, then v[FE3 := ¢| denotes the valuation v’

such that
vy e ifeec Es
U(e)_{ v(e) ifed F3

In the sequel, we sometimes write v[e := ¢] instead of v[{e} := ¢]. Let v : X — RZ° be a valuation, for
any t € RZ% v —t is a valuation in [X — R] such that for any x € X, (v—1t)(z) = v(x) —t. We define v+t in
a similar way. We extend this definition to valuation v in [X — RZ°U{L}] as follows: (v+1t)(z) = v(z) +1t,
if v(r) € R2% and (v + t)(x) = L otherwise. We are now equipped to define timed automata and their
classical semantics.

Definition 7 [Timed automata - syntax] A timed automaton is a tuple (Loc,°, Var, Inv, Lab™, Lab®"t, Lab",
Edg) where

e Loc is a finite set of locations representing the discrete states of the automaton.
e [Y ¢ Loc is the initial location.

e Var = {z1,...,x,} is a finite set of real-valued clocks which value continuously increases as time passes
with first derivative equal to one.

e Inv: Loc — Rect(Var) is the invariant condition. The automaton can stay in location [as long as each
variable z has a value in the interval [Inv(l)(x)]. We require that for any = € Var, 0 €[Inv(lp)(z)], to
ensure the existence of an initial state.

e Lab = Lab™ U Lab®“t ULab” is a structured finite alphabet of labels, partitioned into input labels Lab™,
output labels Lab®t, and internal labels Lab7.

e Edg C Loc x Loc x Rect(Var) x Lab x 2V is a set of edges. An edge (I,I’, g, 0, R) represents a discrete
transition from location [to location !’ with guard g, label o and a subset R C Var of the variables to
be reset.

O

Definition 8 [Timed automata - semantics| Let A = (Loc, lo, Var, Inv, Lab’", Lab°“t, Lab”, Edg) be a timed
automaton, the semantics of A is the input enabled STTS [A]= (S,¢, X", U X7, —) where:

S={(,v) |l e LocAv€llnv()]}.
e . = (lp,vp) such that for any x € Var : vo(z) = 0.
o ¥i" = Lab™, ¥ = Lab°"t, and £” = Lab”.

the transition relation — is defined as follows:

— For the discrete transitions, ((I,v), 0, (I’,v")) €— iff
* either there exists an edge (1,1, 9,0, R) € Edg such that v |E g, v' = v[R :=0];
% or there does not exist such an edge, o € Lab™ and (I,v) = (I',v’).
— For the continuous transitions, ((I,v),t,(I’,v")) €— iff | = I’ and for each variable z € Var we

have the two following conditions satisfied : v'(z) = v(x) + ¢ and V¢’ € [0,t] : v +t' €[Inv(D)].

O

This semantics for a timed automaton is an input enabled STTS. Indeed, if no transition has been foreseen
in the syntax for a given state and a given input label, the semantics allow a self loop on that state for that
label.

A timed word is a pair (o,7) where 0 = ogo102... is an infinite sequence of labels o; € Lab and
T = TpT1T2... is an infinite sequence of real numbers. A timed word (o,7) is accepted by A if there
exists a sequence o, 50, 51, 51, 52, 85, ... Of states s;,s; € S such that so = ¢ and for all i > 0 we have

(84,78 — Tiz1,8;) €— (with 71 = 0) and (s}, 04, Si+1) €—.

For simplicity, we restrict ourselves in this paper to environments modeled as timed automata. Neverthe-

less, all the results presented below hold if the environment is modeled using any class of hybrid automata,
unless explicitly stated.
Running example. Consider Figure 1. A “!” corresponds to an output event and a “?” to an input
event. The timed automaton of Figure 1(b) models a simple environment (a plant): when a request A is
received, the response B is emitted when y = 1, and then the event C is accepted which reset the clock y.
Moreover, the event A must occur at least every 2 time units, and the reaction C should occur before the
timeout condition x > « become true. If it is not the case, the environment enters the location Bad modeling
a fatal error. We want to control the environment for « = 1 and o = 2.

The role of the controller is to produce an event A at least every 2 time units, to accept the subsequent
event B and to output C respecting the timing constraint. An example of such a controller is given in
Figure 1(a). The designer has chosen here to output an A every 1 time unit, and to react to the event B as
quickly as possible by emitting a C. Given this controller for the system, we must verify that it gives orders in
such a way that any resulting behavior of the environment avoids to enter the set of bad states (all the states
in which the environment is in control location Bad). Observe that since the semantics of timed automata
is input enabled, we are sure that the controller could not simply control the environment to avoid Bad by
refusing to synchronize with B.

The reader can check that, with the classical semantics of timed automata, the controller controls the
environment such that the location Bad is not reachable for & = 1 and o = 2. Later, we will see that if « = 1
then the controller is not implementable, on the other hand, if & = 2 then the controller can be implemented
and controls the environment to avoid Bad.

4 FErAsTIC Controllers and AASAP semantics

Main ingredients of our approach. As we already pointed out in the introduction, the classical se-
mantics given in Definition 8 is problematic for the controller part if our goal is to transfer the properties
verified on the model to an implementation. Below, we illustrate the properties of the classical semantics

z2<0

(a) The ASAP controller (b) The environment

Figure 1: Running example.

that makes it impossible to both implement the controller and ensure formally that the properties of the
model are preserved.

First, note that invariants (grayed constraints in the example of Figure 1 (a)) are used to force the
controller to take actions. Invariants can be removed if we assume an ASAP semantics for the controller: any
action is taken as soon as possible, this is also called the mazimal progress assumption. So, in the example,
the transition labeled with A! fires exactly when w = 1, and the transition labeled with C! proceeds exactly
when z = 0, i.e. instantaneously. Clearly, no hardware can guarantee that the transition will always be taken
without any delay. Second, synchronizations between the environment and the controller (e.g. transitions
labeled B) cannot be implemented as instantaneous: some time is needed by the hardware to detect the
incoming event B and for the software that implements the control strategy to take this event into account.
Third, the use of real-valued clocks is only possible in the model: implementations use digital clocks with
finite granularity. It is then necessary to show that digital clocks can replace the real-valued clocks while
preserving the verified safety properties.

These three problems illustrate that even if we have formally verified our control strategy, we can not
conclude that an implementation will conserve any of the properties that we have proven on the model. This
is unfortunate. If we simplify, there are two options to get out of this situation: (i) we ask the designer
to give up the synchrony hypothesis and ask her/him to model the platform on which the control strategy
will be implemented, as in [[IKLT00], or (ii) we let the designer go on with the synchrony hypothesis at the
modeling level but relax the ASAP semantics during the verification phase in order to formally validate the
synchrony hypothesis.

We think that the second option is much more appealing and we propose in the next section a framework
that makes the second option possible theoretically but also feasible practically. The framework we propose is
centered on a relaxation of the ASAP semantics that we call the AASAP semantics. The main characteristics
of this semantics are summarized below:

e any transition that can be taken by the controller becomes urgent only after a small delay A (which
may be left as a parameter);

e a distinction is made between the occurrence of an event in the environment (sending o), and in the
controller (receiving &), however the time difference between the two events is bounded by A;

e guards are enlarged by some small amount depending on A.

We will now define formally this semantics and we will show in section 5 that it is robust in the sense
that it defines a tube of strategies (instead of a unique strategy as in the ASAP semantics) which can be
refined in a formal way into an implementation while preserving the safety properties imposed by this tube
of strategies.

As stated previously, invariants are useful when modeling controllers with the classical semantics in order
to force the controller to take actions but they are useless with an ASAP semantics. This is also true with the
semantics we define in this section. So, we restrict our attention to the subclass of timed automata without
invariants and with closed guards. In the rest of the paper, we call the controller specified by this subclass
ELASTIC? controllers.

Definition 9 [ELasTic Controllers] An ELASTIC controller A is a tuple (Loc, o, Var,Lab™, Lab®“t, Lab",
Edg) where:

e Loc is a finite set of locations;
e [y € Loc is the initial location;
o Var = {x1,...,2,} is a finite set of clocks;

e Lab = Lab™ U Lab®“t ULab” is a finite structured alphabet of labels, partitioned into input labels Lab™,
output labels Lab®"t, and internal labels Lab7;

e Edg is a set of edges of the form (I,!’,g,0, R) where [,I’ € Loc are locations, o € Lab is a label,
g € Rectc(Var) is a guard and R C Var is a set of clocks to be reset.

O
Before defining the AASAP semantics we need some more notations:

Definition 10 [True Since] We define the function “True Since”, noted TS : [Var — RZ%] x Rect.(Var)
— R29U {~00}, as follows:

t ifoEgAv—tEgAYY >t:v—t £y
—oo otherwise

TS(0.9) = {

This definition is meaningful since g € Rect.(Var) defines a closed set.

Definition 11 [Guard Enlargement] Let g(z) be the rectangular constraint “z € [a,b]”, the rectangular
constraint Ag(z)a with A € Q20 is the formula “z € [a — A,b+ A]” if a — A > 0 and “x € [0,b+ A]”
otherwise. If g is a closed rectangular predicate then aga is the set of closed rectangular constraints

{ag(@)a | g(z) € g}- O
We are now ready to define the AASAP semantics. Intuitions are given right after the definition.
Definition 12 [AASAP semantics] Given an ELASTIC controller
A = (Loc, Iy, Var, Lab", Lab®"t Lab”, Edg)
and A € Q29 the AASAP semantics of A, noted [A]*** is the STTS
T = (S, 1,50, 508 7)

where:

2ELASTIC stands for Event-based LAnguage for Simple TTmed Controllers; we also give to those timed controllers a semantics
which is elastic in a sense that will be clear to the reader soon.

(A1) S is the set of tuples (I,v,1,d) where | € Loc, v € [Var — R=2%], [€ [¥" - R20U {1}] and d € R=Y;

(A2) v = (lp,v,I,0) where v is such that for any x € Var : v(z) = 0, and I is such that for any o € X",

¢
I(o) = 1;

(A3) ¥in = Lab", ¥°Ut = | ab°t and X7 = Lab” U Labi" U {¢};
(A4) The transition relation is defined as follows:

— for the discrete transitions, we distinguish five cases:
(A4.1) let o € Lab®“t. We have ((I,v,I,d),o,(l’,v',1,0)) €— iff there exists (I,1’, g, 0, R) € Edg such
that v = aga and v = v[R :=0] ;
(A4.2) let o € Lab™. We have ((I,v,1,d),0,(l,v,I',d)) €— iff
- either I(o) = L and I’ = I[o := 0];
-orlI(o)# Land I' = I.
(A4.3) let ¢ € Labi". We have ((I,v,1,d),a,(l',v',I",0)) €— iff there exists (I,I',g,0,R) € Edg,
vEaga, I(0) # L, v =v[R:=0]and I' = I[[o := 1] ;
(A4.4) let o € Lab™. We have ((I,v,1,d),o,(l’,v',1,0)) €— iff there exists (I,I’,g,0,R) € Edg,
v = aga, and v/ = v[R:=0] ;
(A4.5) let 0 = €. We have for any (I,v,I,d) € S: ((I,v,1,d),¢,(l,v,I,d)) €—.
— for the continuous transitions:

(A4.6) for any t € RZ%, we have ((I,v,I,d),t, (I,v+t,[+t,d+t)) €— iff the two following conditions
are satisfied:

- for any edge (I,1’, g,0, R) € Edg with ¢ € Lab®"* U Lab™, we have that:
Y 0<t <t:(d+t <AVTSw+t,g) < A)
- for any edge (I,1', 9,0, R) € Edg with ¢ € Lab™, we have that:
Vi 0<t' <t:(d+t' <AVTS(w+t,9) <AV +1t)(o) <A)

O

Comments on the AASAP semantics. Rule (A1) defines the states that are tuples of the form (I, v, I, d).
The first two components, location [and valuation v, are the same as in the classical semantics; I and d
are new. The function I records, for each input event o, the time elapsed since its oldest “untreated”
occurrence. The treatment of an event o happens when a transition labelled with & is fired. Once this oldest
occurrence is treated, the function returns L for ¢ until a new occurrence of o, forgetting about the o’s
that happened between the oldest occurrence and the treatment. The time elapsed since the last location
change in the controller is recorded by d. Rule (A2) and (A3) are straightforward. Rules (44.1 — 6) require
more explanations. Rule (A4.1) defines when it is allowed for the controller to emit an output event. The
only difference with the classical semantics is that we enlarge the guard by the parameter A. Rules (A4.2)
defines how inputs from the environment are received by the controller. The controller maintains, through
the function I, a list of events that have occurred and are not treated yet. An input event o can be received
at any time, but only the age of the oldest untreated o is stored in the I function. Note that the rule ensures
input enabledness of the controller. Rule (44.3) defines when inputs are treated by the controller. An input
o is treated when a transition with an enlarged guard and labelled with & is fired. Once ¢ has been treated,
the value of I(0) goes back to L. Rule (A4.4) is similar to (A4.1). Rule (A4.5) expresses that the € event
can always be emitted. Rule (A44.6) specifies how much time can elapse. Intuitively, time can pass as long as
no transition starting from the current location is urgent. A transition labeled with an output or an internal
event is urgent in a location [when the control has been in [for more than A time units (d+¢' > A) and the
guard of the transition has been true for more than A time units (TS(v +t',g) > A). A transition labeled
with an input event ¢ is urgent in a location [when the control has been in [for more than A time units

(d+1t > A), the guard of the transition has been true for more that A time units (TS(v +¢’,g) > A) and
the last untreated occurrence of o event has been emitted by the environment at least A time units ago
(I 4+t (o) > A) (we define L to be smaller than any rational value). This notion of urgency parameterized
by A is the main difference between the AASAP semantics and the usual ASAP semantics.

Problems formulation We now define three problems that can be formulated about the AASAP semantics
of an ELASTIC controller.

Definition 13 [Parametric safety control problem] Let F be a timed automaton, for which [E] has the set
of states Sg, let B C Sg be a set of bad states and let A be an ELASTIC controller, the parametric safety
control problem asks

e [Fixed] whether [A]’Y**® controls [E] to avoid B for a given fixed value of A;

e [Existence] whether there exists A > 0 such that [A]JX*** controls [E] to avoid B;

e [Maximization] to maximize A such that [A]X*** controls [E] to avoid B.

O

As we will see later, the problem [Fixed] is useful when we know the characteristics of the hardware on
which the control will be implemented, the problem [Existence] is useful to determine if the controller is
implementable at all and the problem [maximization] is useful to determine what is the slowest hardware on
which the controller can be implemented.

A property of the AASAP semantics We now state a first property of the AASAP semantics. The
following theorem and corollary state formally the informal statement “faster is better”, that is if an envi-
ronment is controllable with an ELASTIC controller reacting within the bound A then this environment is
controllable by the same controller for any reaction time Ao < A;. This is clearly a desirable property.

Theorem 3 Let A be an ELASTIC controller, for any Ay, Ay € Q20 such that Ay < Ay we have that
[ALR, " AL

Proof. It is clear that the identity relation between the set of states of the two STTS [A] gAzsap and [[A]]AAAI‘Sap
is an appropriate simulation relation between them. |

Theorem 1 and Theorem 3 allow us to state the following corollary:

Corollary 1 Let E be a timed automaton, [E] be an STTS with set of states Sg, B C Sg be a set of bad
states, and A be an ELASTIC controller. For any A1, Ay € Q2°, such that Ay > Ao, if [[A]]AAAI‘Sap controls [E]

to avoid B then [[A}]/Zzsap controls [