
Centre Fédéré en Véri�ationTehnial Report number 2004.30

Robustness and Implementability of Timed Automata
Martin De Wulf (ULB), Laurent Doyen (ULB), Niolas Markey (ULB), Jean-FrançoisRaskin (ULB)

http://www.ulb.a.be/di/ssd/fvThis work was partially supported by a FRFC grant: 2.4530.02

Robustness and Implementability

of Timed Automata⋆

Martin De Wulf1, Laurent Doyen1⋆⋆, Nicolas Markey2, and
Jean-François Raskin1

1 Computer Science Department, Université Libre de Bruxelles, Belgium
2 Lab. Spécification & Vérification, CNRS & ENS Cachan, France

Abstract. The Almost ASAP semantics is a parameterized semantics
for Timed Automata that has been developped in [DDR05] to cope with
the reaction delay of the controller. That semantics is implementable pro-
vided there exists strictly positive values for the parameters ∆ and ε for
which the strategy is correct. In this paper, we define the implementabil-
ity problem to be the question of the existence of such values for the
parameters. We show that this question is closely related to a notion of
robustness for timed automata defined in [Pur98], and prove that the
implementability problem is decidable.

1 Introduction

Timed automata are an important formal model for the specification and anal-
ysis of real-time systems. Formalisms like timed automata and hybrid automata
are central in the so-called model-based development methodology for embed-
ded systems. The steps underlying that methodology can be summarized as fol-
lows: (i) construct a (timed/hybrid automaton) model Env of the environment
in which the controller will be embedded; (ii) make clear what is the control
objective: for example, prevent the environment to enter a set of Bad states;
(iii) design a (timed automaton) model Cont of the control strategy; (iv) ver-
ify that Reach(JEnv ‖ ContK) ∩ Bad = ∅ (where Reach(JEnv ‖ ContK) denotes
the set of states reachable in the transition system associated to the synchro-
nized product of the automaton for the environment and the automaton for the
controller). When Cont has been proved correct, it would be valuable to ensure
that an implementation Impl of that model can be obtained in a systematic
way in order to ensure the conservation of correctness, that is to ensure that
Reach(JEnv ‖ ImplK) ∩ Bad = ∅ is obtained by construction.

Unfortunately, this is often not possible for several fundamental and/or tech-
nical reasons. First, the notion of time used in the traditional semantics of timed
automata is continuous and defines perfect clocks with infinite precision, while
implementations can only access time through digital and finitely precise clocks.

⋆ Supported by the FRFC project “Centre Fédéré en Vérification” funded by the
Belgian National Science Foundation (FNRS) under grant nr 2.4530.02

⋆⋆ Research fellow supported by the Belgian National Science Foundation (FNRS)

Second, timed automata react instantaneously to events and time-outs while im-
plementations can only react within a given, usually small but not zero, reaction
delay. Third, timed automata may describe control strategies that are unrealis-
tic, like zeno-strategies or strategies that demand the controller to act faster and
faster [CHR02]. For those reasons, a model for a digital controller that has been
proved correct may not be implementable (at all) or it may not be possible to
turn it systematically into an implementation that is still correct.

To overcome those problems, [DDR05] recently proposed an alternative se-
mantics for timed automata. This semantics is called the Almost ASAP seman-
tics, AASAP for short. The AASAP-semantics of a timed automaton A, denoted
by JAKε

∆, is a 2-parameter semantics that leaves as a parameter the reaction
delay ∆ of the controller and the drifts (i.e. imprecision) ε on clocks. Both pa-
rameters take their values in Q+. This semantics relaxes the classical semantics
of timed automata in that it does not impose on the controller to react instan-
taneously but imposes on the controller to react within ∆ time units. As shown
in [DDR05], a timed controller is implementable with a sufficiently fast and
sufficiently precise hardware if, and only if, there exists ∆, ε ∈ Q>0 such that
Reach(JEnv ‖ ContKε

∆)∩Bad = ∅. The implementability problem is to determine
the existence of such values for ∆ and ε. Details on the notion of implementabil-
ity can be found in [DDR05].

The use of the AASAP-semantics in the verification phase can be under-
stood intuitively as follows. When we verify a control strategy using the AASAP-
semantics, we test if the proposed strategy is robust in the following sense3: “Is
the strategy still correct if it is perturbed a little bit when executed on a device
that has a finite speed and uses finitely precise clocks?”

In this paper, we show that this intuition relating robustness and imple-
mentability allows us to draw an interesting and important link with a paper
by Puri [Pur98] and allows us to positively answer the open question about the
decidability of the implementability problem.

Related works. In this paper, we focus on timed controllers and environments
that can be modeled using timed automata. There exist related works where the
interested reader will find other ideas about implementability.

In [AT05], Altisen and Tripakis tackle the problem of implementability by
modeling the execution platform as a timed automaton. Their approach is much
more expressive than ours, but it suffers from not verifying the “faster is better”
property.

In [HKSP03], Tom Henzinger et al. introduce a programming model for real-
time embedded controllers called Giotto. Giotto is an embedded software
model that can be used to specify a solution to a given control problem inde-
pendently of an execution platform but which is closer to executable code than
a mathematical model. So, Giotto can be seen an intermediary step between
mathematical models like hybrid automata and real execution platforms.

3 Our notion of robustness is different from another interseting one introduced
in [GHJ97].

In [AIK+03], Rajeev Alur et al. consider the more general problem of gen-
erating code from hybrid automata, but they only sketch a solution and state
interesting research questions. The work in this paper should be useful in that
context. In [AFM+02,AFP+03], Wang Yi et al. present a tool called Times that
generates executable code from timed automaton models. However, they make
the synchrony hypothesis and so they assume that the hardware on which the
code is executed is infinitely fast and precise.

Our paper is structured as follows. In Section 2, we recall some classical defi-
nitions related to timed automata and we introduce a general notion of enlarged
semantics for those automata. In Section 3, we recall the essential notions and
problems related to the AASAP-semantics, and we recall the notion of robust-
ness as introduced in [Pur98]. In Section 4, we present a small example that
illustrates the enlarged semantics and the problems that we want to solve on
this semantics. In Section 5, we make formal the link between our notion of
implementability and the notion of robustness introduced by Puri. In Section 6,
we give a direct proof that the implementability problem is decidable, and study
its complexity.

2 Preliminaries

Definition 1 A timed transition system (TTS for short) T is a tuple 〈S, ι,Σ,→〉
where S is a (possibly infinite) set of states, ι ∈ S is the initial state, Σ is a finite
set of labels, and → ⊆ S × (Σ ∪R≥0)×S is the transition relation where R≥0 is

the set of positive real numbers. If (q, σ, q′) ∈ →, we write q
σ
−→ q′. �

A trajectory of a TTS T = 〈S, ι,Σ,→〉 is a sequence π = (s0, t0) . . . (sk, tk)
such that for 0 ≤ i ≤ k, we have (si, ti) ∈ S × R, and for 0 ≤ i < k, we have

si
σi−→ si+1, and either σi ∈ Σ and ti+1 = ti, or σi ∈ R≥0 and ti+1 = ti + σi. We

sometimes refer to this trajectory as π[t0, tk] and write π(ti) instead of si.
The trace of such a trajectory π is the sequence (ti)i where ti = σi if σi be-

longs to Σ, and ti = τ if σi ∈ R≥0 (assuming τ is a special symbol not in Σ).
A trajectory is stutter-free iff its trace contains alternately a symbol in Σ and

a τ , i.e. does not contains two consecutive symbols in Σ or two consecutive τ ’s.
Any trajectory can obviously be made stutter-free.

A state s of T is reachable from a state q if there exists a trajectory π =
(s0, t0) . . . (sk, tk) such that s0 = q and sn = s. Given a set of states Q ⊆ S,
we write Reach(Q) for the set of states that are reachable from (at least) one
state in Q. We abusively write Reach(T) for Reach({ι}), the set of states that
are reachable from the initial state of T .

Given a set Var = {x1, . . . , xn} of clocks, a clock valuation is a function
v : Var → R≥0. In the sequel, we often identify a clock valuation with a point
in Rn. If R ⊆ Var, then v[R := 0] denotes the valuation v′ such that

v′(x) =

{
0 if x ∈ R

v(x) otherwise

A closed rectangular guard g over {x1, . . . , xn} is a set of inequalities of the
form ai ≤ xi ≤ bi, one for each xi, where ai, bi ∈ Q≥0 ∪ {+∞} and ai ≤ bi. We
write Rectc(Var) for the set of closed rectangular guards over Var. For ∆ ≥ 0,
we define JgK∆ = {(x1, . . . , xn) | ai − ∆ ≤ xi ≤ bi + ∆} ⊆ Rn. When ∆ = 0, we
write JgK instead of JgK0.

We slightly modify the classical definitions related to timed automata [AD94].
In particular, all clocks are assumed to be bounded by some constant M , and
guards on edges are rectangular and closed. The first two requirements are not
restrictive (except w.r.t. the conciseness of the models [BC05]), the third one is
discussed in a remark below.

Definition 2 A timed automaton is a tuple A = 〈Loc,Var, q0, Lab,Edg〉 where

– Loc is a finite set of locations representing the discrete states of A.
– Var = {x1, . . . , xn} is a finite set of real-valued variables.
– q0 = (l0, v0), where l0 ∈ Loc, is the initial location and v0 is the initial clock

valuation such that ∀x ∈ Var. v0(x) ∈ N ∧ v0(x) ≤ M .
– Lab is a finite alphabet of labels.

– Edg ⊆ Loc×Loc×Rectc(Var)×Lab×2Var is the set of transitions. A transition
(l, l′, g, σ,R) represents a jump from location l to location l′ with guard g,
event σ and a subset R ⊆ Var of variables to be reset. �

We now define a family of semantics for timed automata that is parameterized
by ε ∈ Q≥0 (drift on clocks) and ∆ ∈ Q≥0 (imprecision on guards).

Definition 3 The semantics of a timed automaton A = 〈Loc,Var, q0, Lab,Edg〉,
when the two parameters ε and ∆ are fixed is given by the TTS JAKε

∆ =
〈S, ι,Σ,→〉 where

1. S = {(l, v) | l ∈ Loc ∧ v : Var → [0,M]};
2. ι = q0;
3. Σ = Lab;
4. The transition relation → is defined by

(a) For the discrete transitions: ((l, v), σ, (l′, v′)) ∈ → iff there exists an edge
(l, l′, g, σ,R) ∈ Edg such that v ∈ JgK∆ and v′ = v[R := 0];

(b) For the continuous transitions: ((l, v), t, (l′, v′)) ∈ → iff l = l′ and v′(xi)−
v(xi) ∈ [(1 − ε)t, (1 + ε)t] for i = 1 . . . n. �

In the sequel, we omit ∆ and/or ε when they are equal to zero, and, for
instance, write JAK for JAK00, which is the classical semantics of timed automata.

Remark. Our definition of timed automata does not use strict inequalities; This
is not restrictive in the presence of guard enlargement. Indeed, consider a timed
automaton A with (possibly open) rectangular guards and the closure automa-

ton Â resulting from A by replacing strict inequalities by non-strict ones. It
appears obviously that

Reach(JÂKε
∆
2
) ⊆ Reach(JAKε

∆) and Reach(JAKε
∆) ⊆ Reach(JÂKε

∆),

and hence the implementability problem on A (“Do there exist ∆, ε ∈ Q>0

such that Reach(JAKε
∆)∩Bad = ∅ ?”) is equivalent to the the implementability

problem on Â.

We now recall some additional classical notions related to timed automata.
In the sequel, ⌊x⌋ denotes the integer part of x (the greatest integer k ≤ x),
and 〈x〉 denotes its fractional part.

Definition 4 A clock region is an equivalence class of the relation ∼ defined
over the clock valuations in Var → [0,M]. We have v ∼ w iff the following three
conditions hold:

– ∀x ∈ Var. ⌊v(x)⌋ = ⌊w(x)⌋;

– ∀x ∈ Var. 〈v(x)〉 = 0 iff 〈w(x)〉 = 0.

– ∀x, y ∈ Var. 〈v(x)〉 ≤ 〈v(y)〉 iff 〈w(x)〉 ≤ 〈w(y)〉; �

We write (v) for the clock region containing v. It is easy to see that (v) con-
tains the valuations that agree with v on the integer part of the variables, and
on the ordering of their fractional part and zero. Given a region r, its topo-
logical closure is denoted by [r]. Such a set is called a closed region hereafter.
We write [v] instead of [(v)] for the closed region containing valuation v. The
following Lemma explains why we mainly deal with closed regions in the sequel:

Lemma 5 Let A be a timed automaton (with closed guards), and [r] be a closed
region of A. Then Reach([r]) is a union of closed regions.

It is easily proved by showing that the successor of a closed region by a single
transition is a union of closed regions.

Definition 6 Given the TTS JAK = 〈S, s0, Σ,→A〉 of a timed automaton A, we
define the corresponding region graph G = 〈C,→G〉 of A:

– C = {(l, (v)) | (l, v) ∈ S} is the set of regions;

– →G ⊆ C × C, and ((l, (v)), (l′, (v′))) ∈ →G if, and only if, (l, v)→A(l′, v′)
and (l, (v)) 6= (l′, (v′)). �

This definition is meaningful since C is finite (the total number of regions,
denoted in the sequel by W = |C|, is exponential in the size of A) and, if
(l, (v)) →G (l′, (v′)), then for any s ∈ (v), there exists an s′ ∈ (v′) such that
(l, s)→A(l′, s′), and conversely, for any s′ ∈ (v′), there exists s ∈ (v) such that
(l, s)→A(l′, s′) [AD94].

Given a path p = p0 p1 · · · pN in the region graph of a timed automaton A,
and a trajectory π = (s0, t0) (s1, t1) · · · (sk, tk) of JAK, we say that π follows p
if there exists a function f : [0, k] → [0, N] such that f(0) = 0, f(k) = N , for
all i ∈ [1, k] either f(i) = f(i − 1) or f(i) = f(i − 1) + 1 and for all i ∈ [0, k]:
si ∈ [pf(i)].

Definition 7 A zone Z ⊆ Rn is a closed set defined by inequalities of the form

xi − xj ≤ mij , αi ≤ xi ≤ βi

where 1 ≤ i, j ≤ n and mij , αi, βi ∈ Z. A set of states is called a zone-set if it is
a finite union of sets of the form {l} × Z where l is a location and Z is a zone.

�

Definition 8 A region r is time-elapsing if time can elapse in that region, i.e.
if ∃v ∈ r.∃t > 0. v + t ∈ r. A cycle in the region graph is time-elapsing if it
contains a time-elapsing region. �

Definition 9 A progress cycle in the region graph of a timed automaton is a
cycle in which each clock is reset at least once. �

Our main results heavily rely on the fact that timed automata should not
have weird behaviors. More precisely, we rule out timed automata that contains
instant cycles4. However, several interesting intermediate results hold in the
general case. We thus formulate the following assumption, but we will always
explicitely refer to it when it is needed.

Assumption 10 We only consider timed automata satisfying the following con-
dition: Every cycle in the region graph is time-elapsing.

In his original work, Puri formulates a more restrictive assumption that all
cycles in the region graph are progress cycles. The only possible progress cycles
that are not time-elapsing are cycles along which all regions bind all clocks
to zero. Apart from those very special cycles, our assumption is more general
than Puri’s one. The progress cycle assumption itself is not very restrictive,
since it is weaker than classical non-Zeno assumptions in the literature (for
example in [AMPS98], they impose that “in every cycle in the transition graph
of the automaton, there is at least one transition which resets a clock variable xi

to zero, and at least one transition which can be taken only if xi ≥ 1”).

3 AASAP semantics and enlarged semantics

The “Almost ASAP” semantics has been introduced in [DDR05]. That seman-
tics relaxes the usual semantics of timed automata, its main characteristics are
summarized as follows:

– any transition that can be taken becomes urgent only after a small delay ∆
(which may be left as a parameter);

– a distinction is made between the occurrence of an event in the environment
(sent) and in the controller (received), however the time difference between
the two events is bounded by ∆;

4 See Section 6.5 for comments on the general case.

– guards are enlarged by some small amount depending on ∆.

In the same paper, in Theorem 6, we show that this semantics can be encoded
using a syntactical transformation of the automaton controller and by enlarging
the guards by the parameter ∆ which takes its value in the positive rationals. So
we can study the AASAP-semantics of Env ‖ Cont by considering the semantics
JEnv ‖ Cont′K0∆ where Cont′ is obtained syntactically from Cont. So in the rest
of this paper, we will consider the ∆-enlarged semantics instead of the AASAP-
semantics.

In this previous work, we have shown that the AASAP-semantics and so the
∆-enlarged semantics allow us to reason about the implementability of a control
strategy defined by a timed automaton. The problems that we want to solve
algorithmically on the ∆-enlarged semantics are the following ones:

– [Fixed] given a zone-set of Bad states, the timed automata Env and Cont,
and the value of ∆ ∈ Q>0, decide whether Reach(JEnv ‖ Cont′K0∆)∩Bad = ∅;

– [Existence] given a zone-set of Bad states, Env and Cont, decide whether
there exists ∆ ∈ Q>0 such that Reach(JEnv ‖ Cont′K0∆) ∩ Bad = ∅. This is
also called the implementability problem.

– [Maximization] given a zone-set of Bad states, Env and Cont, compute
the least upper bound of the set of ∆ ∈ Q>0 such that Reach(JEnv ‖
Cont′K0∆) ∩ Bad = ∅. Intuitively, this gives us the information about the
slowest hardware that can implement correctly the strategy.

To solve the fixed version, we use the usual reachability algorithm for timed
automata defined in [AD94]. To solve the maximization version (in an approx-
imative way), we observe that for any timed automaton A, any two positive
rational numbers ∆1, ∆2, if ∆1 ≤ ∆2 then Reach(JAK0∆1

) ⊆ Reach(JAK0∆2
). So,

given a tolerance η ∈ Q>0, the maximal value of ∆ can be approached by η as
follows: assuming Bad is reachable in JAK0∆=1, it suffices to solve the [Fixed]
problems with values ∆i = iη (0 ≤ i ≤ ⌈ 1

η
⌉), and take as approximation of the

maximal ∆ the value ∆i such that the answer of the [Fixed] problem is Yes for
∆i and No for ∆i+1, which can be found more efficiently with a binary search.

The decidability of the [Existence] problem under assumption 10 is estab-
lished in the next sections. To achieve this, we draw a strong link with the robust
semantics defined by Puri in [Pur98]. In that paper, Puri shows that the tradi-
tional reachability analysis defined in [AD94] is not correct when the clocks may
drift, even by a very small amount. He then reformulates the reachability prob-
lem as follows: given a timed automaton A, instead of computing Reach(JAK00),
he proposes an algorithm that computes ∩ε∈Q>0Reach(JAKε

0). When A is clear
from the context, this set is denoted by R∗

ε . This is the set of states that can be
reached when the clocks drift by an infinitesimally small amount. He shows that
this set has nice robustness properties with respect to modeling errors. In par-
ticular, he establishes that if the clocks are drifting, then guards can be checked
with some small imprecisions (see [Pur98] for details).

In this paper, in order to make the link with the implementability problem,
we study a variant of this robust semantics where small imprecisions on guards

checking are allowed: the set of reachable states in this semantics is the set
∩∆∈Q>0Reach(JAK0∆). When A is clear from the context, this set is abbreviated
by R∗

∆. We first show that for any timed automaton A, any zone-set Bad, we
have that: ∩∆∈Q>0Reach(JAK0∆) ∩ Bad = ∅ iff there exists ∆ ∈ Q>0 such that
Reach(JAK0∆)∩Bad = ∅. After, we establish that the algorithm proposed by Puri
to compute the set ∩ε∈Q>0Reach(JAKε

0) is also valid to compute the set of states
∩∆∈Q>0Reach(JAK0∆). We also reprove the results of Puri in our broader context.
This yields an algorithm for deciding the implementability problem, and proves
that, under assumption 10, both types of imprecisions have the same effect:

⋂

ε>0

Reach(JAKε
0) =

⋂

∆>0

Reach(JAK0∆) =
⋂

∆>0
ε>0

Reach(JAKε
∆)

The proofs of our results follow the general ideas of the proofs of Puri and are
based on the structure of limit cycles of timed automata (a fundamental notion
introduced by Puri) but we needed new techniques to treat the imprecisions on
guards instead of the drifts of clocks as in the original paper. Also, the proofs
in the paper of Puri are not always convincing, so we reproved a large number
of his lemmas that are needed to establish our proof and had to correct one
of them.

4 Example

Consider automaton A of Fig. 1(a). We examine two cases: α = 2 and α = 3. For
both cases, the reachable states of the classical semantics JAK are the same and
are depicted in Fig. 1(b) (the points v0 . . . v7 will be used later in the paper).
The safety property we want to verify is that the location err is not reachable.
Note that in the classical semantics this is true in both cases.

Consider now the enlarged semantics JAK0∆ with ∆ > 0. In this semantics,
guards are enlarged by the amount ∆. The edge from l1 to l2 has the guard
a ≤ 2+∆ and the edge from l2 to l1 has the guard b ≥ 2−∆. Starting from the
initial state (l1, a = 1, b = 0), the jump to l2 can occur ∆ time units later, so
that the states (l2, a = 0, b ≤ 1 + ∆) are reached. Similarly, the transition from
l2 back to l1 is enabled ∆ time units earlier and the states (l1, a ≥ 1−2∆, b = 0)
can be reached. By iterating the cycle, the states (l1, a ≥ 1 − 2k∆, b = 0) and
(l2, a = 0, b ≤ 1 + (2k − 1)∆) are reachable. So, for any ∆ > 0 some new states
are reachable in JAK0∆ that were not reachable in the classical semantics. Those
states are represented in Fig. 1(c).

From those new states that become reachable in location l2, if α = 3, the
location err remains unreachable but if α = 2, it becomes reachable.

Clearly, from this example, one sees that a correct timed system (in the sense
of the classical semantics) could have a completely different (and potentially bad)
behavior due to an infinitesimally small inaccuracy in testing of the clocks (which
is unavoidable since the clocks are discrete in embedded systems). This is the
case for the automaton of figure 1(a). When α = 2, the classical semantics is

ℓ1 ℓ2 err
a := 1

b := 0

a ≤ 2

a := 0

b ≥ 2

b := 0

a = 0

b ≥ α

(a) A timed automaton A.

ℓ1

2

2

1

10 a

b

v0

v1

v2

v3

v4

v5

ℓ2

2

2

1

10 a

b

v6

v7

(b) Reach(JAK) for timed automaton A.

ℓ1

2

2

1

10 a

b

v0

v1

v2

v3

v4

v5

ℓ2

2

2

1

10 a

b

v6

v7

(c) The set
⋂

∆>0

Reach(JAK0∆) for timed automaton A.

Fig. 1. Differences between standard and enlarged semantics

not robust since even the slightest error in guard checking allows new discrete
transition to be taken. In other words, there is no strictly positive value for the
parameter ∆ that still ensures the safety property for JAK0∆. Systems with such
features cannot have a correct implementation because their correctness relies
on the idealization of the mathematical model.

But this is not always the case: for the same automaton when α = 3, no more
discrete transitions are possible in the enlarged semantics than in the classical
one. In this case, we can positively answer the question: “Is there a strictly
positive value for parameter ∆ that allows the enlarged semantics to still satisfy
the safety property?” And indeed, we can prove that any value ∆ < 1

3 is suited
to that purpose.

5 Linking robustness and implementability

The classical semantics of timed automaton A is JAKε=0
∆=0, which is a mathemat-

ical idealization of how we expect an implementation would behave: it makes
the hypothesis that the hardware is perfectly precise and infinitely fast. Un-
fortunately, the execution of a timed automaton on a real hardware cannot be
considered as ideal in the mathematical sense. It is thus an interesting ques-
tion to know whether a small drift or imprecision of the clocks could invalidate
some properties satisfied by the classical semantics. Drifts in clocks have been
studied in [Pur98]. We are interested in studying imprecisions in the evaluation
of the guards since it is directly connected to the question of implementability,
as explained above. The main result of this paper is the following. Note that
both Theorems 11 and 12 also hold with only one kind of imprecisions (guard
enlargement or drift on clocks).

Theorem 11 Under assumption 10, there exists an algorithm that decides, for
any timed automaton A and any zone-set Bad, if there exist ∆, ε ∈ Q>0 such
that Reach(JAKε

∆) ∩ Bad = ∅.

Let R∗
∆,ε =

⋂
∆>0

⋂
ε>0 Reach(JAKε

∆). To prove Theorem 11, we show that
the zone-set Bad intersects R∗

∆,ε iff it intersects Reach(JAKε
∆) for some ∆, ε > 0.

As shown in the next section, Algorithm 1 computes R∗
∆,ε. Consequently, the

implementability problem is decidable.

Theorem 12 Under assumption 10, for any timed automaton A, any zone-
set Bad, the following equivalence holds:

R∗
∆,ε ∩ Bad = ∅ iff ∃∆ > 0, ε > 0. Reach(JAKε

∆) ∩ Bad = ∅.

The proof of Theorem 12 relies on three intermediate lemmas, one of which
corrects a wrong claim of [Pur98, Lemma 6.4]: it gives a bound on the distance
between two zones with empty intersection. This bound is claimed to be 1

2 .
We show that 1

n
where n is the dimension of the space is the tightest bound.

However the final results of [Pur98] are not deeply affected by this mistake. The
underlying distance is defined by d∞(x, y) = ‖x − y‖∞ = max1≤i≤n(|xi − yi|).
Let us reformulate that lemma.

Lemma 13 Let Z1 ⊆ Rn and Z2 ⊆ Rn be two zones such that Z1 ∩ Z2 = ∅.
Then, for any x ∈ Z1 and y ∈ Z2, d∞(x, y) ≥ 1

n
. This bound is tight.

Let us recall the definition of the 1-norm and the ∞-norm:

‖x‖∞ = max
1≤i≤n

|xi| ‖x‖1 =
n∑

i=1

|xi|

Proof. First, we show that 1
n

is a lower bound. Clearly, for any v ∈ Rn,
‖v‖1 ≤ n · ‖v‖∞. We prove that ‖x − y‖1 ≥ 1, which entails our result.

We consider two zones given under the form of Difference Bound Matri-
ces [Dil90]: Z1 ≡ (mi,j) and Z2 ≡

(
m′

i,j

)
. Since Z1 ∩Z2 = ∅, there must exist a

“negative cycle”:

m
(′)
i1,i2

+ m
(′)
i2,i3

+ m
(′)
i3,i4

+ · · · + m
(′)
ip,i1

≤ −1

where each term m
(′)
i,j of the sum can be taken either in Z1 or in Z2. We may

assume that at least one mi,j and one m′
i′,j′ appears in this sum, since otherwise

Z1 (or Z2) is empty and the result holds vacuously.
Since ma,b + mb,c ≥ ma,c for any a, b, c, we can merge any two consecu-

tive mi,j ’s into one while keeping the inequality. The same holds for m′
i′,j′ , and

we can thus assume that mi,j and m′
i′,j′ alternate in the sum above (starting

with mi1,i2 , say).
Pick x ∈ Z1 and y ∈ Z2. Then

(xi2 − xi1) + (yi3 − yi2) + (xi4 − xi3) + · · · + (yi1 − yip
) ≤ −1.

Terms can be rearranged in this sum, yielding

(yi1 − xi1) − (yi2 − xi2) + (yi3 − xi3) − · · · − (yip
− xip

) ≤ −1.

If ik = 0 for some k, then xik
− yik

= 0. Thus, we assume 1 ≤ ik ≤ n. We
take the absolute value, and apply the triangle inequality:

1 ≤
∣∣(yi1 − xi1) − (yi2 − xi2) + (yi3 − xi3) − · · · − (yip

− xip
)
∣∣

≤ |(yi1 − xi1)| + |(yi2 − xi2)| + |(yi3 − xi3)| + · · · + |(yip
− xip

)|

≤ ‖x − y‖1.

Now, let us show that this bound is tight. Consider the zones Z1, Z2 ⊆ Rn

defined by the following equations:

– If n is odd

Z1 ≡

{
x1 = 1
x2i − x2i+1 = 0 1 ≤ i ≤ n−1

2

Z2 ≡

{
x2i−1 − x2i = 0 1 ≤ i ≤ n−1

2
xn = 0

– If n is even

Z1 ≡

x1 = 1
x2i − x2i+1 = 0 1 ≤ i ≤ n

2 − 1
xn = 0

Z2 ≡
{

x2i−1 − x2i = 0 1 ≤ i ≤ n
2

We have Z1 ∩ Z2 = ∅: combining equations of Z1 and Z2 yields ∀i, j : xi = xj ,
which leads to a contradiction since x1 = 1 and xn = 0. On the other hand,
let P (1, n−2

n
, n−2

n
, n−4

n
, n−4

n
, . . .) and Q(n−1

n
, n−1

n
, n−3

n
, n−3

n
, n−5

n
, . . .) (take the

first n coordinates). It is easy to check that P ∈ Z1 and Q ∈ Z2, while
d∞(P,Q) = max(1

n
, . . . , 1

n
) = 1

n
. �

The previous lemma extends to sequences of sets in the following way:

Lemma 14 Let Aδ be a collection of sets such that Aδ1
⊆ Aδ2

if δ1 ≤ δ2.
Assume that Z =

⋂
δ>0 Aδ is a zone-set. Also assume the existence of a zone-

set Z ′ such that ∃δ0 > 0. ∀0 < δ < δ0. Aδ ∩ Z ′ = ∅. Then there exists δ1 > 0
such that for all 0 < δ < δ1, we have d∞(Aδ, Z

′) ≥ 1
2n

.

Proof.
We pick δ0 > 0 such that ∀0 < δ < δ0. Aδ ∩ Z ′ = ∅, and δ′0 > 0 such that

∀x ∈ Aδ′

0
. ∃z ∈ Z. d∞(x, z) <

1

2n
. (1)

Such a δ′0 exists by definition of Z. Assume the lemma is wrong:

∀δ1 > 0. ∃0 < δ < δ1. ∃x ∈ Aδ, y ∈ Z ′. d∞(x, y) <
1

2n
.

Applying this result with δ1 = min(δ0, δ
′
0), we pick a δ′1 > 0, and two points x ∈

Aδ′

1
and y ∈ Z ′ such that d∞(x, y) < 1

2n
. From (1), and since Aδ′

1
⊆ Aδ′

0
, there

exists z ∈ Z such that d∞(x, z) < 1
2n

. Thus d∞(y, z) < 1
n
, and with Lemma 13,

Z ∩Z ′ 6= ∅. Then any Aδ intersects Z ′, since it contain Z. This contradicts our
hypotheses.

�

In the sequel, when a distance d or a norm ‖ · ‖ is used, we always refer to d∞

and ‖ · ‖∞. The following lemma relies on the theory of real numbers and the
basics of topology.

Lemma 15 Let A∆(∆ ∈ R>0) be a collection of sets such that A∆1
⊆ A∆2

if ∆1 ≤ ∆2. Let A =
⋂

∆>0 A∆ be nonempty. If d(A,B) > 0, then there ex-
ists ∆ > 0 such that A∆ ∩ B = ∅.

Before proving this Lemma, we need the following two results:

Lemma 16 If d(A,B) > 0, then A ∩ B = ∅.

Lemma 17 If A ⊆ B, then d(A,C) ≥ d(B,C) for any C.

We can now prove Lemma 15.

Proof of Lemma 15. Let δi = 1
i

(i ≥ 1). Define the sequence
(
di

)
i≥1

as

follows: di = d(Aδi
, B). We use Lemma 17 to show that the sequence

(
di

)
is

increasing and bounded (we can exclude the case d(A,B) = ∞ since it makes
the lemma trivially true). For any i ≥ 1,

– since Aδi+1
⊆ Aδi

, we have di ≤ di+1;
– since A ⊆ Aδi

, we have 0 ≤ di ≤ d(A,B).

Then the sequence
(
di

)
converges (to d

def
= sup{di} ≤ d(A,B)). Assume d 6=

d(A,B) (then d < d(A,B)). For ε < d(A,B) − d, there exists N such that
∀i ≥ N : di < d + ε < d(A,B). Then, for any i ≥ N , there exists x ∈ Aδi

such
that d({x}, B) < d(A,B), and consequently x 6∈ A. Since for any 0 < δ ≤ 1

N
,

there exists i ≥ N such that A 1
i
⊆ Aδ, we have for any δ ≤ 1

N
that there exists

x ∈ Aδ such that x 6∈ A. Since A is also equal to
⋂

0<δ≤ 1
N

Ai, our assumption

leads to a contradiction. So, it must be that d = d(A,B), and thus d > 0. This
implies the existence of N such that ∀i ≥ N : di > 0. Hence, for such i we have
Aδi

∩ B = ∅ (cf. Lemma 16). �

We conlude this section by the proof of Theorem 12.

Proof of Theorem 12. Let Rε(∆) =
⋂

ε>0 Reach(JAKε
∆), for any ∆ > 0. If

R∗
∆,ε ∩ Bad = ∅, since R∗

∆,ε and Bad are unions of sets of the form {l} × Zl

where Zl is a zone5, Lemma 13 applies and we have d(R∗
∆,ε,Bad) > 0. From

Lemma 15, we obtain that there exists ∆ > 0 such that Rε(∆) ∩ Bad = ∅.
Clearly, Rε(∆) satisfies the conditions of Lemma 14, hence the existence of
some ∆1 such that ∀0 < ∆ < ∆1, we have d(Rε(∆),Bad) > 0. We pick such
a ∆0 ∈ (0,∆1). Applying Lemma 15 to Rε(∆0), we get the existence of ε0 such
that Reach(JAKε0

∆0
) ∩ Bad = ∅.

Conversely, if there exists ∆ > 0 and ε > 0 such that Reach(JAKε
∆)∩Bad = ∅,

then trivially R∗
∆,ε ∩ Bad = ∅. �

It should be noted that a similar proof could be achieved in the presence
of only one perturbation (for guard enlargement, such a proof can be found
in [DDMR04]).

6 Algorithm for computing R∗

∆

In this section, we prove that R∗
ε = R∗

∆ = R∗
∆,ε, and that they can be computed

by Algorithm 1 (originally proposed in [Pur98]).
Let us first examine how that algorithm performs on the example of sec-

tion 4. In the region graph of the timed automaton of Fig. 1(a), there is a cycle
that runs from valuation v0 to itself through v1 to v7 (see Fig. 1(b)). Thus there
is a cycle through the regions containing valuations v0 to v7. Furthermore, the
corresponding closed regions have an intersection with the set of reachable states
in the classical semantics (in gray). Since those closed regions form a strongly
connected component of the region graph and their intersection with the reach-
able states in the classical semantics is not empty, the algorithm adds all those
regions to the set J∗.

5 Assuming Algorithm 1 is correct, the set J∗ = R∗
∆,ε it computes is a union of closed

regions.

Algorithm 1: Algorithm for computing R∗
ε(A) for a timed automaton A

Data: A timed automaton A = 〈Loc, Var, q0, Lab, Edg〉
Result: The set J∗ = R∗

ε

begin
1. Construct the region graph G = (RA,−→A) of A ;
2. Compute PC(G) = {progress cycles of G};
3. J∗ ← Reach(G, [q0]) ;
4. while for some S = p0 p1 . . . pk ∈ PC(G), [p0] 6⊆ J∗ and J∗ ∩ [p0] 6= ∅ do

J∗ ← J∗ ∪ [p0] ;
J∗ ← Reach(G, J∗) ;

end

One can check that all regions of R∗
∆ for the automaton A of Figure 1(a) will

be correctly added by Algorithm 1 (see figure 1(c)).
In the rest of this section, we prove that this algorithm is correct. This is

achieved by showing that J∗ ⊆ R∗
∆ and J∗ ⊆ R∗

ε on the one hand, and that
R∗

∆,ε ⊆ J∗ on the other hand. Before tackling those problems, we first study the
important notion of limit cycles.

6.1 Limit cycles

This subsection studies the behavior of limit cycles. A limit cycle of a timed
automaton A is a trajectory π = (q0, t0)(q1, t1) . . . (qk, tk) of JAK containing at
least one action transition and such that qk = q0. As suggested in [Pur98], given
a progress cycle in the region graph and a region on this cycle, we focus on the
subset of points of this region having a limit cycle. We first define this subset:

Definition 18 Consider a cyclic path p = p0 p1 . . . pN with pN = p0 in the
region graph of a timed automaton A. We define the return map Rp : 2[p0] → 2[p0]

by Rp(S) = ∪q∈SRp({q}) for S ⊆ [p0], and, for singletons,

Rp({q0}) =

{
qN ∈ [pN]

∣∣∣∣∣
there exists a trajectory π in JAK such that

π = (q0, t0)(q1, t1) . . . (qN , tN) and ∀i. qi ∈ [pi]

}

The set Li,p of points which can return back to themselves after i cycles
through p, is defined as follows: Li,p = {q | q ∈ Ri

p({q})}. We write Lp =
∪i∈NLi,p. �

In the sequel, we write R or L instead of Rp or Lp when the path p is clear
from the context. The interesting property of Lp is that it is always (forward
and backward) reachable from any valuation in p:

Theorem 19 ([Pur98, Lemma 7.10]) Let p = p0 p1 . . . pN be a cycle in G.
Then for any z ∈ [p0], there exists z′, z′′ ∈ L and trajectories in JAK from z to z′

and from z′′ to z.

The proof proposed by Puri is quite sketchy, and we propose a complete proof
for which intermediate Lemmas are necessary.

Lemma 20 ([Pur98, Lemma 7.1]) Let p = p0 p1 . . . pN be a path in the re-
gion graph of a timed automaton A (we do not require that p be cyclic), let
π = (q0, t0) (q1, t1) · · · (qN , tN) and π′ = (q′0, t

′
0) (q′1, t

′
1) · · · (q′N , t′N) be two tra-

jectories of JAK following p. Then for all λ ∈ [0, 1], there exists a trajectory from
λq0 + (1 − λ)q′0 to λqN + (1 − λ)q′N in JAK following p.

Proof. This is immediate by considering the path

π′′ = (λq0 + (1 − λ)q′0, λt0 + (1 − λ)t′0) (λq1 + (1 − λ)q′1, λt1 + (1 − λ)t′1) · · ·

(λqN + (1 − λ)q′N , λtN + (1 − λ)t′N).

This is a trajectory in JAK since guards are convex. �

Lemma 21 ([Pur98, Lemma 7.3]) Let p be a cycle in the region graph of a
timed automaton. Then Lp is convex.

Proof. Let x, y ∈ Lp, and λ ∈ [0, 1]. There exists l and m such that x ∈ Lk,p

and y ∈ Ll,p. Then both x and y are in Lkl,p, and λx + (1 − λ)y ∈ Lkl,p ⊆ L
according to Lemma 20. �

Definition 22 Let p be a region. The set of vertices of p is the smallest set of
points S(p) = {v0, v1, . . . , vk} such that [p] = Conv({v0, v1, . . . , vk}). �

This definition (where Conv(V) denotes the convex hull of the set of points V)
is meaningful since regions are polytopes. Such a set is unique, and the number
of vertices is bounded by n + 1, where n is the number of clocks.

Lemma 23 The vertices of a region p are the valuations in [p] whose values are
integers: S(p) = [p] ∩ Nn

Proof. Let v ∈ [p]. There exist sets of clocks X0, X1, . . . , Xk such that all
valuations w verifying the following equations is in [p]:

∀i. ∀x, y ∈ Xi. 〈w(x)〉 = 〈w(y)〉,

∀i < j. ∀x ∈ Xi, y ∈ Xj . 〈w(x)〉 ≤ 〈w(y)〉,

∀x ∈ X0. 〈w(x)〉 = 0,

Let v0 be the valuation such that v0(x) = ⌊v(x)⌋. That valuation belongs
to [p]. Also, for all 0 < j ≤ k, valuation vj defined as

vj(x) = v0(x) if x ∈ Xi with i < j

vj(x) = v0(x) + 1 if x ∈ Xi with i ≥ j

are in [p].

We now prove that those valuations generate the whole closed region: let w
be a valuation in [p]. We define

w′ = (1 − 〈w(xk)〉)v0 + (〈w(x1)〉 − 〈w(x0)〉)v1 + · · · + (〈w(xk)〉 − 〈w(xk−1)〉)vk

where each xi is a clock in the corresponding Xi, and claim that w′ equals w.
Indeed, let y be a clock, and j such that y ∈ Xj . Then

w′(y) = (1 − 〈w(xk)〉)v0(y) + (〈w(x1)〉 − 〈w(x0)〉)v1(y) + · · ·+

(〈w(xk)〉 − 〈w(xk−1)〉)vk(y)

= (1 − 〈w(xk)〉)v0(y) + (〈w(x1)〉 − 〈w(x0)〉)(v0(y) + 1) + · · ·+

(〈w(xj)〉 − 〈w(xj−1)〉)(v0(y) + 1)+

(〈w(xj+1)〉 − 〈w(xj)〉)(v0(y)) + · · ·+

(〈w(xk)〉 − 〈w(xk−1)〉)(v0(y))

= v0(y) + w(xj) = w(y)

since y ∈ Xj . Thus [p] = Conv({vi}). On the other hand, {vi} is the smallest set
generating [p], since no such valuation is a combination of the other ones. �

This ensures that if a region r′ is a sub-region of a closed region r, then its
set of vertices S(r′) is the intersection of [r′] and of the set S(r) of vertices of r.

Definition 24 Let p = p0 p1 . . . pN be a cycle in the region graph. The orbit
graph is the graph Θ = (VΘ,→Θ) such that VΘ = S(p0) and, for all v, w ∈ VΘ,
v →Θ w iff w ∈ Rp({v}). For m ∈ N and v ∈ VΘ, we write

Succm(v) = {w ∈ VΘ | v →m
Θ w} and Predm(v) = {w ∈ VΘ | w →m

Θ v}.

�

Clearly, given a vertex v ∈ VΘ, Rp({v}) is a closed region thanks to Lemma 5,
and Rp({v}) = Conv({w ∈ VΘ | v →Θ w}): that Rp({v}) contains the convex
hull follows from Lemma 21; conversely, any vertex in Rp({v}) is in {w ∈ VΘ |
v →Θ w}, and, since Rp({v}) is a closed region, it is included in the convex hull.
More generally, we have Rk

p({v}) = Conv({w ∈ VΘ | v →k
Θ w}).

Lemma 25 ([Pur98, Lemma 7.4]) Suppose there exists a run in the region
graph from p to p′. Then for each vertex v of p, there exists a vertex v′ of p′

such that there is a trajectory from v to v′, and conversely, for each vertex v′ of
p′, there exists a vertex of p such that there is a trajectory from v to v′.

Proof. Let v be a vertex of [p]. Then {v} forms a subregion of [p], and its
successors in [p′] form a closed subregion of [p′]. According to Lemma 23, that
subregion of [p′] necessarily contains a vertex.

The same argument can be applied backwards, since the predecessor of a
subregion of p′ is a closed subregion of p. �

Let V = {v ∈ VΘ | ∃m ∈ N. v ∈ Succm(v)}. Lemma 25 entails that any
vertex has an outgoing edge in Θ. Thus for all v ∈ VΘ, there exists an integer m
such that Succm(v)∩V 6= ∅, because VΘ is finite. Let M be the largest such m.
Then SuccM (v)∩V 6= ∅ for all v. A similar argument proves the existence of M ′

such that PredM ′

(v) ∩ V 6= ∅ for all v.

Proof of Theorem 19. We write z =
∑

i λi vi, where λi ∈ [0, 1],
∑

i λi = 1

and vi ∈ VΘ. For each vi, let wi be an item of SuccM (vi) ∩ V . From Lemma 20,
there is a path from z to z′ =

∑
i λiwi ∈ Conv(V) ⊆ L.

Conversely, if xi is a vertex in PredM ′

(vi) ∩ V , there is a path from z′′ =∑
i λi xi ∈ Conv(V) ⊆ L to z. �

6.2 Soundness of Algorithm 1: J∗ ⊆ R∗

∆ and J∗ ⊆ R∗

ε

In this section, we prove that our algorithm can safely add progress cycles in J∗,
i.e. that points in that cycles are indeed reachable whenever the automaton can
deviate from its infinitely precise semantics. The main idea is to show that any
two points in some Lp connected by a trajectory in JAK0∆ (or JAKε

0).

In the sequel, given r ∈ R≥0 and x ∈ Rn, the closed ball of radius r centered
in x is the set B(x, r) = {x′ | d(x, x′) ≤ r}.

Case of imprecise guards. We first deal with the case of guard enlargement:

Theorem 26 Let A be a timed automaton, p = p0 p1 · · · pN be a progress cycle
of the region graph of A, and ∆ ∈ Q>0. For any two states u and v in Lp, there
is a trajectory from u to v in JAK0∆.

This results immediately from the following Lemma:

Lemma 27 Let A be a timed automaton with n clocks, ∆ ∈ Q>0, and δ = ∆
n
.

Let p = p0 p1 p2 . . . pN be a progress cycle in the region graph of A. Let u be a val-
uation in Lp, i.e. for which there exists a trajectory π[0, T] in JAK00 following p
with π(0) = π(T) = u. Let v ∈ [p0]∩B(u, δ) be a neighbor valuation. Then there
exists a trajectory from u to v in JAK0∆.

Intuitively, the result is proved by slightly anticipating or delaying the tran-
sition dates when a clock is reset.

Proof. We first define some notations: We assume π is a cycle on valuation u,
and write6

π = (l0, u0)
t0−→ (l0, u

′
0)

a0−−→
R0

(l1, u1)
t1−→ (l1, u

′
1)

a1−−→
R1

· · ·

· · ·
am−2
−−−−→
Rm−2

(lm−1, um−1)
tm−1
−−−→ (lm−1, u

′
m−1)

am−1
−−−−→
Rm−1

(lm, um)

with u0 = um = u. In this run,
ti−→ is a continuous transition of duration ti,

and
ai−−→
Ri

is an action transition ai resetting clocks in Ri. We have in particular

T =
∑m−1

i=0 ti.

We define the integers zx (x ∈ Var) and the sets X0, . . . , Xq of indices s.t.,
for any valuation w in region p0:

– for all x ∈ Var, ⌊w(x)⌋ = zx;
– for all x ∈ X0, 〈w(x)〉 = 0;
– for all x, y ∈ Xk, 〈w(x)〉 = 〈w(y)〉;
– for all k < l and for all x ∈ Xk, y ∈ Xl, 〈w(x)〉 < 〈w(y)〉;

Since p is a progress cycle, we know that each clock is reset at least once
along π. For each clock x, we define αx ∈ [0;m] to be the index of the transition
in which x is reset for the last time along π. Formally, we have

x ∈ Rαx
x /∈

⋃

β>αx

Rβ (2)

Then, for each clock x, we have

um(x) = u(x) =
∑

β>αx

tβ (3)

Now regarding valuation v, we define δ = (δx) = (v(x)−u(x)). By hypothesis,
|δx| ≤ δ. Moreover, v ∈ [p0] implies that the order of fractional parts of the
clocks must be the same in u and v, but with nonstrict inequalities. Writing
〈〈v(x)〉〉 := v(x) − ax, we get:

– for all x ∈ Var, 0 ≤ 〈〈v(x)〉〉 ≤ 1;
– for all x ∈ X0, 〈〈v(x)〉〉 = 0;
– for all x, y ∈ Xk, 〈〈v(x)〉〉 = 〈〈v(y)〉〉;
– for all k < l and for all x ∈ Xk, y ∈ Xl, 〈〈v(x)〉〉 ≤ 〈〈v(y)〉〉;

This entails that:

– for all x, y ∈ Xk, δx = δy;

6 Other cases are possible, namely paths starting with an action transition and/or
ending with a delay transition. Those cases would be treated in the same way.

– for any x, y s.t. u(x) < u(y) (and hence αx > αy from (3)), we have u(x) +
δx ≤ u(y) + δy, and

δx − δy ≤

αx∑

β=αy+1

tβ (4)

We now build the run π′ between u and v: For each i ∈ [0;m], we define

t′i =

{
ti − δx if i = αx

ti otherwise
t′′i+1 =

{
t′i+1 + δx if i = αx

t′i+1 otherwise
(5)

For the sake of simplicity, we temporarily assume that each t′′i is positive, that
αx ∈ [1;m − 2] and αx 6= αy + 1 for any x, y, and define the run π′ from π by
replacing ti with t′′i :

π′ = (l0, v0)
t′′0−→ (l0, v

′
0)

a0−−→
R0

(l1, v1)
t′′1−→ (l1, v

′
1)

a1−−→
R1

· · ·

· · ·
am−2
−−−−→
Rm−2

(lm−1, vm−1)
t′′m−1
−−−→ (lm−1, v

′
m−1)

am−1
−−−−→
Rm−1

(lm, vm)

with v0 = u0 = u. We claim that π′ corresponds to a trajectory in JAK0∆.
Indeed, the difference |u(x)−v(x)| is always bounded by nδ: The only difference
between π and π′ is that some clocks may sometimes be reset a little bit earlier
or later, resulting in shifting their value with at most δ. This can only occur
once for each clock, i.e. at most n times, thus the global difference between u(x)
and v(x) is at most ∆. This ensures that each action transition can be fired
along π′ in JAK0∆ since they were firable along π in JAK.

Since clocks are reset at exactly the same transitions as along π, equation (3)
applies here, and we get

vm(x) =
∑

β>αx

t′′β = t′′αx+1 +
∑

β>αx+1

t′′β = tαx+1 + δx +
∑

β>αx+1

t′′β

Since t′′k + t′′k+1 = tk + tk+1 when k equals some αy, and tk = t′′k when no αy

appears in {k, k + 1}, we get

vm(x) = δx +
∑

β>αx

tβ = um(x) + δx (6)

Thus vm = v. It follows that π′ witnesses the fact that u → v in JAK0∆.

Let’s consider “border cases” now:

– If αx = αy +1 for some x and y, then t′′αx+1 equals tαx+1− δy + δx. However,
this does not change our result, since we still get equation (6);

– If αx = 0 for some x and π starts with an action transition, then we have
t′′1 = t1 + δx (or t1 + δx − δy), which “enlarges”7 the total duration of the
path by δx. Since in that case the final value of clock x is the total duration
of the path (because x is only reset at the very beginning of π), this also
enlarges the final value of x by δx at the end of π′, exactly as expected;

– Symmetrically, if αx = m−1 for some x and π ends with an action transition,
then clock x equals zero in u. It could be the case that x > 0 in v; We then
have to add a continuous transition at the end of π′ (as if π would have
ended with a continuous transition of delay zero).

– It could happen that t′′i < 0 for some i. However, it should be noticed that
the small “shifts” that are applied to only one transition in the construc-
tion above, could be distributed over all time transitions occurring between
transitions tαx+1 and tαy

, for “consecutive” αx and αy. Equation (4) ensures
that we can distribute δx − δy and get positive durations t′′i . �

Case of drifts on clocks. In this part, we prove a result similar to Theorem 26:

Theorem 28 Let A be a timed automaton, p = p0 p1 · · · pN be a progress cycle
of the region graph of A, and ε ∈ Q>0. For any two states u and v in Lp, there
is a trajectory from u to v in JAKε

0.

The proof is more elaborate than for guard enlargement, and we will need
several intermediate lemmas:

Lemma 29 Let A be a timed automaton, r and r′ be two regions s.t. r
time
−−−→G r′.

Let u ∈ r, v ∈ r′ and τ ∈ R>0 s.t. u
τ
−→ v. Let δ ≥ 0. Then for any y ∈

B(v, δ)∩ [r′], there exists some x ∈ B(u, 2δ)∩ [r] s.t. x
τ ′

−→ y for some τ ′ ∈ R>0.

Proof. We assume that the closed regions [r] and [r′] are characterized by the
following inequalities:

ui − uj ≤ mi,j αi ≤ ui ≤ βi ([r])

vi − vj ≤ m′
i,j α′

i ≤ vi ≤ β′
i ([r′])

W.l.o.g., we assume that mi,j ≤ βi − αj and m′
i,j ≤ β′

i − α′
j , since we have

ui − uj ≤ βi − αj vi − vj ≤ β′
i − α′

j (7)

Moreover, since v = u + t · 1, we have

mi,j = m′
i,j vi − vj = (ui + t) − (uj + t) ≤ βi − αj (8)

We define D = y − v. Note that ‖D‖∞ ≤ δ. Since y ∈ [r′], we have

(vi + Di) − (vj + Dj) ≤ mi,j α′
i ≤ vi + Di ≤ β′

i (9)

Now define z = u + D. As can be seen on Figure 2, z might not belong to [r],
and we have to find a neighbor x of z that belongs to [r] and s.t. x → y.

7 Remember that δx could be negative.

[r]

u

v
y

zx

(a) If the interior of [r] is empty

[r]
u

v
y

z
x

(b) If the interior of [r] is not empty

Fig. 2. Building a predecessor of y in the closed region [r]

1. If, for some i0, αi0 = βi0 : We define t′ = −Di0 . The value of t′ does not
depend on the choice of i0. Indeed, if for some j 6= i0, we have αj = βj , then

ui0 − uj = αi0 − αj = mi0,j = −mj,i0

since the values of ui0 and uj are fixed in the closed region [r]. This entails that

vi0 − vj = mi0,j = −mj,i0 = (vi0 − Di0) − (vj − Dj)

since diagonal constraints are the same in [r] and [r′]. The previous equalities
entail Di0 = Dj , as claimed above. We now define x = z + t′ · 1. Obviously

xi − xj = (ui + Di + t′) − (uj + Dj + t′) = yi − yj ≤ mi,j .

Moreover:

– For any j s.t. αj = βj , we have

xj = uj + Dj + t′ = uj + Dj − Dj = uj = αj = βj

since t′ = −Dj ;
– For any j s.t. αj 6= βj , we have

xj − xi0 = (uj + Dj + t′) − (ui0 + Di0 + t′)

= (uj + Dj) − (ui0 + Di0) ≤ mj,i0 .

Since xi0 = αi0 from the previous case (since αi0 = βi0), we get xj ≤
mj,i0 + αi0 ≤ βj . In the same way, we have

xi0 − xj = (ui0 + Di0 + t′) − (uj + Dj + t′)

= (ui0 + Di0) − (uj + Dj) ≤ mi0,j

and we get αj ≤ xj .

Since |t′| ≤ δ, we have ‖x−u‖∞ ≤ 2δ, which concludes the proof for this subcase.

2. If, for all i, αi < βi: We define two sets I = {i0, . . . , ip} and I ′ = {i′0, . . . , i
′
q}

s.t.

∀i ∈ I. αi > zi ∀i′ ∈ I ′. zi′ > βi′

If both I and I ′ are empty, then z belongs to [r] and the proof is over (diagonal
constraints are satisfied thanks to the first equation of (9)).

Otherwise, assume I is not empty, and define t′ = max{αi − zi | i ∈ I}.
We write i0 for the index s.t. t′ = αi0 − zi0 . Obviously, in this case, t′ > 0.
Moreover, t′ = αi0 − ui0 − Di0 , and since αi0 ≤ ui0 , we have t′ ≤ −Di0 .

We now define x = z + t′ · 1. Diagonal constraints are still obviously verified
by x. Moreover, for i ∈ I, αi ≤ xi + t′ by construction of t′. For j /∈ I, αj ≤ zj <
zj + t′ = xj since 0 < t′.

Now assume that, for some index j, we have xj > βj . Then xj−xi0 > βj−αi0 ,
which is impossible since xj − xi0 = yj − yi0 ≤ mj,i0 ≤ βj − αi0 . This proves
that x ∈ [r]. Since 0 < t′ ≤ −Di0 ≤ δ, we have ‖x − u‖∞ ≤ 2δ.

The case where I is empty (and I ′ is not) is similar: Define t′ = min{βi′−zi′ |
i′ ∈ I ′}, and write i′0 for the index s.t. t′ = βi′0

− zi′0
. This time, t′ < 0 since

βi′0
< zi′0

, and t′ = βi′0
− ui′0

− Di′0
. Since βi′0

− ui′0
≥ 0, we have −Di′0

≤ t′ < 0.
We define x = z + t′ · 1. By construction of t′, for i′ ∈ I ′, we have xi′ ≤ βi′ .

For j /∈ I ′, we have xj = zj + t′ < zj ≤ βj since t′ < 0.
Assume that, for some j, αj > xj . Then xi′0

− xj < βi′0
− αj , which leads to

a contradiction since xi′0
− xj = yi′0

− yj ≤ mi′0,j ≤ βi′0
− αj . As in the previous

case, this proves that x ∈ [r], and ‖x − u‖∞ ≤ 2δ since −δ ≤ −Di′0
≤ t′ < 0.

�

Lemma 30 Let A be a timed automaton, let p = p0 p1 p2 . . . pN be a progress
cycle in the region graph of A. Let u be a valuation in Lp, i.e. for which there
exists a trajectory π[0, T] in JAK00 following p with π(0) = π(T) = u and T > 0.
Then there exists a trajectory π′[0, T ′] in JAK00, following twice p (that is follow-
ing p′ = p0 p1 . . . pN p1 p2 . . . pN) and satisfying π′(0) = π′(T ′) = u with T ′ ≥
1/2.

Proof. The result is immediate if T ≥ 1/2. Otherwise, since all clocks are reset
along π, their value is strictly less than 1/2 in u, and all along the trajectory.
Consider the trajectory π2 obtained by concatenating two copies of π. Again,
no clock will ever reach 1/2 along π2. Also, the hypotheses ensure that there is
at least one continuous transition in π with strictly positive delay. We consider
the first such transition along π2, and increase it by an extra 1/2 t.u. delay,
yielding a new trajectory π′. Then no clock ever reach value 1 along π′, which
ensures that guards are still satisfied along π′. Now, since the second half of the
trajectory π′ is exactly π, and since all clocks are reset along π, we get that
π′(0) = π′(2T + 1/2) = u, and clearly π′ follows p′. �

Lemma 31 Let A be a timed automaton, x and y be two states of A, and ε ∈
Q>0. If x

τ
−→ y in JAK, then ∀x′ ∈ B(x, ετ) : x′ τ

−→ y in JAKε
0.

Proof. The result is immediate if τ = 0. Otherwise, it suffices to set the rate

of each clock c to 1 − x′(c)−x(c)
τ

, which lies between 1 − ε and 1 + ε. �

Lemma 32 Let A be a timed automaton, ε ∈ Q>0, and Kε = 1/(2 + 3ε).
Suppose r and r′ are two regions s.t. r →G r′, and pick u ∈ [r] and v ∈ [r′].

– If there is a continuous transition u
τ
−→ v in JAK, then for any η ∈ Q>0, we

have:

∀y ∈ B(v,Kε(η + ετ)) ∩ [r′]. ∃x′ ∈ B(u, η) ∩ [r]. x′ τ ′

−→ y in JAKε
0.

– If there is an action transition u
σ
−→ v in JAK, then for all η ∈ Q>0, we have

∀y ∈ B(v, η) ∩ [r′]. ∃x ∈ B(u, η) ∩ [r]. x
σ
−→ y in JAKε

0.

Proof. We only proof the first part, the second one being obvious. Clearly,
v = u + τ · 1, where 1 is the unit vector. Let δ = Kε(η + ετ). From Lemma 29,

for all y ∈ B(v, δ) ∩ [r′], there exists some x ∈ B(u, 2δ) ∩ [r] s.t. x
τ ′

−→ y in JAK
for some τ ′ ∈ R>0. So we have y = x + τ ′ · 1.

Using triangle inequality,

τ ′ = ‖y − x‖ = ‖(v − u) − [(x − u) + (v − y)]‖ ≥ τ − 3δ (10)

Since [r] is convex and x, u ∈ [r], the intersection between the ball B(x, ετ ′)
and the segment Conv({u, x}) is included in [r]. Since d(u, x) ≤ 2δ, there exists
x′ ∈ B(x, ετ ′) ∩ [r] s.t.

{
d(u, x′) = 0 if d(u, x) ≤ ετ ′

d(u, x′) ≤ 2δ − ετ ′ if d(u, x) ≥ ετ ′

Since x
τ ′

−→ y, Lemma 31 entails that x′ τ ′

−→ y in JAKε
0. To complete the proof,

we must show that x′ ∈ B(u, η), i.e. d(u, x′) ≤ η. This is achieved by showing
that 2δ − ετ ′ ≤ η: we have δ

Kε
− 2δ = 3εδ ≥ ε(τ − τ ′) according to (10). Thus

η = δ
Kε

− ετ ≥ 2δ − ετ ′. �

Lemma 33 Let A be a timed automaton, ε ∈ Q>0, and Kε = 1/(2 + 3ε). Let
p = p0 p1 · · · pN be a path in the region graph of A. Let π[0, T] be a trajectory
of JAK following p, and u = π(0) and v = π(T). Then ∀y ∈ B(v,KN

ε εT) ∩ [pN],
there is a trajectory π′ from u to y in JAKε

0 following p.

Proof. We write π[0, T] = (q0, t0)(q1, t1) . . . (qN , tN), with t0 = 0 and tN = T .
Define εi = Ki

εεti. We show that for all 0 ≤ i < N , for all y ∈ B(qi+1, εi+1) ∩
[ri+1], there exists some x ∈ B(qi, εi) ∩ [ri] s.t. there is a trajectory from x to y
in JAKε

0.

– if qi
σ
−→ qi+1 is an action transition, then the result directly follows from

Lemma 32, since εi+1 ≤ εi.

– otherwise, we have a continuous transition qi
τ
−→ qi+1. Then ti+1 = ti + τ .

Applying Lemma 32 with η = εi, we get:

∀y ∈ B(qi+1,Kε(εi + ετ)) ∩ [ri+1]. ∃x′ ∈ B(qi, εi) ∩ [ri]. x′ τ ′

−→ y in JAKε
0.

Since Kε ≤ 1, we have

Kε(εi + ετ) = Ki+1
ε εti + Kεετ ≥ Ki+1

ε ε(ti + τ) = Ki+1
ε εti+1 = εi+1

Thus, we also have

∀y ∈ B(qi+1, εi+1) ∩ [ri+1]. ∃x′ ∈ B(qi, εi) ∩ [ri]. x′ τ ′

−→ y in JAKε
0.

Applying this result N times for 0 ≤ i < N , we get that for all y ∈
B(qN , εN) ∩ [rN], there exists an x ∈ B(q0, ε0) ∩ [r0] s.t. there is a trajectory
from x to y in JAKε

0, which proves our result since ε0 = 0 and B(q0, ε0) = {u}.
�

Lemma 34 Let A be a timed automaton, p be a progress cycle of the region
graph of A, and u, v be two states in Lp. Then there exists an integer n(u, v)
s.t. Conv({u, v}) ⊆ Ln(u,v),p.

Proof. Let k and l s.t. u ∈ Lk,p and v ∈ Ll,p, and n(u, v) = kl. Applying
Lemma 20, we get the result. �

Lemma 35 Let A be a timed automaton, p be a progress cycle of the region
graph of A, and u, v be two states in Lp. Let ε ∈ Q>0. There exists δ > 0 s.t. for
any x ∈ Conv({u, v}) and any y ∈ Lp ∩B(x, δ), there is a trajectory from x to y
in JAKε

0.

Proof. If p is a non-time-elapsing progress cycle, then Lp is the singleton region
where each clock is equal to zero, and the result is immediate.

Thus, we consider that p contains a time elapsing region. Let ω = 2n(u, v)
where n(u, v) is defined by Lemma 34, and Kε = 1/(2 + 3ε). Let δ = 1

2εKωW
ε

(where W denotes the number of regions of A). Pick some x ∈ Conv({u, v})
and y ∈ Lp∩B(x, δ). Applying Lemmas 30 and 34, there is a limit cycle on x with
total duration greater than 1/2 and having at most 2ωW transitions. Lemma 33

ensures that any y ∈ B(x, δ) ∩ [p0] is reachable from x in JAKε
0. Since Lp ⊆ [p0],

the result follows. �

We can now complete the proof of our Theorem:

Proof of Theorem 28. Let δ given by Lemma 35 and let k = 1+⌊ 1
δ
⌋. Consider

the points x0 = u, xk = v, and xi = u+ iδ(v−u) for i between 1 and k− 1. It is
easy to check that d(xi, xi+1) ≤ δ · d(u, v) ≤ δ. Thus from Lemma 35, there is a
trajectory from xi to xi+1 in JAKε

0 for each i, and thus a trajectory from u to v.
�

Soundness of Algorithm 1.

Theorem 36 Let A be a timed automaton. Let p = p0 p1 . . . pN be a progress
cycle in the region graph of A, and let x and y be two valuations in [p0]. Then:

– For any ∆ ∈ Q>0, there exists a trajectory from x to y in JAK0∆;
– For any ε ∈ Q>0, there exists a trajectory from x to y in JAKε

0.

Proof. From Theorem 19, there exist u, v ∈ Lp s.t. x → u and v → y in JAK.
Applying Theorem 26, v is reachable from u in JAK0∆, and so y is reachable
from x in JAK0∆. The proof is the same for the second part of the result, using
Theorem 28. �

As a consequence:

Theorem 37 The set J∗ computed by Algorithm 1 is a subset of R∗
∆ and of R∗

ε.

Proof. Let ∆ > 0. If a set of regions J∗ is a subset of Reach(JAK0∆), then so
is the set Reach(J∗) of closed regions reachable from J∗ in the region graph G.
Moreover, given a progress cycle p and a region p0 in p, if [p0] ∩ J∗ 6= ∅, then
any point in [p0] is reachable in JAK0∆, according to Theorem 36. Thus J∗ ∪ p0 ⊆
Reach(JAK0∆). Since J∗ is built by successively applying the above two operations,
this ensures that J∗ ⊆ Reach(JAK0∆). This holds for any ∆ > 0, thus J∗ ⊆ R∗

∆.
The proof for drifts on clocks is similar. �

6.3 Completeness of Algorithm 1: R∗

∆,ε ⊆ J∗

To prove the completeness of Algorithm 1, we need to better understand the
relationship between trajectories of JAKε

∆ and those of JAK. In particular, Theo-
rem 38 states that any trajectory π′ of JAKε

∆ can be approached by a trajectory π
of JAK, performing the same discrete transitions.

Theorem 38 Let A be a timed automaton with n clocks and maximal con-
stant M . For any distance δ ∈ (0, 1), for any number of steps k ∈ N, there
exist two rationals D,E ∈ Q>0 such that for any ∆ ∈ [0,D], for any ε ∈ [0, E]
and for any k-step stutter-free trajectory π′ = (q′0, t

′
0)(q

′
1, t

′
1) · · · (q

′
k, t′k) in JAKε

∆,
there exists a k-step stutter-free trajectory π = (q0, t0)(q1, t1) · · · (qk, tk) in JAK
such that for any position i in [0, k]:

– q0 ∈ [q′0];
– Both π and π′ have the same trace;
– Trajectories π and π′ are “close” to each other, i.e. if qi = (li, vi) and q′i =

(li, v
′
i), then li = l′i and ‖vi − v′

i‖ ≤ δ;

More precisely, the following values satisfy the conditions above:

D =
δ2

18(n + 1)k+2
E =

D

2(M + 1)

The proof of this theorem uses the following preliminaries and lemmas.

Preliminaries. The Difference Bound Matrices (DBM) are a classical data-
structure used to represent zones. Classical operations (intersection, variable re-
sets, time passing) are easily computed on DBM [Dil90,ACD+92,Yov96,CGP99,
Bou01]. Let us briefly introduce them. If x1, . . . , xn are the clocks of a timed
automaton and x0 is a special clock whose value is always 0, zones can be rep-
resented by a set of constraints of the form xi − xj ≤ a where a ∈ Z ∪ {+∞}8.

A DBM is a (n + 1) × (n + 1) matrix M =
(
mi,j

)
0≤i,j≤n

where each mi,j =

(ai,j ,≺i,j) where ≺i,j ∈ {<,≤} and ai,j ∈ Z (that integer is called a bound).
In the sequel, we only consider closed DBM, i.e. DBM where ≺i,j is always ≤,
and we thus omit to mention it. Such a DBM represents the set

JMK = {(x1, . . . , xn) ∈ Rn | ∀ 0 ≤ i, j ≤ n : xi − xj ≤ aij ∧ x0 = 0}.

When i = j, we can choose mij = 0. A DBM can be seen as a complete directed
graph with nodes 0, 1, . . . , n and edges (i, j) labeled with mij . A normal form
for DBM is defined by the shortest path closure of the corresponding graph.

For our purpose, we introduce PDBM (Parametric DBM), a parametric ver-
sion of the DBM [AAB00,HRSV01]. In a PDBM, each mij is a parametric bound,
i.e., a couple m = (a, b) with a ∈ Z and b ∈ N. Given a rational Λ ∈ Q≥0, the
value of m is JmKΛ = a + bΛ, and the set represented by M is

JMKΛ = {(x1, . . . , xn) ∈ Rn | ∀ 0 ≤ i, j ≤ n. xi − xj ≤ JmijKΛ ∧ x0 = 0}.

As usual, we write JMK for JMK0. For a PDBM M =
(
mij

)
0≤i,j≤n

with mij =

(aij , bij), define the width of M by w(M) = max{bij | 0 ≤ i, j ≤ n}. Thus,
a DBM is a zero-width PDBM.

8 Since we consider a bounded state space, we can replace +∞ by the greatest constant
appearing in guards of the timed automaton.

Example. A closed rectangular guard g can be represented by a PDBM Mg

such that for any Λ ∈ Q≥0: JgKΛ = JMgKΛ. In particular, JgK = JMgK. Also,
w(Mg) = 2. For example,

g = {x = 4, 1 ≤ y ≤ 3} Mg =

(0, 0) (−4, 1) (−1, 1)
(4, 1) (0, 0) (3, 2)
(3, 1) (−1, 2) (0, 0)

Lemma 39 ([Pur98]) Let M be a (n + 1)× (n + 1) PDBM and Λ ∈ Q≥0 such
that Λ · (2n + 1) · w(M) < 1. Let Z ′ = JMKΛ and Z = JMK. For any x′ ∈ Z ′,
there exists x ∈ Z such that ‖x′ − x‖ ≤ n · w(M) · Λ.

Proof. First, assume x′ is a vertex of Z ′. Then x′ is obtained by solving a
system of n equations of the form x′

i−x′
j = mij or x′

i = mi0. It is then clear that
each component of x′ is the sum or difference of at most n coefficients mij . Since
those coefficients are entries of M, we have for each 1 ≤ i ≤ n, x′

i = li+kiΛ where
li, ki ∈ Z and |ki| ≤ n ·w(M). Take xi = li. Then ‖x′−x‖ ≤ n ·w(M) ·Λ and we
claim that x ∈ Z. Indeed, for any i, j, x′

i −x′
j = li − lj + (ki − kj)Λ = aij + bijΛ.

Hence li − lj = aij + (bij − ki + kj)Λ. Since li, lj and aij are integers, and
|(bij−ki +kj) ·Λ| ≤ (2n+1) ·w(M) ·Λ < 1, it must be that xi−xj = li− lj ≤ aij .
Therefore x ∈ Z.

If x′ is not a vertex, then it can be written as x′ =
∑

i λiv
′
i with λi ≥ 0 and∑

i λi = 1 and each v′
i is a vertex of Z ′. From the proof above, there exist vi ∈ Z

such that ‖v′
i−vi‖ ≤ n ·w(M) ·Λ. Take x =

∑
i λivi. Clearly x ∈ Z, and we have

successively ‖x′−x‖ = ‖
∑

i λi(v
′
i−vi)‖ ≤

∑
i λi‖v

′
i−vi‖ ≤

∑
i λi(n·w(M)·Λ) ≤

n · w(M) · Λ. �

It is easy to extend classical operations (intersection, variable resets, time
passing and emptiness test) to PDBM. It just needs to define an order on
parametric bounds: we write (a, b) ≤ (a′, b′) iff either a < a′ or a = a′ and
b ≤ b′. This definition is consistent with any Λ ∈ Q≥0 such that bΛ ≤ 1, that
is, (a, b) ≤ (a′, b′) implies J(a, b)KΛ ≤ J(a′, b′)KΛ whenever bΛ ≤ 1. If we assume
|b| ≤ w, it suffices that w · Λ ≤ 1 Thus provided this condition on Λ is satis-
fied, we can compare parametric bounds independently of the valuation for Λ;
in particular, the result of the comparison holds when Λ = 0.

Notice that the width is not increased by variable reseting nor by time pass-
ing. Also the normal form is preserved by those two operations. Intersection of
two PDBM M1 and M2 gives a PDBM M whose entries are the minimum of
the corresponding entries of M1 and M2. Hence w(M) ≤ max{w(M1), w(M2)}.
However, M is not necessarily in normal form. For a PDBM M of width w(M),
the width of the normal form of M is less than n · w(M). To see this, recall
that each entry mij is replaced by the value of the shortest path from node i to
node j, which has at most n edges. Finally, note that the consistency of order on
parametric bounds is ensured if Λ ≤ 1/max{w(M1), w(M2)} for intersection,
and Λ ≤ 1/(n · w(M)) for normalization. The result of an emptiness test on a
PDBM M that has been first put in normal form is the same for Λ1 = 0 and

Intersection of M1 and M2 Normalization of M Reset Time

Condition Λ ≤ 1/ max{w(M1), w(M2)} Λ ≤ 1/(n · w(M)) true9 true9

Result width ≤ max{w(M1), w(M2)} ≤ n · w(M) ≤ w(M) ≤ w(M)

Table 1. Operations on PDBM.

Λ2 < 1/(n · w(M)), that is, JMKΛ1
= ∅ iff JMKΛ2

= ∅. Indeed if JMKΛ2
is

empty, then since JMKΛ1
⊆ JMKΛ2

, it is also the case for JMKΛ1
. On the other

hand, if M is empty for Λ1, then after normalization a negative integer bound
must appear on the main diagonal of M, i.e. for some 0 ≤ i ≤ n, mii = (a, b)
with a ≤ −1. Since b ≤ n · w(M), we have JmiiKΛ2

< 0 and JMKΛ2
is empty.

For a TTS T = 〈S, ι,Σ,→〉, if E ⊆ S is a set of states, and σ ∈ Σ is a

label, define PostσT (E) = {y ∈ S | ∃x ∈ E. x
σ
−→ y}. For the special label τ

(which denotes a continuous transition), we define PostτT (E) = {y ∈ S | ∃x ∈

E, t ∈ R≥0. x
t
−→ y}. For a sequence σ̄ ∈ (Σ ∪ {τ})+ and a label ν ∈ Σ ∪ {τ},

define recursively Postνσ̄
T (E) = Postσ̄T (PostνT (E)) (for the empty word ǫ, we let

PostǫT (E) = E).
In the lemmas below, we show how to use PDBM to deal with the com-

putation of Post. We omit to mention locations in those computations, i.e. we
write Z = JMK instead of Z = {l} × JMK for l ∈ Loc.

Lemma 40 Given a timed automaton A with n clocks, let M be the greatest
constant appearing in guards of A. Let M be a PDBM of width w(M). Let
Λ < 1, ∆ ∈ R≥0, and ε ≤ Λ/(2(M + 1)). Let Z = JMK and Z ′ = JMKΛ. The
set PostτJAKε

∆
(Z ′) can be over-approximated by a PDBM M′ of width w(M′) =

w(M) + 1, that is PostτJAKε
∆

(Z ′) ⊆ JM′KΛ, and when Λ = 0, M′ represents the

set PostτJAK(Z), that is JM′K = PostτJAK(Z).

Proof. In the classical semantics JAK, the time passing can be represented
exactly using DBM: since the state space is a subset of [0,M]n, it suffices to set
each entry mi0 to M for 1 ≤ i ≤ n. In the enlarged semantics, for a continuous
transition of length t, the value of a clock may differ by tε. We can bound t
by M + 1: it can get larger than M because clocks can progress slower in the
enlarged semantics (namely at a rate of 1 − ε). Hence, the duration of a time
transition is bounded by M/(1 − ε), thus by M + 1 since ε ≤ 1/(M + 1). We
construct M′ by computing the time successors of M in the exact semantics,
and then by adding Λ to each entry of the PDBM, except the main diagonal.
This gives an over-approximation of PostσJAKε

∆
(Z ′) since if xi − xj ≤ mij by the

exact computation, then xi −xj ≤ mij +2(M +1)ε ≤ mij +Λ when considering
drifts on clocks. Therefore PostσJAKε

∆
(Z ′) ⊆ JM′KΛ. It appears clearly that in the

construction of M′, if we set Λ = 0, we get the time successors of Z in the exact
semantics. �

9 M must be in normal form.

Lemma 41 Given a timed automaton A with n clocks, and a PDBM M of
width w(M), let Λ ≤ 1/(n2 · (2 + w(M))), ε ∈ R≥0, and ∆ ≤ Λ. Let Z = JMK
and Z ′ = JMK∆. Let σ ∈ LabA. We assume that PostσJAKε

∆
(Z ′) is not empty.

It can then be over-approximated by a PDBM M′. More precisely, M′ satisfies
JM′KΛ ⊇ JM′K∆ = PostσJAKε

∆
(Z ′). Moreover, when Λ = 0, M′ represents exactly

the set PostσJAK(Z), that is, JM′K = PostσJAK(Z). In particular, PostσJAK(Z) is not
empty. Last, w(M′) ≤ n · max{2, w(M)}.

Proof. Computing Postσ is achieved by first intersecting Z ′ with a PDBM
representing the guard of the transition. That PDBM has width 2. The com-
putation is correct since ∆ ≤ 1/max(2, w(M)), and the width of the resulting
PDBM is at most max(2, w(M)) (see Table 1). Since ∆ ≤ 1/(n ·max(2, w(M))),
that PDBM can be normalized, yielding a PDBM of width n · max(2, w(M)).
Last, clock reset can be achieved on that PDBM. The width is not enlarged. In
the end, we have

PostσJAKε
∆

(Z ′) = JM′K∆ ⊆ JM′KΛ.

The above computations are exact when applied to DBM, i.e. when Λ = 0. Thus
JM′K = PostσJAK(Z), which is non-empty since ∆ ≤ 1/(n · w(M′)). �

Lemma 42 Given a timed automaton A with n ≥ 1 clocks, let M be the greatest
constant appearing in guards of A. Let M0 be a PDBM of width w(M0) = 0,
and k ∈ N. Let Λ < 1/(2(1 + n)k+2), ∆ ≤ Λ and ε < Λ/(2(M + 1)). Let
Z ′

0 = JM0K∆. Consider a sequence Z ′
1, Z

′
2, . . . , Z

′
k of k zones and σ1, σ2, . . . , σk

of k labels in Σ ∪ {τ}, s.t. for each 1 ≤ i ≤ k, Z ′
i = Postσi

JAKε
∆

(Z ′
i−1) is not empty.

Then there exist PDBM M1,M2, . . . ,Mk over-approximating Z ′
1, Z

′
2, . . . , Z

′
k re-

spectively (that is Z ′
j ⊆ JMjKΛ). When Λ = 0, the DBM JMiK0 represent the

sets Zi defined by Z0 = Z ′
0 and, for 1 ≤ i ≤ k, Zi = Postσi

JAK(Zi−1). In particular,

the sets Zi are not empty. Last, we have w(Mj) ≤ 2(1 + n)j.

Proof. For each j ≤ k, the PDBM Mj is obtained by applying Lemma 40
or 41, depending on the nature of the j-th transition. It is easy to show by
induction that, for all j ≤ k, w(Mj) ≤ 2(1 + n)j :

– This is true for j = 1 since w(M0) = 0.

– Assume this is true for some j − 1 ≥ 1. We then have

w(Mj) ≤ max(w(Mj−1) + 1, n · max(2, w(Mj−1)))

≤ max(1 + 2(1 + n)j−1, n · (2 + 2(1 + n)j−1))

≤ n · (2 + 2(1 + n)j−1)

≤ 2(1 + n)j

The hypothesis concerning Λ in Lemma 40 is clearly fulfilled. For Lemma 41,
the hypothesis is Λ ≤ 1/(n2 · (2 + w(Mj−1))) for computing Mj . It is fulfilled
since

Λ ≤ 1/(2(1 + n)k+2) ≤ 1/(2(1 + n)j+2) ≤

1/(2(n + 1)3 · (1 + n)j−1) ≤ 1/(n2(2 + w(Mj−1))).

�

Automaton refinement. For a timed automaton A, and an integer γ ∈ N,
define Aγ the γ-refinement of A by first replacing in A each constant c appearing
in guards by cγ, and then replacing each edge e = (l, l′, g, σ,R) ∈ EdgA with g
of the form

⋂
x∈Var{ax ≤ x ≤ bx} by the set of edges e′g′ = (l, l′, g′, σ,R)

where g′ ranges over the set of constraints of the form
⋂

x∈Var{a
i
x ≤ x ≤ bi

x |
i ∈ Ix} with

{
Ix = {0}, a0

x = ax, b0
x = bx if ax = bx

Ix = {0, . . . , bx − ax − 1}, ai
x = ax + i, bi

x = ai
x + 1 if ax < bx

Roughly, this amounts to splitting each guard into “atomic” ones, in which all
constraints are of the form a ≤ x ≤ a + 1. Then, for any ∆, ε ∈ Q≥0, the
TTS JAKε

∆ and JAγKε
γ∆ are bisimilar, using the bijective function µγ : SA → SAγ

such that µγ(l, v) = (l, γv). Also notice that, for any x, x′ ∈ SAγ
, if ‖x−x′‖ = θ,

then ‖µ−1
γ (x) − µ−1

γ (x′)‖ = θ/γ.

Example. For γ = 2, an edge (l, l′, g, σ,R) in A with g = {x = 4, 1 ≤ y ≤ 3} is
replaced in Aγ by the four edges

(l, l′, {x = 8, 2 ≤ y ≤ 3}, σ,R) (l, l′, {x = 8, 4 ≤ y ≤ 5}, σ,R)
(l, l′, {x = 8, 3 ≤ y ≤ 4}, σ,R) (l, l′, {x = 8, 5 ≤ y ≤ 6}, σ,R)

In this example, we have Ix = {0} and Iy = {0, 1, 2, 3}.

Proof of Theorem 38. Let γ = ⌈2/δ⌉, Λ = δ2/(18(1 + n)k+2), ∆ ≤ Λ and
ε ≤ Λ/(2M + 2). Those values of Λ, ∆ and ε clearly satisfy the hypotheses of
Lemmas 39 and 42.

Let σ̄ = σ1σ2 . . . σk be the trace corresponding to π′. Let ρ′ = µγ(π′).
Then ρ′ is a trajectory of JAγKε

γ∆. Let Z0 = [q′0] and M0 be a normalized
DBM such that Z0 = JM0K. Note that w(M0) = 0. Using Lemma 42, there exist
PDBM M1,M2, . . . ,Mk such that for 1 ≤ j ≤ k:

– JMjKγΛ ⊇ Post
σ1...σj

JAγKε
γ∆

(Z0);

– JMjK = Post
σ1...σj

JAγK (Z0).

Clearly, µγ(q′k) ∈ JMkKγ∆. Then, from Lemma 39, there exists qk ∈ JMkK

such that ‖µγ(q′k)− qk‖ ≤ n ·w(Mk) · γ ·∆ ≤ 2(1 + n)k+1 · γ ·∆ ≤ δ (the latter
inequality holds because γ ≤ 2/δ+1). Since qk ∈ JMkK = Postσ1...σk

JAγK (Z0), there is

a trajectory ρ = (q0, t0)(q1, t1) · · · (qk, tk) in JAγK such that q0 ∈ Z0, qi ∈ Jg′iK for
the set of indices {i1, i2, . . . , il} corresponding to action transitions. For those
indices, since g′i are “atomic” guards, we have ‖µγ(q′i) − qi‖ ≤ 1 + γ∆. The
effect of action transitions (resetting clocks) does not increase that distance, so
that this inequality remains true after each reset. Since we consider stutter-free
trajectories, the inequality holds for all indices i. Now, define π = µ−1

γ (ρ); it is a
trajectory of JAK since ρ is a trajectory of JAγK. Thus, we have ‖q′i −µ−1

γ (qi)‖ ≤
(1 + γ∆)/γ ≤ 2/γ ≤ δ for each 0 ≤ i ≤ k. �

The following theorem is the central theorem for the completeness proof: It
states that points in J∗ cannot reach points that are more than distance α away
from J∗ in JAKε

∆ for sufficiently small ∆ and ε.

Theorem 43 Let A be a timed automaton with n clocks satisfying Assump-
tion 10, and whose region graph has W regions. Let α ∈ R>0, and

α′ = min
(
α, 1/(12(n + 2)n2)

)
Λ =

α′2

18(n + 1)12(n+2)n2W+3

Pick some ∆ in (0, Λ) and ε in (0, Λ
2(M+1)). Suppose x ∈ J∗, and that there

exists a trajectory in JAKε
∆ from x to some position y. Then d(y, J∗) ≤ α′.

Proof. We prove the result by contradiction, by assuming that there exists a
stutter-free trajectory in JAKε

∆ starting from some position in J∗, and ending in
a position y such that d(y, J∗) > α′.

We pick one of the shortest (w.r.t. the number of transitions) such stutter-free
trajectory π′ = (q′0, t

′
0)(q

′
1, t

′
1) . . . (q′m, t′m) in JAK0∆. We have q′0 ∈ J∗, d(q′i, J

∗) ≤
α′ for i < m, and d(q′m, J∗) > α′.

We let L = 12(n + 2)n2W . Assume m ≤ L + 1. From Theorem 38, our tra-
jectory π′ can be approached by a trajectory π = (q0, t0) . . . (qm, tm), starting
in the closed-region [q′0], having the same trace as π′, and such that for any
integer i ≤ m, ‖qi − q′i‖ ≤ α′. Since q0 ∈ [q′0] ⊆ J∗, the whole trajectory π lies
in J∗. Thus qm ∈ J∗, and d(q′m, J∗) ≤ α′, which contradicts our assumption.

Thus m ≥ L + 2. We apply Theorem 38 to the subtrajectory between q′m−L−2

and q′m, and consider a trajectory π = (qm−L−2, tm−L−2) . . . (qm, tm) witness-
ing the requirements of Theorem 38. We know that d(q′i, J

∗) ≤ α′ for all in-
tegers i < m, and that ‖q′i − qi‖ ≤ α′ for i between m − L − 2 and m. Thus,
d(qi, J

∗) ≤ 2α′ < 1
n

for i between m − L − 2 and m − 1, and, from Lemma 13,
[qi] ∩ J∗ 6= ∅ for those i.

Since it contains L + 1 states, that is, 12(n + 2)n2 · W + 1 states, the prefix
of π between (qm−L−2, tm−L−2) and (qm−1, tm−1) contains 6(n+2)n2 +1 states
s0, s1, ..., s6(n+2)n2 s.t. (s0) = (s1) = · · · = (s6(n+2)n2), and with at least
one action transition between each pair (si, si+1) (w.l.o.g., we assume that, for

any i, state si occurs before state si+1 along π). This entails that π runs through
6(n + 2)n2 cycles in the region graph.

– Assume one of these cycles is a progress cycle; then we know that some (si) has
a progress cycle through it in the region graph, and it intersects with J∗.
Such a region has been added in J∗, and thus (si) lies in J∗. Thus the whole
suffix of π starting in si is in J∗; in particular qm ∈ J∗, and d(q′m, J∗) ≤ α′,
which is in contradiction with the choice of trajectory π′.

– Now assume that, along one of the cycles (between si and si+1, say), no
clock is reset. Since π and the corresponding portion of π′ have the same
trace, no clock is reset in the corresponding portion of π′, and that portion
can be replaced by a single continuous transition, which leads to a shorter
trajectory than π′ that sufficiently moves away for J∗, and contradicts our
initial assumption.

– Thus, our 6(n + 2)n2 cycles are non-progress cycles along each of which at
least one clock is reset. We now explain how to build a shorter trajectory
between the same initial and final states, thus contradicting the assumption
that π′ was the shortest.

We first define sets X0, . . . , Xp of indices such that, for any valuation w in
region (s0) (and thus in every region (si)),
• for all x ∈ X0, 〈w(x)〉 = 0 (note that X0 can be empty);
• for all x, y ∈ Xk, 〈w(x)〉 = 〈w(y)〉;
• for all k < l and for all x ∈ Xk and y ∈ Xl, 〈w(x)〉 < 〈w(y)〉.

We also define Si to be the set of clocks that are reset along the i-th cycle,
between si−1 and si. We write ci and c′i for the i-th cycle along π and π′,
respectively, and t′i for the total duration of c′i. We denote by T ′ the sum of
all the durations t′i. We first notice that T ′ > 0, and that X0 does not contain
all the clocks, otherwise it would contradict Assumption 10. In other words,
p > 0 and X1 6= ∅. Clearly enough, along each cycles, if a clock in some Xj

is reset, then all clocks in the same Xj are also reset, as well as all the clocks
in Xk for all k ≤ j. This entails that clocks in Xp are never reset along any of
the 6(n+2)n2 cycles (otherwise, one of the cycles would be a progress cycle).
As a consequence, the total duration T ′ of the 6(n + 2)n2 cycles is strictly
less than 1 + 2α′. Another consequence is that the sets Si are characterized
by the number of clocks they contain.

The new trajectory is built by removing one of the cycles. We will have to
report its delay on another cycle, in order to get the correct value for clocks
that are never reset. This must be done carefully in order to be sure that
guards will still be satisfied along the new trajectory.
First, if T ′ ≥ 1, then we know that one of the 6(n + 2)n2 cycles c′i has total
duration greater than 1/(6(n + 2)n2), thus greater than 2α′. Thus, either
the first half, or the second half, of the cycles has total duration strictly less
than 1. With this remark, we can assume that T ′ < 1, and that we have
3(n + 2)n2 cycles. In that case, we are sure that a clock that has been reset
will never reach value 1 along that sequence of cycles.

We now explain how we choose the cycle to be removed. As mentionned
earlier, the sets Si are characterized by the number of clocks they contain.
We assume in the sequel that the cycles are numbered from 1 to 3(n + 2)n2.
We claim that we can find an index i0 such that
• i0 > 1,
• Si0 ⊆ Si0+1 ⊆ Sj for some j < i0,
• along cycles c′i0−1, c′i0 and c′i0+1 of π′, no clock reaches a strictly positive

integer value.
We now explain why such an i0 exists: consider the sequence of couples
fi = (|Si|, |Si+1|), where
sizeS is the number of clocks in S. Such a couple is said to be negative if
|Si+1| < |Si|, and nonnegative otherwise. Let N be the number of negative
couples, and P be the number of nonnegative ones. For negative couples, we
have |Si+1| − |Si| ≤ −1, while for nonnegative ones, we have |Si+1| − |Si| ≤
n − 1. Thus |S3(n+2)n2 | − |S1| ≤ −N + (n − 1)P , and (n − 1)P − N > −n.
Since P + N ≥ 3(n + 2)n2 (there are at least 3(n + 2)n2 cycles), we get
that P ≥ 3n(n + 2). This entails that we can find 3(n + 2) nonnegative
couples fe1

, fe2
, ..., fe3(n+2)

having the same second element |Sej+1|. We

assume that e1 < e2 < · · · < e3(n+2). Now, along our 3(n + 2)n2 cycles,
we know that each clock can reach a positive integer value at most once,
since T ′ < 1. This means that we can find an index i0 ∈ {e2, . . . , e3(n+2)}
such that no clock reaches a positive integer value in any of the cycles ci0−1,
ci0 and ci0+1. That index fulfills our three requirements (with j = e1 + 1).

Now, we build the new trajectory π′′: it is similar to π′, except that we
remove the i0-th cycle, and report its delay t′i0 as late as possible in the
i0 − 1-st cycle (thus either at the very end of that cycle, if time can elapse
after the last reset (i.e. if X0 = ∅), or between the resets of clocks in X1 and
clocks in X0 otherwise). We assume that all clocks keep the same (global)
rate during that extra delay as in the i0-th cycle.
We also have to be careful at one extra problem: If X0 is not empty, then
at the end of cycle c′i0−1, clocks in X0 have been reset at “almost the same
time”, since ∆ t.u. may elapse between any two successive resets of clocks
in X0. For instance, the following path in π:

· · · qj −−−−→
x1:=0

qj+1
0

−−→ qj+2
x1=0
−−−−→
x2:=0

qj+3
0

−−→ qj+4
x2=0
−−−−→
x3:=0

· · ·

could result in the following path in π′:

· · · qj −−−−→
x1:=0

qj+1
∆

−−→ qj+2
x1≤∆
−−−−→
x2:=0

qj+3
∆

−−→ qj+4
x2≤∆
−−−−→
x3:=0

· · ·

It could then be the case that cycle c′′i0+1 (the cycle of π′′ corresponding
to c′i0+1) requires that all clocks in X0 are less than ∆. Such a guard would
fail with the above example. To overcome that problem, we remove those
small delays and report them just before the resets of clocks in X0 (i.e.
precisely where we reported the delay t′i0).

The other transitions of π′′ are the same as those of π′. This way, at the end
of the i0 + 1-st cycle, all clocks have the same value in π′ and in π′′.
Last, we have to ensure that all guards along the new trajectory are still
satisfied. It is clear for guards occuring before the first modified transition,
as well as for guards occuring after c′′i0+1, since clocks have the same values
as in π′. For other guards:
• guards ”x = 0”: we have ensured that those guards are satisfied for

clocks in X0 at the beginning of cycle c′′i0+1 (by removing the possible
superfluous delays at the end of c′′i0−1). At other positions along π′′, those
guards are still satisfied if they were along π′: this can only occur just
after a reset of the corresponding clock, and that reset would also occur
along π′.

• other guards are satisfied thanks to the requirement that no clock reaches
an integer value along the three cycles. The only problem could come
from clocks that are reset along c′i0 : those clocks are not reset anymore
between c′′i0−1 and c′′i0+1. However, we know that those clocks have been
reset previously (since Si0 ⊆ Si0+1 ⊆ Sj for some j < i0,) and can thus
not reach value 1 at that position.

Thus, we have built a shorter path than π′ that still sufficiently moves away
from J∗, which contradicts our initial assumption that π′ was the short-
est one.

We conclude that our initial hypothesis is wrong: there does not exist a
stutter-free trajcetory starting in J∗ and ending in a position y with d(y, J∗) ≥ α.

�

Finally, we can establish the completeness of Algorithm 1.

Theorem 44 Under Assumption 10, the set J∗ computed by Algorithm 1 con-
tains R∗

∆,ε.

Proof. Let α ∈ R>0. Let y ∈ R∗
∆,ε. Then for any ∆ > 0 and ε > 0, y ∈

Reach(JAKε
∆),i.e. there exists a trajectory from the initial state to y in JAKε

∆.
From Theorem 43, d(y, J∗) < α since J∗ contains the initial state. Hence, for
any α > 0, d(y, J∗) < α. Therefore, d(y, J∗) = 0. Now, J∗ is a closed set, since
it is a union of closed regions. Thus y ∈ J∗. �

In summary, we have proved the following inclusions:

R∗
∆,ε

R∗
∆

R∗
ε

J∗R∗
∆,ε ⊆

⊆

⊆

⊆

⊆

All those sets are thus equal:

Theorem 45 Under Assumption 10, we have R∗
∆,ε = R∗

∆,ε, and those sets are
computed by Algorithm 1.

6.4 Complexity

Complexity issues have been studied in [Pur98], so we recall the main result.

Theorem 46 ([Pur98]) Given a timed automaton A = 〈Loc,Var, q0, Lab,Edg〉
and a location lf ∈ Loc, determining whether a state (lf , v) ∈ R∗

∆ (or equivalently
(lf , v) ∈ R∗

ε) for some valuation v is PSPACE-Complete.

Proof. For proving PSPACE-membership, it is not possible to use Algorithm 1
because it first constructs the region graph G of the timed automaton A which
has a number of states exponential in the number of clocks of A. However, we
can check accessibility of q by guessing a path from q0 to q in polynomial space.
This is a classical trick used for showing PSPACE-membership of the reachabil-
ity problem for standard timed automata with an on-the-fly algorithm [AD94].
In our case, the difficulty to overcome is that the successor of a given region r
can be a neighbor region r′ of r (i.e. such that r ∩ r′ 6= ∅) provided r′ is in a
strongly connected component S of G. As we have shown, the entire region r′

can be reached from r no matter how small is ∆ by iterating the cycle S. Hence
we can add S in one step in the set of reachable states. Such an acceleration
has been proven correct. So, when guessing the successor of a region r, we must
take into account the neighbor regions of r, and decide whether they are in a
cycle or not. This can be checked in PSPACE using the procedure for standard
timed automata. A polynomially bounded part of the memory space is reserved
for executions of this procedure. Since the content of this part of the memory
is not necessary for further computations, it can be reused by subsequent calls.
With this adaptation, the proof of PSPACE-membership can be completed, and
we omit the details.

We establish PSPACE-hardness by reducing the acceptance problem for Lin-
ear Bounded Turing Machines (LBTM) to our decision problem. A LBTM is a
nondeterministic Turing machine that can only use a number of tape cells equal
to the length of its input. A LBTM M = (Q,Σ, q0, qf , E) consists of a finite
set of control states Q, a finite alphabet Σ, an initial state q0 ∈ Q, a final state
qf ∈ Q, and a set of transitions E ⊆ Q × Σ × Σ × {left, right} × Q. A configu-
ration of M is a triple (q, w, i) ∈ Q × Σ∗ × N where q is a control location, w is
the content of the tape, and i is the position of the tape head. An execution of
M on the input x ∈ Σ∗ is a sequence s0s1 . . . sn of configurations starting with
s0 = (q0, x, 1) and finishing in sn such that si+1 is a successor of si for every
0 ≤ i < n. The configuration (q′, w′, i′) is a successor of a configuration (q, w, i)
iff there exists a transition (q, σ, σ′, d, q′) ∈ E such that:

(1) wi = σ;
(2) w′

i = σ′ and w′
j = wj for j 6= i;

(3) i′ = i − 1 if d = left and i′ = i + 1 if d = right with 1 ≤ i′ ≤ |x|.

We assume the condition 1 ≤ i′ ≤ |x| is realized using input delimiters. We
say that M accepts x iff M has an execution on x finishing in sn = (qf , w, i)

for some w ∈ Σ∗ and i ∈ N. The acceptance problem for LBTM asks, given a
LBTM M and an input word x ∈ Σ∗ whether M accepts x.

Our reduction is inspired by [CY91], where a configuration (q, w, i) of M is
encoded by a location (q, i) (recording the control state q and the tape position
i) and the clocks y1, . . . , y|x|, one for each tape cell. We assume without loss
of generality that Σ = {a, b}. A clock yi has the value yi = na if wi = a and
yi = nb > na if wi = b. This encoding is not preserved by time passing. Thus we
need to periodically refresh the values of the clocks. This is done in two phases:
(I) resetting the clock coding a ’b’ (by checking yi = nb), then letting nb − na

time unit pass, and (II) resetting the clock coding an ’a’ (by checking yi = nb

again) and finally letting na time unit pass. This schema is modified in order to
execute the transitions of the LBTM. It will result in slight changes in the reset
policy.

We show how to adapt this framework to our enlarged semantics of timed
automata. Due to guards enlargements, equality can not be tested precisely and
the clocks can not store precise values na and nb. However, if ∆ is sufficiently
small, we can still distinguish clocks coding an ′a′ and clocks coding a ′b′ if na

and nb are not too close. The main details of the proof follow.
Let M = (Q,Σ, q0, qf , δ) be a LBTM and x ∈ Σ∗ an input word. Let n = |x|,

na = 3 and nb = 6. We construct a timed automaton A(M,x) and a location
lf such that M accepts x iff (lf , v) ∈ R∗

∆ for some valuation v. Let A(M,x) =
〈Loc,Var, qA0 , Lab,Edg〉 with

– Loc = {s0, s1, lf} ∪ {(q, i, j, ϕ, d) | q ∈ Q ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n + 1 ∧ ϕ ∈
{I, II} ∧ d ∈ {left, right}}; a location (q, i, j, ϕ, d) encodes the control state q,
the tape position i, the number of the next clock to be treated j, the phase
of the simulation ϕ, and the direction of the next head movement d.

– Var = {yi | 1 ≤ i ≤ n} ∪ {z}
– qA0 = (s0, v0) with v0(t) = 0 for all t ∈ Var

– Lab = {τ}

The set Edg contains the edges (we write l
g,R
−−→ l′ when (l, l′, g, τ, R) ∈ Edg):

– Initialization:

• s0
z=3,{yi|xi=a}∪{z}
−−−−−−−−−−−−→ s1

• s1
z=3,{z}
−−−−−→ (q0, 1, 1, I, left)

– Refresh: for every (q, i, j, ϕ, d) ∈ Loc with j 6= i and j ≤ n,

• (q, i, j, ϕ, d)
z≤0∧yj≤4,∅
−−−−−−−−→ (q, i, j + 1, ϕ, d)

• (q, i, j, ϕ, d)
z≤0∧yj≥5,{yj}
−−−−−−−−−−→ (q, i, j + 1, ϕ, d)

– Execution: for every transition (q, σ, σ′, d′, q′) ∈ E, for every q ∈ Q, 1 ≤ i ≤
n, d ∈ {left, right},

• If (σ, σ′) = (a, a) then (q, i, i, I, d)
z≤0∧yi≤4,∅
−−−−−−−−→ (q′, i, i + 1, I, d′)

• If (σ, σ′) = (a, b) then (q, i, i, I, d)
z≤0∧yi≤4,{yi}
−−−−−−−−−−→ (q′, i, i + 1, I, d′)

• If (σ, σ′) = (b, a) then (q, i, i, I, d)
z≤0∧yi≥5,∅
−−−−−−−−→ (q′, i, i + 1, I, d′)

• If (σ, σ′) = (b, b) then (q, i, i, I, d)
z≤0∧yi≥5,{yi}
−−−−−−−−−−→ (q′, i, i + 1, I, d′)

• (q, i, i, II, d)
z≤0∧yi≤4,∅
−−−−−−−−→ (q, i, i + 1, II, d)

• (q, i, i, II, d)
z≤0∧yi≥5,{yi}
−−−−−−−−−−→ (q, i, i + 1, II, d)

– Phase change: for every q ∈ Q, 1 ≤ i ≤ n, j = n + 1 and d ∈ {left, right},

• (q, i, n + 1, I, d)
z=3,{z}
−−−−−→ (q, i, 1, II, d)

• (q, i, n + 1, II, left)
z=3,{z}
−−−−−→ (q, i − 1, 1, I, left)

• (q, i, n + 1, II, right)
z=3,{z}
−−−−−→ (q, i + 1, 1, I, right)

– Termination: for every 1 ≤ i ≤ n, d ∈ {left, right},

• (qf , i, 1, I, d)
true,∅
−−−−→ lf

After the initialization step, we have in the location (q0, 1, 1, I, left) when
z = 0: yi = α if xi = a and yi = β if xi = b with α ∈ [3 − ∆, 3 + ∆] and
β ∈ [6 − 2∆, 6 + 2∆].

After one transition (q, σ, σ′, d′, q′) of M , let x′ be the new tape content (x′

differs from x by at most one symbol). If we simulate that transition by executing
the refresh steps, the execution step, and the phase changes, it is easy to check
that in location (q, i, 1, I, d), when z = 0:

– (A1) if x′
i = a then 3 − 2∆ ≤ yi ≤ 3 + ∆;

– (A2) if x′
i = b then 6 − 3∆ ≤ yi ≤ 6 + 2∆;

Note that two clocks coding the same symbol are not necessarily equal (how-
ever, their difference is bounded by ∆). The reader can check that after having
executed two transitions, there is no accumulation of the imprecisions and con-
ditions (A1) and (A2) hold. Hence, provided ∆ is sufficiently small (in fact
∆ < 1/2), the automaton A(M,x) will correctly distinguish clocks coding ’a’
from clocks coding ’b’ for any number of transitions, and thus simulate the exe-
cution of M on x. It is easy to check that the location lf is reachable in R∗

∆ iff
lf is reachable in JAK00 iff M accepts x.

Since our construction is polynomial in the size of M and x, and the accep-
tance problem for LBTM is PSPACE-hard, the proof is complete. �

6.5 What if we relax the time-elapsing hypothesis?

We briefly show here that Assumption 10 is necessary for the completeness:
consider the automaton displayed on Figure 3. That automaton does not have
any progress cycle, and Algorithm 1 would end up with J∗ =

{
(ℓ1, {t, t}) | t ∈

R≥0
}
. However, if guards are enlarged, it is possible to perform the loop on ℓ1

each time x = ∆, and then reach state err.
We remark that, if only drifts on clocks are allowed, Algorithm 1 behaves

correctly on this example. We conjecture that it is always the case, i.e. that
Assumption 10 is not necessary if only drifts on clocks are assumed.

On the other hand, we conjecture that our algorithm can be adapted in order
to relax Assumption 10 in presence of both types of imprecisions. The algorithm

ℓ1 err
x = 0, y = 0

x = 0, x := 0

x = 0, y ≥ 1

Fig. 3. A timed automaton not satisfying Assumption 10

we proposed is Algorithm 2, in which XS is the set of clocks that are reset along
cycle S, and rրX is the zone obtained from r by “freezing” clocks in X and letting
time elapse for the other clocks.

7 Conclusion

In this paper, we have shown that a notion of robustness defined by Puri [Pur98]
is closely related to the notion of implementability introduced in [DDR05]. Mak-
ing this link formal allowed us to show that our notion of implementability is
decidable for the class of timed automata. To establish this link, we have proved
that the algorithm proposed by Puri computes the set of reachable states of
timed automata where guards are enlarged by an infinitesimally small rational
value. The existence of such a value implies the implementability as shown in our
previous paper. The proofs of the decidability result rely on non trivial adapta-
tions of the main ideas underlying the study of drift in the rate of clocks made
by Puri.

The algorithm that is used to check implementability manipulates strongly
connected components of the region graph. It can be seen as defining exact
accelerations of cycles of the timed automaton.

We will work in the future on making those accelerations practical and as a
consequence, we will work on to turn the theoretical algorithm proposed in this
paper into a practical one. If we succeed in this task, the results of this paper and
of [DDR05] will allow us to propose a practical procedure to produce provably
correct code from proved correct controller modeled as timed automata.

References

[AAB00] Aurore Annichini, Eugene Asarin, and Ahmed Bouajjani. Symbolic tech-
niques for parametric reasoning about counter and clock systems. In Proc.
12th Int. Conf. Computer Aided Verification (CAV 2000), pages 419–434,
2000.

[ACD+92] Rajeev Alur, Costas Courcoubetis, David L. Dill, Nicolas Halbwachs, and
Howard Wong-Toi. An implementation of three algorithms for timing verifi-
cation based on automata emptiness. In Proc. 13th IEEE Real-time Systems
Symposium, pages 157–166. IEEE Comp. Soc. Press, 1992.

Algorithm 2: Algorithm for computing R∗
ε(A) for a timed automaton A.

Data: A timed automaton A = 〈Loc, Var, q0, Lab, Edg〉
Result: The set J∗ = R∗

ε

begin
1. Construct the region graph G = (RA,−→A) of A ;
2. Compute SCC(G) = {strongly connected components of G};
3. J∗ ← Reach(G, [q0]) ;
4. while for some S = p0 p1 . . . pk ∈ SCC(G), [p0] 6⊆ J∗ and J∗ ∩ [p0] 6= ∅

do

if S is a progres cycle then
J∗ ← J∗ ∪ [p0]

else

J∗ ← J∗ ∪ ([p0] ∩ ([p0] ∩ J∗)րXS
)

J∗ ← Reach(G, J∗) ;

end

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AFM+02] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. Times: A tool for modelling and implementation of embedded
systems. In Joost-Pieter Katoen and Perdita Stevens, editors, Proc. 8th
Int. Conference Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’02), volume 2280 of Lecture Notes In Computer Science,
pages 460–464. Springer-Verlag, 2002.

[AFP+03] Tobias Amnell, Elena Fersman, Paul Pettersson, Hongyan Sun, and Wang
Yi. Code synthesis for timed automata. Nordic Journal of Computing, 9,
2003.

[AIK+03] Rajeev Alur, Franjo Ivancic, Jesung Kim, Insup Lee, and Oleg Sokol-
sky. Generating embedded software from hierarchical hybrid models. In
Proc. 2003 Conf. Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), pages 171–182, 2003.

[AMPS98] Eugène Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller
synthesis for timed automata. In Proc. System Structure and Control. El-
sevier, 1998.

[AT05] Karine Altisen and Stavros Tripakis. Implementation of timed automata:
an issue of semantics or modeling? In Proc. 3rd Int. Conf. Formal Mod-
elling and Analysis of Timed Systems (FORMATS’05), Lecture Notes in
Computer Science. Springer, 2005.

[BC05] Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of
timed automata. Journal of Automata, Languages and Combinatorics,
2005. To appear.

[Bou01] Patricia Bouyer. Updatable timed automata, an algorithmic approach.
Technical Report LSV-01-12, ENS Cachan, Cachan, France, 2001.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

[CHR02] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A com-
parison of control problems for timed and hybrid systems. In Proc. 5th Int.

Workshop Hybrid Systems: Computation and Control (HSCC’02), volume
2289 of Lecture Notes in Computer Science, pages 134–148. Springer-Verlag,
2002.

[CY91] Costas Courcoubetis and Mihalis Yannakakis. Minimum and maximum
delay problems in real-time systems. In Proc. 3rd Int. Workshop Computer
Aided Verification (CAV’91), volume 575 of Lecture Notes in Computer
Science, pages 399–409. Springer-Verlag, 1991.

[DDMR04] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François
Raskin. Robustness and implementability of timed automata. In
Y. Lakhnech and S. Yovine, editors, Proceedings of the Joint Conferences
Formal Modelling and Analysis of Timed Systems (FORMATS’04) and For-
mal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’04),
volume 3253 of Lecture Notes in Computer Science, pages 118–133, Greno-
ble, France, September 2004. Springer.

[DDR05] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP
semantics: From timed models to timed implementations. Formal Aspects
of Computing, 17(3):319–341, October 2005.

[Dil90] David Dill. Timing assumptions and verification of finite-state concurrent
systems. In Proc. 1st Int. Workshop Automatic Verification Methods for
Finite State Systems (CAV’89), volume 407 of Lecture Notes in Computer
Science, pages 197–212. Springer-Verlag, 1990.

[GHJ97] Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Robust timed
automata. In O. Maler, editor, Proc. Int. Workshop Hybrid and Real-Time
Systems (HART’97), volume 1201 of Lecture Notes in Computer Science,
pages 331–345. Springer Verlag, March 1997.

[HKSP03] Thomas A. Henzinger, Christoph M. Kirsch, Marco A. Sanvido, and Wolf-
gang Pree. From control models to real-time code using giotto. IEEE
Control Systems Magazine, 23(1):50–64, 2003.

[HRSV01] Thomas Hune, Judi Romijn, Marielle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. In Proc. 7th Int.
Conf. Tools and Algorithms for Construction and Analysis of Systems
(TACAS’01), pages 189–203, 2001.

[Pur98] Anuj Puri. Dynamical properties of timed automata. In Proc. 5th Int.
Symposium Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’98), volume 1486 of Lecture Notes in Computer Science, pages
210–227. Springer, 1998.

[Yov96] Sergio Yovine. Model checking timed automata. In European Educational
Forum: School on Embedded Systems, pages 114–152, 1996.

