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Abstract. This paper is driven by a general motto: bisimulate a hybrid
system by a finite symbolic dynamical system. In the case of o-minimal
hybrid systems, the continuous and discrete components can be decou-
pled, and hence, the problem reduces in building a finite symbolic dy-
namical system for the continuous dynamics of each location. We show
that this can be done for a quite general class of hybrid systems de-
fined on o-minimal structures. In particular, we recover the main result
of a paper by Lafferriere G., Pappas G.J. and Sastry S. on o-minimal
hybrid systems. We also provide an analysis and extension of results
on decidability and complexity of problems and constructions related to
o-minimal hybrid systems.
Mathematics Subject Classification : 68Q60, 03C64, 03D15.
Keywords : Hybrid system, o-minimality, BSS-model of computation,
bisimulation, definability, decidability.

1 Introduction

Hybrid systems consist of finite state machines equipped with a continuous dy-
namics. This notion has been intensively studied [ACH+,HKPV,Hen95] (see
[Hen96] for a survey), and is a generalization of timed automata [AD]. Hybrid
systems encompass many interesting applications such as air traffic management
[TPS] and highway systems [LGS].

As an example, consider the following situation. The entrance of an highly
secure building is controlled by an electronic system. Anyone who wants to enter
the building have to possess an access card and to know a password. Before
entering the building he will have to insert his access card into the system and
to type the password on a keyboard. If the person commits a single mistake
when typing the password, an alarm will immediately warn. If the password is
ABC, the finite state system of Figure 1 accurately describes the process. Since
variables of the system takes only finitely many values, we will say that the
dynamics of the system is discrete.

? This research has been supported by a grant from the National Bank of Belgium,
INTAS project 2000-447 and by FNRS grant:1.5.277.05

† This author is supported by a FRFC grant: 2.4530.02.
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Stand by Location 1 Location 2 Location 3

ALARM !

Card A B

C (Door opens)

Σ \ {A}
Σ \ {B}

Σ \ {C}

Fig. 1. A digital code Σ = {A, B, · · · , Z, Card}

Suppose now, we want to make the previous system even more secure, by
adding some timed constraints. Once the access card have been introduced into
the device, each letter of the password have to be typed within one unit of time, if
typing is too slow, the alarm will fire. This more complex process is described by
Figure 2, where X is the time variable and so can take uncountably many values.
Since the states of the system are characterized by values of the variables and the
locations, such a system has uncountably many states due to the presence of time.
This is a simple example of a hybrid system, i.e. a system where both discrete
and continuous transitions coexist, the last ones being in practice governed by
differential equations (in this example Ẋ = 1). This example is not the more
general one since this system is in fact a timed automaton. We give in Section 4
a more complex example (see Figure 9).

Stand by Location 1 Location 2 Location 3

ALARM !

Card A B

C (Door opens)

Σ \ {A}
Σ \ {B}

Σ \ {C}

X := 0 α α

α

β
β

β

Fig. 2. A timed digital code where α ≡ (X 6 1) ; (X := 0) means the discrete
transition is allowed if the value of X is less or equal to one and the value is reset to zero
after the transition, the same holds for the discrete transition β ≡ (X > 1) ; (X := 0).
In each location, the continuous transitions are ruled by Ẋ = 1.
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Given a hybrid system, a natural question is to know whether the system can
reach some (prohibited) state (the Alarm state for example). This question is
known as the reachability problem. Since the state space is usually uncountable
it is necessary to have an algorithmic approach to this problem. The main diffi-
culty is the richness of continuous dynamics and its interaction with the discrete
dynamics. Several results on decidability and undecidability of the reachability
problem have been developed in [ACH+,HKPV].

One approach to solve the reachability problem is to study equivalence re-
lations preserving reachability and to find finite state systems equivalent to the
original one. Building bisimulations is a way to achieve this goal. This is the
point of view adopted in this paper. Bisimulations have many other interesting
properties (e.g. they preserve the temporal logic CTL (Computation Tree Logic),
[AHLP]).

In [LPS], the notion of o-minimal hybrid system is defined. This class of
hybrid systems have a particularly rich continuous dynamics, in particular it
may be nonlinear (i.e. both the differential equations which govern the dynam-
ics and the solutions of the differential equations may be nonlinear). The only
requirement on the continuous dynamics is that the solutions of the differen-
tial equations are definable in an o-minimal structure. This requirement implies
that in the presentation of this paper we emphasize the dynamics point of view
in term of functions without an explicit mention to the underlying differential
equations.

Through this paper, we adopt the conventions introduced in [LPS, p. 6] for
the discrete transitions. This allows to decouple the discrete and continuous
components of the hybrid system. Hence the problem to find a finite bisimula-
tion of such a hybrid system is equivalent to find a finite bisimulation, on each
location, which respects some initial partition induced by resets, guards, initial
and final regions. In [LPS, p. 12], the continuous dynamics of an o-minimal hy-
brid system is given by a smooth complete vector field F from Rn to Rn and
the flow is assumed to be definable in an o-minimal extension of 〈R, <, +,−〉.
We will speak of o-minimal flow in this context1. In particular, the system is
time-invariant, the flow is injective w.r.t. the time and thus the trajectories are
non self-intersecting. We relax these assumptions by permitting the system to
be time-varying and to have self-intersecting trajectories, which are natural fea-
tures of many real systems. The continuous transition relation of such systems
is therefore much richer (see Section 2.3). Moreover the generalization allows
for general dynamics instead of flow, for an output space M k2 distinct from the
input space Mk1 where M is the domain of any linearly ordered structure M.
In particular this level of generality allows fuzzy dynamics (see Remark 2.15),
by encoding dynamics given by a definable relation into a function with value
in an output space of larger dimension (see subsection 2.3).

In Section 3 of this paper, we present a general construction to associate
words with trajectories of a continuous dynamics w.r.t. an initial partition of

1 It should be noticed that it is an active field of research to characterize which vector
fields define o-minimal flows, see for example [LMS,MS], see also [KV04].
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the space. Let us mention that this kind of idea already appears in the literature
(see for example [ASY]). The concept of dynamical type of a point plays a central
role in our construction. By using this general tool, a finite symbolic dynamical
system is associated with any o-minimal dynamical system, the states of which
are represented by words (see Section 4).

Under the extra assumption that there is a unique word encoding the dynam-
ics of any point of the output space, we show that this finite symbolic dynamical
system bisimulates the original one (Theorems 4.18 and 4.21). As a byproduct
of this result, we obtain a simple proof of the main result of [LPS] which asserts
that every o-minimal hybrid system admits a finite bisimulation (Corollary 4.19).

Our construction of the bisimulations is not clearly effective, and so our
results do not show that the reachability problem is decidable. In Section 5 we
address this problem on different aspects. We first make precise the problem
by pointing how it depends on the model of computability chosen and that it
naturally expresses in the framework of the BSS model of computation. We
show that, under natural extra assumptions, the decidability of the reachability
problem for o-minimal dynamical systems is equivalent to the decidability of the
existential theory of the underlying first-order structure M (which is in fact the
emptiness problem of the computer scientists). In particular, when the structure
M is the field of real numbers with the exponentials, it reduces to Schanuel’s
Conjecture, a famous unsolved problem in transcendental number theory. We
show that the same kind of results hold for the effectiveness of the so-called
bisimulation algorithm. Finally we briefly discuss complexity issues about the
finite state systems build in Section 4. These effectiveness issues are the main
object of the recent paper [KV04].

In the last section, we try to delimit the border between o-minimal systems
which admits finite bisimulations and the others. To achieve this goal, we closely
look at examples which are in some sense generic in their class. Firstly we ex-
amine the effect of weakening the assumption on the uniqueness of the word
encoding the dynamics of a point. Secondly we consider classes of o-minimal
hybrid systems where stronger deterministic resets are allowed. In all cases we
exhibit an o-minimal hybrid system which does not admit a finite bisimulation
w.r.t. some initial partition, setting in this way some limits to the results of
Section 4.

The construction (encoding trajectories by words) was already introduced
in [BMRT] where some results were proved under slightly stronger hypothesis.
When it is the case we mention it in regard of the results. Let us also mention
that after [LPS] was published (as a preprint in 1998) then [Da] reproved the
main result of [LPS], amongst a lot of other interesting results. We were not
aware of [Da] at the time we wrote [BMRT]. Our method of proof is completely
different from the ones used in [Da,LPS] and has been used in the recent paper
[KV04] in order to give complexity results on the size of the bisimulation in the
case of Pfaffian hybrid systems and of its construction (modulo an oracle for the
emptiness problem). But contrary to our paper the authors of [KV04] put the
emphasis on the differential equations point of view.
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2 Preliminaries

In this section, we recall some basic definitions and results. However we do
not recall classical definitions about hybrid systems, as they can be found for
example in [Hen96]. For o-minimal hybrid systems and their extensions treated
in the paper, we refer to [LPS] and give the bases in Section 4.

2.1 Transition systems and bisimulation

Definition 2.1. A transition system T = (Q, Σ,→) consists of a set of states
Q (which may be uncountable), Σ an alphabet of events, and → ⊆ Q × Σ × Q
a transition relation.

A transition (q1, a, q2) ∈ → is denoted by q1
a
−→ q2. A transition system is said

finite if Q is finite. If the alphabet of events is reduced to a singleton, Σ = {a},
we will denote the transition system (Q,→) and omit the event a.

Definition 2.2. Given two transition systems on the same alphabet of events,
T1 = (Q1, Σ,→1) and T2 = (Q2, Σ,→2), a partial simulation of T1 by T2 is a
binary relation ∼ ⊆ Q1 × Q2 which satisfies the following condition:

∀q1, q
′
1 ∈ Q1, ∀q2 ∈ Q2, ∀a ∈ Σ,

(

q1 ∼ q2 and q1
a
−→1 q′1

)

⇒
(

∃q′2, q′1 ∼ q′2 and q2
a
−→2 q′2

)

This condition is read T2 simulates T1.

Definition 2.3. Given ∼ a partial simulation of T1 by T2, we say that ∼ is
a simulation of T1 by T2 if, for each q1 ∈ Q1, there exists q2 ∈ Q2 such that
q1 ∼ q2.

Definition 2.4. Given two transition systems on the same alphabet of events,
T1 = (Q1, Σ,→1) and T2 = (Q2, Σ,→2), a bisimulation between T1 and T2 is a
relation ∼ ⊆ Q1 × Q2 such that ∼ is a simulation of T1 by T2 and the inverse
relation2 ∼−1 is a simulation of T2 by T1.

Definition 2.5. Given ∼ a bisimulation between T1 and T2 which is a function
from Q1 to Q2, we call it a functional bisimulation.

Remarks 2.6. Given a transition system T = (Q, Σ,→), we can look at bisimu-
lations on Q × Q; they are called bisimulations on T .
Given T1, T2 two transition systems and ∼ ⊆ Q1 × Q2 a bisimulation between
T1 and T2, the kernel3 Ker(∼) is a bisimulation on T1.
Given ∼ a functional bisimulation between T1 and T2, we have that Ker(∼) is an
equivalence relation on Q1; moreover there is a bisimulation between T1/Ker(∼)
and T2 (these statements and their proofs can be found in [Cau]).

2 If ∼= {(q1, q2) ∈ Q1 × Q2|q1 ∼ q2}, then ∼−1= {(q2, q1) ∈ Q2 × Q1|q1 ∼ q2}.
3 Ker(∼) = ∼ ◦ ∼−1 =

˘

(p, q) ∈ Q1 × Q1

˛

˛ ∃r ∈ Q2, p ∼ r and q ∼ r
¯

.
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Definition 2.7. Given T a transition system, P a partition of Q and ∼ ⊆ Q×Q
a bisimulation which is an equivalence relation on Q, we say that the bisimulation
∼ respects the partition P if any P ∈ P is an union of equivalence classes for ∼.
We will speak of bisimulations w.r.t. P .

Since the reachability problem for a finite state system (effectively described)
is trivially decidable, it is an important question to know whether a given infinite
system admits a finite bisimulation. In the case where such a finite bisimulation
exists, the next question is to know how effectively we can compute it. The
first question is partially settled by the following so-called bisimulation algo-
rithm which appears in [BFH,Hen96]. The second question is discussed later in
Section 5, in the restricted framework of o-minimal hybrid systems.

Given a transition system T = (Q, Σ,→) and P a finite partition of Q, the
bisimulation algorithm iterates the computation of predecessors4 of the pieces
of the partition; let us recall it:

Algorithm 2.8.
Initialization: Q/∼ := P
While ∃P, P ′ ∈ Q/∼ such that ∅ 6= P ∩ Pre(P ′) 6= P

Set P1 = P ∩ Pre(P ′) and P2 = P \ Pre(P ′)
Refine Q/∼ := (Q/∼ \ {P}) ∪ {P1, P2}

End while

Remark 2.9. The bisimulation algorithm is a priori not a Turing algorithm. But
let us assume that the partition and the predecessor relation are first-order
definable in a structure M. Then the bisimulation algorithm can be seen as a
BSS algorithm over M with an oracle for the emptiness problem for first-order
definable sets of M (for information about BSS algorithms the interested reader
can look at [BCSS,Poi]).

Let us recall the main result on the bisimulation algorithm.

Lemma 2.10. Given T a transition system and P a finite partition of Q, the
bisimulation algorithm terminates if and only if there exists a finite bisimulation
on T w.r.t. P.

When this pseudo algorithm for the class of o-minimal hybrid systems be-
comes an algorithm in some (well-chosen) model of computation will be discussed
in Section 5.

2.2 O-minimality, definability and decidability

Let M be a first-order structure. In this paper when we say that some relation,
subset, function is definable over M, we mean it is first-order definable (possibly

4 Given T a transition system and q ∈ Q, the set of predecessors of q, denoted Pre(q), is
defined by Pre(q) = {q′ ∈ Q|∃a ∈ Σ, q′

a−→ q}, and if P ⊆ Q, Pre(P ) =
S

q∈P
Pre(q).
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with parameters) in the sense of the underlying structure M. A general refer-
ence for first-order logic is [CK]. All the notions related to o-minimality and an
extensive bibliography can be found in [vdD98]. Let us recall the definition of
an o-minimal structure:

Definition 2.11. [PS] A totally ordered structure M = 〈M, <, ...〉 is o-minimal
if every definable subset of M is a finite union of points and open intervals
(possibly unbounded).

In other words the definable subsets of M are the simplest possible: the ones
which are definable with parameters in 〈M, <〉. This assumption implies that
definable subsets of Mn (in the sense of M) admit very nice structure theorems
(like Cell decomposition) or Theorem 2.13. In the early 1980s van den Dries
noticed that many properties of semi-algebraic sets and maps could be deduced
from a few simple axioms [vdD84], essentially the axioms defining “o-minimal
structures”, as their models came to be called in an influential article of Pillay
and Steinhorn [PS]. After Wilkie established in 1991 that the exponential field of
real numbers is o-minimal [Wi96] the subject has grown rapidly. The following
are examples of o-minimal structures.

Example 2.12. The field of reals 〈R, <, +, ·, 0, 1〉, the group of rationals 〈Q, <
, +, ·, 0, 1〉, the field of reals with exponential function 〈R, <, +, ·, 0, 1, ex〉, the
field of reals expanded by restricted Pfaffian functions and the exponential func-
tion (see [vdD98,Wi96]). There exists many more interesting o-minimal struc-
tures.

The main result we use on o-minimal structures is (see [vdD98, Corollary
3.6, p. 60]):

Theorem 2.13 (Uniform Finiteness). Let S ⊆ Mm × Mn be definable, we
denote by Sa the fiber {y ∈ Mn|(a, y) ∈ S}. Then there is a number NS ∈ N

such that for each a ∈ Mm the set Sa ⊆ Mn has at most NS definably connected
components.

Let us remark that Theorem 2.13 holds in structure which are not o-minimal,
e.g. in algebraically closed fields, differentially closed fields (see [MMP, p.46]).

Finally let us recall that if o-minimal structures share a fine analysis of their
definable sets, there is no general results about quantifier elimination in these
structures or about the decidability of their theories. An old and celebrated re-
sult in this direction is Tarski Theorem which asserts there exists a (Turing)
effective quantifier elimination procedure for real closed fields. Another partic-
ularly spectacular and recent result is the model-completeness of the theory of
the field of real numbers expanded by the exponential function proved by Wilkie
([Wi96]) but it is not known whether the theory of 〈R, <, +, ·, 0, 1, ex〉 is decid-
able ([MW,Wi97]).
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2.3 Dynamics

Definition 2.14. A dynamical system is a pair (M, γ) where:

– M = 〈M, <, ...〉 is a totally ordered structure,
– γ : Mk1 × M → Mk2 is a definable function of M.

The function γ is called the dynamics of the dynamical system. More generally,
we can consider the case where the dynamics is a definable function γ : V1×V →
V2 with V1 ⊆ Mk1 , V ⊆ M and V2 ⊆ Mk2 . Let us notice that in this case V1, V
and V2 are definable subsets over M .

Classically, when M is the field of the reals, we see M as the time, M k1 ×M
as the space-time, Mk2 as the (output) space and Mk1 as the input space. We
keep this terminology in the more general context of a structure M.

Remark 2.15. The fact we allow in our definition of a dynamical system to have
different dimensions for the input space and output space has some interesting
features. For example, it allows to use relations instead of functions in order
to define the dynamics γ, in this case we will say that the dynamics is fuzzy.
More precisely this means that γ can be a relation included in M k1 ×M ×Mk2 .
Given such a relation γ it is always possible to associate with it a function γf

from Mk1 × M to the power set of Mk2 , γf (x, t) = {y | γ(x, t, y)}. Since the
description of these sets γf (x, t) are uniformly given by the formula γ(x, t, y), it
is in general natural to attach with it a n-tuple of terms in (x, t) which com-
pletely characterizes γf (x, t). Let us illustrate this process in the following two
examples.
The first situation is given in Figure 3. In this case the dynamics is given by a
cone which expresses a differential inclusion and is related to rectangular hy-
brid automata (see [HKPV] for example). The relation γ ⊆ R5 is given by
{

(x1, x2, t, y1, y2) | y1 = x1 + t and x2 + 1
2 t 6 y2 6 x2 + t

}

. Let us notice that
given (x1, x2, t) ∈ M2 × M , {(y1, y2) ∈ M2 | γ(x1, x2, t, y1, y2)} does not re-
duce to a point anymore but is an interval in the output space. In some sense,
this interval represents the set of potential positions at time t with input condi-
tion (x1, x2). A possible function to characterize γ is given by γf : R2 ×R → R3

with γf (x1, x2, t) = (x1 + t, x2 + 1
2 t, x2 + t).

The second situation is given in Figure 4 and is in some sense related to plane
trajectories as treated in [TPS]. In this situation, the dynamics is given by the re-

lation γ =
{

(x1, x2, t, y1, y2) | (y1 − (x1 + t))2 +
(

y2 − (x2 + 1
2 t)

)2
6 r2

}

⊆ R5.

Given (x1, x2, t) ∈ M2 ×M the set of potential positions (that the other planes
have to avoid) at time t with input condition (x1, x2) is a disc in the output
space.

Definition 2.16. If we fix a point x ∈ Mk1 , the set Γx = {γ(x, t) | t ∈ M} ⊆
Mk2 is called the trajectory determined by x.

Definition 2.17. Given (M, γ) a dynamical system, we define a transition sys-
tem Tγ = (Q,→γ) associated with the dynamical system by:



On the expressiveness and decidability of o-minimal hybrid systems 9

y2

y1x1

x2

x1 + t

x2 + 1

2
t

x2 + t

Fig. 3. Intervals dynamics

y2

y1x1

x2

x1 + t

x2 + 1

2
t

Circle of

radius r

Fig. 4. Discs dynamics

– the set Q of states is Mk2 ;
– the transition relation y1 →γ y2 is defined by:

∃x ∈ Mk1 , ∃t1, t2 ∈ M,
(

t1 6 t2 and γ(x, t1) = y1 and γ(x, t2) = y2

)

Let us make an important observation. Given a transition y1 →γ y2, we
denote the couple of instants of time corresponding to the positions y1, y2 by
(t1, t2). If there exists a position y and different times t < t′ such that γ(x, t) =
γ(x, t′) = y (see Figures 5 and 8 for example), then the transition relation →γ

allows the following sequence of transitions: y1 →γ y →γ y2 with couples of time
(t1, t

′) and (t, t2). Let us look at a simple example of this behavior, in Figure 5,
there clearly exists t < t′ such that γ(x, t) = γ(x, t′) = y. The composition of
transitions as explained above allows an arbitrary large number of passages in
the loop.

y

Fig. 5. A simple loop

Later in this paper, we will show that such a dynamics can encompass reset
of variables (see Remark 6.6).

3 Encoding trajectories by words

In this section, we describe the general tools that we use further on.
Given a dynamical system (M, γ) and P a finite definable partition of the

space Mk2 , P = {P1, . . . , Ps}, we want to encode the trajectories on Mk2 as
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words on the finite alphabet P . In this general (possibly uncountable) context,
a word is a sequence of elements of P indexed by the elements of M (or of a
totally ordered quotient of M induced by a partition on M). We will indistinctly
speak of sequences or words on the set P (also called the alphabet). We prefer
to speak of sequence instead of function in this context because it is closer to
the intuition we can have about words.

Let us first remark that the partition P of the space M k2 induces a partition
P̃ on the space-time Mk1 × M defined by the preimages of the Pi’s under γ.
The preimage (under γ(x, .)) of the trajectory Γx is the line {x} × M in the
space-time Mk1 × M . This line crosses5 the regions P̃i’s and looking to this
crossing, when time is increasing, naturally gives a word on the alphabet P̃ ,
indexed by the elements of M . Replacing each letter P̃i by its corresponding
letter Pi gives the word ωx on the alphabet P we want to associate with Γx. An
example of this construction is given in Figure 6 where we assumed that any point
of the closed trajectory is periodically reached. For the sake of completeness,

M

Mk1

x

t

Mk2

B
A

γ

B A B A B A · · ·· · ·

Fig. 6. Construction of ωx = . . . BABABA. . .

we mathematically formalize this idea. Given x ∈ M k1 , we consider the sets
{t | γ(x, t) ∈ Pi} for i = 1, . . . , s. This gives a partition of the time M . In order
to associate a word on P with the trajectory determined by x we need to define
the set of intervals6 Fx as follows:

Fx =
{

I
∣

∣ I is a time interval or a point and is maximal for the property

∃i ∈ {1, . . . , s}, ∀t ∈ I, γ(x, t) ∈ Pi

}

.

Given x ∈ Mk1 , we have that Fx exactly consists in the connected components

of the fibers of the P̃i’s:
(

P̃i

)

x
= {t ∈ M | γ(x, t) ∈ Pi}. For each x, the set Fx

is totally ordered by the order induced from M . By analogy with the work of

5 This is only an intuitive image since the notion of a line crossing a region is not
clearly defined in this general context: we have no smoothness assumptions.

6 For each x ∈ Mk1 , Fx can be viewed as a definable set, each interval I ∈ Fx being
represented by its end points. Formally we need a couple to represent a point in
order to recover −∞ and +∞ (as in the projective line case). The formula defining
Fx is tedious to write, any reader could convince himself that it works.
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[Tr], we introduce a family of functions of coloration Cx : Fx → P defined by:

Cx(I) = Pi ⇔ ∃t ∈ I, γ(x, t) ∈ Pi .

The word ωx is defined by:

ωx is the sequence (Cx(I))I∈Fx
.

We denote by Ω the set of words associated with (M, γ) w.r.t. P . In the sequel
we will have to consider this construction w.r.t. different partitions.

Example 3.1. Consider the dynamical system and the partition P = {A, B}
described in Figure 7. In this situation, we have Ω = {A, ABA, ABABA}.

Γx1

Γx2

Γx3

A B
ωx1

= A

ωx2
= ABA

ωx3
= ABABA

Fig. 7. Encoding trajectories by words

By encoding trajectories by words, we give a description of the “support” of
the dynamical system. But, in order to recover the dynamics of a point in the
trajectory, we need to encode more information: given a point (x, t) of the space-
time, we want to know what the “position of γ(x, t)” in ωx is. Given (x, t) ∈
Mk1 × M , we associate a unique dotted word ω̇(x,t) in the following way: let
I ∈ Fx be the unique interval such that t ∈ I , we add a dot on Cx(I) in ωx. The
set of dotted words associated with (M, γ) w.r.t. P is denoted by Ω̇.

Example 3.2. If we now consider the dotted words associated with Figure 7,
we have Ω̇ = {Ȧ, ȦBA, AḂA, ABȦ, ȦBABA, . . . , ABABȦ}.

Remark 3.3. In general, γ is not injective and so a point y of the space M k2 has
more than one preimage (x, t). So several words ωx and dotted words ω̇(x,t) are
associated with y.

In order to describe this general situation, we introduce the notion of dynamical
type Wy , for y ∈ Mk2 :

Wy =
{

ω̇(x,t)

∣

∣ ∃(x, t) ∈ Mk1 × M, γ(x, t) = y
}

.

Definition 3.4. A dotted word is said associated with a point y if and only if
it belongs to the dynamical type of y.
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We denote by ∆ the set of dynamical types associated with (M, γ) with
respect to P . Let us consider the partition given by the equivalence relation
on the space Mk2 “to have same dynamical type”. We can now repeat7 the
previous construction w.r.t. this new partition (we will also denote it by ∆).
So, we naturally obtain a set of words on ∆, denoted Ω∆. Let us notice that ∆
is a refinement of P . Given x ∈ Mk1 , we denote ux the word on ∆ associated
with Γx, F∆

x the ordered set of intervals induced on M and C∆
x : F∆

x → ∆ the
coloration function.

Example 3.5. Figure 8 represents a trajectory Γx of some dynamical system
through the partition P = {A, B, C}, the word ωx associated with the drawn
trajectory is ABCBA. For y ∈ Γx, there exists seven different dynamical types:
W1 = {ȦBCBA}, . . . , W5 = {ABCBȦ}, W6 = {ȦBCBA, ABCBȦ} and W7 =
{AḂCBA, ABCḂA}. The word ux associated with the trajectory is W1W6W1

W2W7W2W3W4W7W4W5W6W5.

A B

C

Fig. 8. Double loop

Given a trajectory Γx for some x ∈ Mk1 and y ∈ Γx, we want to know “the
position of y” in ux. But by Remark 3.3 this position is not necessarily unique.
We associate with ux a unique multidotted word ü(x,y) in the following way: we
add dots on C∆

x (I) for all interval I ∈ F∆
x such that there exists t ∈ I with

γ(x, t) = y.
We denote by Ω̈∆ the set of multidotted words associated with (M, γ)

w.r.t. ∆. The definition of dynamical type naturally extends to the context of
the multidotted words.

4 O-minimal hybrid system

We have just described the general framework. In the sequel we will be interested
in o-minimal hybrid systems whose the building blocks are finitely many o-
minimal dynamical systems. A run of such a system is roughly a composition of

7 In a draft paper the first author exploits this idea in order to design a semi algorithm
which computes a bisimulation of a dynamical system w.r.t. a given partition (see
[B04]).
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the action of its dynamical systems on a point of the output space which has to
respect the conditions induced by the guards and resets.

In particular, we discuss two special and interesting cases in Sections 4.2
and 4.3. We freely use the notations introduced in the previous sections.

Now we give precise definitions.

Definition 4.1. An o-minimal dynamical system (M, γ) is a dynamical system
where M is an o-minimal structure.

Definition 4.2. Given M an o-minimal structure, an o-minimal hybrid system
on M is given by H = (Loc, Σ, Edg, Dyn, Inv,G,R), where:

– Loc is a finite set of locations (discrete states),

– Σ is a finite alphabet of events,

– Edg ⊆ Loc × Σ × Loc is a finite set of edges,

– Dyn assigns to each location a continuous dynamics (for each l ∈ Loc,
Dyn(l) = γl where γl : Mk1 × M → Mk2 is a function definable in M),
i.e. (M, γl) is an o-minimal dynamical system,

– Inv assigns to each location a definable subset of M k2 called invariant (for
each l ∈ Loc, Inv(l) = Invl where Invl is a definable set in Mk2),

– G assigns to each edge a definable subset of Mk2 called guard (for each
e ∈ Edg, G(e) = Ge where Ge is a definable set in Mk2),

– R assigns to each edge a definable subset of Mk2 called reset (for each
e ∈ Edg, R(e) = Re where Re is a definable set in Mk2).

Example 4.3. It is easy to see that the introduction example, the timed digital
code (see Figure 2) is an hybrid o-minimal system. Below we discuss a more
complex example given in [ACH+].
The temperature of a room has to be kept between m and M degrees. The room is
equipped with a thermostat which senses the temperature and turns a heater on
and off. The temperature is governed by differential equations. Let us denote the
temperature by the variable x. When the heater is off, the temperature decreases
according to the function x(t) = θe−Kt; when the heater is on, the temperature
increases according to the function x(t) = θe−Kt + h(1 − e−Kt), where t is the
time, θ the initial temperature, h and K are parameters for the heater and the
room. This situation is described by the hybrid system of Figure 9.

l0

ẋ = −Kx

x > m

x = m

x = M

On

Off

l1

ẋ = K(h − x)

x 6 M

Fig. 9. Thermostat
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The thermostat (see Figure 9) is an hybrid o-minimal system8 since this
hybrid system is definable in 〈R, +, ·, 0, 1, ex〉. Let us make it precise in view of
the definition above:

– Loc = {l0, l1},
– Σ = {On, Off},
– e1 = (l0, On, l1) ∈ Edg, e2 = (l1, Off, l0) ∈ Edg,
– Dyn(l0) = γ0 : R × R → R and is defined by γ0(θ, t) = θe−Kt,

Dyn(l1) = γ1 : R×R → R and is defined by γ1(θ, t) = θe−Kt +h(1− e−Kt),
– Inv(l0) = {x ∈ R | x > m}, Inv(l1) = {x ∈ R | x 6 M},
– G(e1) = {m}, G(e2) = {M},
– R(e1) = {m}, R(e2) = {M}.

Definition 4.4. Given H an o-minimal hybrid system, we define a transition
system TH =

(

QH,→H, Σ ∪ {γl | l ∈ Loc}
)

associated with the hybrid system
by:

– the set of states QH is Loc × Mk2 ,
– the transition relation →H can be of two types:

• discrete transition:

(l1, y1)
a
−→H (l2, y2) ⇔ e = (l1, a, l2) ∈ Edg and y1 ∈ G(e) and y2 ∈ R(e)

• continuous transition:

(l1, y1)
γ
−→H (l2, y2) ⇔ l1 = l2 and y1 →γl1

y2 without leaving Inv(l1)
9

H
G(e)l1

Inv(l1) R(e)

l2

Inv(l2)

y1

y2

y3

y4

e

Fig. 10. (l1, y1)
γ−→H (l1, y2)

e−→H (l2, y3)
γ−→H (l2, y4)

Example 4.5. We continue the illustration of the definitions by giving a finite
sequence of transitions for the timed digital code (see Figure 2):

(Sb, 0)
γ
−→H (Sb, 7.35)

e1−→H (L1, 0)
γ
−→H (L1, 0.58)

e2−→H (L2, 0)
γ
−→H (L2, 0.99)

8 On Figure 9 no reset explicitely appears. However we can add them as below without
modification of the behavior of the hybrid system.

9 i.e. ∃x ∈ Mk1 , ∃t1, t2 ∈ M,
`

t1 6 t2 and γ(x, t1) = y1 and γ(x, t2) = y2

´

and ∀t ∈ M ((t1 6 t 6 t2) ⇒ γ(x, t) ∈ Inv(l1))
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Figure 10 is a representation of Definition 4.4.

Remark 4.6. Our definition allows only resets as defined in [LPS]. We will justify
later this choice (see Section 6).

Notations 4.7. In the figures in order to distinguish guard and reset conditions,
we use the following notation. Given e ∈ Edg, we denote the associated discrete
transition by y ∈ G(e) ; y := R(e). We already use this notation in Figure 2.

Remark 4.8. By the argument that decouples the continuous and discrete com-
ponents of the hybrid system given in [LPS, p. 6], we only need to prove that
there exists a finite bisimulation on each location which respects the initial fi-
nite partition given by the resets, guards and invariants which are definable in
the o-minimal structure we are working in, by assumption. That is why, in the
sequel, we focus our study on o-minimal dynamical systems.

4.1 Symbolic o-minimal dynamical system

In Section 3 we gave a description of the trajectories of a dynamical system
in term of words. In the case of an o-minimal dynamical system, finitely many
finite words are enough to describe the trajectories. This will allow us to define
finite transition systems on the words. The results of this section already appear
in [BMRT].

Lemma 4.9. Given (M, γ) an o-minimal dynamical system and a finite defin-
able partition P, the set of words Ω is a finite set of finite words.

Proof. Let us recall from Section 3 that the partition P of the space induces a
definable partition of the space-time whose regions are the P̃i’s. Given x ∈ Mk1 ,
we have that Fx exactly consists in the connected components of the fibers of the
P̃i’s: (P̃i)x = {t ∈ M | γ(x, t) ∈ Pi}. By the Uniform Finiteness Theorem 2.13,
we have that the number of connected components of the (P̃i)x’s is uniformly
finite w.r.t. x, this implies that the length of the ωx’s is uniformly bounded. So
since the number of Pi’s is finite, we have that Ω is finite. ut

The next result is a trivial consequence of Lemma 4.9 and the definition of Ω̇.

Corollary 4.10. Ω̇ is finite.

Remark 4.11. In the o-minimal case, the construction above shows that two
consecutive letters in a word ω ∈ Ω are different.

Remark 4.12. Let us remark that in the proof of Lemma 4.9, we just used the
Uniform Finiteness Theorem 2.13. So this result holds in all the structures ad-
mitting the Uniform Finiteness Theorem 2.13.

The following technical lemma will be useful in the next section.

Lemma 4.13. In an o-minimal structure, given W a dynamical type, y ∈ M k2 ,
“y is of dynamical type W” is definable.
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Proof. Suppose W = {ω̇1, ..., ω̇l}, y is of type W if and only if ω̇i is associated
with y for 1 6 i 6 l and y is associated with none of the others ω̇ ∈ Ω̇ (which
is a finite set by Corollary 4.10). It remains to show that y is associated with
ω̇ is definable for some ω̇ ∈ Ω̇. Suppose ω̇ = Pi1 ...Ṗik

...Pin
. We have that ω̇ is

associated with y if and only the following formula holds:

∃x ∈ Mk1

(

Fx = {I1, ..., In} and

n
∧

j=1

(Cx(Ij) = Pij
)

and ∃t ∈ Ik (γ(x, t) = y)
)

This concludes the proof since Fx and Cx are definable (see Section 3). ut

Now we introduce a symbolic transition system which is finite under the
assumption of o-minimality.

We define TΩ̇ , a finite transition system on the dotted words. In order to

mathematically formalize TΩ̇, we need to introduce two functions: undot : Ω̇ →

Ω which gives the word ω corresponding to ω̇ without dot; dot : Ω̇ → N which
gives the position of the dot on ω̇. Given x ∈ Mk1 , the set Fx can be described
as a finite ordered sequence of intervals I0 < I1 < · · · < Ik with k < NS . If we
consider ω̇x a dotted word constructed from ωx, we have the following relation:
the dot of ω̇x is on Cx(Ii) with Ii ∈ Fx if and only if dot(ω̇x) = i. We can now
define TΩ̇ = (Ω̇,→Ω̇):

– the set of states Q is Ω̇
– the transition relation ω̇1 →Ω̇ ω̇2 is defined by: the undotted words ω̇1 and

ω̇2 are equal and the dot on ω̇2 is on a position to the right of the dot on ω̇1

(or on the same position). This can be formalized by:

ω̇1 →Ω̇ ω̇2

m
undot(ω̇1) = undot(ω̇2) and dot(ω̇1) 6 dot(ω̇2)

Example 4.14. Here is an example of transition on the dotted words w.r.t.
Figure 7: AḂABAB →Ω̇ ABABȦB

Lemma 4.15. Given (M, γ) an o-minimal dynamical system and a finite de-
finable partition P, the set of words Ω∆ is a finite set of finite words.

Proof. We first notice that the number of dynamical types is finite since |∆| 6

2|Ω̇| and Ω̇ is finite by Corollary 4.10. Since being of dynamical type Wy for some
Wy ∈ ∆ is definable in an o-minimal structure (see Lemma 4.13), this induces
a finite definable partition ∆ of the space Mk2 and so we can use the same
argument as in the proof of Lemma 4.9. ut

The next result is a trivial consequence of Lemma 4.15 and the definition
of Ω̈∆.
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Corollary 4.16. Ω̈∆ is finite.

We define also TΩ̈∆
, a finite transition system on the multidotted words. To

mathematically formalize TΩ̈∆
, we need to introduce three functions: undot :

Ω̈∆ → Ω∆ gives the word u corresponding to ü without dot; mindot : Ω̈∆ → N

gives the position of the left most dot on ü and maxdot : Ω̈∆ → N gives the
position of the right most dot on ü.

Given x ∈ Mk1 , the set F∆
x can be described as a finite ordered sequence

of intervals I0 < I1 < · · · < Ik with k < N∆
S . If we consider a multidotted

word ü(x,y), constructed from ux and y on the trajectory Γx, let W be the
element of ∆ such that y ∈ W . Those letters W correspond to some intervals
Ii ∈ F∆

x such that mindot(ü(x,y)) 6 i 6 maxdot(ü(x,y)). We can now define

TΩ̈∆
= (Ω̈∆,→Ω̈∆

):

– the set of states is Ω̈∆

– the transition relation ü1 →Ω̈∆
ü2 is defined by: the undotted words ü1 and

ü2 are equal and the right most dot on ü2 is on a position to the right of the
left most dot on u̇1 (or the same position). This can be formalized by:

ü1 →Ω̈∆
ü2

m
undot(ü1) = undot(ü2) and mindot(ü1) 6 maxdot(ü2)

Example 4.17. Here is an example of a transition on multidotted words w.r.t.
Figure 8:

W1Ẇ6W1W2W7W2W3W4W7W4W5Ẇ6W5

→Ω̈∆
W1W6W1W2W7Ẇ2W3W4W7W4W5W6W5

4.2 Word determinism case

The first situation that we will be interested in is the following: we suppose that
there is a unique dotted word associated with each point y of the output space
Mk2 . This hypothesis encompasses the relevant situation where a unique non
self-intersecting trajectory goes through each point y (which is the case treated
in [LPS], see also [Da,BMRT]).

Theorem 4.18. Let (M, γ) be an o-minimal dynamical system, let Tγ be the
associated transition system on Mk2 , and let P be a finite definable partition of
Mk2 . If there exists a unique dotted word associated with each y ∈ M k2 , then
there exists a finite bisimulation of Tγ that respects P.

Proof. To prove this theorem, we will show that there exists a bisimulation
between the transition systems Tγ and TΩ̇ . Let us first recall that TΩ̇ is a finite

transition system by Corollary 4.10. We define a binary relation ∼ ⊆ M k2 × Ω̇
as follows:

y ∼ ω̇ ⇔ ∃(x, t) ∈ Mk1 × M,
(

ω̇(x,t) = ω̇ and γ(x, t) = y
)

.
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We begin by showing that TΩ̇ simulates Tγ . Given y1, y2 ∈ Mk2 and ω̇1 ∈ Ω̇

such that y1 →γ y2 and y1 ∼ ω̇1, we have to find ω̇2 ∈ Ω̇ such that ω̇1 →Ω̇ ω̇2

and y2 ∼ ω̇2. By definition of →γ , there exists x ∈ Mk1 and t1 6 t2 ∈ M such
that γ(x, t1) = y1 and γ(x, t2) = y2. By assumptions, there exists a unique ω̇1

such that y1 ∼ ω̇1. So we have that ω̇1 = ω̇(x,t1). We set that ω̇2 = ω̇(x,t2).
We have clearly that y2 ∼ ω̇2. To prove that ω̇1 →Ω̇ ω̇2, we first remark that
undot(ω̇1) = undot(ω̇2) = ωx. Since t1 6 t2, we have that t1 ∈ Ii an t2 ∈ Ij ,
for some Ii, Ij ∈ Fx, with i 6 j, so dot(ω̇1) 6 dot(ω̇2).

Conversely10 let us prove that Tγ simulates TΩ̇ . Given y1 ∈ Mk2 and ω̇1,

ω̇2 ∈ Ω̇ such that ω̇1 →Ω̇ ω̇2 and ω̇1 ∼−1 y1, we have to find y2 ∈ Mk2 such that

y1 →γ y2 and ω̇2 ∼−1 y2. Since ω̇1 ∈ Ω̇, there exists (x, t1) ∈ Mk1 × M such
that ω̇1 = ω̇(x,t1) and t1 ∈ Ii for some Ii ∈ Fx. We can find Ij ∈ Fx with Ii 6 Ij

such that if we add the dot corresponding to Ij on ωx we obtain ω̇2. We take
t2 ∈ Ij , and set y2 = γ(x, t2), we clearly have that y1 →γ y2 and ω̇2 ∼−1 y2.

We have proved that ∼ ⊆ Mk2 × Ω̇ is a bisimulation. By assumptions, ∼
is a functional bisimulation. By Remark 2.6, ∼ induces a finite bisimulation on
Mk2 × Mk2 given by Ker(∼); moreover, by definition of ∼ and Ker(∼), this
bisimulation is an equivalence relation which respects P . ut

Corollary 4.19. [LPS, Theorem (4.3), p.11] Every o-minimal hybrid system
(as defined in [LPS]) admits a finite bisimulation.

Proof. By assumptions, γ(., .) is the definable flow of a vector field F : Rn →
Rn which does not depend of the time [LPS, p. 12], so in particular γ(x, .) is
injective [LPS, p. 13], therefore from every y ∈ Rn (= Mk2), there exists a
unique trajectory which does not self-intersect. In such a situation, a unique
dotted word is associated with any point y ∈ Rn, so we can apply Theorem 4.18.
And this concludes the proof by Remark 4.8. ut

Remarks 4.20. We can remark that in the proof of Theorem 4.18, we only use
the Uniform Finiteness Theorem 2.13. In the proof of [LPS] Cell decomposition
and the fact that connectedness and arc-connectedness are equivalent are used,
so their proof fully uses the power of o-minimality assumption contrary to ours
(see Remark 4.12).
If we were interested in bisimulations on the space-time, the proof of Theo-
rem 4.18 shows that there always exists a finite bisimulation of (M, γ) that
respects P .

4.3 Loop case

In this section, we consider the more general situation where a unique multidot-
ted word is associated with each point y of the output space M k2 . In particular,

10 Let us notice that the uniqueness of the dotted word does not play any role in this
second part of the proof.
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this hypothesis allows us to consider self-intersecting trajectories (i.e. loops, Fig-
ure 8 is an example of this situation). Let us remark that the self intersection
set can be an arbitrary definable set.

Theorem 4.21. Let (M, γ) be an o-minimal dynamical system, let Tγ be the
associated transition system on Mk2 , and let P be a finite definable partition of
Mk2 . If there exists a unique multidotted word associated with each y ∈ M k2 ,
then there exists a finite bisimulation of Tγ that respects P.

Proof. As in the proof of Theorem 4.18, we show that there exists a bisimulation
between Tγ and TΩ̈∆

, which is a finite transition system by Corollary 4.16. We

define a binary relation ∼ ⊆ Mk2 × Ω̈∆ in the following way:

y ∼ ü ⇔ ∃(x, t) ∈ Mk1 × M,
(

ü(x,y) = ü and γ(x, t) = y
)

.

First, we prove that TΩ̈∆
simulates Tγ . Given y1, y2 ∈ Mk2 and ü1 ∈ Ω̈∆

such that y1 →γ y2 and y1 ∼ ü1, we have to find ü2 ∈ Ω̈∆ such that ü1 →Ω̈∆
ü2

and y2 ∼ ü2. By definition of →γ , there exists x ∈ Mk1 and t1 6 t2 ∈ M such
that γ(x, t1) = y1 and γ(x, t2) = y2. Since there is a unique multidotted word
associated with y1, we have that ü1 = ü(x,y1). By choosing ü2 = ü(x,y2), we
have clearly that y2 ∼ ü2. Moreover we have that undot(ü1) = undot(ü2).
Since t1 6 t2, t1 ∈ Ii and t2 ∈ Ij for some Ii, Ij ∈ F∆

x with i 6 j and so
mindot(ü1) 6 i 6 j 6 maxdot(ü2).

Conversely11 let us prove that Tγ simulates TΩ̈∆
. Given y1 ∈ Mk2 and ü1,

ü2 ∈ Ω̈∆ such that ü1 →Ω̈∆
ü2 and ü1 ∼−1 y1, we have to find y2 ∈ Mk2 such

that y1 →γ y2 and ü2 ∼−1 y2. Since ü1 ∼−1 y1, we have that ü1 = ü(x,y1) for

some x ∈ Mk1 and y1 = γ(x, t1) for some t1 ∈ M . We take t0 ∈ IMINDOT(ü1) ∈ F∆
x

such that γ(x, t0) = y1. Since mindot(ü1) 6 maxdot(ü2), it is always possible
to choose t2 ∈ IMAXDOT(ü2) ∈ F∆

x such that t0 6 t2. We now set y2 = γ(x, t2).
All this construction respects the rules given for the composition of transitions
(see the observation mentioned after Definition 2.17).

We have proved that ∼ ⊆ Mk2 × Ω̈∆ is a bisimulation. By assumptions, it
is a functional bisimulation. By Remark 2.6, ∼ induces a finite bisimulation on
Mk2 × Mk2 given by Ker(∼). Moreover this bisimulation is an equivalence and
clearly respects ∆, and so P since ∆ is finer than P . ut

The assumptions of Theorem 4.21 encompass the following corollary.

Corollary 4.22. [BMRT, Theorem 4.11] Let (M, γ) be an o-minimal dynam-
ical system, let Tγ be the associated transition system on M k2 , and let P be a
finite definable partition of Mk2 . If there exists a unique trajectory (with pos-
sible self-intersections) associated with each y ∈ M k2 , then there exists a finite
bisimulation of Tγ that respects P.

11 Let us notice that the uniqueness of the multidotted word does not play any role in
this second part of the proof.
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Remark 4.23. If we look at a different transition system on (M, γ) where the set
of states Q is given by Mk1×Mk2 and the transition relation (x1, y1) →γ̃ (x2, y2)
is defined by: (x1 = x2)∧∃t1 6 t2 ∈ M

(

(γ(x1, t1) = y1)∧ (γ(x2, t2) = y2)
)

, the
proof of Theorem 4.21 shows that any such o-minimal dynamical system admits
a finite bisimulation which respects a given finite definable partition P .

Remark 4.24. The main assumption of Theorems 4.18 and 4.21 is the uniqueness
of the dotted or multidotted word associated to any point of the output space
Mk2 . This restricts the behavior of the dynamics through the partition. However,
this does not restrict at all the behavior of the dynamics into the pieces of the
partition as illustrated in Figure 11: pieces are black boxes w.r.t. this analysis.

A

B

Fig. 11. Ω̇ =
n

ȦB, AḂ
o

5 Decidability

In this section we discuss the decidability of the reachability problem, particularly
in the context of the o-minimal hybrid systems. In the previous sections we
show that under some assumptions an o-minimal hybrid system is bisimilar to
a finite state system for which the reachability problem is obviously decidable.
But this construction is not clearly effective; the same is true for the so-called
bisimulation algorithm 2.8. In the sequel we explore the relationship between
the effectiveness of this construction and the decidability of the (existential)
theory of the underlying first-order structure M. This last problem was and
is still widely explored in the literature, see for example Matiyasevich [Ma],
Shlapentokh [Shl],. . .
We freely use the notations, abbreviations and conventions previously introduced
for an o-minimal dynamical system (M, γ).

5.1 Reachability

The reachability problem, as explained in our introduction, is a fundamental
problem in verification theory, but also in practice (see [ACH+]). So the algo-
rithmic and complexity aspects of this problem are important.
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Given an o-minimal dynamical system (M, γ), an initial region Init ⊆ M k2

and a final region Fin ⊆ Mk2 , both definable in M, the reachability problem
can be translated by the following first-order sentence :

∃y1 ∈ Init ∃y2 ∈ Fin such that y1 →γ y2

or more explicitely by :

∃y1 ∈ Init ∃y2 ∈ Fin ∃x ∈ Mk1 ∃t1, t2 ∈ M
(

t1 6 t2 and γ(x, t1) = y1 and γ(x, t2) = y2

)

The complexity of this sentence clearly depends on the complexity of the for-
mulas defining the subsets Init, Fin and the dynamics γ. If the structure M
admits elimination of quantifiers, the sentence is equivalent to a quantifier free
one. Hence in the case where there exists a (Turing) algorithm which performs
this elimination, the decidability of the reachability problem on M is equivalent
to establish the truth of a boolean combination of atomic formulas. This is for
example the case when M is the field of the real numbers (by Tarski Theorem).
But this still does not mean that the decidability problem is Turing decidable!
Indeed, the formulas defining Init, Fin and γ may have real parameters like
π; testing the truth of an atomic formula with parameters needs to be able to
effectively decide the equality of two real numbers. Without extra assumptions
on the involved parameters we do not have decidablity in the Turing model and
so it seems to us that the natural model of computability in order to discuss
these theoretical issues is the Blum-Shub and Smale model of computability in-
troduced in [BSS] (see also for example [BCSS] and [MM]). And in any case if we
consider the decidability of the question to know whether there is a continuous
transition from a given point y1 ∈ Mk2 to an other point y2 ∈ Mk2 (y1 →γ y2),
we cannot escape to decide formulas with elements of M . The BSS model has
been widely studied from the end of 80’s and has been developed in the general
framework of a first-order structure M by Poizat (see [Poi]).
For the remaining of the discussion we assume that the subsets Init and Fin
(or more generally the guards, the resets and invariants) and the dynamics γ
are given by quantifier free formulas without parameters. Those are common
assumptions in the literature (see [AD,HKPV]). In this case the sentence above
is clearly an existential one and the Turing decidability of Th∃(M) implies the
Turing decidability of the reachability problem.

Conversely decidability of the reachability problem implies decidability of
Th∃(M). Indeed consider the following (maybe unrealistic) dynamical system
(M, γ) where M is any first-order structure with at least two elements (we will
denote these two elements 0 and 1) and γ : M ×M → M 2 is defined as follows.

γ(x, t) =

{

(t, 1) iff ϕ(x)
(t, 0) iff ¬ϕ(x)

where ϕ(x) is a quantifier free formula of M. Under the assumption that the
reachability problem is decidable, we can in particular decide whether (0, 1) →γ

(0, 1). Clearly this is equivalent to decide whether ∃x ϕ(x).
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The whole above discussion shows that in the particular case of an o-minimal
dynamical system defined in 〈R, +, ·, 0, 1, ex〉 the reachability problem reduces
to Schanuel’s conjecture, a famous unsolved problem in transcendental number
theory (see [MW,Wi97]).

5.2 Effectiveness of the bisimulation construction

Theorems 4.18 and 4.21 state that under some conditions an o-minimal dynam-
ical system (M, γ) admits a finite bisimulation. The following theorem gives a
condition under which the construction of a finite bisimulation is effective; it is
a generalization which encompasses previous results of [LPY].

Theorem 5.1. Let (M, γ) be an o-minimal dynamical system, let Tγ be the
associated transition system on Mk2 , and let P be a finite definable partition
of Mk2 . If Th(M) is decidable and if there exists a unique multidotted word
associated with each y ∈ Mk2 , then there exists an algorithm which computes a
finite bisimulation of Tγ that respects P.

Proof. By Theorem 4.21 we know there exists a finite bisimulation of Tγ that
respects P . On the other hand, we know that under the assumption of the exis-
tence of a finite bisimulation, the (pseudo) bisimulation algorithm 2.8 terminates.
Since we assume the decidability of the theory of M each step of the algorithm
is computable12.

In the remaining of this subsection we exhibit an o-minimal dynamical sys-
tem on each o-minimal expansion of a field which shows that the decidability
of Th∃M is an essential assumption w.r.t. the problem of termination of the
bisimulation algorithm.

Let M be an o-minimal structure expansion of a field, x0 is a fixed point of
Mk1 and γ : Mk1 × M → Mk1 a dynamics defined as follows,

γ(x, t) = x0.t + x.(1 − t)

Consider the initial partition of Mk1 given by P =
{

{x0}, D, Mk1 \ (D ∪ {x0})
}

with D = {x | ϕ(x)} is a definable set and x0 /∈ D.
If we apply the bisimulation algorithm (2.8), the first step of the algorithm

has to test the following equality:

Pre(x0) ∩ D = ∅ (1)

By definition of the dynamics Pre(x0) = Mk2 , so the equality (1) is false if and
only if ∃x ϕ(x). This observation allows us to state that if the first step of the
bisimulation algorithm is computable for this kind of systems then Th∃(M) is
decidable.

12 Again the distinction between Turing and BSS computability holds in this context.
Hence if we want a Turing algorithm we need to assume that all the defining formulas
are without parameters.
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Let us end this subsection by a remark about the effectiveness of the construc-
tion of the symbolic transition systems TΩ̇ and TΩ̈∆

. A tedious analysis shows
that if ω is a word in P∗ we can build a first-order formula which expresses that a
trajectory Γx is encoded by the word ω. This is similar to Lemma 4.13. Hence if
we have an a priori bound on the length of the possible words for encoding trajec-
tories, and if Th(M) is decidable we can effectively build the symbolic transition
systems TΩ̇ and TΩ̈∆

(this requires to pursue tedious definability analysis of our
construction). This consideration motivates the next subsection.

5.3 Complexity issues

In this subsection, we collect some well-known results on the number of connected
components for definable sets in particular o-minimal structures. Indeed our
Theorems 4.18 and 4.21 show that the length of the finite words (respectively on
the initial partition P and on the partition ∆ induced by the dynamical type) is
bounded (see Lemmas 4.9 and 4.15). Let us denote these bounds respectively c
and mc. In this way, independently of the effectiveness of our constructions, we
can yield a rough bound on the size of the finite state system provided by our
results (TΩ̇ and TΩ̈∆

). If the cardinal of the initial partition P is s and if c is
the number of connected components then the number of words in Ω is bounded
by sc. Consequently13 , the cardinal of the dotted words Ω̇ is at most c.sc and
the cardinal of multidotted words Ω̈∆ is at most 2mc.δmc where δ is a bound
on the number of dynamical type. This last bound can be easily estimated, it is
bounded by the power set of Ω̇, i.e. δ 6 2c.sc

. We hope that finer computations
on the number of connected components induced by a partition P on γ(x, .) will
provide bounds for c and mc. To illustrate this idea let us cite a classical result
on definable subsets in the field of real numbers.

Theorem 5.2. [BCSS, proposition 7, p. 314]
Let S ⊆ Rn be defined by







fi(x) = 0, i = 1, ..., p
fi(x) > 0, i = p + 1, ..., p + l
fi(x) > 0, i = p + l + 1, ..., k

and let d = max{degree f1, ..., degree fk}. Then the number of connected com-
ponents of S is bounded by (kd + 1).(2kd + 1)n+1.(4kd + 1)n.

In our case, S = {t | γ(x, t) ∈ P} for some x ∈ Mk1 and P ∈ P ; since here n = 1,
if s the cardinal of P , a rough bound for c is given by s.(kd+1).(2kd+1)2.(4kd+1)
where d is the maximum of the degree of the polynomials involve in the descrip-
tion of S, which can be computed from the degree of the polynomials defining
γ and P .

13 This calculation seems to not take in account words of length less than c. But
consecutive letters of words in Ω are different by definition (see Remark 4.11) and
so the number of such words of length at most c is bounded by the number of words
of length c.
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Today there is a lot of works trying to improve such bounds in the framework
of o-minimal structures, for example let us cite [Kho,PV,Pe]. The paper [KV04]
investigates this kind of complexity issues in the case of Pfaffian hybrid systems.
In this case the problem to give an estimate on the number of connected com-
ponents on the set S is handled by using the notion of format for sub-Pfaffian
sets.

6 Limits of our results

In this section, we try to delimit the border between o-minimal systems which
admits finite bisimulations and the others. To achieve this goal, we closely look
at examples which are in some sense generic in their class. Firstly we examine
the effect of weaker assumptions in Theorem 4.18 and 4.21. Secondly we con-
sider classes of o-minimal hybrid systems where stronger deterministic resets are
allowed.

6.1 Relaxing the assumptions on the continuous dynamics

In Sections 4.2 and 4.3, we proved that if the continuous dynamics of a point
y ∈ Mk2 w.r.t. a given finite partition (in some sense the orbit of y under the
dynamics) can be “uniformly encoded by a unique finite word” we obtain a
finite bisimulation of the space. Our first example is an o-minimal dynamical
system on the torus where the dynamics of a point y requires several words for
its encoding w.r.t. a particular finite partition (see also [BMRT]). We show that
this system does not admit a finite bisimulation w.r.t. this particular partition.
As usual, to establish the lack of finite bisimulation w.r.t. the partition, it is
sufficient to show the non-termination of the bisimulation algorithm (2.8).

We work in the structure M = 〈R, <, +, ·, 0, 1, sin�[0,4π]〉 which is o-minimal,
as it can be seen from [vdD96]. A torus is a definable set of M since it is given
by the following equations :





x
y
z



 =





(R + r cosu) cos v
(R + r cosu) sin v

r sinu



 =: ϕ(u, v)

with u, v ∈ [0, 2π[.
We define a dynamics γ : [0, 2π[2×R×R → R3 on the torus : for all t ∈ [0, 2π[,

γ(u0, v0, a, t) =











ϕ(u0 + t, v0 + t) if a = 1,

ϕ(u0 + t, v0 + 2t) if a = 2,

ϕ(u0, v0) otherwise.

The dynamics is definable in M, so (M, γ) is an o-minimal dynamical system
and the transition relation is the one given in Definition 2.17. The torus can be
represented by a square of length 2π where the opposite sides are identified. We
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adopt this description in order to study the dynamics on the torus. Therefore
the trajectories on the torus are given by pieces of lines on the square. We note
that trajectories are closed curves. In this context, the equation of the dynamics
γ : [0, 2π[2×R × R → [0, 2π[2 becomes :

γ(u0, v0, a, t) =











(u0 + t, v0 + t) mod 2π if a = 1 and t ∈ [0, 2π[,

(u0 + t, v0 + 2t) mod 2π if a = 2 and t ∈ [0, 2π[,

(u0, v0) otherwise.

Given a point (u0, v0) ∈ [0, 2π[2, three behaviors of the dynamics are possible:
it can follow a line of slope 1 or 2, or it can remain stationary (see Figure 12).

We consider the following initial partition of the square P = {P0, P1, P2,
P3} where:

P0 =
{

(0, 0)
}

, P1 =
{

(0, v)
∣

∣ v ∈ ]0, 2π[
}

,

P2 =
{

(u, 0)
∣

∣ u ∈ ]0, 2π[
}

, P3 = [0, 2π[2\(P0 ∪ P1 ∪ P2).

This induces a definable (in the sense of the structure M) partition of the torus.
We will now apply the bisimulation algorithm (2.8) and show that it does

not terminate when we take this initial partition.
To formalize the non-termination of the algorithm we need to compute the set

of predecessors of a given point (y1, y2) of the space. By the previous observation,
we have that :

Pre(y1, y2) =
{

(y1 + t, y2 + t) mod 2π
∣

∣ t ∈ [0, 2π]
}

∪
{

(y1 + t, y2 + 2t) mod 2π
∣

∣ t ∈ [0, 2π]}

(y1, y2)

Fig. 12. Pre(y1, y2)

P1 P1

P2

P2

P3

P0 P0

P0 P0

Fig. 13. The partition

We observe that the sets Pre(y1, y2)∩P1 and Pre(y1, y2)∩P2 are finite. The
iterations of the While instruction of the bisimulation algorithm isolates14 an
infinite number of points. The next lemma formalizes this :

14 By “isolating a point q” we mean that the algorithm has constructed P ∈ Q/∼ such
that P = {q}.
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Lemma 6.1. For each n > 0, there exists odd integers k, k′ such that the algo-
rithm isolates the points (kπ/2n, 0) and (0, k′π/2n).

Proof. We proceed by induction on n.
(1) In the case n = 0, we isolate (π, 0) starting from {(0, 0)} and then we

isolate (0, π) by using the new isolated point {(π, 0)}, as shown on Figure 14.

(0, 0) (π, 0) (π, 0)

(0, π)

Fig. 14. Case n = 0

(2) Suppose now that we have isolated the points (0, kπ/2n) and (k′π/2n, 0)
with k, k′ satisfying the required conditions, we show how to obtain the new
isolated points:

– Consider first the intersection A = Pre(0, kπ/2n) ∩ (X × {0}) where X ×
{0} is an element of a sub-partition of P2; by the characterization of the
predecessors above, we have that

(x, 0) ∈ A

⇔ ∃t ∈ [0, 2π],
(

t = x mod 2π and kπ/2n = −t mod 2π
)

or
(

t = x mod 2π and kπ/2n = −2t mod 2π
)

⇔ x = 2π − kπ/2n or x = 2π − kπ/2n+1

The second part of this disjunction permits to isolate the new point
(2n+2 − k)π/2n+1 with 2n+2 − k = 1 (mod 2).

– Using the same argument when considering B = Pre(k′n/2n) ∩ ({0} × Y ),
we obtain the second isolated point of the lemma. ut

Remark 6.2. Maybe the discussion above does not enlighten where the assump-
tions of Theorems 4.18 and 4.21 are not satisfied by the dynamics. In fact there
are points y of the torus with several trajectories going through y and even sev-
eral dotted words associated with y. For example the three dotted words Ṗ0,
Ṗ0P3 and Ṗ0P3P2 are associated with (0, 0). Thus the uniqueness assumption of
Theorem 4.18 is not satisfied.

6.2 Relaxing the assumptions on the discrete dynamics

Now we examine several examples of o-minimal hybrid systems where the con-
tinuous dynamics of the o-minimal dynamical systems build in are linear. First
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let us recall a precise definition of the discrete transitions in an o-minimal hybrid
system in the sense of [LPS] (which is the convention we adopted in this paper,
see 4.4).

Definition 6.3. Memoryless discrete transition:

(l1, y1)
a
−→H (l2, y2) ⇔ e = (l1, a, l2) ∈ Edg and y1 ∈ G(e) and y2 ∈ R(e)

If we consider Definition 6.3 componentwise, it says that (l1, y1)
a
−→H (l2, y2) if

and only if each component of y is reset non deterministically into some definable
set (see Figure 10). More precisely, the jth component of y after resetting has its
value in the projection of R(e) onto this component; (y)j := (R(e))j : discrete
transitions are memoryless. In the general model of hybrid systems ([Hen96]) or
in timed automata ([AD]), all the components are not necessarily reset, they can
keep their value.

The next series of examples shows why the memoryless condition is essential
in order to obtain finite bisimulation or at least to have the decidability of the
reachability problem. Our first hope was to obtain an extension of Theorem 4.21
to o-minimal hybrid systems with some deterministic discrete transitions. This
attempt was motivated by several recent results in the literature about hybrid
automata, see the papers [AD,Hen96,HKPV].

First we give a general definition of a discrete transition which encompasses
the previous one and allows to naturally express the classical reset conditions of
the literature. A discrete transition of general types can be defined in this way:
we add the function U : Edg → 2{1,··· ,k2} to the definition of o-minimal hybrid
system. The function U picks the components of y which will keep their value
unchanged, the ones which are not reset15. We now define (l1, y1)

a
−→H (l2, y2)

this way:

Definition 6.4. General type discrete transition:

(l1, y1)
a
−→H (l2, y2) ⇔ e = (l1, a, l2) ∈ Edg and y1 ∈ G(e) and y2 ∈ R(e)

and ∀j ∈ U(e) we have that (y1)j = (y2)j .

The model of timed automata can be defined as an o-minimal hybrid system
with discrete transitions of general type and a particular continuous dynamics.
Timed automata admit finite bisimulations given by the region graph (see [AD]).
But we can easily find folk examples of o-minimal hybrid systems with discrete
transitions of general type which do not have finite bisimulation. Consider the
hybrid system H1 of Figure 15, it is clearly an o-minimal hybrid system with
discrete transition of general type. The guards and resets of H1 imply that the
point {(1, 1)} is isolated in the initial partition P . By iterating the predecessors
on (1, 1), we show that bisimulation algorithm does not terminate. On Figure 16
we have represented the dynamics of the system by solid lines for the continu-
ous transitions and dashed lines for the discrete transitions. By using the same

15 Let us remark that memoryless discrete transitions are the ones where the function
U assigns the empty set to each edge.
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argument than in Section 6.1 we show that the bisimulation algorithm isolates
infinitely many points. So H1 does not admit finite bisimulation.

ẏ1 = 1
ẏ2 = 2

ẏ1 = 1
ẏ2 = 1

y2 = 1 ; y2 := 0

y1 = 1 ; y1 := 0

Fig. 15. Hybrid system H1

y1

y2

Fig. 16. Infinite bisimulation on H1

The result is even worst, since [ACH+,HKPV,KPSY] show that for different
subclasses of o-minimal hybrid systems with general type of discrete transitions
the reachability problem is undecidable. Their proofs show that the halting prob-
lem for 2-counter machines is reducible to it.

On the other hand it is shown in [HKPV] that the so-called initialized sin-
gular automata admit finite bisimulations. In the sequel we discuss the case of
initialized o-minimal hybrid systems. Let us first define the scope of the ad-
jective initialized. Initialized discrete transitions are a special case of discrete
transition of general type defined as follows. We consider the dynamics γ com-
ponentwise, and we force the jth component of y to be reset on the discrete
transition e = (l1, a, l2) if the jth component of the dynamics on l1 is different
from the jth component of the dynamics on l2. More precisely this condition is
given by:

Definition 6.5. Initialized discrete transition:

(l1, y1)
a
−→H (l2, y2) ⇔ e = (l1, a, l2) ∈ Edg and y1 ∈ G(e) and y2 ∈ R(e)

and ∀j ∈ U(e) we have that (y1)j = (y2)j

and (γl1)j 6= (γl2)j ⇒ yj /∈ U(e)

Again, we can easily find examples of initialized o-minimal hybrid systems
which do not have finite bisimulation. Consider the hybrid system H2 of Fig-
ure 17, it is clearly an initialized o-minimal hybrid system since there is only one
continuous dynamics. The guards and resets of H1 imply that the point {(1, 1)}
and the diagonal D = {(y1, y2) | 0 < y1 = y2 < 1} are isolated in the initial
partition P . By iterating the predecessor computation of {(1, 1)} and intersect-
ing the resulting sets with the diagonal D, we easily see that the bisimulation
algorithm does not terminate (see Figure 18), by using the same argument than
in Section 6.1. So H2 does not admit finite bisimulation.
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ẏ1 = 1
ẏ2 = 2

y1 = y2

y2 := 0

Fig. 17. Hybrid system H2

y1

y2

Fig. 18. Infinite bisimulation on H2

It is shown in [Mil] that the reachability problem is already undecidable for
a subclass of initialized o-minimal hybrid systems16. The proof uses the unde-
cidability of the halting problem for 2-counter machines and one can be easily
convinced that the proof uses an initialized o-minimal hybrid system.

Remark 6.6. This section shows that the memoryless discrete transitions seem
compulsory in order to keep finite bisimulation (and even decidability of the
reachability problem). This a posteriori justifies the definition of o-minimal hy-
brid systems of [LPS] (see Remark 4.6). However, the richness of the continuous
dynamics, allowed in the assumption of Theorem 4.21, encompasses some en-
coding of resets of variables.

Let us look at the following example (Figure 19) which is clearly in the class
of o-minimal dynamical system, with self-intersecting behavior, which satisfies
assumptions of Corollary 4.22. Consider the dynamics together with the partition
P of Figure 19. Due to the transition system defined on such a dynamical system
(see Definition 2.17), we have that the hybrid system given by Figure 20 is in a
some broader sense “bisimilar” to the o-minimal dynamical system of Figure 19.
This example of encoding discrete transitions in a single continuous dynamical
system (through the definition of the transition system associated with it) opens
some perspectives for future work. This kind of considerations has already been
discussed in [SJSL].

Conclusion

In this paper, we introduce several notions of symbolic dynamics in the context
of hybrid systems. A lot of them are quite general, we study their definability in a
first-order structure, particularly in the case of the o-minimal hybrid systems. It
allows us to show several results about the reachability problem and the existence
of finite bisimulations. In particular, we are able to show that the result of [LPS]
still holds when permitting more general continuous transitions for o-minimal

16 The proof only uses timed automata with finitely many parameters in Z[
√

2]. Usual
timed automata only allows finitely many parameters in Z.



30 T. Brihaye, C. Michaux

y0

P2

P1 P3

Fig. 19. P = {y0, P1, P2, P3}

y = y0

γ(x, t)

y ∈ P2

γ(x, t)

y ∈ P1

γ(x, t)
y ∈ P3

γ(x, t)

α α

α α

Fig. 20. α ≡ (y = y0)

hybrid systems. On the other hand, we show it is not possible to guarantee
[LPS]’s result if we relax the assumptions about the discrete transitions.
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