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At the heart of all the techniques that have been proposed for exploring
infinite state spaces, is a symbolic representation that can finitely represent
infinite sets of states. In early work on the subject, this representation was do-
main specific, for example linear constraints for sets of real vectors. For several
years now, the idea that a generic finite-automaton based representation could
be used in many settings has gained ground, starting with systems manipu-
lating queues and integers [8,11,9,13], then moving to parametric systems [6],
and, recently, reaching systems using real variables [10,2].

For exploring an infinite state space, one does not only need a finite repre-
sentation of infinite sets, but also techniques for finitely computing the effect
of an unbounded number of transitions. Such techniques can be domain spe-
cific or generic. Domain specific techniques exploit the specific properties and
representations of the domain being considered and were, for instance, ob-
tained for queues in [15,14], for integers and reals in [17,22,12], for pushdown
system in [18,16], and for lossy channels in [19]. Generic techniques consider
finite-automata representations and provide algorithms that operate directly
on this representation, mostly disregarding the domain for which it is used.

Generic techniques appeared first in the context of the verification of sys-
tems whose states can be encoded by finite words, such as parametric systems.
The idea used there is that a configuration being a finite word, a transition
relation is a relation on finite words, or equivalently a language of pairs of
finite words. If this language is regular, it can be represented by a finite state
automaton, more specifically a finite-state transducer, and the problem then
becomes the one of iterating such a transducer. Finite state transducers are
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quite powerful (the transition relation of a Turing machine can be modeled
by a finite-state transducer), the flip side of the coin being that the iteration
of such a transducer is neither always computable, nor regular. Nevertheless,
there are a number of practically relevant cases in which the iteration of finite-
state transducers can be computed and remains finite-state. Identifying such
cases and developing (partial) algorithms for iterating finite-state transduc-
ers has been the topic, referred to as “regular model checking”, of a series of
recent papers [1,20,21,5,23].

The question that initiated the work [3] presented in this talk is, whether
the generic techniques for iterating transducers could be fruitfully applied in
cases in which domain specific techniques had been exclusively used so far. In
particular, one of our goals was to iterate finite-state transducers representing
arithmetic relations (see [22] for a survey). Beyond mere curiosity, the moti-
vation was to be able to iterate relations that are not in the form required by
the domain specific results, for instance disjunctive relations. Initial results
were very disappointing: the transducer for an arithmetic relation as simple
as (z,z + 1) could not be iterated by existing generic techniques. However,
looking for the roots of this impossibility through a mix of experiments and
theoretical work, and taking a pragmatic approach to solving the problems
discovered, we were able to develop an approach to iterating transducers that
easily handles arithmetic relations, as well as many other cases. Interestingly,
it is by using a tool for manipulating automata (LASH [24]), looking at ex-
amples beyond the reach of manual simulation, and testing various algorithms
that the right intuitions, later to be validated by theoretical arguments, were
developed. Implementation was thus not an afterthought, but a central part
of our research process.

The general approach that has been taken is similar to the one of [21]
in the sense that, starting with a transducer T, we compute powers T of
T and attempt to generalize the sequence of transducers obtained in order
to capture its infinite union. This is done by comparing successive powers
of T and attempting to characterize the difference between powers of 1" as
a set of states and transitions that are added. If this set of added states, or
increment, is always the same, it can be inserted into a loop in order to capture
all powers of 7. However, for arithmetic transducers comparing T* with T+t
did not yield an increment that could be repeated, though comparing 7% with
T2 did. So, a first idea we used is not to always compare 7% and T**!, but to
extract a sequence of samples from the sequence of powers of the transducer,
and work with this sequence of samples. Given the binary encoding used for
representing arithmetic relations, sampling at powers of 2 works well in this
case, but the sampling approach is general and different sample sequences
can be used in other cases*. Now, if we only consider sample powers 7"
of the transducers and compute | J, T, this is not necessarily equivalent to

1 as an example, it is often linear when considering parametric systems
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computing |J; T°. Fortunately, this problem is easily solved by considering the
reflexive transducer, i.e. Ty = T U T} where 77 is the identity transducer, in
which case working with an infinite subsequence of samples is sufficient.

Once the automata in the sequence being considered are constructed and
compared, and that an increment corresponding to the difference between
successive elements has been identified, the next step is to allow this increment
to be repeated an arbitrary number of times by incorporating it into a loop.
There are some technical issues about how to do this, but no major difficulty.
Once the resulting “extrapolated” transducer has been obtained, one still
needs to check that the applied extrapolation is safe (contains all elements of
the sequence) and is precise (contains no more). An easy to check sufficient
condition for the extrapolation to be safe is that it remains unchanged when
being composed with itself. Checking preciseness is more delicate, but we have
developed a procedure that embodies a sufficient criterion for doing so. The
idea is to check that any behavior of the transducer with a given number k of
copies of the increment, can be obtained by composing transducers with less
than k£ copies of the increment. This is done by augmenting the transducers
to be checked with counters and proving that one can restrict theses counters
to a finite range, hence allowing finite-state techniques to be used.

Taking advantage of the fact that our extrapolation technique works on
automata, not just on transducers, we consider computing reachable states
both by computing the closure of the transducer representing the transition
relation, and by repeatedly applying the transducer to a set of initial states.
The first approach yields a more general object and is essential if one wishes
to extend the method to the verification of liveness properties ([1,25]), but
the second is often less demanding from a computational point of view and
can handle cases that are out of reach for the first. Preciseness is not al-
ways possible to check when working with state sets rather than transducers,
but this just amounts to saying that what is computed is possibly an overap-
proximation of the set of reachable states, a situation which is known to be
pragmatically unproblematic.

Going further, the problem of using regular model checking technique for
systems whose states are represented by infinite (omega) words has been ad-
dressed. This makes the representation of sets of reals possible as described
in [2,12]. To avoid the hard to implement algorithms needed for some opera-
tions on infinite-word automata, only omega-regular sets that can be defined
by weak deterministic Biichi automata [7] are considered. This is of course
restrictive, but as is shown in [2], it is sufficient to handle sets of reals defined
in the first-order theory of linear constraints. Moreover using such a represen-
tation leads to algorithms that are very similar to the ones used in the finite
word case, and allows us to work with reduced deterministic automata as a
normal form. Due to these advantages and properties, one can show that the
technique developed for the finite word case can directly be adapted to weak
deterministic Biichi automata up to algorithmic modifications [4].
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Our technique has been implemented in a prototype that relies in part on
the LASH package. This prototype has been tested on several case studies
coming from different horizons. In our experiments, we were able to iterate a
variety of arithmetic (integer or real) transducers. We were also successful on
disjunctive relations that could not be handled by earlier specific techniques
such as [17,12]. The technique was also successfully applied to examples of
parametric systems and to the analysis of Petri nets. Moreover models of
hybrid systems, including a leaking gas burner and an alternating bit protocol
with timers were also considered.

Attempting to verify infinite-state systems while working exclusively with
automata-theoretic representations and algorithms can appear as a somewhat
quixotic endeavor. However, practical results clearly shown their interest, and
are thus a motivation for new developments [27,26,28].
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