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Abstract. Regular model checking is the name of a family of techniques
for analyzing infinite-state systems in which states are represented by
words, sets of states by finite automata, and transitions by finite-state
transducers. The central problem is to compute the transitive closure
of a transducer. A main obstacle is that the set of reachable states is
in general not regular. Recently, regular model checking has been ex-
tended to systems with tree-like architectures. In this paper, we provide
a procedure, based on a new implementable acceleration technique, for
computing the transitive closure of a tree transducer. The procedure con-
sists of incrementally adding new transitions while merging states which
are related according to a pre-defined equivalence relation. The equiva-
lence is induced by a downward and an upward simulation relation which
can be efficiently computed. Our technique can also be used to compute
the set of reachable states without computing the transitive closure. We
have implemented and applied our technique to several protocols.

1 Introduction

Regular model checking is the name of a family of techniques for analyzing
infinite-state systems in which states are represented by words, sets of states by
finite automata, and transitions by finite automata operating on pairs of states,
i.e. finite-state transducers. The central problem in regular model checking is to
compute the transitive closure of a finite-state transducer. Such a representation
allows to compute the set of reachable states of the system (which is useful to ver-
ify safety properties) and to detect loops between states (which is useful to verify
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liveness properties). However, computing the transitive closure is in general un-
decidable; consequently any method for solving the problem is necessarily incom-
plete. One of the goals of regular model checking is to provide semi-algorithms
that terminate on many practical applications. Such semi-algorithms have al-
ready been successfully applied to parameterized systems with linear topologies,
and to systems that operate on linear unbounded data structures such as queues,
integers, reals, and hybrid systems [BJNT00,DLS01,BLW03,BHV(04,BLW04].

This work aims at extending the paradigm of regular model checking to
verify systems which operate on tree-like architectures. This includes several
interesting protocols such as the Percolate Protocol ([KMMT01]) or the Tree-
arbiter Protocol ([ABH*97]).

To verify such systems, we use the extension of regular model checking called
tree regular model checking, which was introduced in [KMM*01,AJMd02,BT02].
In tree regular model checking, states of the systems are represented by trees, sets
of states by tree automata, and transitions by tree automata operating on pairs
of trees, i.e. tree transducers. As in the case of regular model checking, the central
problem is to provide semi-algorithms for computing the transitive closure of a
tree transducer. This problem was considered in [AJMd02,BT02]; however the
proposed algorithms are most of the time inefficient or non-implementable.

In this work, we provide an efficient and implementable semi-algorithm for
computing the transitive closure of a tree transducer. Starting from a tree trans-
ducer D, describing the set of transitions of the system, we derive a transducer,
called the history transducer whose states are columns (words) of states of D.
The history transducer characterizes the transitive closure of the rewriting rela-
tion corresponding to D. The set of states of the history transducer is infinite
which makes it inappropriate for computational purposes. Therefore, we present
a method for computing a finite-state transducer which is an abstraction of the
history transducer. The abstract transducer is generated on-the-fly by a proce-
dure which starts from the original transducer D, and then incrementally adds
new transitions and merges equivalent states. To compute the abstract trans-
ducer, we define an equivalence relation on columns (states of the history trans-
ducer). We identify good equivalence relations, i.e., equivalence relations which
can be used by our on-the-fly algorithm. An equivalence relation is considered
to be good if it satisfies the following two conditions:

— Soundness and completeness: merging two equivalent columns must not add
any traces which are not present in the history transducer. Consequently,
the abstract transducer accepts the same language as the history transducer
(and therefore characterizes exactly the transitive closure of D).

— Computability of the equivalence relation: This allows on-the-fly merging of
equivalent states during the generation of the abstract transducer.

We present a methodology for deriving good equivalence relations. More pre-
cisely, an equivalence relation is induced by two simulation relations; namely a
downward and an upward simulation relation, both of which are defined on tree
automata. We provide sufficient conditions on the simulation relations which
guarantee that the induced equivalence is good. Furthermore, we give examples



of concrete simulations which satisfy the sufficient conditions. These simulations
can be computed by efficient algorithms derived from those of Henzinger et al.
([HHK95]) for finite words.

We also show that our technique can be directly adapted in order to compute
the set of reachable states of a system without computing its entire transitive
closure. When checking for safety properties, such an approach is often (but not
always) more efficient.

We have implemented our algorithms in a tool which we have applied to a
number of protocols including a Two-Way Token protocol, the Percolate Protocol
([KMMT01]), a parametrized version of the Tree-arbiter Protocol ([ABH'97]),
and a tree-parametrized version of a Leader Election Protocol.

Related Work: There are several works on efficient computation of tran-
sitive closures for word transducers [DLS01,AJNd03,BLW03,BHV(04,BLW04].
However, all current algorithms devoted to the computation of the transitive
closure of a tree transducer are not efficient or not implementable. In [AJMd02],
we presented a method for computing transitive closures of tree transducers.
The method presented in [AJMd02] is very heavy and relies on several layers of
expensive automata-theoretic constructions. The method of this paper is much
more light-weight and efficient, and can therefore be applied to a larger class of
protocols. The work in [BT02] also considers tree transducers, but it is based
on widening rather than acceleration. The idea is to compute successive powers
of the transducer relation, and detect increments in the produced transducers.
Based on the detected increments, the method makes a guess of the transitive
closure. One of the main disadvantages of this work is that the widening proce-
dure in [BT02] is not implemented. Furthermore, no efficient method is provided
to detect the increments. This indicates that any potential implementation of the
widening technique would be inefficient. In [AJNd03], a technique for computing
the transitive closure of a word transducer is given. This technique is also based
on computing simulations. However, as explained in Section 6, those simulations
cannot be extended to trees, and therefore the technique of [AJNd03] cannot be
applied to tree transducers. In [DLS01], Dams, Lakhnech, and Steffen present
an extension of the word case to trees. However, this is done for top-down tree
automata which are not closed under determinization (and thus many other op-
erations). In [DLS01], the authors consider several definitions of simulations and
bisimulations between top-down tree automata without providing methods for
computing them. Hence, it is not clear how to implement their algorithms.

Outline: In the next Section, we introduce basic concepts related to trees
and tree automata. In Section 3, we describe tree relations and transducers. In
Section 4, we introduce tree regular model checking. Section 5 introduces history
transducers which characterize the transitive closure of a given transducer. In
Section 6, we introduce downward and upward simulations on tree automata, and
give sufficient conditions which guarantee that the induced equivalence relation
is exact and computable. Section 7 gives an example of simulations which satisfy
the sufficient conditions. In section 8, we describe how to compute the reachable



states. In Section 9 we report on the results of running a prototype on a number
of examples. Finally, in Section 10 we give conclusions and directions for future
work.

Some proofs had to be omitted due to space constraints. A self-contained
long version of this paper can be obtained from the authors.

2 Tree automata

In this section, we introduce some preliminaries on trees and tree automata
(more details can be found in [CDG99)).

A ranked alphabet is a pair (X, p), where X is a finite set of symbols and p is
a mapping from ¥ to N. For a symbol f € X, we call p(f) the arity of f. We let
X, denote the set of symbols in X' with arity p. Intuitively, each node in a tree
is labeled with a symbol in X' with the same arity as the out-degree of the node.
Sometimes, we abuse notation and use X' to denote the ranked alphabet (X, p).

Following [CDG199], the nodes in a tree are represented by words over N.
More precisely, the empty word € represents the root of the tree, while a node
b1by...bg is a child of the node by bs...bx,_1. Also, nodes are labeled by symbols
from X.

Definition 1. [Trees]
A tree T over a ranked alphabet X is a pair (S, \), where

— S, called the tree structure, is a finite set of sequences over N (i.e, a finite
subset of N* ). Each sequence n in S is called a node of T. If S contains a
node n = byby...bg, then S will also contain the node n' = biby...by_1, and
the nodes n, = byby...bg_17, for r : 0 < r < bg. We say that n' is the parent
of n, and that n is a child of n'. A leaf of T is a node n which
does not have any child, i.e., there is no b € N with nb € S.

— X is a mapping from S to X. The number of children of n is equal to p(A(n)).
Observe that if n is a leaf then A\(n) € Xy.

We use T(X) to denote the set of all trees over X.

Sets of trees are recognized using tree automata. There exist various kinds
of tree automata. In this paper, we use bottom-up tree automata since they are
closed under all operations needed by the classical model checking procedure:
intersection, union, minimization, determinization, inclusion test, complementa-
tion, etc. In the sequel, we will omit the term bottom-up.

Definition 2. [Tree Automata and Languages]
A tree language is a set of trees.
A tree automaton [CDG*99,Tho90] over a ranked alphabet X is a tuple A =



(Q, F,8), where Q is a set of states, F C @ is a set of final states, and § is the
transition relation, represented by a set of rules each of the form

f
(q1,---50p) — ¢

where f € X, and q1,...,qp,q € Q). Unless stated otherwise, we assume @) and
é to be finite.

We say that A is deterministic when é does not contain two rules of the form
(1,---,q) -1 qand (g1,...,q,) 5 ¢ with ¢ # ¢'.

Intuitively, the automaton A takes a tree T € T(X) as input. It proceeds
from the leaves to the root (that explains why it is called bottom-up), annotating
states to the nodes of T'. A transition rule of the form shown above tells us that if
the children of a node n are already annotated from left to right with ¢1,...,qp
respectively, and if A(n) = f, then the node n can be annotated by ¢. As a

special case, a transition rule of the form AN q implies that a leaf labeled with
f € X can be annotated by q.

Formally, a run r of A on a tree T = (S,)\) € T(X) is a mapping from S to
@ such that for each node n € T' with children nq,...,n; we have

((r(nl), ooy r(ng)) ) T(n)) €.

For a state ¢, we let T ==, ¢ denote that r is a run of A on T such
that r(e) = q. We use T =>4 ¢ denote that T ==, ¢ for some r. For a
set S C @ of states, we let T =>4 S (T ==, S) denote that T ==, ¢
(T =>4 q) for some ¢ € S. We say that A accepts T if T =>4 F. We define
L(A) = {T| T is accepted by A}. A tree language K is said to be regular if there
is a tree automaton A such that K = L(A).

We now define the notion of context. Intuitively, a context is a tree with
“holes” instead of leaves. Formally, we consider a special symbol [0 ¢ X with
arity 0. A context over X is a tree (Sc,A¢) over ¥ U {0} such that for all
leaves n, € Sc¢, we have Ac(n.) = 0. For a context C = (S¢, A¢) with holes
at leaves nq,...,ng € Sc, and trees Ty = (S1, A1), -, Tk = (Sk, A\k), we define
C[Th,...,Tk] to be the tree (S, A), where

- S=Su U {ni-n'|n' €S}

ie{L,. k}
— for each n = n; - n' with n' € S; for some 1 < ¢ < k, we have A\(n) = \;(n');
— for each n € S¢ — {n1,...,n}, we have A(n) = Ac(n).

Intuitively, C[Ty,...,T] is the result of appending the trees Ti,...,T to
the holes of C. Consider a tree automaton A = (@, F), d) over a ranked alphabet
Y. We extend the notion of runs to contexts. Let C = (S¢, A¢) be a context
with leaves ny,...,ng. A runr of Aon C from (qi,...,q) is defined in a similar
manner to a run except that for leaf n;, we have r(n;) = ¢;. In other words,



each leaf labeled with O is annotated by one ¢;. We use C [q1,...,qk] =4 ¢
to denote that r is a run of A on C from (g1, ..., qk) such that r(e) = ¢. The
notation C'[q1,...,qr] =>4 ¢ and its extension to sets of states are explained in
a similar manner to runs on trees.

Definition 3. [Suffix and Prefix]

For an automaton A = (Q, F, ), we define the suffix of o tuple of states (g1, - --,qn)
to be suff(q1,...,q,) = {C : context| C|q1,-..,q,) =>4 F'}. For a state ¢ € Q,
its prefix is the set of trees pref(q) = {T : tree] T =>4 q}.

Remark Our definition of a context coincides with the one of [BT03] where all
leaves are holes. On the other hand, a context in [CDG199] and [AJMd02] is a
tree with a single hole.

3 Tree Relations and Transducers

In this section we introduce tree relations and transducers.

For a binary relation R, we use Rt to denote the transitive closure of R.

For a ranked alphabet X and m > 1, we let X*(m) be the ranked alphabet
which contains all tuples (fi,..., fm) such that fi,..., fn, € X}, for some p. We
define p((f1,...,fm)) = p(f1). In other words, the set X*(m) contains the m-
tuples, where all the elements in the same tuple have equal arities. Furthermore,
the arity of a tuple in X*(m) is equal to the arity of any of its elements. For
trees T1 = (S1,\1) and Ty = (Sa, A2), we say that Ty and Ty are structurally
equivalent, denoted T7 = T5, if S = S,.

Consider structurally equivalent trees Ty,...,T,, over an alphabet X', where
T, =(S,\) fori:1<i<m.Welet T} x---x T, be the tree T' = (S, \) over
X*(m) such that A(n) = (A1 (n),..., Am(n)) for each n € S. An m-ary relation
on the alphabet X is a set of tuples of the form (T4,...,Ty,), where Ty, ..., T, €
T(X)and Ty = --- =2 T,,. A tree language K over X'*(m) characterizes an m-ary
tree relation [K] on T(X) as follows: (T1,...,T) € [K]if Ty X --- x T}, € K.

We use tree automata also to characterize tree relations: an automaton A over
X*(m) characterizes an m-ary relation on T'(X), namely the relation [L(A4)]. A
tree relation is said to be regular if it is equal to [L(A)], for some tree automaton
A. In such as case, we denote this relation by R(A).

Definition 4. [Tree Transducers]
In the special case where D is a tree automaton over X*(2), we call D a tree
transducer over X.

Remark Our definition of tree transducers is a restricted version of the one
considered in [BT02] in the sense that we only consider transducers that do not
modify the structure of the tree. In [BT02], such transducers are called relabeling
transducers.



4 Tree Regular Model Checking

We use the following framework known as tree regular model checking
[AJMd02,BT02,KMM*01]:

Definition 5. [Program)]
A program is a triple P = (X, ¢1, D) where

— X is a ranked alphabet, over which the program configurations are encoded
as trees;

— @1 is a set of initial configurations represented by a tree automaton over X;

— D is a transducer over X characterizing a transition relation R(D).

In a similar manner to the the case of words (see [BJNTO00]), the problems
we are going to consider are the following:

— Computing the transitive closure: The goal is to compute a new tree trans-
ducer D+ representing the transitive closure of D, i.e., R(Dt) = (R(D))".
Such a representation can be used for computing the reachability set of the
program or for finding cycles between reachable program configurations.

— Computing the reachable states: The goal is to compute a tree automaton
representing R (D7) (¢1). This set can be used for checking safety properties
of the program.

We will first provide a technique for computing D+. Then, we will show the
modifications needed for computing R (D) (¢r) without computing DT .

5 Computing the Transitive Closure

In this section we introduce the notion of history transducer. With a transducer
D we associate a history transducer H which corresponds to the transitive closure
of D. Each state of H is a word of the form ¢; -- - qx where ¢y, ..., qr are states
of D. For a word w, we let w(i) denote the i-th symbol of w. Intuitively, for each
(T,T'") € D, the history transducer H encodes the successive runs of D needed
to derive 7" from T'. The term “history transducer” reflects the fact that the
transducer encodes the histories of all such derivations.

Definition 6. [History Transducer]

Consider a tree transducer D = (Q, F, ) over a ranked alphabet X. The history
(tree) transducer H for D is an (infinite) transducer (Qu, Fr,0n), where Qg =
QT, Fg = F*, and 6 contains all rules of the form

fof!
(w1,..., wp) (—))w

such that there is k > 1 where the following conditions are satisfied

= |wi] = - = fwp| = |w]| = k;



— there are f1, fa, ..., fra1, with f = f1, f' = fe+1, and
(wi(g) ..., wp(4)) (Fiodigr) w(i) belongs to d, for eachi:1<i<k.

Observe that all the symbols f1, ..., fr+1 are of the same arity p. Also, notice
that if (T x T') =g w, then there is a k > 1 such that |r(n)| = k for each
n € (T x T"). In other words, any run of the history transducer assigns states
(words) of the same length to the nodes. From the definition of H we derive the
following lemma (proved in [AJMd02]) which states that H characterizes the
transitive closure of the relation of D.

Lemma 1. For a transducer D and its history transducer H, we have that
R(H) = R(D).

The problem with H is that it has infinitely many states. Therefore, we
define an equivalence ~ on the states of H, and construct a new transducer
where equivalent states are merged. This new transducer will hopefully only
have a finite number of states.

Given an equivalence relation ~, the symbolic transducer D~ obtained by
merging states of H according to ~ is defined as (Q/ ~, F/ ~,d~), where:

— )/ ~ is the set of equivalence classes of Qm w.r.t. ~;
— F/ ~ is the set of equivalence classes of Fg w.r.t. ~ (this will always be

well-defined, see sufficient condition 5 of Theorem 1);

— 0~ contains rules of the form (xy,...,%,) —f>g x iff there are states q; €

Z1,---,qn € Tp,q € x such that there is a rule (q1,...,qn) i)qofH.

Since H is infinite we cannot derive D~ by first computing H. Instead, we
compute D~ on-the-fly collapsing states which are equivalent according to ~. In
other words, we perform the following procedure (which need not terminate in
general).

— The procedure computes successive reflexive powers of D: DS, D<2 D<3 .
(where D=* = |J'Z} D™), and collapses states* according to ~. We thus ob-
tain Dgl, D§2, .

— The procedure terminates when the relation Rt is accepted by Dgi. This
can be tested by checking if the language DéioD is included in Dgi.

6 Soundness, Completeness, and Computability

In this section, we describe how to derive equivalence relations on the states of
the history transducer which can be used in the procedure given in Section 5. A
good equivalence relation ~ satisfies the following two conditions:

— It is sound and complete, i.e., R(D~) = R(H). This means that D~ charac-
terizes the same relation as DT.

4 The states of D<* are by construction states of the history transducer.



— It is computable. This turns the procedure of Section 5 into an implementable
algorithm, since it allows on-the-fly merging of equivalent states.

We provide a methodology for deriving good equivalence relations as follows: we
define two simulation relations; namely a downward simulation relation <gown
and an upward simulation relation <,p, which together induce an equivalence
relation ~. Then, we give sufficient conditions of the simulation relations which
guarantee that the induced equivalence ~ is a good one.

6.1 Downward and Upward Simulation
We start by giving the definitions.

Definition 7. [Downward Simulation]

Let A = (Q, F,d) be a tree automaton. A binary relation <X4own 5 a downward
stmulation iff for anyn > 1 and any symbol f € X, for all states q,q1,- .-, qn, 7,
the following holds:

Whenever q <down T and (q1,-..,qn) N q, then there exist states ri,...,Tn
such that ¢1 Sdown T1s- - - qn Jdown Tn 0nd (T1,...,77) Ly

Definition 8. [Upward Simulation)]

Let A = (Q, F,6) be a tree automaton. Given a downward simulation <down, @

binary relation <yp is an upward simulation w.r.t. Sgown off for anyn > 1 and
any symbol f € X, for all states q¢,q1,---,qiy---,qn,7i € Q, the following holds:

Whenever g; <up r; and (q1,...,qn) AN q, then there exist states
TlyenesTie1,Tigls---Tn, T € Q such that ¢ Sup 7 and Vj # i : ¢j Sdown T 0nd
(r1y..y7n) L

While the notion of a downward simulation is a straightforward extension
of the word case, the notion of an upward simulation is not as obvious. This
comes from the asymmetric nature of trees. If we follow the execution of a tree
automaton downwards, it is easy to see that all respective children of two nodes
related by simulation should continue to be related pairwise. If we now consider
how a tree automaton executes when going upwards, we are confronted to the
problem that the parent of the current node may have several children. The
question is then how to characterize the behavior of such children. The answer
lies in constraining their prefixes, i.e. using a downward simulation.

We state some elementary properties of the simulation relations

Lemma 2. The reflexive closure and the transitive closure of a downward sim-
ulation Xdown are both downward simulations. Furthermore, there is a unique
mazimal downward simulation.

Lemma 3. Let X4own be a reflexive (transitive) downward simulation. The re-
flezive (transitive) closure of an upward simulation w.r.t to <Sdgown 18 also an
upward simulation w.r.t Xdown. Furthermore there exists a unique mazximal up-
ward simulation w.r.t. any downward simulation.



Observe that both for downward simulations, and upward simulations, maximal-
ity implies transitivity and reflexivity.
We now define an equivalence relation derived from two simulation relations.

Definition 9. [Independence]
Two binary relations <1 and <5 are said to be independent iff whenever q <y r
and q <5 7', there erists s such that r <5 s and ' <1 s.

Definition 10. [Induced Relation]
The relation ~ induced by two binary relations <1 and =<5 is defined as:

<10 N0t

The following Lemma gives sufficient conditions for two relations to induce
an equivalence relation.

Lemma 4. Let <1 and <3 be two binary relations. If <1 and <5 are reflex-
we, transitive, and independent, then their induced relation ~ is an equivalence
relation.

6.2 Sufficient Conditions for Soundness and Completeness

We give sufficient conditions for the two simulation relations to induce a sound
and complete equivalence relation on states of a tree automaton.

We assume a tree automaton A = (@, F,0). We now define a relation ~
induced by the two relations < and =<gown satisfying the following sufficient
conditions:

1. <down is a downward simulation;

2. R is a reflexive and transitive relation included in <,;, which is an upward
simulation w.r.t. <gown;

. <down and < are independent;

. whenever z € F and = <, y, then y € F}

F' is a union of equivalence classes w.r.t. ~;

o Ut A

. whenever i) z and = <gown Y, then i) Y.
O
We first obtain the following Lemma which shows that if the simulations sat-
isfy the sufficient conditions, then the induced relation is indeed an equivalence.

Lemma 5. Let A = (Q, F,d) be a tree automaton. Consider two binary relations
<down ond = which satisfies the above sufficient conditions, as well as their
induced relation ~. We have that ~ is an equivalence relation on states of A.

The above Lemma, holds since Conditions 1 through 3 imply directly that <gown
and = satisfy the premises needed by Lemma 4.

Next, we state that such an equivalence relation is sound and precise.

10



Theorem 1. Let A = (Q, F,d) be a tree automaton. Consider two binary re-
lations <qown and =< satisfying the above sufficient conditions, and let ~ be
their induced relation. Let A~ = (Q/ ~,F/ ~,0~) be the automaton obtained by
merging the states of A according to ~. Then, L(A~) = L(A).

Theorem 1 can be used to relate the languages of H and D..
We are now ready to prove the soundness and the completeness of our on-
the-fly algorithm (assuming a computable equivalence relation ~).

Theorem 2. Consider two binary relations on the states of H X4ouwn and <,
satisfying the hypothesis of Theorem 1. Let ~ be their induced equivalence rela-
tion. If the algorithm terminates at step i, then the transducer DS! accepts the
same relation as D~.

6.3 Sufficient Condition for Computability

The next step is to give conditions on the simulations which ensure that the
induced equivalence relation is computable.

Definition 11. [Effective relation]
A relation =< is said to be effective if the image of a reqular set w.r.t. < and
w.r.t. <71 is reqular and computable

Effective relations induce an equivalence relation which is also computable.

Theorem 3. Let <; and <y be both reflerive, transitive, effective and indepen-
dent. Let ~ be their induced equivalence. Then for any state x of H, we can
compute its equivalence class [z] w.r.t. ~.

The theorem follows by definition of ~, and effectiveness 5 of <; and <». |

An equivalence relation that satisfies hypothesis of Theorem 1 and Theorem
3 can be used in the on-the-fly algorithm of Section 5 to compute the transitive
closure of a tree transducer. The next step is to provide a concrete example of
such an equivalence. Because we are not able to compute the infinite represen-
tation of H, the equivalence will be directly computed from the powers of D
provided by the on-the-fly algorithm.

7 Good Equivalence Relation

In this section, we provide concrete relations satisfying Theorem 1 and Theorem
3. We first introduce prefix- and suffix-copying states.

Definition 12. [Prefix-Copying State]

Given a transducer D, and a state q, we say that q is o prefiz-copying state if
for any tree T = (S,\) € pref(q), then for any node n € S, \(n) = (f,f) for
some symbol f € X.

5 A state z of the history transducer is a word. The set {z} is regular.

11



Definition 13. [Suffix-Copying State]

Given a transducer D, and a state q, we say that q is a suffiz-copying state if for
any context C = (S¢, A¢) € suf(q), then for any node n € S¢ with Ac(n) # O,
we have Ac(n) = (f, f) for some symbol f € X.

We let Qpres (resp. Qsyupr) denote the set of prefix-copying states (resp. the
set of suffix-copying states) of D and we assume that Qpref N Qsur = 0. We let

QN = Q - Qpref U quﬁ-

We now define relations by the means of rewriting relation on the states of
the history transducer.

Definition 14. [Generated Relation]

Given o set S of pairs of states of H, we define the relation — generated by S
to be the smallest reflexive and transitive relation such that — contains S, and
— is a congruence w.r.t. concatenation (i.e. if T — y, then for any wi,ws, we
have wy - T - we > wy - Y - Wa).

Next, we find relations < and <4oun that satisfy the sufficient conditions for
computability (Theorem 3) and conditions for exactness of abstraction
(Lemma 6.2).

Definition 15. [Simulation Relations]

— We define < 4own to be the downward simulation generated by all pairs of the

form (qpref * Qpref » (Ipref) and (qpref: Gpref - Qpref): where dpref € Qpref-
— Let <}w be the mazimal upward simulation computed on D U D?. Then, we

define < to be the relation generated by the maximal set S g<;p such that
d (QSuﬁ ' %uﬂa%uﬁ) € S iff (%uﬁaqsuﬁ : QSuﬁ) €S
® (9 qsupp:q) € S iff (4,9 gsupp) €S
® (Gsur - 0:9) € S iff (@, qsupr -q9) €S

where goug € Qsugrs and g € Q.

In the full version of the paper, we provide efficient algorithms for computing
the simulations needed for Definition 15. Those algorithms are adapted from
those provided by Henzinger et al. [HHK95] for the case of finite words.

Let us state that the simulations of Definition 15 satisfy the hypothesis
needed by Theorems 1 and 3.

Lemma 6. The following properties of <down hold:

1. Kdown 18 a downward simulation;
2. <Xdown 1S effective.

Lemma 7. The following properties of < hold:

1.
2.

is included in an upward simulation;

=
< is effective.
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We now state that < and <4ow» are independent.

Lemma 8. < and X4own are independent.
Lemma 9. The following holds:

— whenever x € Fg and  yp Y, theny € Fy;
— Fy is a union of equivalence classes w.r.t. ~;

— whenever i) z and T Xgown Y, then i> Y.

We conclude that < and =<gown satisfy the hypothesis of Theorem 1 and
Theorem 3 and can thus be used by the on-the-fly procedure presented in Section
5.

8 Computing Reachable Configurations

We now sketch the modifications needed to compute R (D7) (¢r) without com-
puting Dt. When checking for safety properties, such a computation is known
to be sufficient. Computing R (DV) (¢;) rather than D, can simply be done
by lightly modifying the definition of the history transducer. Assume that we
have constructed a tree automaton Ay, for ¢, we replace the transducer run in
the first “row” of the history transducer by a transducer that only accept trees
from Ay, in input. Such a transducer can easily by constructed. Let D be the
transducer representing the transition of the system, the restricted transducer is
obtained by taking the intersection between D and Ay, xT'(X) where X is the
ranked alphabet of the system. Computing R (D7) (¢1) is often less expensive
than computing DT because it only considers reachable sets of states (see Sec-
tion 9 for a time comparison). We have an example for which our technique can
compute R (D7) (¢7) but cannot compute D7 .

9 Experimental Results

The techniques presented in this paper have been applied on several case stud-
ies using a prototype implementation that relies in part on the regular model
checking tool (see www.regularmodelchecking.com).

In Table 1 we report the result of running our implementation on a number
of parametrized protocols for which we have computed the set of reachable states
as well as the transitive closure of their transition relation. A full description of
the protocols is given in the full version of the paper.

In our previous work [AJMd02], we were able to handle the first three pro-
tocols of the table (computation times were very long, however).

The technique of [BT02] was manually applied to compute the set of reach-
able states of the tree-arbiter protocol (and of smaller examples). But, the reach-
ability computation was done by first computing the transitive closure for each
individual action, and then applying a classical forward reachability algorithm
using these results. However, such an approach requires manual intervention: to
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Relation |D| | |DF| [max size| |[DT (¢:)| [max size

Simple Token Protocol 3 4 15 3 17
Two-Way Token Protocol 4 6 28 3 26
Percolate Protocol 4 6 40 3 21
Tree-arbiter Protocol 8 - - 10 246
Leader Election Protocol 6 9 105 10 150

Table 1. Results

make the reachability analysis terminate, it is often necessary to combine actions
in a certain order, or even to accelerate combinations of individual actions. In
our approach, all computations are entirely automatic.

Observe that we are not able to compute the transitive closure of the transi-
tion relation of the tree-arbiter protocol (in fact, we do not know if it is regular
or not). However, we are already able to compute transitive closure of individual
actions for this protocol as well as the reachable set of states with the technique
of Section 8.

10 Conclusions and Future Work

In this paper, we have presented a technique for computing the transitive closure
of a tree transducer.

This technique has been implemented and successfully tested on a number
of protocols, several of which are beyond the capabilities of existing tree regular
model checking techniques.

We believe that substantial efficiency improvement can be achieved by con-
sidering more general equivalence relations than the one defined in Section 7,
and by refining our algorithms for computing simulation relations.

The restriction to structure-preserving tree transducers might be seen as a
weakness of our approach. However, structure-preserving tree transducers can
model the relation of many interesting parametrized network protocols. In the fu-
ture, we plan to investigate the case of non structure-preserving tree transducers.
One possible solution would be to use padding to simulate a structure-preserving
behavior. This would allow us to extend our method to work on such systems as
Process Rewrite Systems (PRS). PRS are useful when modeling systems with a
dynamic behavior [BT03].

Finally, it would also be interesting to see if one can extend our simulations,
as well as the algorithms for computing them, in order to efficiently implement
the technique presented in [BT02] (the detection of an increment can be done
by isolating part of the automaton with the help of (bi)simulations).
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