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1 Introduction

The difficulty to produce quality software requirements has long been identified
[2]. They all too often turn out to be unsuitable, incomplete, ambiguous, contra-
dictory, redundant, continually changing, and so on. Researchers and practition-
ers have devoted much efforts trying to find solutions to this. Scenario-oriented
solutions are among the most successful attempts. They became increasingly
popular over the past ten years, through the widespread adoption of UML[1]
and Use Cases[2]. But, Scenario-Based Software Engineering (SBSE) actually
covers a wider family of techniques expanding over elicitation, specification, ver-
ification, validation, inspection, prototyping, animation, negotiation,. . . [?,?,?].
We are mostly interested in scenario-based specifications, their verification and
their use for code generation.

Specification techniques range from the most informal ones to those having a
precise, mathematically defined semantics. Our focus is on the latter, which are
a necessary prerequisite to unambiguous specification and efficient automation.

Our contributions concern Live Sequence Charts (LSCs) [3], a notation intro-
duced by David Harel and Werner Damm in order to overcome some limitations
of Message Sequence Charts (MSCs) [4], namely, the lack of message abstrac-
tion and the inability to specify the modality of a scenario. As an example,
consider the following standard distributed system requirement: “Whenever a
process enters the critical section, it eventually exits it”. Fig. 1 represents the
corresponding MSC.

If this scenario is to be interpreted as recommended by the ITU standard,
it means that Start using is followed by Stop using, without any other message
being exchanged in the interval. This entails that the process may not send any
requests to the critical resource when using it! Of course, the intended meaning
of this scenario is different: the process starts using the critical section and
after some time, during which no message relevant to this requirement is sent, it
releases its lock on the critical resource.

The status or modality of the behaviour described by the MSC is also unclear:
is it a simple example only used for illustrative purposes or is it a universal rule
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Process1
Critical
Resource

Start_using

Stop_using

Fig. 1. Critical section requirement specified with MSC

(“In given circumstances, the system shall always behave as specified”)? Thus
LSCs abstract away irrelevant messages and attach a modality to each scenario:
universal, example (existential) or even counter-example (anti-scenario), as we
will see in Section 3.2.

A typical SBSE process (see Fig. 2) is usually based on Use Cases. In such
a process, one progressively moves from concrete, partial examples (or counter-
examples) of behaviour to more general requirements statements. This way of
doing fosters communication between software engineers and the other stake-
holders [?]. Additionally, it facilitates the identification of test cases and the
production of user-documentation. As this human-intensive bottom-up elicita-
tion task progresses, the precision of the corresponding documentation should
also evolve from informal, error-prone representations to more formal models.
Hence, LSCs with their multiple modalities, intuitive MSC-like syntax and their
formal semantics, seem worth considering to support the task.

But this is only the start of the process. What we devote our interest to in this
paper are the subsequent steps. In his vision paper [5], David Harel essentially
sees it as building a system model (made of two interrelated models, a structural
model and a state-based behavioural model) and then producing code from it.
He foresees a bright future in which the synthesis and verification will be formal
and largely automated (see Fig. 2). The present paper is a first step in this
direction.

A challenge that we face at this point is to transforming scenarios into a
system model (and subsequently into code). This is a major paradigm shift.
We start with a scenario-based inter-component perspective (scenarios typically
describe component interactions vs internal actions) and we end with a state-
based intra-component perspective. General techniques are thus computationally
extremely expensive. We show here how to improve on this cost. In counterpart,
we have to abandon the idea to provide exhaustive algorithms, and just keep
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Fig. 2. Scenario-based Software Engineering (adapted from [5])

soundness. Still, we are convinced that our algorithms are effective in detecting
specification problems and generating implementations.

2 Running Example

To illustrate our approach, we will use excerpts from a variation of the Center
TRACON System (CTAS Case Study) from NASA [7, 8]. This system coordi-
nates various air traffic related clients, in order to ensure that they all use the
same weather information. We will focus on the part of the system in charge
of updating the weather reports used by clients. The system is made of the
following components:

Weather Control Panel (WCP): the User Interface through which opera-
tors manually trigger updates;

Communication Manager (CM): the central part of the system, in charge
of synchronizing the various clients;

Client: those are distributed on the various sites, where accurate weather data
is needed. We will assume that there are only two clients and that they are
already connected to the system. In the original system, there is a part of
the system in charge of connecting, disconnecting and initializing clients;

Database: from which the clients retrieve weather reports. We assume that
there is only one database to which all clients direct their queries;

Terminal: represents the computers on the distributed site that make use of
the weather reports downloaded by clients.



3 Models and Relationships

3.1 Structure

Fig. 3 gives the structural view of our example through a variant of object
diagrams. Boxes represent agents. Associations (arrows) between agents are di-
rected, denoting one-way communication channels. They are typed by the names
of the messages/events they carry.

WeatherCP :: f2 CommMgr :: cm

User::user
Client:: c[1]

Client:: c[2]

Terminal:: term[1]

Terminal:: term[2]

Database:: db

disable,

enable

update

click

yes, no

yes, no

yes, no

get_new, use_new,

get_old, use_old

get_new, use_new,

get_old, use_old

use_new, use_old

use_new, use_old

get_new, get_old

Fig. 3. Structure model

3.2 Inter-agent specifications

Inter-agent specifications are partial “one story for all agents” [10]1 scenario-
based descriptions constraining the overall system behaviour.

An LSC is similar to a Sequence Diagram [1] or a bMSC [4]. Fig.4 presents
two universal LSCs. An event (arrow) is instantaneous and can only appear
between agent instances (vertical lifelines) which classes were declared to control
or receive it, respectively, in the structure diagram. The points of a lifeline where
events occur (i.e. the sources and targets of arrows) are called locations. On a
given lifeline, locations are ordered chronologically from top to bottom. Events
being instantaneous, senders and receivers synchronize on them.

Universal scenarios (uLSCs) embeds a general trigger-response pattern as
well as a frame axiom restricting which events can, must or cannot happen during
the execution of a scenario. uLSCs consist of two concatenated basic charts: the
prechart (i.e. the trigger) and the main chart (i.e. the response). The former is
surrounded by a dashed hexagon. The latter comes below the prechart within a
solid rectangle (see fig.4). The scenario in fig.4(a) asserts that, whenever the user

1 [10] speaks in terms of objects rather than agents.



clicks on the weather control panel f2 and f2 sends an update order to cm,
cm must disable f2 and set its own status to “updating” through status up.
Because all events appearing in the scenario are restricted, this scenario forbids
the occurrence of click or update between disable and status up.

The uLSC in fig 4(b) contains an ALT-box: only one of the two subboxes is
chosen. ALT-boxes are treated in [11], where all results are carried over.

Abstract Syntax In compliance with the semantics of MSCs [4, 12], a basic
chart defines a labeled partial order on events [13]. First of all, events (arrow
labels) are in Σ. We assume that events contain information about their sender
and receiver. Let Σs

a (resp. Σr
a) be the set of events sent (resp. received), by

agent a. Locations are sources and targets of arrows. Two locations l and l′

are directly ordered if they belong to the same lifeline and l is drawn higher up
than l′. Since communication is instantaneous, the two locations of a same arrow
shall be reached simultaneously; hence, they are order-equivalent. The transitive
closure of this direct ordering defines a preorder. All locations of an equivalence
class must be labeled by the same event. This ensures that the quotient of the
preorder defines a labeled partial order.

Definition 1 (Labeled partial order (LPO)). A Σ-labeled partial order
(LPO) is a tuple 〈L,≤, λ〉, where

– L is a set of locations. If L is finite, the LPO is called finite.
– ≤⊆ L×L is a partial order on L (a transitive, anti-symmetric and reflexive

relation).
– λ : L → Σ is a labeling function associating events to locations.

The LPO is deterministic if furthermore ∀l, l′ ∈ L : λ(l) = λ(l′) =⇒ l ≤
l′ ∨ l′ ≤ l. A linearization of a finite LPO is a word of w1 . . . wn ∈ Σ∗ such that
its canonical LPO 〈[n],≤, {(i, wi)|i ∈ [n]}〉, where [n] is a shortcut for the set
{1, . . . , n}, is isomorphic to some linear (total) order 〈L,≤′, λ〉 with ≤⊆≤′. An
ideal (or cut) in an LPO is a set c ⊆ L such that ∀l ∈ c : ∀l′ ∈ L : l′ ≤ l =⇒
l′ ∈ c. By abuse of language, we call “ideal” the LPO resulting in the projection
of an LPO on a given ideal.

Using ideals, one can define the following transition system. It has the prop-

erty that ∅
w
−→

∗

c if, and only if, c is linearized by w.

Definition 2 (Ideals Transition System, c
e
−→ c′). The states of this tran-

sition system are ideals in the considered LPO (see def. 1). Given two ideals c

and c′, there is a transition labeled by some event e (written c
e
−→ c′) iff there

is an e-labeled location l which has all its predecessors in c, but is not in c and
c′ = c ∪ {l}.

Definition 3 (Universal LSC or uLSC).
A uLSC is a tuple 〈L,≤, λ, ΣR, P 〉 such that



1. 〈L,≤, λ〉 is a deterministic ΣR-LPO. ΣR contains the restricted events2 of
the uLSC;

2. P ⊆ L is the prechart. Every prechart location should occur before a main
chart location: P × (L \ P ) ⊆≤.

Semantics The semantics of a uLSC is, like linear temporal logics (LTL), given
in terms of a model relation: for every possible infinite sequence of events γ ∈ Σω,
we say that γ is a model of a uLSC S = 〈L,≤, λ, ΣR, P 〉 (written γ |= S) iff, for
every decomposition uvγ ′ of γ (u, v ∈ Σ∗ and γ′ ∈ Σω), if v|ΣR

linearizes P ,
then

∃w ∈ Σ∗ : γ′ = wγ′′ ∧ w|ΣR
linearizes M.

The language of a uLSC is its set of models. An LSC specification (say S) is
a set of uLSCs and its language (L(S)) is the intersection of the languages of its
component uLSCs.

User:: user WeatherCP :: f2 CommMgr :: cm

click

update

disable

status_up

CommMgr :: cm

get_new

status_up

Client :: c[1]Database :: db

get_new

yes

yes

,no

no

ALT

(a) (b)

Fig. 4. Universal Live Sequence Charts (uLSCs)

We decompose the constraint expressed by a uLSC per event. Each partici-
pating agent will be responsible for the constraints linked to the events he sends.
Consider a finite run w ∈ Σ∗ and an uLSC S = 〈L,≤, λ, ΣR, P 〉. We say that
this run activates a location l in S if there is some suffix v of w such that we
can find an ideal c in S

1. in which l is maximal (l ∈ c and ∀l′ > l : l′ /∈ c),
2. which contains the prechart (c ⊇ P ),
3. which does not contain all the locations (c ⊂ L),
4. which has v|ΣR

among its linearizations.

2 That is, roughly, those events that must take place at the moments determined by the
uLSC but cannot happen elsewhere while the scenario’s main chart is “executing”.



Definition 4 (required event, forbidden event). If w activates some l such
that e ∈ ΣR labels one of the direct successors of l, then we say that w requires
e. Conversely, if w activates some l such that e ∈ ΣR does not label any of the
direct successors of l, e is said to be forbidden by w.

Definition 5 (e-safety, e-liveness). A run γ ∈ Σω is e-safe (resp. e-live) iff
for every finite prefix w ∈ Σ∗ of γ, if w forbids (resp. requires) e, then w · e is
not a prefix of γ (resp. ∃v : w · v · e is a prefix of γ).

The following theorem asserts that, by checking that forbidden events do not
occur and required events eventually occur, we are sure that an LSC will be
satisfied.

Theorem 1 (uLSC = Σ-liveness ∩ Σ-safety [13]). For every γ ∈ Σω,
γ |= S iff γ is e-safe and e-live, for every e ∈ ΣR.

Our ultimate goal is to build an open reactive system. The structure diagram
shows all the agents interacting in the application domain. Some of them are
system agents, i.e. components of the system that we are in charge of building,
while other are environment agents, whose behaviour is beyond our control.

Let Sys ⊂ Ag be the set of “system” agents. Their controlled events are
ΣSys =

⋃

a∈Sys Σs
a. We define similarly ΣEnv =

⋃

a∈Env Σs
a, the set of events

controlled by the environment, as Env = Ag \ Sys).
As we already highlighted, a uLSC constrains how the various agents interact,

by forcing them to behave as prescribed in the main chart, when they have
been interacting as in the prechart. This constrains the system as well as its
environment. Hence, when designing the system, we may safely assume that
the environment will fulfill its safety and liveness obligations. This leads to the
natural notion of “implementation correctness”.

Definition 6 (Correct implementation). Let Σ be partitioned into ΣSys,
the set of system-controlled events, and ΣEnv, the set of environment-controlled
events. A set of words W ⊆ Σω is a correct implementation of a uLSC iff

∀γ ∈ W.

{

γ is ΣEnv-safe =⇒ γ is ΣSys-safe
γ is ΣEnv-live =⇒ γ is ΣSys-live

So, we end up with a system that will guarantee the satisfaction of its spec-
ification, provided its environment behaves as assumed.

3.3 Intra-Agent Specifications

We use a variant of the formalism of finite Input/Output Automata for specify-
ing the behaviour of each agent separately. This formalism has been introduced
in [14], originally without the restriction of being finite state. It is a conceptually
simple model, which allows us to focus on proofs, abstracting from syntactic and
semantic complexities. By its very nature, this formalism is adapted for describ-
ing distributed systems, when the focus is on interaction and synchronization.



Indeed, the components specified are robust to scheduling; they may not make
any assumptions on the relative speed of their environment. Furthermore, since
we are interested in open systems, this formalism acknowledges the fact that
no component can constrain its environment’s behavior; this is guaranteed by
the syntactic condition called “input-enabledness”. Finally, to effectively sup-
port component-based software engineering, our model must make it possible
to hierarchically build components from subcomponents, which shall themselves
be open systems, while keeping refinement in mind [15]. The framework of I/O
automata has composition as a first-class citizen, which guarantees refinement.

Abstract Syntax

Definition 7 (I/O Automaton). An input-output automaton is a tuple

〈Σi, Σo, Q, q0, ∆,P〉,

– Σi ⊆ Σ is a set of input events;
– Σo ⊆ Σ is a set of output events. Input and output events are disjoint;
– Q is a finite set of states;
– q0 is an initial state;
– ∆ ⊆ Q × (Σi ∪ Σo) × Q is a transition relation. An I/O Automaton must

be input-enabled: for every state q and input event e ∈ Σi, there must be a
state q′ such that ∆(q, e, q′);

– P ⊆ 2Σo is a fairness partition. It is a set of equivalence classes between
output events that must be treated fairly (see def. below).

Semantics A run of an I/O automaton is an alternating sequence of states and
events, r = s0e0s1e1 . . ., starting at q0 and following the transition relation: for
every i > 0, ∆(si−1, ei−1, si). The trace of r is the sequence of events observed
on r (e0e1 . . .). An event e is said to be enabled at state q if there is a transition
∆(q, e, q′). For a fairness class E ∈ P , r is E-fair if, for every event e ∈ E,

1. there are infinitely many states si such that e is not enabled at si; or,
2. e occurs infinitely often in r.

A run is fair if it is E-fair, for every E in P . The language of an I/O Automaton
A, denoted L(A) is the set of words {γ ∈ Σω|A has a fair run on γ}.

Two I/O Automata can be composed, using a variation of the usual syn-
chronous product of automata.

Definition 8 (Composition of I/O automata). The composition of two au-
tomata A1 and A2 is defined if their output events are distinct (Σ1

o ∩ Σ2
o = ∅).

In that case, A = A1 ×A2 is

1. Q = Q1 × Q2;
2. q0 = (q1

0 , q2
0);

3. Σi = (Σ1
i \Σ2

o)∪ (Σ2
i \Σ1

o) i.e. only input events controlled by neither agents
are input events of the composition;



4. Σo = Σ1
o∪Σ2

o : we do not hide “local events”, in order to ensure associativity;
5. ∆((q1, q2), e, (s1, s2)) iff

– e ∈ Σ1 ∩ Σ2 and ∆i(qi, e, si), for i = 1, 2;
– or, e ∈ Σ1 \ Σ2, q2 = s2 and ∆1(q1, e, s1) or vice-versa.

6. P = P1 ∪ P2, i.e. we keep the original fairness conditions.

The composition operation enjoys the following properties:

Lemma 1. For every I/O Automata A1,A2,A3, provided composition is de-
fined, we have

Associativity: A1 × (A2 ×A3) = (A1 ×A2) ×A3.
Commutativity: A1 ×A2 = A2 ×A1.
Refinement (Trace inclusion): L(A1 ×A2) ⊆ L(A1)

Proof. Associativity and commutativity are shown in [14]. The former relies on
the fact that A1 output events caught by A2 are not hidden. Trace inclusion
comes from the fact that A2 cannot block an A1 transition in the composition,
by input-enabledness (see def.7) . Therefore, fairness is preserved.

3.4 Relationships between Models

Usually, the meanings of inter- and intra-agent models overlap. Along the lines
of [10], we take advantage of this redundancy by relating models in two ways:

Model checking: given a uLSC model S and a state-based model associating
an I/O automaton to every system agent (A1, . . . ,An), we check that the
composed system fulfills S: L (

∏n

i=1 Ai) ⊆ L (S)
Synthesis: given a uLSC model S, we verify that it is possible to find one

automaton per system agent such that their composition is a correct imple-
mentation of S.

4 Previous Answers

There has already been much research on these two issues. However, the proposed
solutions suffer performance problems.

4.1 Model Checking

LSCs can be translated to temporal logics [17, 18] and fed into a model checker.
LSCs can be translated to LTL, or CTL, or even ACTL [19], or Büchi automata
[20].

The formula obtained from a uLSC is

�

∧

w∈ lin(P )

(

φw =⇒
∨

v∈ lin(P )·lin(M)

φv

)

,

where φε = >, φa·u = (a ∧ ©(N Uφu)), and N = ¬e1 ∧ . . . ∧ ¬en, where
ΣR = {e1, . . . , en}.

However, these approaches face two obstacles:



1. The formula presented above is exponential in the size of the specification.

2. Computing the product of the numerous I/O Automata composing the sys-
tem can lead to the state explosion problem.

4.2 Synthesis (aka Realizability Checking)

We have implemented the exponential time algorithm presented in [13]. This
program, called a Realizability Checker [21], builds a correct implementation.
This state machine is often exponential in size, and hardly readable by users.

We use the explanation power of animation [22] to illustrate the flaws found
by the realizability checker. If the specification is realizable, an implementation
is built. Then, the analyst plays the role of the user, i.e. triggers environment
events. The animator simulates the reaction of the system, according to the
synthesized strategy. If the implementation is not behaving as expected, the
model can be adjusted and synthesized again.

If the specification is not realizable, the algorithm builds a sabotage plan
for the environment. Controlling environment events, it will lead every system
implementation to failure. The roles are thus reversed during animation: the
analyst plays the role of the future system whereas the animator plays an evil
environment, following the sabotage plan. The analyst will always be driven to
a state where he will have to violate some constraint. The animator announces
conflicting constraints, such as “scenario X requires event e but this event is
forbidden by scenario Y”. The analyst can backtrack in the execution and try
alternatives. Fig.5 presents a screenshot of (part of) the animator.

Fig. 5. Realizability checker/Animator screenshot



The synthesis algorithm described above depends crucially on the perfect in-
formation hypothesis: every agent can sense every event. This ignores the inter-
face description from the structural model, which explicitly defines which events
are visible to each agent. It is more interesting to synthesize a distributed system
in which every agent only listens to events specified in its interface. However,
telling whether such an implementation exists is undecidable [21].

5 A Lightweight Approach

Since the problem is undecidable, we propose lose completeness but keep sound-
ness: Every implementation produced is correct, but our algorithm may fail to
find some implementations.

5.1 Model Checking

First, we suggest to use the techniques for minimizing the size of the formulae
generated from uLSCs devised in [18, 17]. Typically, a uLSC can be split into
several small formulae, in which we only need to check the proper ordering of
pairs of events, and not all linearizations (as in sec. 4.1).

In order to address the state explosion problem, we suggest to ignore all
components that do not participate in the verified uLSC. Suppose that only
agents i through k participate in S. Hence, it is sufficient to check that the
uLSC is correct, wrt the subsystem composed of agents i through k only. Since
we demonstrated that I/O automata composition is a refinement, proving that
the uLSC is satisfied by this reduced system is enough to show that the global
system is correct, too:

L





n
∏

j=1

Aj



 ⊆ L





k
∏

j=i

Aj



 ⊆ L(S).

Furthermore, when the subsystem can satisfy the LSC on its own, it indicates
that the design achieves low coupling: the fulfillment of the property does not
depend on components which are not directly involved in it.

However, if model checking fails, it might be a false negative: the counter-
example could have been avoided, had we included more agents in the system,
which one can try.

5.2 Synthesis

Our lightweight algorithm is illustrated in fig. 6. Its steps are detailed in the rest
of this section.

(1) Agent Selection As opposed to the previous algorithm, the lightweight
algorithm focuses on a single agent at a time. It does not try to find a strategy
for all participants in one run. For the rest of this section, let a be the selected
agent.



CommMgr :: cm

get_new

status_up

Client :: c[1]Database :: db

get_new

yes

yes

,no

no

ALT

cm ! get_new ? c[1] c[1] ! get_new ? db

db ! yes ? c[1]

db ! no ? c[1]

c[1]! yes ? cm

c[1]! no ? cm

cm ! get_new ? c[1]

cm ! get_new ? c[1]

cm ! get_new ? c[1]
cm ! get_new ? c[1]

(1) Agent Selection

(3) Scenario projection
(4) Construction of most
representative SLI

(5) Liveness analysis

(6) Refinement search

(2) Sanity check

Fig. 6. Standard Local Implementation (SLI) for c[1]



Ob::obj1 Ob::obj2 Ob::obj3

a

b
c

d

Fig. 7. Mismatch between causal order and visual order

(2) Sanity check All scenarios in which a participates actively are checked
to ensure that their causal order matches their visual order. Two locations are
causally related if they are sending locations on the same lifeline or if they are
the sending and receiving locations of the same event. This is done in polynomial
time [23]. Fig.7 gives an example of a uLSC which does not fulfill this condition.
Clearly, it is not simply distributable for agent obj3, because d may only be sent
after c has occurred, which obj3 cannot see.

If this sanity check fails, the algorithm stops and explains why specification
is not distributable.

(3) Scenario Projection All scenarios are projected onto the lifeline of agent
a (e.g., the upper part of fig.6 illustrates an attempt to synthesize an imple-
mentation for c[1]). All uLSCs in which a is not required to perform any event
are discarded. For instance, the scenario of fig 4(a) would be discarded because
c[1] does not take part in it. In summary, Step 3 produces a set of non-empty
uLSCs, reduced to the lifeline of a, one for each uLSC in which at least one event
controlled by a is restricted.

(4) Construction of Most Representative SLI The I/O automaton built
is input-enabled. It records in I all possible cuts of every scenario. The invariant
of the automaton is: for every word w, if the automaton reads w and ends up
in a state I then, for every ideal c, c ∈ I iff some suffix of w|ΣR

linearizes
c. For instance, in Fig.6, the center state of the I/O automaton records the
configuration where the last event was get new (from cm to c[1]), as all its
incoming transitions indicate. This means that the prechart of the projected
scenario has been matched and get new (from c[1] to db) is now required from
agent c[1]. Since this event is not forbidden at that state, the Standard Local
Implementation (SLI) rule (see below) allows it to be scheduled.

Definition 9 (Standard Local Implementation (SLI)). Let the projected
specification be composed of m non-empty uLSCs: {S1, . . . , Sm}. An I/O automa-
ton fulfilling the following constraints is called a Standard Local Implementation
(SLI):

〈Σr
a, Σs

a, Q, q0, ∆, {Σr
a}〉

where



– Q =
∏m

i=1 22Lix, i.e. every state keeps one configuration per uLSC, a config-
uration being a set of ideals.

– q0 = ({∅}, . . . , {∅}),
– ∆((I1, . . . , Im), e, (I ′1, . . . , I

′
m)) implies both the following statements

1. ∆ follows the ideals transition system:
• if e /∈ Σi

R, I ′i = Ii;

• if e ∈ Σi
R, I ′i = {c′|∃c ∈ Ii : c

e
−→ c′}∪{∅}. The empty ideal is always

added, because it is linearized by the empty word, which is a suffix of
every word w ∈ Σ∗, thus preserving the invariant.

2. If e ∈ Σs
a, there is some i such that c ∈ Ii requires e and, for every j,

there is no c ∈ Ij forbidding e.

Such an implementation is called “standard” because it follows the classical
way of extracting state machines from MSCs (see sec.6). It is dubbed “local”
because it only considers a single agent, restricting a scenario to the local view
of that agent.

Note that there may exist many SLIs for a given specification, because the
condition on ∆ is only an implication. They differ only in the scheduling of Σs

a

events. Thus, it is possible to order SLIs: an SLI A is more general than an SLI
A′ (A′

< A) iff, at every state q, if A′ allows e ∈ Σs
a event, then A allows e, too.

(5) Liveness Analysis The I/O automaton built according to the SLI rule is
always safe, because the forbidden events may not be scheduled. To show this,
we prove that the hypotheses made by a about the global state are valid:

Lemma 2 (SLIs are sound). Let A be an SLI. Consider a finite run w ∈ Σ∗,
decomposed in two parts uv = w and a scenario Lj . If v|ΣR

linearizes some ideal
c in Lj and A has a run on v|Σa

leading to a state (I1, . . . , Ij , . . . , In), then Ij

contains c|Σa
.

Proof. By induction on w.

Lemma 3 (SLIs are safe). All behaviours induced by an SLI are Σs
a-safe.

Since SLIs guarantee Σs
a-safety, it suffices to ensure that the considered au-

tomaton is Σs
a-live to verify that it is a correct implementation.

Theorem 2. Let A be an SLI. If all runs in A are Σs
a-live, then A is a correct

implementation of a system consisting of agent a.

Proof. By definition 6, if A is Σs
a-live (assumption) and Σs

a-safe (lem.3), it is a
correct implementation.

In general, liveness is not true of all SLIs, because some required event might
be postponed forever, since it is always unsafe. The liveness condition needs to
be algorithmically checked; this is done in time quadratic in |A|: A is analyzed
to check that, on all fair infinite paths, there are infinitely many occurrences
of e or e is not required in infinitely many states, for every e ∈ Σs

a. In fig. 6,
the states in which no event is required are drawn with a double line. This SLI
example is live for agent c[1].



(6) Refinement Search If A> is not a correct implementation, i.e. it is not
live, we can try to find another SLI A such that A < A> and A is live. In order
to do so, we consider refinement as a two-person game, between a “protagonist”
and an “antagonist”. The protagonist may remove some edges labeled by Σs

a

events while the antagonist tries to prove that the resulting automaton is still
unlive. If the protagonist has no winning strategy in this game, there is no live
SLI for agent a. This game can be solved using classical algorithms, in time
polynomial in the size of the graph [24].

Remark 1 (Safety Assumptions). An SLI allows agents to make safety assump-
tions about their environment, which makes compositional reasoning feasible
[25]. For instance, when synthesizing agent i, we can make use of the fact that
we know beforehand that agents 1, . . . , k will also be synthesized using the same
method. In that case, when agent i receives an event from another “to-be-
synthesized” agent j, he knows that some ideals of the configuration are not
valid anymore. Indeed, if agent j sends this message, he must be required to do
so. Now, if there is only one scenario which requires him to send j, the agent we
are synthesizing can deduce the exact position in this scenario. For synthesizing
the SLI of fig.6, our algorithm used this assumption.

Remark 2 (Efficiency). By construction, the I/O Automaton built here is nec-
essarily smaller than the automaton constructed in [13]. This justifies our claim
that this localized technique can sometimes be more efficient than the exact cen-
tralized one. However, in the worst case, the SLI is as big as the solution for the
centralized case (and thus, exponential in the size of the specification [26]).

Our running example is specified with 25 scenarios and contains 8 compo-
nents. Our implementation of the centralized synthesis algorithm fails to analyze
it, because of its size. However, the implementation of the lightweight algorithm
successfully synthesizes an SLI for every component, but cm and db (see the
next remark). cm cannot be synthesized because it participates in all scenar-
ios; projecting the specification on it does not drastically reduce the size of the
specification. The SLIs that we obtained had less than 20 states each and their
synthesis took only a couple of seconds. This synthesis relied on the additional
safety assumptions explained above.

Remark 3 (A Bad Case). The following specification cannot be implemented
by any SLI. Assume that we have two scenarios for db, asserting that it must
answer either db ! yes ? c[i] or db ! no ? c[i] to all queries of client c[i].
There is no SLI implementing this requirement for db, because the agent must
remember the last request that it replied to. Otherwise, the system runs into
starvation. Consider the following execution: c[1] and c[2] query db. This
leads to some state q. In this state, db answers to c[1]. Immediately after, c[1]
queries db again, going back to q. Since db has no means to remember that it
replied to c[1] before, it replies to c[1] again. Thus, we enter a loop in which
c[2] will never get a reply. Allowing db to use some fixed amount of additional
memory, here one bit, could help in avoiding this situation.



6 Related Work

6.1 Play-out

The play-out approach [27, 28] is related to ours. The play-out algorithm works
as follows. A state of the system is a set of ideals, called live copies. The user
generates an environment event at a time. Assume that this event is e and the
current state is {c1, . . . , cn}. The following rules apply:

1. For every i (1 ≤ i ≤ n), if ci
e
−→ c′i, then ci is replaced by c′i. Otherwise, if ci

is in the prechart, it is dropped.
2. If e labels a minimal location of some scenario Sj , a new live copy for Sj is

spawn. Thus, {l} is added to the next state, where l is the first location in
Sj labeled by e.

If, in the next state, some system events are required but not forbidden, one
of them is picked and performed. This updates the state, which, in turn, can
trigger new events. We followed a similar scheme for designing the SLI rule: an
agent will only schedule e if e is required and not forbidden. However, we use
the global view of the behaviour to avoid being trapped in unsatisfiable states.

6.2 Synthesis from MSCs

Conceptually, the synthesis algorithms of [29–31] are very close to ours, except
that they apply to MSCs. For every agent, a state machine is built, which tracks
its current position on its lifeline. When it reaches a position in which the MSC
dictates to send an event e, the machine proposes e. For MSCs, this procedure
yields a distributed implementation encompassing all the behaviours specified
by the MSCs. Nevertheless, it is possible that this distributed implementation
is not correct. This happens when the implementation allows more behaviours
than specified by the MSCs. These additional behaviours are called implied sce-
narios. Much work has been devoted to detecting and reporting on those implied
scenarios [29, 32, 30, 33]. The picture is slightly different in our case. Our SLIs do
not necessarily encompass all the behaviours of the scenario-based specification.
Indeed, in step 5 of our procedure, we detect liveness violations, that is missing
scenarios.

The problem of component-based proofs from MSCs is investigated in [34],
where causal MSCs are identified.
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34. Finkbeiner, B., Krüger, I.H.: Using message sequence charts for component-based
formal verification. In: Proc. of OOPSLA 2001 Workshop on Specification and
Verification of Component-Based Systems, Tampa Bay, FL, USA (2001)


