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Abstract

We first advocate that the AUML (Agent Unified Modelling Language) notation,
even in its new version, is not precise enough to adequately describe protocols.
This problem was long identified by Harel and we propose to follow his solution:
extend sequence diagrams with a “prechart”, i.e. single out the initiation sequence
of the protocol. This new notation keeps readability and intuition, but is also tech-
nically adequate and is given a formal semantics. It actually is a form of simple
temporal logics, equipped with a game-based semantics, which is appropriate for
the modeling of agent-based systems. We then go on to study its complexity. Un-
surprisingly, the version with protocol roles is undecidable. The main interesting
problem is to synthesize agents that follow the protocol described. Surprisingly,
it is undecidable even if we remove roles, alternatives, loops, asynchronous com-
munication, conditions, constraints, negations (already removed in AUML). The
complexity of checking whether a society of agents obeys a protocol given in this
trivial notation is also surprisingly high: it is in PSPACE-complete, like temporal
logic, while we show that this simple language is strongly less expressive than tem-
poral logic. Notations in-between have the expected increase in expressiveness, but
no increase in complexity. This justifies the use of a language including alternatives,
asynchronous communication and conditions, since it increases expressiveness with
no cost in complexity.

Key words: Scenarios; Strategies; AUML; Live Sequence Charts; Synthesis; Model
Checking; Computational Complexity.

1 Introduction

Agents are autonomous entities that react to changes in their environment,
according to defined plans. Their behavior follows these plans, which are mo-
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tivated by goals. In order to achieve their goals, which are realized through
plans, agents need to coordinate. This coordination has to follow well-specified
agent coordination protocols.

There are two possible approaches to ensure that these two constraints are met.
The first possibility is to verify that a certain agent description complies with
the description of the protocols and goals. The second possibility is to check
that agents can be designed to follow the protocols. The second approach is
clearly more ambitious, as it proposes to automate the construction of agents
design models.

In this paper, we consider the promising scenario-based approach for speci-
fying protocols. Scenario-based graphical languages are widely used, in many
different forms, for illustrating and specifying protocols [1]. Message Sequence
Charts, which are standardized by the International Telecommunication Union,
are by far the most popular of these languages [2]. They present, in an intu-
itive way, how processes interact, through message passing. This language has
been incorporated in the UML, as “Interaction Diagrams” [3]. In the agent
world, FIPA is defining a unified language, based on UML, called Agent Uni-
fied Modeling Language (AUML) [4], for modeling agent systems. However,
this language also inherits the problems that are found both in UML and in
ITU languages. First, UML 2.0 only partially specifies the semantics of Inter-
action Diagrams, which opens the way to ambiguities [5]. Second, MSCs carry
much implicit information. In particular, engineers draw the same diagrams
with different intents: sometimes, they just want to describe some trace of a
protocol, sometimes, they intend to describe all possible reactions to a certain
message or protocol initiation sequence. However, these different meanings are
implicit: there are no syntactic constructs carrying this information. For this
reason, Damm and Harel have introduced Live Sequence Charts [6]. This lan-
guage extends exactly MSCs (and Interaction Diagrams) with those syntactic
constructs. Hence, one can distinguish between provisional and mandatory
behavior.

Actually, Live Sequence Charts provide engineers with a graphical front-end
to Temporal Logic [7,8]. However, this language remains (i) graphical and (ii)
scenario-based. In [9], we have shown that LSCs can be smoothly equipped
with a game-based semantics, hence making it usable for agent systems spec-
ifications. We will thus use this language as a basis for verification and design
of agents. Since this language is actually a form of Temporal Logics, these two
problems are well-defined, in terms of classical logical problems. Agent ver-
ification is often called model checking [10], whereas agent design is dubbed
synthesis.

Here, we show that many simple problems on (non-hierarchical) LSC have a
surprisingly high complexity, and in particular that the automated synthesis
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of a distributed agent system is undecidable. On afterthought, it is hardly
surprising that distributed development is undecidable. This means that more
knowledge has to be put in the synthesis algorithms, e.g. as heuristics [11],
so as to alleviate the work of agent programmers in well-known cases, leaving
them the more creative parts.

The work of Wooldridge and colleagues is related to what we present here
[12,13]. They study the computational complexity of agent verification and
agent design, with respect to task descriptions. A task description is repre-
sented as a subset of all runs, i.e. a language, which are acceptable. The com-
plexity of verifying whether an agent design satisfies the task description, in a
given environment, is described, as a function of the complexity (i.e. the com-
plexity class to which belongs the language) of the task description. Crudely,
their result is that, for task descriptions in Σp

u (i.e. recognizable in polynomial
time by a Turing Machine with u calls to an NP oracle), the complexity of
verification is Πp

u+1, i.e. exactly one universal alternation is introduced. When
the task description is PSPACE-complete, verification is PSPACE-complete
as well.

Walton presents a lightweight language for describing agent dialogues, named
Multi-Agent Protocol [14]. This language is based on the theory of Speech Act
and is intended to be an alternative to Statecharts [15], which are used in Elec-
tronic Institutions [16]. Walton proposes a translation of MAP to Promela,
the input language of the SPIN model-checker [17], which allows one to check
MAP models against LTL formulae. Their work is more pragmatic than ours,
but could be coupled with our approach. Here, we propose to use a graphical,
user-friendly, language for specifying protocols and remain purposedly abstract
on the actual form of agents implementing these protocols. MAP could be such
an implementation language (although designed as a specification language).
Another possibility would be to use agent-oriented programming languages,
such as AgentSpeak [18], 3APL [19], ConGoLog [20], for instance. There is
also some tool support for the verification of AgentSpeak programs [21]. First,
Agent Speak programs are made finite, then they are translated to Promela.
Bordini et al. also present a logic based on BDI (Beliefs-Desires-Intentions) for
specifying the requirements that Agent Speak programs should fulfill. These
requirements are translated to LTL. Again, our scenario-based language could
be used as a requirement language.

Wooldridge et al. present another language for agent programming, called
MABLE, which is based on classical imperative languages, enriched with fea-
tures from agent-oriented programming paradigm [22]. Essentially, it is pos-
sible to use a belief-desire-intention logic instead of classical boolean expres-
sions. if-then-else constructs are modified into if-then-else-unsure con-
structs, to cope with the problem of agents not believing whether the condition
holds true or false. It supports a form of inter-agent communication, in which
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agents can inform or request information, through message passing, telling
other agents about their mental state.

This feature will drive the reader to notice that LSCs and AUML, for describ-
ing agent protocols, are not as rich as FIPA’s ACL [23]. With ACL, agents
can communicate with other agents about their beliefs, desires and intentions,
and require information about these facts as well. MABLE has been extended
to support the verification that MABLE programs comply with a protocol
description given in ACL [24]. These extensions entail an unsurprising high
complexity. The goal of our paper is to show that even a very basic language
will have a high complexity, we have thus purposedly excluded such features.

Such basic LSCs stemmed from the world of telecommunication. Quite natu-
rally, they will find their way to the agent world, as well, as demonstrated by
the presence of Interaction Diagrams in AUML.

The paper is structured as follows. We present, in Sec. 2.1, the syntax and
semantics of Live Sequence Charts (LSC), that is used to specify the future sys-
tem. We compare this language with the current AUML Interaction Diagrams
and show that LSCs cope with the various ambiguities of AUML Interaction
Diagrams. Agent models are given using an agent-oriented (i.e. distributed)
state-based formalism, here input/output automata, encoding strategies, as
presented in Sec. 2.2. This section concludes by defining when a design model
is a correct implementation of a scenario-based specification. In Sec. 3, ver-
ification problems are considered. First, checking whether a design model is
a correct implementation (Sec. 3.1) and then, whether a specification refines
another specification (Sec. 3.2). The question of whether a specification is im-
plementable is investigated in Sec. 4. Sec. 5 presents various constructs that
can be added to our version of LSCs, making the language more expressive,
but preserving all the results of this paper. Finally, in Sec. 6, we summarize
the results and put them in perspective.

2 Models

We assume that we are given a finite set of agent names Ag and of message
names M. An event is a triple from Ag×M×Ag. The set of events is Σ. We
will denote the set of events “sent”, or triggered, (resp. “received”, or sensed)
by some agent a with Σs

a (resp. Σr
a) and let Σa = Σs

a∪Σr
a. An event of the form

(a1, m, a2) represents the fact that a1 sends message m to a2. Σ∗ represents
the set of all finite sequences of events, while Σω are all infinite sequences. We
let Σ∞ = Σ∗∪Σω. For Σ′ ⊆ Σ, projection (w|Σ′) is the operation that removes
from w all symbols that are not in Σ′.
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We assume here, for simplicity, that communication is instantaneous. (In con-
trast, some undecidability proofs of [25] require the more complex FIFO com-
munication). From agents’ behavior emerge sequences of events, which we can
observe. Hence, we identify behaviors and sequences of events.

2.1 Live Sequence Charts

Live Sequence Charts [6] are based on Message Sequence Charts (MSCs) [2].
They present the various interactions of agents. Every agent owns a “life-line”,
labeled by its name, e.g. “ui”, “cm”, “client1” in Fig. 4. Interactions take
place through events, that are shown as arrows. An occurrence of (a1, e, a2) is
displayed as an arrow labeled by m, from a1’s life-line to a2’s life-line. MSCs
are unclear with respect to the “status” of a scenario, i.e. whether a scenario
represents all possible behaviors or just some of them. They are also silent
about the role of messages that do not appear in a scenario, viz. whether they
are forbidden by their mere absence or whether they can appear at will. We
call this feature message abstraction. Furthermore, engineers informally assign
different status to messages: some of them activate, or trigger, the described
scenario, whereas other are expected answers.

For instance, Fig. 1 presents an example of an interaction diagram. It is an
excerpt of Misty Nodine’s proposal of a solution to a FIPA case study for
assessing Interaction Diagrams [26]. This case study is concerned with the
modeling of the voting protocol followed by the United Nation Security Coun-
cil for issuing resolutions. When presented with the scenario Fig. 1, it is unclear
whether it states that “whenever a meeting is called, all members are called
for a vote by the chair” or if it is a possible execution that has been singled
out.

Fig. 1. Interaction Diagram (UN Vote Procedure)

LSCs clarify this [6]. They add syntactic constructs to MSCs to state explicitly
whether the diagram is a mere example (existential scenarios) or constrains
all behaviors of the future system (universal scenarios). The former are sim-
ply MSCs, surrounded by a dashed-line box. The latter are MSCs, divided
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in two parts: an upper part, named prechart, that is graphically surrounded
by an hexagonal dashed-line box, and a lower-part named main chart is the
lower-part, surrounded by a solid-line rectangle. The intuitive semantics is
“whenever the agents behave as in the prechart, they shall behave according
to the main chart afterwards”. LSCs add “message abstraction” by explicitly
stating which events are restricted. All events appearing in the LSC are auto-
matically restricted. Additional events can be restricted thanks to a “restricts”
clause. This provides the scenario with a scope (alphabet).

Fig. 2. Symbolic LSC (UN Proposal Scenario)

Harel and Marelly have extended LSC with symbolic instances [27]. This con-
struct allows one to talk about the roles played by agents in protocols. The
basic idea is to introduce first-order variables, that are placeholders for agents.
These variables may be quantified, thus telling whether a scenario is applica-
ble to all agents playing a certain role or to one of them. This is akin to
universal/existential quantification, in logics. For instance, in Fig. 2, the sce-
nario states that “if some proposer sends a proposal to some chair, this chair
forwards this proposal to all members and decides of a date at which the vote
will take place.” Of course, the voting date will eventually occur, which is
the reason why the agenda notifies the chair. Thus, universal quantification
is graphically denoted by inscribing variable names within solid-line boxes,
whereas existential quantification corresponds to dashed-line boxes. It is also
possible to refer to particular agents by their name, e.g. agenda. This is rep-
resented by underlining their name.

Fig. 3. Symbolic LSC (UN Voting Scenario)
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Symbolic LSCs is a rich and powerful notation. However, when introducing
quantification and unbounded agent populations, most analysis problems get
undecidable. As an example, satisfiability is undecidable. We postpone the
proof of this fact until section 5.2.

Actually, we obtain, in principle, a graphical version of first-order logic. In this
paper, we mainly focus on a simpler version of LSCs that does not include
roles. Thus, we will only take into account LSCs describing protocols for an a
priori determined finite number of agents. Remark that, in the case of the UN
protocol, the number of agents is actually finite, bounded and known before-
hand: there are 15 members, among which 5 permanent members. Including
roles in Interaction Diagrams provides engineers with a shorthand to avoid
writing lengthy scenarios, but is not really necessary here.

Like Interaction Diagrams, the semantics of LSCs is based on a partial order.
The temporal ordering of events is deduced from three constraints and their
transitive closure: (1) life-lines induce a total ordering on their events, from top
to bottom, (2) agents synchronize on shared events, i.e. two locations linked
by an arrow are order-equivalent and (3) all locations in the prechart appear
before main chart locations. In Message Sequence Charts (MSC) parlance, the
prechart and main chart are strongly sequenced. For example, combining the
clauses, in Fig. 4, events “getdata” and “updating” are unordered. Clause (1)
can be relaxed thanks to co-regions. A co-region is a sequence of locations,
belonging to the same life-line, along which a dashed line is drawn, see the
two “getnew” events in Fig. 4.

ui cm client1

update

updating

getnew

db

getdata

client2

getdata

getnew

Fig. 4. Update Scenario (CTAS)

Live Sequence Charts have been used to model various real-life systems such as
the weather synchronization logic of NASA’s Center TRACON Automation
System (CTAS) [28], a radio-based train system [29], virtual wrappers for
PCI bus [30] and some part of the C elegans worm [31]. Examples displayed
in Fig. 4, 5, 6 and 7 are based on the CTAS system. This system aims at
synchronizing various clients that make use of weather data reports. When
new data is available, a certain protocol is followed to update all clients data.
However, if some client fails to fetch the new report, the system tries to roll
back to the previous version. The rationale is that all clients should always be
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cm client1 db

failure

getdata

nack

Fig. 5. Propagate Answers (CTAS)

cm client1ui

update

getnew

success
updating

success

usenew

client2

usenew

getnew

success

Fig. 6. Success Scenarios (CTAS)

using the same data. LSCs describe the following requirements:

Fig. 4: when the user asks for an update, all clients are asked to fetch the
new weather reports. The user is notified of the updating process.

Fig. 5: whenever the database refuses a download, the cm (communication
manager) is notified.

Fig. 6: if all clients report success, then they are confirmed that they should
use the new data. The user is informed of the success.

Fig. 7: if some client fails to update its state, all clients are required to roll
back to the previous state, after the user has been notified that the updating
process is taking place.

cm client1ui

update

getnew

failure
updating

failed

useold

client2

useold

Fig. 7. Failure Scenarios (CTAS)

We now define formally the abstract syntax and the semantics of universal
LSCs. Following the tradition of logics, this semantics is given through the
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notions of interpretation and model.

Definition 1 (Labeled partial order (LPO)) A Σ′-labeled partial order (LPO)
is a tuple 〈L,≤, λ, Σ′〉, where

• L is a set of locations. If L is finite, the LPO is called finite.
• ≤⊆ L×L is a partial order on L (a transitive, anti-symmetric and reflexive

relation).
• λ : L → Σ′ is a labeling function.
• Σ′ ⊆ Σ is a set of restricted events, giving the scope of an LPO.

A linearization of a finite LPO is a word of w1 . . . wn ∈ Σ∗ such that its
canonical LPO 〈[n],≤, {(i, wi)|i ∈ [n]}〉, where [n] is a shortcut for the set
{1, . . . , n}, is isomorphic to some linear (total) order 〈L,≤′, λ〉 with ≤⊆≤′.
An ideal is a ≤-closed subset of locations, i.e. ∀l ∈ I : ∀l′ : l′ ≤ l : l′ ∈ I. We
will abusively call “ideal” the projection of an LPO on a given ideal and allow
ourselves to talk about the linearizations of an ideal.

An interpretation of an LPO is a finite or infinite word (γ ∈ Σ∞). An inter-
pretation satisfies an LPO if its restriction to Σ′ yields a linearization of the
LPO. If the interpretation is an infinite word, it must start with a finite word
satisfying the LPO.

Definition 2 (|=⊆ Σ∞ × LPO) γ |= 〈L,≤, λ, Σ′〉 iff

• γ ∈ Σ∗ and γ|Σ′ linearizes 〈L,≤, λ〉,
• γ ∈ Σω and ∃w ∈ Σ∗, γ′ ∈ Σω : γ = wγ′ and w |= 〈L,≤, λ, Σ′〉.

There are two versions of LSCs, universal LSCs (uLSC), and existential LSCs
(eLSC).

Definition 3 (LSC) The language of Live Sequence Charts (LSC) is made
of uLSCs and eLSCs.

• A universal LSC (uLSC), with restricted events ΣR, is a couple of ΣR-LPOs
�(P, M), where P is called prechart and M is named main chart. Remark
that we require P and M to be defined over the same alphabet, that we let
be ΣR.

• A existential LSC (eLSC), with restricted events ΣR, is a ΣR-LPO ♦(M).

An interpretation of an LSC is an infinite sequence of events, γ ∈ Σω. An
interpretation is a model of �(M, P ) if, whenever P is satisfied in γ, M is also
satisfies immediately after.

Definition 4 (|=⊆ Σω × LSC) Let γ ∈ Σω.
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• γ |= �(P, M) iff

∀u, v ∈ Σ∗, γ′ ∈ Σω : (γ = uvγ′ and v |= P ) =⇒ γ′ |= M.

• γ |= ♦(M) iff

∃u ∈ Σ∗, γ′ ∈ Σω : γ = uγ′ and γ′ |= M.

We lift the notion of model to sets of runs (languages):

Definition 5 (|=⊆ 2Σω

× LSC) Let L ⊆ Σω.

• L |= �(P, M) iff for every γ ∈ L, γ |= �(P, M).
• L |= ♦(M) iff there is some γ ∈ L such that γ |= ♦(M).

Since eLSCs are just examples of behavior, they are not as interesting as uLSC
for actually specifying protocols. Hence, we will consider that LSC specifica-
tions are only made of uLSCs.

Definition 6 (LSC specification) An LSC specification S is a finite set of
uLSCs. Its model relation is defined as the conjunction of the model relation
of its members: γ |= S iff for every U ∈ S, γ |= U .

The size of an LSC is its number of locations. The size of a specification is
the sum of the size of its members. A language L is defined by an LSC S if
L |= S.

A classical question, with respect to logics, is their relation to classes of lan-
guages, usually via automata [32,33]. Comparing LSC-definable languages
with languages definable in other formalisms determines the expressiveness
of LSC. Here, we recall that LSC-definable languages form a strict sub-class
of ω-regular languages and a very restricted sub-class indeed. Live Sequence
Charts are strictly less expressive than Deterministic Büchi Automata (DBA)
[34] and ACTLdet, the common fragment of LTL and ACTL [35], as we showed
in [36]. In section 4, we will prove that LSCs are exponentially more succinct
than DBA and ACTLdet. It is possible to translate LSCs to LTL with only a
polynomial blow-up. This improves on previous translations that involved an
exponential blow-up [8,7]. Another polynomial translation had already been
proposed by Kugler et al. [37]. Yet, their translation applies only to LSCs in
which no event appears twice.

Proposition 7 (From LSCs to LTL) Any LSC specification S can be trans-
lated to an LTL formula φS with O(|S|5) distinct sub-formulae such that

∀γ ∈ Σω : γ |= φS ⇐⇒ γ |= S.

PROOF. We just show how to translate a single uLSC L to an equivalent
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LTL formula φL of size O(|L|5). The overall formula is just the conjunction
∧

L∈S φL. Let L = �(P, M).

We define the index of a location l in an LPO as l: idx(l) = |{l′|λ(l) = λ(l′) ∧
l′ ≤ l}|. A deterministic LPO (DLPO) is an LPO in which locations with
similar labels are ordered. Even though DLPO are strictly less expressive than
LPO, every (graphical) uLSC can be turned to a model-equivalent DLPO. In
a deterministic LPO, by definition, two locations with identical labels have
different indexes. Thus, replacing in a DLPO every location l with (idx(l), λ(l))
results in an isomorphic DLPO. Finally, remark that all linearizations of an
LPO have the same length (i.e. exactly the number of locations).

The LTL formula that we build from a uLSC �(M, P ) is of the form

�(nprech ∨ mainch),

where

(1) nprech is a formula that asserts that the prechart will not be matched by
the subword starting at the current position. It is of the form

∨

l∈P

notoccurs(l) ∨ notorder(l),

where notoccurs(l) asserts that there will not be idx(l) occurrences of λ(l)
before having seen |P | occurrences of restricted (ΣR) events, and notorder
is a disjunct over all direct predecessors of l. For every direct predecessor
l′, it says that the number of occurrences of λ(l′) is smaller than idx(l′)
when the idx(l)-th occurrence of λ(l) is encountered. Again, we verify
this property within |P | steps. This formula is of size O(|P |4), because
we need 3 counters, ranging over |P |, and the outermost disjunction is
over all prechart locations.

(2) mainch is a formula asserting that, after |P | occurrences of restricted
events (i.e. exactly the prechart), for every l and l′, where l′ is a predeces-
sor of l, l occurs after l′ has occurred, yet within |M | steps. Determining
the position of l and l′ relies on counting idx(l) and idx(l′) occurrences of
λ(l) and λ(l′), respectively. Again, this formula is of size O(|C2|

5).

Using this translation, we can rely on the fact that validity, model checking
and satisfiability for LTL are all in PSPACE [38], to prove membership of
some LSCs-related problems to PSPACE. Those results do not depend on the
size of the LTL formula parse tree, but only on the number of its distinct
sub-formulae [39]. 2

Every LSC specification is equivalent to the conjunction of liveness and safety
properties, one for every event in Σ [9]. A scenario S, with restricted events
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ΣR, forbids e ∈ Σ after a finite run w ∈ Σ∗ iff some suffix of w|ΣR
, say w′,

linearizes an ideal I of the LSC, which includes P , but w′ · e does not linearize
any ideal in S. S requires e ∈ Σ iff some suffix w′ of w|ΣR

linearizes an ideal
I ⊇ P of S and w′ · e is a linearization of some ideal in S.

Definition 8 (forbids, requires) Let �(P, M) be a uLSC with restricted
events ΣR and w ∈ Σ∗.

• w forbids e iff ∃u, v, t ∈ Σ∗ : such that all the following conditions hold
· uvt = w,
· v |= P ,
· ∃I : ideal of M : I ⊂ M ∧ t |= I,
· ∀I ′ : ideal of M : we 6|= I ′.

• w requires e iff ∃u, v, t ∈ Σ∗ : such that all the following conditions hold
· uvt = w,
· v |= P ,
· ∃I : ideal of M : I ⊂ M ∧ t |= I,
· ∃I ′ : ideal of M : we 6|= I ′.

An infinite run γ ∈ Σω is e-safe iff for every prefix w of this run, if e is forbidden
by some scenario after w, we is not a prefix of γ. It is e-live iff for every prefix
w of γ, if some scenario requires e after w, then e eventually occurs after w.

The following theorem has been shown in [9] and will be the basis for equip-
ping uLSC with a game-based semantics, hence making it applicable to the
specification of agent systems.

Theorem 9 (uLSC = ΣR-live ∧ΣR-safe) For every γ ∈ Σω,

γ |= �(P, M) ⇐⇒ ∀e ∈ Σ : γ is e-safe and e-live, wrt �(P, M).

2.2 Strategies

Agents are partitioned into two teams: the environment and the system. For-
mally, Ag = Sys ∪̇ Env. System-controlled events are ΣSys = Sys × M× Ag.
Engineers are not asked to construct programs for agents in Env, only agents
from Sys have to be implemented. Sys implementation will be deployed among
Env agents that provide thus the model-time context of the specification.

Agents act according to plans, or strategies [13,40]. Remember that we ab-
stract away from agent’s actions and focus on coordination instead. Thus, our
abstract view of agent a is a strategy f : Σ∗ → 2Σs

a. A strategy tells the agent
that actions f(w) are advisable to make after some history w. Although this
view is very appealing from a mathematical point of view, we will have to
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focus on strategies which are representable within computers. We introduce
the notion of input/output automata for this purpose.

We will use Input/Output automata to describe the design-time model of
agents [41]. An input-output automaton for agent a ∈ Ag is a finite automaton
the alphabet of which is Σa. A distinction is made between input events (Σr

a)
and output events (Σs

a) Syntactically, an I/O automaton for agent a must be
input-enabled: in every state q, agent a should have one transition labeled for
every input event. In other words, a may never block incoming messages.

A run of an I/O automaton is an infinite path in the automaton, following the
transition relation and starting from the designated initial state. A fair run is a
run in which infinitely many transitions labeled with Σs

a events are taken. The
word generated by a run is the infinite sequence of events encountered along
the transitions of the run. The language of an I/O automaton A, denoted
L (A), is the set of words generated by A’s fair runs. The composition of two
I/O automata (A1 ×A2) is defined as the synchronous product of A1 and A2,
see [41] for details.

A finite state I/O automaton represents a finite-memory strategy for agent a.
Formally, a (non-deterministic) strategy for agent a is a function f : Σ∗ →
2(Σs

a). It is of finite memory if there is an equivalence relation ' on Σ∗ such
that (1) ' is of finite index and (2) ∀w ' w′ : f(w) = f(w′). The size of the
memory is the index of the smallest such equivalence relation. Clearly, every
finite memory strategy can be translated to an I/O automaton. Conversely,
every I/O automaton can be turned into a strategy. The outcome of a strategy
f is the set of all runs in which Σs

a events appear only according to the strategy:

Out(f) = {u0e0u1e1 . . . |∀i ≥ 0 : ui ∈ (Σ \ Σs
a)

∗ and ei ∈ f(u0e0 . . . ui)}.

Agents can be organized in societies. A society is a set of agents A ⊆ Ag. Its
triggered events and sensed events are the union of all triggered/sensed events
of its composing agents: Σs

A =
⋃

a∈A Σs
a and Σr

A =
⋃

a∈A Σr
a. The strategy of A

is also the union of its agent’s strategies: fA(w) =
⋃

a∈A fa(w).

We are in position to define when a society of agents is behaving correctly, wrt
some given LSC specification. Intuitively, agents within A are only required
to respect the specification if agents outside A also do so. For instance, in
Fig. 2, if “agenda” is not a system agent, then, other agents are only required
to proceed to a vote if “agenda” actually sends a notification. The chairman
will thus call for vote assuming that other agents are behaving correctly. This
is thus very close to the well-known assume/guarantee principle in Computer
Science. Thus, agents are only responsible for the correct occurrence of their
own events.
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Definition 10 (Correct Implementation) A strategy fSys associated to a
society of agents Sys is a correct implementation of an LSC specification iff

∀γ ∈ Out(fSys) :







γ is ΣEnv-live =⇒ γ is ΣSys-live

γ is ΣEnv-safe =⇒ γ is ΣSys-safe

3 Agent Verification

3.1 Model Checking

In this section, we will investigate the problem of agent verification. Informally,
this problem is to check that an implementation of a society is correct. We will
consider several consecutive problems. The most general case considers that
the society Sys consists of at least one agent, and that there might be agents
out of Sys interacting with them. We will investigate “degenerated” versions,
along the following axes:

(1) whether Sys consists of a single agent or several agents (viz. centralized
vs distributed agent verification);

(2) whether Env is empty or not (viz. closed vs open agent verification).

We will start with the simplest problem and progressively consider more dif-
ficult ones.

Problem 11 (CCMC) CCMC (Closed Centralized Model Checking) is the
following problem: “Given a strategy fAg, represented as an I/O Automaton
A, and an LSC specification S, decide whether Out(fAg) |= S.”

Theorem 12 CCMC is complete for co-NP.

The hardness proof reduces CCMC to the complement of “Traveling Salesman
Problem”, which is known to be coNP-complete.

Problem 13 (coTSP) The Complement Traveling Salesman Problem (coTSP)
is to decide whether, for some given constant k, in a given com-
plete graph G, with weights on edges dij, all tours have a total
weight ≥ k. The weights are all polynomial in |G|.

Even with the additional assumption that weights are polynomial in |G|, this
problem is co-NP complete. Indeed, by inspecting the hardness proof in [42], it
actually suffices to consider weights bounded by 2 to obtain co-NP-hardness.
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PROOF (Membership) A counter-example is a path in which (i) the prechart
is matched and (ii) the main chart never finishes or a safety condition is not
met. Such a violation must occur in at most n steps, where n is the number of
locations in the Live Sequence Chart. The nondeterministic algorithm guesses
the following elements: the LSC L to violate, a state q in A and a simple path
in the synchronous product A × A¬L, with A¬L is the linear nondeterminis-
tic Büchi automaton recognizing all counter-examples of L. Remark that the
simple path is at most of length n × |A|. 2

PROOF (Hardness) There is a polynomial reduction of Complement
TSP (see [42]) to CCMC. Here, we consider a special case of CCMC, in
which all events are system-controlled. A graph G, with a distance dij is turned
into an automaton having states of the form (vertex, counter). The counter
sums the weight of the current path, up to the current state. Of course, this
counter is bounded by the longest possible path in G. It is thus polynomial
in |G|, too. The alphabet is the set of vertexes from G. From a state (v, n),

there is a transition (v, n)
v′
−→ (v′, n + dqq′), iff the edge between q and q′ in G

has weight dqq′. Thus, a path (v0, i0) . . . (vj, ij) in the automaton corresponds
to a path v0 . . . vj in G. Furthermore, the total weight of v0 . . . vj is ij.

In any state, there is also a transition to the “down-counting” states: (v, n)
$
−→

($, n). From these states, the automaton counts down, decreasing the counter

by one unit at a time, until its counter equals 0: for n > 0, ($, n)
tick
−−→ ($, n−1).

When zero is reached, the automaton reads an infinite sequence of “end”

events: ($, 0)
end
−−→ ($, 0). Finally, we add an initial state q0, with a transition

q0
init
−−→ (q, 0), for all q. This automaton has 2+D · (|G|+1) states, where D is

the maximal distance. It is thus polynomial in the size of the original graph.

The fact that all tours have length ≥ k is encoded in an LSC as follows: the
prechart contains {q1, . . . , qn, $}, where qi’s are unordered, whereas $ is greater
than all qi.

q1

G

tick

restricts end

qn

tick

....

$

... (k times)

Fig. 8. All tours have length ≥ k
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The prechart is matched when all vertexes have occurred exactly once and,
then, the automaton has announced that it will start down-counting. Then, the
main chart checks that tick occurs k times, without any end event in between.
It is easy to see that there is a tour of total weight < k iff the automaton
violates the LSC, i.e. the prechart is matched (we found a tour), but the main
chart is violated afterwards. Violating the main chart means that, before k

ticks, the “end” event occurs. Hence, the total weight of the tour is smaller
than k. 2

A first extension to this problem is to consider that some agents belong to
the environment, while others are system agents. Then, we are presented with
an implementation of system agents only and the question becomes: “when-
ever environment agents do behave correctly, does this implementation behave
appropriately?”.

Problem 14 (OCMC) OCMC (Open Centralized Model Checking) is the
following problem: “Given a partition of Ag into Sys and Env, a strategy fSys,
represented by A, and an LSC specification S, decide whether fSys is a correct
implementation of S (see def. 10).”

Theorem 15 OCMC is complete for PSPACE.

The proof of this theorem is similar to the proof provided in Sec. 3.2. The
computations of a DPSPACE Turing Machine can be encoded in an LSC spec-
ification, in polynomial-time and logarithmic space. The automaton generates
only traces starting with an initialization event and, eventually, emitting a
halting event.

The second restriction imposes that we consider monolithic systems only, made
of a single component. As it was clear from the introduction, we are mostly in-
terested in distribution systems. The design-time specification of such systems
will typically be presented as a “network” of automata, one for each agent.
Every automaton prescribes how its owner shall behave, see Sec. 2.2.

Problem 16 (CDMC) CDMC (Closed Distributed Model Checking) is stated
as follows: “Given an LSC L, a list of strategies (fa)a∈Ag, represented by
(Aa)a∈Ag, decide whether Out(fAg) |= L.

Unfortunately, as usual in verification [43], distribution makes model check-
ing more complex. Now, the problem becomes PSPACE-complete instead of
coNP-complete. Remark that we present, in CDMC, a degenerated prob-
lem, for only one scenario is used in the specification. Considering an actual
specification is not harder. Actually, there is an immediate nondeterministic
PSPACE algorithm deciding the complement of the problem: pick nondeter-
ministically one scenario in the specification and check that the implementa-
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tion violates it. This problem is exactly the complement of CDMC, which is
thus in coPSPACE=PSPACE, by Savitch’s theorem [44].

Theorem 17 CDMC is PSPACE-complete.

PROOF (Membership) Let m be the size of Ai’s and the LSC be of size n.
By Savitch’s theorem, it suffices to build a nondeterministic PSPACE Turing
machine deciding the complement of the distributed model checking prob-
lem. This algorithm guesses an initial state and a path in the product of the
automata. As this path needs to be ultimately periodic, it also guesses the
following elements: the index in the path at which the loop is entered and the
length of the path, as in [38]. We then check that the transition relation of
the LSC is correctly followed , thus only two configurations need to be saved,
plus the configuration at the entry of the loop. Within the loop, either no
environment event occurs, but no such event is required, or some event occurs
infinitely often. 2

PROOF (Hardness) Consider an arbitrary DPSPACE Turing machine. As-
sume that its set of control locations is Γ and its symbols are Σ. One can
without loss of generality, assume that the machine uses only its input space.
Otherwise, the input can be padded with nk blank spaces, see In-Place Ac-
ceptance in [42]. For every cell tape, we build an automaton, say Ai. The
alphabet of the system is {init, halt}∪ (Γ×{1, . . . , n}). An event (γ, i) means
that the tape head moves to cell i and the control location becomes γ. Ai has
two types of control locations, to record the fact that the tape head is on its
cell or not. The former is of the form (a, γ) ∈ Σ × Γ and the latter of the
form a ∈ Σ. Assume that we want to encode a transition (γ, a, r, a′, γ′), i.e.
when the TM control location is γ and it reads a from the cell on which the
tape head resides, the TM writes a′, moves the tape head to the right and the
control location becomes γ ′, of the Turing machine. Let the tape head be on
cell i. Then, Ai will contain a transition ((a, γ), (γ ′, i + 1), a′), while Ai+1 has
a transition (b, (γ′, i + 1), (b, γ′)). All automata synchronize on a first common
event “init”. The “init” event is caught by the prechart. The main chart then
asserts that “halt” will eventually occur. 2

Combining distribution and openness does not increase the problem complex-
ity; it is still PSPACE-complete.

Theorem 18 ODMC is PSPACE-complete.

One could believe that this high complexity is due to the presence of automata
in the problems. Actually, reachability in networks of automata is already a
difficult problem [42], as hinted to by Theorem 17. The next section presents
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simple analysis problems, on LSCs only, that are also difficult. This is amazing,
as one might think that these problems can be solved by easy computations
on the diagrammatic form of LSCs.

3.2 Reachability and Refinement Checking

The first problem we consider is whether an LSC specification is compatible
with an existential LSC.

Problem 19 (Reachability) Given an eLSC L and an LSC specification
S, decide whether

L (S) |= L.

Reachability checks that a certain specification, together with assumptions
over the domain still makes it possible to achieve a certain behavior. In soft-
ware engineering terms, Reachability is used when one wants to check that
the future system specification does not disallow a certain use case. We have
just seen that this problem was PSPACE complete. Using the same idea of re-
duction, one can show that specification refinement is also PSPACE complete.
Verifying specification refinement is a natural problem, in the framework of
a progressive software development approach. Given a certain abstract spec-
ification S, a more precise specification S ′ is designed and we want to verify
that every behavior induced by S ′ is a legal behavior of S. Logically, this boils
down to verifying the validity of S ′ → S.

Problem 20 (LSC-Impl) The problem of implication of LSC specifications
(LSC-Impl) is given two LSC specifications S and S ′, to decide whether

∀γ ∈ Σω : γ |= S =⇒ γ |= S ′.

Satisfiability of LSC specifications is polynomial-time reducible to reachabil-
ity. One can add a scenario obliging the machine to perform an infinity of
computations: every time it reaches the halting location, it is launched again,
from the init location. Hence, only runs in which the machine can “halt” from
the initial location will be models of the specification.

Problem 21 (LSC-SAT) The problem of LSC satisfiability (LSC-SAT) is
to decide, given an LSC specification S, whether

∃γ ∈ Σω : γ |= S.

Hence, the two problems also considered in this section are as difficult as
reachability. This is not surprising as reachability is an important primitive of

18



most verification algorithms.

Theorem 22 Reachability is complete for PSPACE.

Corollary 23 LSC-SAT and LSC-Impl are PSPACE-complete.

PROOF (Membership) LSCs can be transformed in polynomial time, us-
ing logarithmic space, into equivalent LTL formulae of the same size. Let their
conjunction be Φu. The existential LSC can be turned into a “never claim”
LTL formula, claiming that the existential LSC is never matched, that we de-
note φe. Then, we ask whether the formula Φu → φe is valid. This is true iff the
existential LSC is unreachable, i.e. this solves exactly the complement of our
problem. The solution via LTL is in PSPACE, see [38]. This class being closed
under complement, we have that Reachability is in PSPACE, too. 2

PROOF (Hardness) We encode the execution of a DPSPACE Turing Ma-
chine on the blank input within an LSC specification. Assume that the control
locations of the TM are taken from a a finite set Γ. Furthermore, suppose that
the TM has been modified in such a way that, when it moves the tape head
beyond the input, it loops forever in some non-halting state. We let the alpha-
bet of the tape cell be the binary alphabet {0, 1}. Finally, we suppose that,
among Γ, the halting location is γh, which is never left once it is reached. Since
it is a DPSPACE TM, it uses at most n cells of memory. The run of the TM
will be encoded as an infinite word over the alphabet:

(Γ ∪ {in, $} ∪ {0, 1}) × {0, . . . , n}.

The LSC specification contains only one agent; we will thus omit it in the rest
of the proof. A correct encoding will have the following form init · exec, where

init = (in, 0)(0, 0)(in, 1)(0, 1) . . . (in, j)(0, j) . . . (in, n)(0, n)(γ0, 0) (1)

The “init” sequence ensures that, at the beginning of the run, the tape cell
contains n blank cells and the initial location is γ0, with the tape head on
cell 0. An event (in, j) requires the agent to perform (0, j), i.e. to immediately
initialize the j-th tape cell to 0.

We express this “initialization sequence” using the LSCs in Fig.9, which re-
strict all events.

Consider an arbitrary configuration of the TM: C = (T, γ, i), where T is the
tape content, γ is the control location and i is the tape head position. We say
that it is encoded by a word w if

(1) ∃v : w = v(γ, i)
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(in, j)

TM

(0, j)

(in, j + 1)

∀j : 0 ≤ j < n

restricts all events

(in, n)

TM

(0, n)

(γ0, 0)

restricts all events

(a) (b)

Fig. 9. Initialization Sequence of DPSPACE TM

(2) ∀j : 1 ≤ j ≤ n : T [j] = a =⇒ ∃u, v : w = u(a, j)v and neither (0, j) nor
(1, j) appears in v.

Notice that, when w fulfills these conditions, C can be unambiguously retrieved
from w.

It is easy to check that init encodes the initial configuration C0 = (T0, γ0, 0),
where T0[j] = 0, for all j. We need to express the successor relation between
two configurations C ` C ′.

Suppose, wlog, that C = (T, γ, i), T [i] = 0 and C ′ = (T ′, γ′, i+1), where T ′ is
like T , except that 1 has been written at the i-th position. Assume that C is
encoded by some word w. By definition of configuration encoding, w = v·(γ, i),
and the last occurrence of either {(0, i), (1, i)} is (0, i) in w. The transition will
be encoded as the following continuation:

w′ = v (γ, i)(0, i)($, i)(1, i)(γ, i + 1)
︸ ︷︷ ︸

u

.

One can check that w′ is indeed an encoding of C ′, by noting that

(1) it ends with (γ, i + 1);
(2) in u, no event of the form (0, j) or (1, j) (j 6= i) has been added. Hence,

the tape content of the configuration encoded by w does not differ from
that of C on these cells.

The proof is almost over, we simply need to describe all sequences of the
form above with a conjunction of LSCs. This is achieved with the scenarios of
Fig. 9 to 12. The first one retrieves the last occurrence of an event of the form
(0, i) or (1, i). It is copied immediately after (γ, i). This retrieval is presented
in Fig.10. One should take care of a detail, here: we want to be sure that
after (γ, i), only one occurrence of (0, i) will be repeated. This is achieved
by using no-scenarios, the prechart asserts that matching a sequence of the
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form (a, i)(a′, i)($, i), where a, a′ ∈ {0, 1}, should cause a contradiction in the
specification. Therefore, such a “bad” encoding is forbidden.

(a, i)

TM

(a, i)

restricts all events
indexed by i

(γ, i)
(γ, i)

TM

($, i)

restricts all events
but {(0, i), (1, i)}

(a) (b)

Fig. 10. Retrieving tape cell content

(γ, i)

TM

(a′, i)

restricts all events indexed by i

($, i)

(a, i)

(γ′, i + 1)

Fig. 11. Transition (γ, a, a′, r, γ′)

A third scenario encodes the rest of the transition, i.e. writing to the i-th cell
and moving the tape head to the right. This scenario is shown in Fig.11.

(in, 0)

TM

(γh, 0)

Fig. 12. Existential scenario: TM initializes and eventually halts.

To conclude, we use the existential LSC to encode the property that, after
having been initialized, the TM eventually halts. This scenario, in Fig.12,
ignores all events, but the two in it. 2

In 2001, Harel and Marelly introduced an algorithm and an approach to the
validation of LSC-based specifications, called play-out [45]. The specification
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is immediately executed, without generating any code from it, but using an
animation engine instead. This animation engine uses a super-step approach:
when the environment inputs some new event, by performing some action on
the graphical user interface, the engine performs all system-controlled events
that become required, until it reaches some stable status, in which no event
is required anymore. The theorems provided in this section can be adapted
to show that (1) computing whether a finite super-step exists is PSPACE-
complete and (2) the animation process (even if there is a single possible
sequence of events) is not space-efficient, as it can simulate a DPSPACE Turing
Machine.

4 Agent Design

In this section, we turn to the most complex class of problems considered in
this paper. We want to determine whether agents can indeed be implemented
in order to satisfy the protocol. Ideally, the proof of implementability should
be constructive: some strategy, for every agent, must be built. Would this
implementation be compact and readable, the burden of designing the system
would be taken away from engineers. This achieves Harel’s “achievable dream”
[46].

As in the previous section, we will consider two versions of this problem. The
first version requires us to build a strategy for Sys, say fSys, which is repre-
sented as a single automaton A. The second version, that we call “distributed”,
obliges us to find a “distribution” of fSys into (fa)a∈Sys. This problem turns
out to be undecidable.

Remark that we will not be considering the problem of designing closed agent
design. This is because this problem is rather trivial. It suffices to test whether
L (S) is nonempty, which is formally equivalent to LSC-SAT.

We are more interested in the design of open agent systems. They are going to
be deployed in adversarial environments. Under these conditions, the problem
of implementability is not equivalent to satisfiability [47]. The question is more
accurately posed as “is there an implementation of system agents such that, no
matter how environment agents behave, the specification will be respected?”.

Problem 24 (COAD) COAD (Centralized Agent Design) is the problem of
deciding, given an LSC specification S and a set of system agents Sys ⊆ Ag,
whether there is a strategy fSys such that f is a correct implementation of
{L1, . . . , Lm}.”

In [9], we have presented an exponential time algorithm solving COAD. It
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constructs a two-player parity game graph, with three colors, in which player
0 has a winning strategy iff the specification is realizable. The game graph is
exponentially larger than the LSC specification. Solving a parity game with
three colors can be done in quadratic time [48].

This problem is EXPTIME-complete. This proves our claim that, because
LSCs are less expressive than LTL, some problems are easier on LSCs than on
LTL. Actually, centralized realizability is 2EXPTIME-complete for LTL [49].

Theorem 25 COAD is complete for EXPTIME.

PROOF (Membership) The algorithm presented in [9] builds a two-player
parity game graph, with 3 colors, from an LSC specification. The game graph
has size 2O(n log n), where n is the size of the specification. The first player
(protagonist) has a winning strategy on this game graph if, and only if, the
specification is consistent. This generalizes the approach presented in [7]. 2

PROOF (Hardness) We encode an alternating PSPACE Turing machine
into an LSC, as we did before (see Th. 22). The result will follow from the
fact that APSPACE=EXPTIME [50]. The only difference is that we need
to distinguish between universal and existential moves of the machine. Since
alternation is built in the realizability problem, we can use the two statuses of
the player to model the alternation of the Turing machine. In order to do so,
we duplicate all events, and assign them to player 0 and player 1. A transition
is now of the form (γ, i, A)(a, i, A)$i(a, i, A)(γ′, j, A′), where A, A′ ∈ {∀, ∃}
indicates the status of the current state (universal or existential).

Since there are several possible moves at configurations (by definition of alter-
nation), we need to encode these possible continuations. All bad continuations
are encoded in no-scenarios, which imply contradictory requirements on the
player (∀, ∃) who is about to play. Thus, if this player decides to pick such a
bad continuation, the outcome will certainly not respect the LSC specification.
This is equivalent to complete “a priori” the TM transition relation, without
altering its language.

We add anti-scenarios, to ensure that player i loses as soon as he performs a
move when it is not expected to do so. Surprisingly, we assign existential moves
to player 1 and universal moves to player 0. A scenario is added, ensuring that
player 0 loses as soon as a halting configuration is met. The specification is
not realizable iff the machine has an accepting computation. Actually, player
1 can pick existential moves such that the computation tree halts on all its
paths (otherwise, player 0 would have a winning strategy to escape). 2
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The algorithm presented in [9] is computationally expensive, yet optimal. How-
ever, it suffers from another problem: it yields design models, as automata,
that are exponentially larger than the specification. This is a hindrance for
readability. Nevertheless, we show below that strategies realizing LSC specifi-
cations need memories that large. Therefore, our algorithm is optimal, in the
sense that every algorithm solving this problem will necessarily build expo-
nentially large implementations.

We exhibit in Fig 13 a family of LSC specifications (φn)n>0the size of which
grows quadratically in n but any strategy for Sys realizing φn

Env

bn

b1

Sys

$

an

a1

...

...

bj

bi

Sys

$

aj

ai

Env

j 6= i and i, j ∈ [n].

Fig. 13. LSC specification φn

In this game, Env controls {a1, . . . , an} = Σs
Env = Σr

Sys and Sys controls
{$, b1, . . . , bn} = Σs

Sys = Σr
Env. Env first presents Sys with a sequence of n

symbols. Remark that Env chooses the order in which those events occur.
When the whole sequence has been presented, Sys must reply with the same
sequence. Hence, Sys’s strategy must have at least enough memory to remem-
ber the order in which the n events have been presented. The LSC specification
encoding this is presented in Fig. 13. Along “Sys” and “Env” on the left-hand
side scenario, we drew two dashed lines. This defines a co-region, which re-
laxes the ordering on the enclosed events. Therefore, a1 . . . an can occur in any
order, see Section 2.1. In comparison, on the right-hand side, aj and ai are
ordered. The right-hand side scenario obliges bj to follow bi if aj occurred after
ai.

Theorem 26 (Memory Lower-Bound) There is a family of LSCs specifi-
cation, namely (φn)n>0 such that any strategy realizing φn has a memory of
size 2Ω(n log n).

PROOF. First of all, for every n, |φn| = 5n2 + 3n + 1. Hence, the size of φn

grows only quadratically in n.

Now, consider some strategy f : Σ∗ → Σs
Sys winning in this game. If f is a

correct implementation, it must have enough memory to remember the order
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in which a1 . . . an occurred. Otherwise, there would exist two words w and
w′ of (Σs

Env)
∗ such that elts(w) = elts(w′) = Σs

Env but f cannot distinguish
between them, i.e. w ' w′, and thus f(w) = f(w′) (see Sec. 2.2). However,
w ·f(w) = w ·f(w′) and consequently, f would not be winning, since the order
of replies (b’s) does not match does the order of queries (a’s). Contradiction.

All permutations of a1 . . . an are possible, therefore there must be as many
memory states in f as there are permutations of n elements, i.e. 2Ω(n log n). 2

Remark 27 (Succinctness) Using the same family of LSC specifications
and the same proof, one can show that translating LSCs to some DBA involves
an exponential blow-up. Actually, it is not even possible to translate LSCs to
NBA recognizing either the language of the specification or its complement
without this blow-up. It follows from this fact and from the theorems in [35]
that turning LSCs to equivalent ACTLdet formulae also involves an exponen-
tial blow-up. Indeed, for every ACTLdet formula, there is a nondeterministic
Büchi automaton recognizing their complement, which is linear in their size.

The problem of centralized realizability is lacking some features, which lessens
its applicability

(1) It would be interesting to come up with an implementation which sat-
isfies the specification and guarantees that additional requirements will
be met as well. This is especially interesting if the specification is too
abstract or too loosely defined to ensure the requirements, but the ana-
lyst thinks that it is possible to refine it in a way that would fulfill the
requirements. The problem of deciding whether there is such a particu-
lar implementation, which we call constrained centralized agent design is
2EXPTIME-complete, when we consider LTL as a language for express-
ing requirements.

(2) It does not take agent interfaces into account, because it assumes that
the “perfect information” hypothesis holds. Hence, agents are not obliged
to consider only events occurring at their interfaces. It seems necessary
to extend the centralized version of the problem to take this into account.
This variant is called distributed agent design. As for LTL, this problem
is undecidable [51].

Problem 28 (LTL-Cons-COAD) The problem of LTL-Constrained Cen-
tralized Open Agent Design (LTL-Cons-COAD) is, given an LSC specifica-
tion S, a set of system agents Sys ⊆ Ag and an LTL formula ϕ, to decide
whether there is a strategy fSys : Σ∗ → Σs

Sys, such that

(1) fSys is a correct implementation of S;
(2) Out(f) |= ϕ.

Theorem 29 LTL-Cons-COAD is complete for 2EXPTIME
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PROOF. Membership is easy: translate LSCs to LTL (Prop. 7) and check
LTL realizability in doubly-exponential time [49]. Hardness comes from the
fact that this problem generalizes LTL realizability, which is 2EXPTIME com-
plete [49]. 2

The problem of distributed agent design is to build a strategy for every agent
in a society such that

(1) agents respect their interfaces, i.e. agent a senses events from Σr
a only.

(2) the society is well-behaving, with respect to an LSC specification.

Surprisingly, this problem is undecidable. Furthermore, the proof uses LSCs
without any fancy constructs: no loops, no alternatives, no conditions, . . . .

Problem 30 (DOAD) The DOAD (Distributed Open Agents Design) prob-
lem is defined as: “Given an LSC specification S and a society of agents Sys,
decide whether there is a list of strategies (fa)a∈Sys one for every system agent,
such that

(1) fa : Σ∗ → (Σs
a);

(2) ∀w, w′ ∈ Σ∗ : w|Σa
= w′|Σa

=⇒ f(w) = f(w′), i.e. if w and w′ are the
same, from a’s point of view, then a shall behave the same way after w

or w′;
(3) fSys is a correct implementation of S.

Theorem 31 DOAD is undecidable.

PROOF. We reduce Post’s Correspondence Problem (PCP) to the problem
of deciding whether the specification is not implementable, following [52].

We first recall the definition of PCP. A PCP instance is a list of pairs of words
(w1, u1) , . . . , (wn, un), such that, for all i, wi 6= ui and wi, ui ∈ Θ∗ (for some
finite alphabet Θ). A solution to a PCP instance is a finite sequence of in-
dexes i1 . . . im (m ≥ 1 and 1 ≤ ij ≤ n, for all j) such that wi1wi2 . . . wim =
ui1ui2 . . . uim . The problem of telling whether any PCP instance admits a so-
lution or not is undecidable.

Let us fix an arbitrary PCP instance. We show how to reduce the problem of
determining whether this PCP instance admits a solution to DOAD. The al-
phabet of our LSC specification is Θ∪{k1, . . . , kn}∪{$}∪{0, 1}∪{A0, A1}, plus
an arbitrary finite number of events that can be exchanged between system
agents, say {s0, . . . , sq}. The system is made of two agents: a1 and a2. The first
agent may observe Θ ∪ {$}, whereas the second can observe {k1, . . . , km, $}.
All these events, but {A0, A1} and the additional system events {s0, . . . sk}
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are controlled by the environment. A play proceeds as follows. First, the envi-
ronment picks either 0 or 1. The former means that the environment chooses
to read words in the first component of the pairs of words (viz. the wi’s), the
latter means that it will read ui’s. Then, the environment must stick to that
choice until the end of the play. Namely, the environment chooses a partic-
ular word in the list (say, wi or ui, depending on the “column” chosen) and
indicates the index of this word to the system, by performing ki. The envi-
ronment must then enumerate the letters in wi, which are thus published to
agent a1. The game goes on until the environment performs $. At this point,
the system is required to output A0 or A1, depending on what index (0 or 1)
the environment had chosen in the first place.

We claim that the PCP instance has a solution iff this specification is not
implementable. Assume that PCP has a solution i1 . . . im but there is a win-
ning strategy for the system. Then, upon 0i1w1 . . . imwm$, the system an-
swers with 0. Nevertheless, the strategy of the system shall also answer 0 to
1i1ui . . . imum$, because the projection of the two words on agent’s alphabets
are the same. Therefore, there is no winning strategy.

If PCP has no solution, then, the two system agents can get together and
compare the submitted run. Agent a2 sends the sequence of indexes that it
has been presented with to a1 (using some protocol on which they agreed,
based on {s0, . . . , sp}). This agent can then build wi1 . . . wim and compare it
with the word that he has received from the environment. Since PCP has no
solution, either they are the same and a1 shall answer 0 or the two words differ
and a1 replies with 1. 2

5 Extensions

5.1 Control Flow

The language of LSC that we have used so far was pretty simple. In this
section, we present some possible extensions, that make it more expressive but
does not cause any changes in the complexity of the problems investigated in
this paper. Actually, all membership proofs can be simply adapted to deal
with these extensions. Hardness proofs are of course not affected by adding
new constructs to the language.

Alternatives: within a single LSC, one can describe several alternatives, as
is done with in-line constructs of MSCs or AUML Interaction Diagrams.
We need to introduce the concept of LPOs with choice, which is much
heavier to manipulate. This extension does not cause any problem, besides
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to our translation to LTL, which is not correct anymore, because the length
of LPOs is variable. Our translation relies crucially on the fact that all
linearizations of an LPO have the same length.

Conditions: it is possible to add conditions (i.e. boolean logic over some pre-
defined set of propositions), to the language. Together with alternatives, we
can embed if-then-else tests in the language. Using the concept of cold/hot
conditions, one can also describe some “preconditions” and assertions: a
hot condition describes a condition that must be true when it is evaluated,
whereas a cold condition represents a condition that, if evaluated to false,
finishes prematurely and successfully the scenario. Again, all the results of
this paper remain true if we consider this extension. If we have only “hot”
conditions, the translation to LTL still works.

Hot/Cold Locations: a cold location is a location on which the execution
of the chart may stop. This provides us with a way to specify that some
linearizations of the LPO may stop before reaching its end. All complexity
results are preserved by this extension, except for the translation to LTL,
because the length of the LPO is now variable.

Modes of communication: In our model, we assumed that communication
was instantaneous. Nevertheless, we can represent other modes of commu-
nication, like asynchronous or synchronous communication in our model.
Asynchronous communication means that the receiver shall not be ready
for the sender to send its message. In the synchronous mode, there is a
transmission delay, too, but the sender must wait for the receiver to get the
message before proceeding. This represents procedure calls, in programming
languages.

Unbounded loop is the only extension for which we could not prove the ro-
bustness of our constructions. With the Kleene star and alternatives, we can
encode every regular expression as a basic chart. We were not able to show
that the double blow up involved in the tableau method could be avoided, and
we leave that problem open. Remark that Kleene star makes the language in-
comparable to LTL.

5.2 Roles

Symbolic LSCs, which have been informally introduced in section 2.1, makes
it possible to describe the behavior of unbounded families of agents. We intro-
duce roles in our approach. In logical terms, Symbolic LSCs are to LSCs what
first-order logic is to propositional logic. We follow as much as possible [27],
even though their solution has been tuned for animation, and its formalization
might not sound as clean as it could be.

Role is a set of roles. A population is a partial function, with finite domain,
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Pop : Ag 6→ 2Role, mapping every agent to the roles he plays. Let P denote
the set of all populations. We assume here that agents may not change roles
during system execution. We also drop the hypothesis that Ag is finite and
only require it to be countable.

We also assume that we are given a countable set of first-order variables,
Var. Var and Ag are distinct. An interpretation of V ⊂ Var is a function
θ : V → Ag. Message terms are also extended to include first-order variables.
We write Σ(V ), for V ⊂ Var, to denote the set (Ag ∪ V ) × M × (Ag ∪ V ).
Ground events are events from Σ(∅). Applying a V -interpretation to an event
in Σ(V ) yields a ground event, in which all occurrences of v ∈ V is replaced
by θ(v). Let I represent the set of all interpretations.

In the same vein, we extend LPOs, and transform them in Quantified Labeled
Partial Order (QLPO). A QLPO is an LPO over Σ′(V ), or an expression of
the form ∀x : R : Q or ∃x : R : Q, where x ∈ Var, R ∈ Role and Q is a QLPO,
in which x is a free variable. We use the usual definition of free and bound
variable. A variable is bound if it occurs within the scope of a quantifier. It is
free if it is not bound.

Applying an interpretation of variables to an LPO simply replaces all occur-
rences of variables by their interpretations in event terms (Σ(V )). If all free
variables of an LPO are interpreted in θ, this yields a ground LPO, as well.

Definition 32 (|=⊆ P × I × Σ∞ × QLPO) Let γ ∈ Σ∞, Pop is a population
and θ is a first-order variable interpretation.

• Pop, θ, γ |= Q, with Q ∈ LPO iff γ |= θ(Q).
• Pop, θ, γ |= ∀x : R : Q iff, for every a ∈ Agents,

R ∈ Pop(a) =⇒ Pop, θ ∪ {x 7→ a}, γ |= Q.

• Pop, θ, γ |= ∃x : R : Q iff, there is some a ∈ Agents, such that

R ∈ Pop(a) and Pop, θ ∪ {x 7→ a}, γ |= Q.

A Symbolic uLSC is a pair �(P, M) such that

(1) P is a Σ′(V )-LPO. Thus, all variables in V are free in P . We do not allow
quantifiers in the prechart, as is also done by [27].

(2) M is a Σ′′(V ′)-LPO, with Σ′′(V ′) ⊇ Σ′(V ), in which the sole free variables
are V .

Symbolic LSCs are interpreted against populations and infinite words γ ∈
Σω. An interpretation satisfies a Symbolic LSC if, whenever the prechart is
matched, the main chart is also matched afterwards. Remark that matching
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can be done according to several variable interpretations, and we take all of
them into account.

Definition 33 (|=⊆ P × I × Σω × SymLSC) Pop, γ |= �(P, M) iff, for ev-
ery first-order variable interpretation θ, for every decomposition uvγ ′ of γ,

Pop, θ, v |= P =⇒ Pop, θ, γ ′ |= M.

A Symbolic LSC specification S is a finite collection of Symbolic LSCs. As for
plain uLSCs, the semantics of a specification is defined through conjunction:

Pop, γ |= S ⇐⇒ ∀S ∈ S : Pop, γ |= S.

Problem 34 (SymLSC-SAT) The satisfiability problem for Symbolic LSCs
SymLSC-SAT is given a Symbolic LSC specification S and a finite set Role,
to decide whether there is a finite population Pop : Ag 6→ 2Role such that

∃γ ∈ Σω : Pop, γ |= S

Theorem 35 SymLSC-SAT is undecidable.

PROOF. We outline how one can reduce the halting problem of a two-
counter machine, which is known to be undecidable, to SymLSC-SAT. A
two-counter machine (2CM) is a program (i.e. a finite list prog), that has two
integer counters c0, c1 and uses the following statements:

• init is an initialization statement, that resets c0 and c1 to 0. There is only
one init statement, located at line 0 of prog.

• go to l1 or l2, where l1 and l2 are line numbers, with l1, l2 > 0. Executions
must jump (nondeterministically) at line l1 or l2.

• halt is a halting statement. There is only one halt statement. Its effect is
to make the execution back to line zero, i.e. to the init statement.

• inc i, with i = 0, 1. Its effect is to increment counter ci of one unit and goes
on with the statement at the next program line.

• dec i decrements ci and goes on with the statement at the next program
line.

• not i. The execution goes on if ci 6= 0. Otherwise, the execution stops.
• zero i. The execution continues if ci = 0, otherwise, it stops.

The problem of deciding, given prog, if there is an execution that will even-
tually execute halt is undecidable. Remark that, if prog executes halt, then
there are two bounds k0, k1 ∈ N such that ci < ki (i = 0, 1), during the whole
execution.

By construction, it is easy to see that
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(1) determining whether there is an infinite execution that goes infinitely of-
ten through init is undecidable, too. Actually, the same finite execution,
from init to halt can be iterated again and again.

(2) if there is such an ever-looping execution, it also uses counter bounds k0

and k1.

In order to encode counter values with Symbolic LSCs, we use agent roles.
In our case, Role = {cntr}. Every agent playing role cntr can assume three
“values”: −1 (meaning unused), 0 and 1. The value of counter ci(i = 0, 1)
is the number of agents assuming value i. We also use a concrete instance,
named “cpu”, which is a “central processing unit”. It executes sequentially
the 2CM statements as prescribed by prog and sets the values of cntr agents.
Agent cntr can receive four messages: “get”, “unset”, “set0” and “set1”. The
first one queries the value currently stored (−1, 0 or 1, thus). The three last
messages set the value.

Fig. 14. Getting x values

Fig. 15. Setting x value

The LSC of Fig. 16 encodes the semantics of init: it sets c1 and c0 to 0, by
ensuring that there are no cntr agents with values 1 or −1. Then, it proceeds
to the next statement, which is at line number 1.

Fig. 16. init

The CPU sends to itself the line number of the next statement to execute. If
line i is a statement of the form inc 1, this line is translated to the LSC of
Fig. 17. In this LSC, some agent in cntr is picked, the value of which is −1
(i.e. it does not belong to any counter), and sets its value to 1. Since all other
agents do not take part in this protocol, their value is unchanged. Remark
that the execution proceeds at the next line, i.e. i + 1.
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Fig. 17. inc 1

The same approach is taken to translate the statement dec 1. This is illustrated
by Fig. 18.

Fig. 18. dec 1

Testing whether c0 = 0 is illustrated by Fig. 19. The CPU retrieves the value of
all cntr and checks that it is indeed either −1 or 1, i.e. nonzero. The encoding
of c0 6= 0 is presented in Fig. 20. CPU simply finds one agent the value of
which is 0. Thus, c0 6= 0, clearly.

Fig. 19. zero 0

Fig. 20. not 0

Finally, in Fig. 21, the LSC imposes that CPU executes init infinitely often.

Thus,

(1) all models of the specification execute halt infinitely often (Fig. 21);
(2) all models of the specification simulate the 2CM.
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Fig. 21. halt infinitely often

2

6 Summary and Discussion

Table 1
Summary of Problem Complexities

Problem is complete for . . .

CCMC co-NP

OCMC PSPACE

CDMC PSPACE

ODMC PSPACE

Reachability PSPACE

LSC-Impl PSPACE

LSC-SAT PSPACE

CCAD PSPACE

COAD EXPTIME

LTL-Cons-COAD 2EXPTIME

DOAD (Undecidable)

SymLSC-SAT (Undecidable)

Table 1 summarizes our complexity results. There are two axes along which
complexity increases. The distributed version of the problems is always harder
than the centralized one, as in [43], while synthesis is also more complex than
model checking, for it adds alternation to the problem [50].

The most interesting part is to investigate what causes such a high complexity.
We identify two factors making LSCs complex.

(1) LSC semantics relies on partial orders. We used this in the proof of co-
NP-completeness of COAD (Th.12) and the lower-bound on the size of
synthesized state machines (Th.26). With a chart of size n, we can thus
encode a set of runs of size 2O(n).
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(2) An LSC specification is unstructured. In the PSPACE-hardness proofs,
we used LSCs of constant size only and, actually, very short ones, in which
events were linearly ordered. The complexity of the specification comes
from the fact that many LSCs are active at the same time, describing
concurrent liveness properties.

The former cause of complexity is often avoided in practice, because real-
world specifications tend to make use of almost linearly ordered scenarios.
The latter cause is more difficult to deal with. One shall find ways to describe
the problem structure in these models and, more importantly, to rely on this
additional information to get more efficient algorithms [53]. This is all but
an easy task, as it contradicts one of the basic principles of scenario-based
software engineering: requirements are partial, redundant, complementary and
range over several aspects of the system. And indeed, agents typically pursue
several goals and obey several protocols at the same time.

Undecidability of distributed synthesis means that we need to find other ways
to cope with that problem. In [11], we propose such an algorithm, which is
sound but not complete. It applies a predefined “implementation scheme” and
then checks whether the distributed implementation obtained is correct. We
still have to extend it with knowledge and intention to make it applicable to
agents.

Finally, we need to investigate further the complexity of loops and we shall
try to find a polynomial translation to LTL which resists to the language
extensions presented in Sec.5.
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